JP2014149170A - Light-wave range finder - Google Patents

Light-wave range finder Download PDF

Info

Publication number
JP2014149170A
JP2014149170A JP2013016786A JP2013016786A JP2014149170A JP 2014149170 A JP2014149170 A JP 2014149170A JP 2013016786 A JP2013016786 A JP 2013016786A JP 2013016786 A JP2013016786 A JP 2013016786A JP 2014149170 A JP2014149170 A JP 2014149170A
Authority
JP
Japan
Prior art keywords
light
density
distance meter
density filter
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013016786A
Other languages
Japanese (ja)
Other versions
JP6198399B2 (en
Inventor
Masaaki Yabe
雅明 矢部
Ryuichi Takei
隆一 竹居
Yoshihiko Tokuda
良彦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2013016786A priority Critical patent/JP6198399B2/en
Publication of JP2014149170A publication Critical patent/JP2014149170A/en
Application granted granted Critical
Publication of JP6198399B2 publication Critical patent/JP6198399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-wave range finder capable of preventing damage to a density filter and capable of surely fixing a setting position of the density filter whose density has been set.SOLUTION: A light-wave range finder measures a distance to a prism 280 by comparing reflected light from a measured object that is obtained by irradiating the prism 280 being the measured object with measurement light obtained from a light source 230 with internal reference light that is obtained from the light source 230 and whose light volume is adjusted by a density filter 310 in which transmitted light volume is variable. The density filter 310 comprises: a discoid density gradient film 311 having a density gradient in a circumferential direction; and a discoid protection film 312 disposed overlapping with the density gradient film 311 and having at least one uniform density. The density filter 310 is mounted on a density filter mounting part 131 with a fixing screw 313.

Description

本発明は、測定物で反射された測定光を受光する受光光学系と測定物に測定光を照射する射出光学系とを備え、目標までの距離を測定する光波距離計に関する。   The present invention relates to a light wave distance meter that includes a light receiving optical system that receives measurement light reflected by a measurement object and an emission optical system that irradiates the measurement object with measurement light, and measures a distance to a target.

上述の光波距離計は、変調した所定波長領域の測定光を被測定物に照射し、被測定物からの反射光を受光して、内部参照光と、受光された測定光の位相差から測定物までの距離を測定する。     The above-mentioned optical distance meter irradiates the object to be measured with modulated measurement light in a predetermined wavelength region, receives the reflected light from the object to be measured, and measures from the phase difference between the internal reference light and the received measurement light. Measure the distance to the object.

このような光波距離計では、内部参照光と測定光との位相差の測定を行うため、内部参照光を受光した測定光と同一の光量(信号)レベルにあらかじめ調整するようにしている。この光量の調整は、濃度勾配を有するフィルムを用いた、フィルターを使用しこの濃度フィルムの適当な濃度位置に設定して、光量の調整を行う。   In such a lightwave distance meter, in order to measure the phase difference between the internal reference light and the measurement light, the light amount (signal) level is adjusted in advance to the same measurement light as the measurement light that received the internal reference light. The light amount is adjusted by using a film having a density gradient, using a filter, and setting the appropriate density position on the density film.

特許文献1および特許文献2には、測定光を被測定物に照射し、被測定物で反射された測定光を受光し、この受光した測定光と、濃度フィルターで光量を調整した内部参照光とを比較して被測定物までの距離を測定する光波距離計が記載されている。   In Patent Document 1 and Patent Document 2, measurement light is irradiated to a measurement object, measurement light reflected by the measurement object is received, and the received measurement light and an internal reference light whose light quantity is adjusted by a density filter are disclosed. And a lightwave distance meter that measures the distance to the object to be measured.

特開2004−144681公報参照See JP 2004-144681 A 特開2008−76212公報参照See JP 2008-76212 A

しかし、濃度フィルターとして、乳剤面にインクが盛られた印刷型のものを使用する場合、濃度フィルター固定用の工具が触れるなど、乳剤面に機械的な負荷がかかるとインクがはげる等の劣化が生じ、濃度フィルターの濃度自体が変化してしまうことがある。また、乳化剤に凹凸が発生すると、入射した測定光が、乱反射してしまい、その影響で光学系内部の迷光(光ノイズ)が発生し、測定光信号のS/N低下を招き測定精度が低下してしまう。   However, when a density type filter with a printing type with ink on the emulsion surface is used, deterioration such as ink peeling will occur if a mechanical load is applied to the emulsion surface, such as touching the density filter fixing tool. May occur, and the density of the density filter itself may change. In addition, if unevenness occurs in the emulsifier, the incident measurement light is diffusely reflected, which causes stray light (optical noise) inside the optical system, resulting in a decrease in S / N of the measurement light signal and a decrease in measurement accuracy. Resulting in.

また、従来の光波距離計では、濃度フィルターを回転中心において、ねじなどで固定するとき、測定光の強度が変化してしまうことがある。これは、濃度フィルターの濃度調整をする際、測定光が所定の強度になる位置で濃度フィルターを固定用のねじ等を締め付けるとき濃度フィルターの濃度位置が回転してしまうことによる。   Further, in the conventional optical distance meter, when the density filter is fixed with a screw or the like at the center of rotation, the intensity of the measurement light may change. This is because when the density of the density filter is adjusted, the density position of the density filter is rotated when the density filter is tightened with a fixing screw or the like at a position where the measurement light has a predetermined intensity.

本発明は上述した課題にかんがみてなされたものであり、濃度フィルターへの傷付を防止するとともに、濃度設定した濃度フィルターの位置設定を確実に固定できる光波距離計を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a lightwave distance meter that can prevent the density filter from being scratched and can reliably fix the density filter position setting. .

前記課題を解決するため、請求項1に記載の発明は、光源から取得された測定光を被測定物に照射して得られた被測定物からの反射光と、前記光源から取得され、透過光量が可変な濃度フィルターで光量を受光した前記反射光の光量に合わせて減衰した内部参照光と、に基づいて被測定物までの距離を測定する光波距離計において、前記濃度フィルターは、円周方向に濃度勾配を有する円板状の濃度勾配フィルムと、前記濃度勾配フィルムに重ねて配置した少なくとも1枚の均一な濃度の円板状の保護フィルムを備えることを特徴とする光波距離計である。   In order to solve the above-mentioned problem, the invention according to claim 1, the reflected light from the measurement object obtained by irradiating the measurement object with the measurement light acquired from the light source, the transmission light acquired from the light source and transmitted In the optical wave distance meter that measures the distance to the object to be measured based on the internal reference light attenuated in accordance with the amount of the reflected light received by the density filter having a variable light quantity, the density filter includes a circumferential A lightwave distance meter comprising: a disk-shaped density gradient film having a density gradient in a direction; and at least one disk-shaped protective film having a uniform density arranged to overlap the density gradient film. .

同じく請求項2に記載の発明は、請求項1に記載の光波距離計において、前記濃度勾配フィルムと、前記保護フィルムとは、各々が独立に回転可能であることを特徴とする。   Similarly, the invention according to claim 2 is the lightwave distance meter according to claim 1, wherein the density gradient film and the protective film are independently rotatable.

同じく請求項3に記載の発明は、請求項1に記載の光波距離計において、前記濃度勾配フィルムと、前記保護フィルムとは、接合されていることを特徴とする。   Similarly, the invention according to claim 3 is the lightwave distance meter according to claim 1, wherein the density gradient film and the protective film are joined.

同じく請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の光波距離計において、前記保護フィルムの表面に乱反射防止加工が施こされていることを特徴とする。   Similarly, the invention according to claim 4 is the lightwave distance meter according to any one of claims 1 to 3, wherein the surface of the protective film is subjected to irregular reflection prevention processing. .

本発明に係る光波距離計によれば、濃度フィルターへの傷付を防止するとともに、濃度設定した濃度フィルターの位置を確実に固定できる。   According to the lightwave distance meter according to the present invention, it is possible to prevent the density filter from being damaged and to reliably fix the position of the density filter whose density is set.

本発明の実施形態に係る光波距離計を示す正面図である。It is a front view which shows the light wave distance meter which concerns on embodiment of this invention. 同じく光波距離計を示す断面図である。It is sectional drawing which similarly shows a light wave rangefinder. 同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。FIG. 2 also shows an optical system of the optical distance meter, where (a) is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission. 同じく光波距離計内部構造を示す斜視図である。It is a perspective view which similarly shows the optical wave distance meter internal structure. 同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。It is a disassembled perspective view which similarly shows the structure of the density filter of a light wave distance meter. 同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。It is a disassembled perspective view which similarly shows the structure of the density filter of a light wave distance meter.

本発明を実施するための形態に係る光波距離計について説明する。図1は本発明の実施の形態に係る光波距離計を示す正面図、図2は同じく光波距離計を示す断面図、図3は同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。   An optical distance meter according to an embodiment for carrying out the present invention will be described. FIG. 1 is a front view showing a light wave distance meter according to an embodiment of the present invention, FIG. 2 is a sectional view showing the light wave distance meter, and FIG. 3 is a view showing an optical system of the light wave distance meter. Is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission.

実施形態に係る光波距離計100は、図1に示すように、三脚(図示せず)に取り付けられる基台部101に架台102が設けられ、この架台102には光学系を含む望遠鏡部103が支持されている。前記基台部101は整準ねじ104を有し、架台102が水平となる様に整準可能となっている。架台102は鉛直軸心を中心に回転可能であり、望遠鏡部103は水平軸心を中心に回転可能となっている。また、架台102には表示部106を有する操作入力部107が設けられ、前記表示部106には測定対象物までの距離の測定値等が表示される。   As shown in FIG. 1, the optical distance meter 100 according to the embodiment includes a base 102 provided on a base 101 attached to a tripod (not shown), and a telescope 103 including an optical system is provided on the base 102. It is supported. The base 101 has leveling screws 104 and can be leveled so that the pedestal 102 is horizontal. The gantry 102 can rotate around a vertical axis, and the telescope unit 103 can rotate around a horizontal axis. Further, the gantry 102 is provided with an operation input unit 107 having a display unit 106, and the display unit 106 displays a measured value of a distance to a measurement object and the like.

実施形態に係る光波距離計100の光学系について説明する。図2は同じく光波距離計を示す断面図、図3は同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。光波距離計100は、筐体110内に、鏡筒120と、ベース部130が形成されている。また、図2に示すように、光波距離計100は、光学系200として、受光光学系である対物レンズ系210と、測定光を射出する射出光学系220と、対物レンズ系210からの測定光を光ファイバ260に導く射出反射光学系240とを備える。また光学系200は、受光反射光学系250と、視準光学系270とを備える。光ファイバ260は、光センサー261(図3参照)に測定光を導く。視準光学系270は対物レンズ系210からの被測定物像を目視できるようにして、光波距離計100の方向を決定したり補正したりするために使用される。   An optical system of the lightwave distance meter 100 according to the embodiment will be described. FIG. 2 is a cross-sectional view showing the light wave distance meter, FIG. 3 is a view showing the optical system of the light wave distance meter, FIG. 2A is a schematic view showing the state of measurement light emission, and FIG. It is a schematic diagram which shows this state. In the optical distance meter 100, a lens barrel 120 and a base portion 130 are formed in a housing 110. As shown in FIG. 2, the optical distance meter 100 includes, as an optical system 200, an objective lens system 210 that is a light receiving optical system, an emission optical system 220 that emits measurement light, and measurement light from the objective lens system 210. And an exit reflection optical system 240 that guides the light to the optical fiber 260. The optical system 200 includes a light receiving / reflecting optical system 250 and a collimating optical system 270. The optical fiber 260 guides the measurement light to the optical sensor 261 (see FIG. 3). The collimating optical system 270 is used to determine and correct the direction of the lightwave distance meter 100 so that the object image from the objective lens system 210 can be viewed.

対物レンズ系210は、鏡筒120に配置され、被測定物であるプリズム280に向かう第1光軸O1を備え、被測定物からの光を集光する。対物レンズ系210は、3枚のレンズを備えており、各種収差が補正され全体で正のパワーを備える。射出光学系220は、ベース部130に配置され、第1光軸O1と平行な第2光軸O2を備え、光源230からの光を平行光である測定光として射出する。光源230は、例えば赤外線を発生するレーザーダイオードである。射出光学系220は、コリメータレンズ221と、射出光を断続的に遮断し射出光を内部参照光として取り出す台形プリズム225を備えたチョッパ226と、マイコンなどにより制御されて外光束光量を調整するサーキュラー222と手動で回転位置を設定することにより内部参照光の光量を調整する濃度フィルター310、と絞り224とを備える。濃度フィルター310は、円周上に濃度勾配を備えた円板状の部材である。また、サーキュラー222は、測定光出射光量の調整用に円周上に濃度勾配が付いている濃度フィルターを備え、サーキュラー駆動モータ223で回転駆動される円板状の部材である。   The objective lens system 210 is disposed in the lens barrel 120 and includes a first optical axis O1 directed to the prism 280 that is the object to be measured, and condenses light from the object to be measured. The objective lens system 210 includes three lenses, and various aberrations are corrected to provide a positive power as a whole. The emission optical system 220 is disposed on the base unit 130, includes a second optical axis O2 parallel to the first optical axis O1, and emits light from the light source 230 as measurement light that is parallel light. The light source 230 is, for example, a laser diode that generates infrared rays. The emission optical system 220 includes a collimator lens 221, a chopper 226 having a trapezoidal prism 225 that intermittently blocks the emitted light and extracts the emitted light as internal reference light, and a circular that is controlled by a microcomputer or the like to adjust the amount of external light flux. 222, a density filter 310 that adjusts the amount of internal reference light by manually setting the rotational position, and a diaphragm 224. The density filter 310 is a disk-shaped member having a density gradient on the circumference. The circular 222 is a disk-like member that includes a density filter having a density gradient on the circumference for adjusting the measurement light emission light amount and is rotationally driven by a circular drive motor 223.

さらに、チョッパ226はチョッパ駆動モータ227で回転駆動され、所定のタイミングで、第2光軸O2上のコリメータレンズ221の前側に出没するように駆動される。ここで、チョッパ226には、コリメータレンズ221を覆う板部226aが形成されている。また、台形プリズム225は、図3(a)、(b)に示すように2つの反射面225a、225bを備え、内部参照光を内部参照光センサー290に導く。   Further, the chopper 226 is rotationally driven by a chopper drive motor 227, and is driven so as to appear at the front side of the collimator lens 221 on the second optical axis O2 at a predetermined timing. Here, the chopper 226 is formed with a plate portion 226 a that covers the collimator lens 221. The trapezoidal prism 225 includes two reflecting surfaces 225a and 225b as shown in FIGS. 3A and 3B, and guides the internal reference light to the internal reference light sensor 290.

測定光の射出時には、図3(a)に示すように、チョッパ226は、コリメータレンズ221の射出口から外れ、光源230からの光は、サーキュラー222で断続的に遮られながらミラー部材241に向け、射出される。なお、図3(a)において、内部参照光の光軸を一点鎖線で示し、測定光の光路を矢印付の実線で示している。3(a)示した状態では、内部参照光は生成されてない。   When the measurement light is emitted, as shown in FIG. 3A, the chopper 226 is detached from the emission port of the collimator lens 221, and the light from the light source 230 is directed to the mirror member 241 while being interrupted by the circular 222 intermittently. Injected. In FIG. 3A, the optical axis of the internal reference light is indicated by a one-dot chain line, and the optical path of the measurement light is indicated by a solid line with an arrow. In the state shown in FIG. 3A, the internal reference light is not generated.

内部参照光の射出時には、図3(b)に示すように、チョッパ226はコリメータレンズ221の射出口に台形プリズム225の反射面225aが配置される状態となる。この状態で、光源230からの光は、コリメータレンズ221を経て、台形プリズム225の反射面225a、225bで反射されて濃度フィルター310に向け射出される。濃度フィルター310で濃度調整された内部参照光は、光ファイバ263に入射する。このとき、コリメータレンズ221の開口は、板部226aで完全に覆われるので、対物レンズ系210側には光は入射しない。光ファイバ263は、光ファイバ260と合流し、光ファイバ263からの内部参照光と、光ファイバ260からの測定光は同一の光センサー261で検出される。なお、図3(b)において、内部参照光の光路を矢印付の実線で示し、測定光の光軸を一点鎖線で示している。3(b)示した状態では、測定光は生成されてない。   When the internal reference light is emitted, as shown in FIG. 3B, the chopper 226 is in a state where the reflecting surface 225 a of the trapezoidal prism 225 is disposed at the exit of the collimator lens 221. In this state, the light from the light source 230 passes through the collimator lens 221, is reflected by the reflecting surfaces 225 a and 225 b of the trapezoidal prism 225, and is emitted toward the density filter 310. The internal reference light whose density has been adjusted by the density filter 310 enters the optical fiber 263. At this time, since the opening of the collimator lens 221 is completely covered with the plate portion 226a, no light is incident on the objective lens system 210 side. The optical fiber 263 merges with the optical fiber 260, and the internal reference light from the optical fiber 263 and the measurement light from the optical fiber 260 are detected by the same optical sensor 261. In FIG. 3B, the optical path of the internal reference light is indicated by a solid line with an arrow, and the optical axis of the measurement light is indicated by an alternate long and short dash line. In the state shown in FIG. 3B, no measurement light is generated.

射出反射光学系240は、第2光軸O2上に斜めに反射面を形成した第1反射手段であるミラー部材241と、対物レンズ系210の入射側(外側)に配置される第2反射手段である送光反射プリズム242とを備える。送光反射プリズム242は第1光軸O1上に傾斜した反射面242aを備える。この例では対物レンズ系210の外側には、平行平面ガラスであるカバーガラス281が配置され、送光反射プリズム242は、このカバーガラス281の内側に接着されて配置されている。   The exit reflection optical system 240 includes a mirror member 241 that is a first reflection unit having a reflection surface formed obliquely on the second optical axis O2, and a second reflection unit that is disposed on the incident side (outside) of the objective lens system 210. And a light transmitting / reflecting prism 242. The light transmitting / reflecting prism 242 includes a reflecting surface 242a inclined on the first optical axis O1. In this example, a cover glass 281, which is a plane parallel glass, is disposed outside the objective lens system 210, and the light transmitting / reflecting prism 242 is disposed on the inside of the cover glass 281.

受光反射光学系250は、ダイクロイックミラー251と、このダイクロイックミラー251からの光を直角方向に反射する受光反射部材である受光反射プリズム252とから構成される。ダイクロイックミラー251は、鏡筒120に配置され、対物レンズ系210から第1光軸O1に沿って入射する光のうち、所定波長帯域の光である測定光を反射する。他の帯域の光は透過して、鏡筒120に配置された視準光学系270に入射する。光波距離計100のオペレーターは、視準光学系270を用いて、視準を行うことができる。受光反射プリズム252は、第1光軸O1に45度の角度で形成された反射面252aを有し、ダイクロイックミラー251からの光を光ファイバ260に向け反射する。   The light receiving / reflecting optical system 250 includes a dichroic mirror 251 and a light receiving / reflecting prism 252 which is a light receiving / reflecting member that reflects light from the dichroic mirror 251 in a perpendicular direction. The dichroic mirror 251 is disposed in the lens barrel 120 and reflects measurement light, which is light in a predetermined wavelength band, among light incident from the objective lens system 210 along the first optical axis O1. Light in other bands is transmitted and enters the collimating optical system 270 disposed in the lens barrel 120. An operator of the optical distance meter 100 can collimate using the collimation optical system 270. The light receiving / reflecting prism 252 has a reflecting surface 252a formed at an angle of 45 degrees on the first optical axis O1, and reflects the light from the dichroic mirror 251 toward the optical fiber 260.

このような光波距離計100では、光センサー261で検出した測定物であるプリズム280からの測定光と、光ファイバ263からの内部参照光とに基づいて被測定物であるプリズム280までの距離を演算する。   In such an optical wave distance meter 100, the distance to the prism 280, which is a measurement object, is measured based on the measurement light from the prism 280, which is the measurement object detected by the optical sensor 261, and the internal reference light from the optical fiber 263. Calculate.

次に濃度フィルター310について説明する。図4は本発明の実施形態に係る光波距離計内部構造を示す斜視図、図5は同じく光波距離計の濃度フィルターの構造を示す分解斜視図、図6は同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。図4および図5に示すように、濃度フィルター310は、濃度勾配を形成した濃度勾配フィルム311と、濃度が一定、例えば透明な保護フィルム312とを重ねて、固定ねじ313を望遠鏡部103に配置されたベース部130の濃度フィルター取付部131に配置したものである。濃度勾配フィルム311および保護フィルム312は合成樹脂フィルムで構成される。そして、保護フィルム312が回転しても、濃度勾配フィルム311は保護フィルム312につれて回転することがないよう、接合せずに取り付けられる。なお、図4にはチョッパ226は記載されておらず、図5、図6にはサーキュラー222およびチョッパ226は記載していない。   Next, the density filter 310 will be described. FIG. 4 is a perspective view showing the internal structure of the light wave distance meter according to the embodiment of the present invention, FIG. 5 is an exploded perspective view showing the structure of the density filter of the light wave distance meter, and FIG. 6 is the structure of the density filter of the light wave distance meter. FIG. As shown in FIGS. 4 and 5, the density filter 310 includes a density gradient film 311 having a density gradient and a protective film 312 having a constant density, for example, and a fixing screw 313 disposed on the telescope unit 103. The density filter mounting portion 131 of the base portion 130 is disposed. The density gradient film 311 and the protective film 312 are made of a synthetic resin film. And even if the protective film 312 rotates, the density gradient film 311 is attached without joining so that it does not rotate with the protective film 312. 4 does not show the chopper 226, and FIGS. 5 and 6 do not show the circular 222 and the chopper 226.

内部参照光の光量を調整するときには、濃度勾配フィルム311と保護フィルム312と重ねた状態で濃度フィルター310全体を回転させる。そして、適当な位置で止めて光量を決定する。そして、濃度フィルター310の位置を固定するとき、固定ねじ313を締める方向に回転して固定する。このとき、固定ねじ313の回転によって保護フィルム312が回転しても、濃度勾配フィルム311は回転しない。このため、濃度フィルター310の固定時に、内部参照光の信号強度が変化することがない。また、固定ねじ313を回すのに用いる工具、例えばドライバーの先端が、濃度勾配フィルム311に直接接触することを防止できる。このため、濃度フィルター310の表面を損傷することがない。この調整は、従来例と同様に製造工場での調整時に行う。調整作業は、筐体110の上側カバーを外しておこない、上側カバーを外すと、固定ねじ313は露出してドライバー等の工具で操作できるようになる。   When adjusting the amount of the internal reference light, the entire density filter 310 is rotated while the density gradient film 311 and the protective film 312 are overlapped. Then, the light quantity is determined by stopping at an appropriate position. Then, when fixing the position of the density filter 310, the fixing screw 313 is rotated and fixed in the tightening direction. At this time, even if the protective film 312 rotates due to the rotation of the fixing screw 313, the density gradient film 311 does not rotate. For this reason, when the density filter 310 is fixed, the signal intensity of the internal reference light does not change. Further, it is possible to prevent the tool used for turning the fixing screw 313, for example, the tip of a driver, from coming into direct contact with the density gradient film 311. For this reason, the surface of the density filter 310 is not damaged. This adjustment is performed at the time of adjustment at the manufacturing plant as in the conventional example. The adjustment work is performed by removing the upper cover of the housing 110. When the upper cover is removed, the fixing screw 313 is exposed and can be operated with a tool such as a screwdriver.

さらに、何らかの理由で、保護フィルム312を損傷しても、保護フィルム312を交換するだけでよく、コストがかからず、交換作業も容易である。   Furthermore, even if the protective film 312 is damaged for some reason, it is only necessary to replace the protective film 312, which is not costly and easy to replace.

このように、保護フィルム312は、印刷工程で製作した濃度勾配フィルム311の乳剤面を覆うことになるので、濃度勾配フィルム311の乳剤面の凹凸における不要散乱を避けることができる。このため、受光光学系内部に不要な迷光をつくることがなく、測定誤差の低減にも寄与する。   Thus, since the protective film 312 covers the emulsion surface of the density gradient film 311 manufactured in the printing process, unnecessary scattering in the unevenness of the emulsion surface of the density gradient film 311 can be avoided. For this reason, unnecessary stray light is not generated inside the light receiving optical system, which contributes to a reduction in measurement error.

また、保護フィルム312の表面に、乱反射防止加工が施しておくと、入射光が乱反射せず、内部参照光の散乱を防止することができ、測定精度の向上が図れる。乱反射防止加工としては、保護フィルム表面の鏡面処理、ARコート等を行う。   Further, when the surface of the protective film 312 is subjected to irregular reflection prevention processing, incident light is not irregularly reflected, scattering of internal reference light can be prevented, and measurement accuracy can be improved. As the irregular reflection prevention processing, mirror surface treatment of the surface of the protective film, AR coating, and the like are performed.

さらに、上記実施形態では、保護フィルム312を回転させても、濃度勾配フィルム311が回転しないように構成したが、濃度勾配フィルム311に保護フィルム312を接合しておいてもよい。この場合濃度勾配フィルム311の表面の保護を図ることができる。   Furthermore, in the said embodiment, even if the protective film 312 was rotated, it comprised so that the density | concentration gradient film 311 might not rotate, but you may join the protective film 312 to the density gradient film 311. In this case, the surface of the density gradient film 311 can be protected.

100:光波距離計
101:基台部
102:架台
103:望遠鏡部
104:整準ねじ
106:表示部
107:操作入力部
110:筐体
120:鏡筒
130:ベース部
131:濃度フィルター取付部
200:光学系
210:対物レンズ系
211:レーザー光源
220:射出光学系
221:コリメータレンズ
222:サーキュラー
223:サーキュラー駆動モータ
224:絞り
225:台形プリズム
225a、225b:反射面
226:チョッパ
227:チョッパ駆動モータ
230:光源
240:射出反射光学系
241:ミラー部材
242:送光反射プリズム
242a:反射面
250:受光反射光学系
251:ダイクロイックミラー
252:受光反射プリズム
252a:反射面
260:光ファイバ(射出(外)光路用)
261:光センサー
263:光ファイバ(内部参照光路用)
270:視準光学系
280:プリズム
281:カバーガラス
290:内部参照光センサー
310:濃度フィルター
311:濃度勾配フィルム
312:保護フィルム
313:固定ねじ
O1:第1光軸
O2:第2光軸
DESCRIPTION OF SYMBOLS 100: Light wave rangefinder 101: Base part 102: Mount 103: Telescope part 104: Leveling screw 106: Display part 107: Operation input part 110: Case 120: Lens barrel 130: Base part 131: Density filter attaching part 200 : Optical system 210: Objective lens system 211: Laser light source 220: Emission optical system 221: Collimator lens 222: Circular 223: Circular drive motor 224: Aperture 225: Trapezoid prism 225 a, 225 b: Reflecting surface 226: Chopper 227: Chopper drive motor 230: Light source 240: Emission reflection optical system 241: Mirror member 242: Light transmission reflection prism 242a: Reflection surface 250: Light reception reflection optical system 251: Dichroic mirror 252: Light reception reflection prism 252a: Reflection surface 260: Optical fiber (outgoing (outside ) For optical path)
261: Optical sensor 263: Optical fiber (for internal reference optical path)
270: collimating optical system 280: prism 281: cover glass 290: internal reference light sensor 310: density filter 311: density gradient film 312: protective film 313: fixing screw O1: first optical axis O2: second optical axis

Claims (4)

光源から取得された測定光を被測定物に照射して得られた被測定物からの反射光と、
前記光源から取得され、透過光量が可変な濃度フィルターで光量を受光した前記反射光の光量に合わせて減衰した内部参照光と、に基づいて被測定物までの距離を測定する光波距離計において、
前記濃度フィルターは、円周方向に濃度勾配を有する円板状の濃度勾配フィルムと、前記濃度勾配フィルムに重ねて配置した少なくとも1枚の均一な濃度の円板状の保護フィルムを備えることを特徴とする光波距離計。
Reflected light from the measurement object obtained by irradiating the measurement object with the measurement light acquired from the light source;
In the lightwave distance meter that measures the distance to the object to be measured based on the internal reference light that is acquired from the light source and attenuated in accordance with the amount of the reflected light that is received by the density filter with a variable amount of transmitted light,
The density filter includes a disk-shaped density gradient film having a density gradient in a circumferential direction, and at least one disk-shaped protective film having a uniform density arranged on the density gradient film. Lightwave distance meter.
前記濃度勾配フィルムと、前記保護フィルムとは、各々が独立に回転可能であることを特徴とする請求項1に記載の光波距離計。   The light wave distance meter according to claim 1, wherein the density gradient film and the protective film are independently rotatable. 前記濃度勾配フィルムと、前記保護フィルムとは、接合されていることを特徴とする請求項1に記載の光波距離計。   The optical distance meter according to claim 1, wherein the concentration gradient film and the protective film are bonded to each other. 前記保護フィルムの表面に乱反射防止加工が施されていることを特徴とする請求項1から請求項3のいずれか一項に記載の光波距離計。   The light wave distance meter according to any one of claims 1 to 3, wherein the surface of the protective film is subjected to irregular reflection prevention processing.
JP2013016786A 2013-01-31 2013-01-31 Light wave distance meter Active JP6198399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016786A JP6198399B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016786A JP6198399B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2016183135A Division JP6325619B2 (en) 2016-09-20 2016-09-20 Light wave distance meter
JP2016183137A Division JP6315722B2 (en) 2016-09-20 2016-09-20 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2014149170A true JP2014149170A (en) 2014-08-21
JP6198399B2 JP6198399B2 (en) 2017-09-20

Family

ID=51572272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016786A Active JP6198399B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP6198399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091764A (en) * 2016-12-05 2018-06-14 株式会社トプコン Light wave range finder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127509A (en) * 1984-07-19 1986-02-07 Matsushita Electric Ind Co Ltd Lens provided with damping filter
JPS63124675U (en) * 1987-02-06 1988-08-15
JP2007219396A (en) * 2006-02-20 2007-08-30 Morimura Chemicals Ltd Nd filter for high-intensity light source and method for producing the same
JP2009145596A (en) * 2007-12-13 2009-07-02 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127509A (en) * 1984-07-19 1986-02-07 Matsushita Electric Ind Co Ltd Lens provided with damping filter
JPS63124675U (en) * 1987-02-06 1988-08-15
JP2007219396A (en) * 2006-02-20 2007-08-30 Morimura Chemicals Ltd Nd filter for high-intensity light source and method for producing the same
JP2009145596A (en) * 2007-12-13 2009-07-02 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091764A (en) * 2016-12-05 2018-06-14 株式会社トプコン Light wave range finder

Also Published As

Publication number Publication date
JP6198399B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
US6324024B1 (en) Reflector for distance measurement
US10422861B2 (en) Electro-optical distance measuring instrument
JP6209021B2 (en) Surveying instrument
EP3247970A1 (en) Single aperture laser range finder
JP6325619B2 (en) Light wave distance meter
TWI385360B (en) A laser distance measuring apparatus and control method thereof.
JP2013190417A5 (en)
US7889326B2 (en) Distance measuring apparatus
JP6198399B2 (en) Light wave distance meter
JP6315722B2 (en) Light wave distance meter
US11668567B2 (en) Surveying instrument
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
US9632023B2 (en) V-block refractometer
JP2017067672A (en) Light wave range finder
JP2017067673A (en) Light wave range finder
JP6198400B2 (en) Light wave distance meter
JP6937568B2 (en) Laser rangefinder
US10732267B2 (en) Electro-optical distance meter
JP2020190495A (en) Distance measurement device
JP7406971B2 (en) measuring device
JP7416647B2 (en) surveying equipment
JP2018091764A5 (en)
JP2015004600A (en) Eccentricity measurement device, eccentricity measurement method and lens manufacturing method
JP2021063678A (en) Measurement device
JPH0329812A (en) Inspecting device of distance measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160920

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170412

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250