JP2014149168A - Method of monitoring curing of photocurable resin and optical component connection method - Google Patents

Method of monitoring curing of photocurable resin and optical component connection method Download PDF

Info

Publication number
JP2014149168A
JP2014149168A JP2013016752A JP2013016752A JP2014149168A JP 2014149168 A JP2014149168 A JP 2014149168A JP 2013016752 A JP2013016752 A JP 2013016752A JP 2013016752 A JP2013016752 A JP 2013016752A JP 2014149168 A JP2014149168 A JP 2014149168A
Authority
JP
Japan
Prior art keywords
photocurable resin
curing
resin
brightness
photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013016752A
Other languages
Japanese (ja)
Other versions
JP5991215B2 (en
Inventor
Satoru Sakai
覚 酒井
Mamoru Hokari
守 穂刈
Takayuki Abe
貴之 安部
Kazunori Maruyama
和範 丸山
Nobuhiko Inotani
宜彦 猪谷
Yoji Nishiyama
陽二 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013016752A priority Critical patent/JP5991215B2/en
Publication of JP2014149168A publication Critical patent/JP2014149168A/en
Application granted granted Critical
Publication of JP5991215B2 publication Critical patent/JP5991215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of monitoring curing of a photocurable resin, which easily detects a curing state of a photocurable resin without adversely affecting the photocurable resin.SOLUTION: A method of monitoring curing of a photocurable resin includes the steps of: supplying a photocurable resin 1 including a liquid photocurable resin 1b and resin particles 1a having a refractive index equivalent to that of the photocurable resin 1b in a fully curing state, to an object 2; detecting brightness of the photocurable resin 1b, the resin particles 1a, and the boundary between them through an image while hardening the photocurable resin 1 with light irradiation for photocuring; comparing first brightness of at least one of the photocurable resin 1b and the resin particles 1a and second brightness of the boundary with each other; and determining that the more the photocurable resin 1 cures the smaller the difference in brightness is.

Description

本発明は、光硬化性樹脂の硬化モニター方法及び光部品接続方法に関する。   The present invention relates to a photocuring resin curing monitoring method and an optical component connecting method.

多くの産業分野において、接着剤やコーティング剤の硬化方法として樹脂に紫外線を照射して硬化させる光硬化方法が利用されている。光硬化方法は、熱エネルギーを利用する熱硬化方法と比較すると、有害物質を大気中に放散しないこと、硬化時間が短いこと、熱に弱い製品にも適応できることなどの多くの利点を有している。光硬化方法で用いられる光硬化性樹脂は、光照射前においては主に液体である一方、紫外線照射後には固体に変化する。   In many industrial fields, a photocuring method in which a resin is irradiated with ultraviolet rays and cured is used as a method for curing an adhesive or a coating agent. Compared with thermal curing methods that use thermal energy, the photocuring method has many advantages such as not diffusing harmful substances into the atmosphere, short curing time, and adaptability to heat-sensitive products. Yes. The photocurable resin used in the photocuring method is mainly liquid before light irradiation, but changes to a solid after ultraviolet irradiation.

そのような光硬化性樹脂は、主剤のほかに光重合開始剤を含んでいる。光重合開始剤は、例えば、照射される紫外線を受けてラジカルやカチオンを発生し、発生したラジカルやカチオンが主剤と重合反応を生じる。この重合反応に伴って光硬化性樹脂は、固体に変化する。したがって、光硬化性樹脂の硬化度は、重合度に応じて決まることになる。   Such a photocurable resin contains a photopolymerization initiator in addition to the main agent. The photopolymerization initiator, for example, generates radicals and cations upon receiving irradiated ultraviolet rays, and the generated radicals and cations cause a polymerization reaction with the main agent. With this polymerization reaction, the photocurable resin changes to a solid. Accordingly, the degree of curing of the photocurable resin is determined according to the degree of polymerization.

光硬化性樹脂については、目視による硬化度の判断は困難であり、硬化に伴う樹脂の状態を容易に判断する方法が望まれている。しかし、容易に判断する方法がないため、製造現場においては、硬化時間を予め安全を考えた時間に設定して運用しているのが実状であり、余分な硬化によって製造のタクトタイムが伸びることによる無駄が起きており、製品の安定性のためにも実際の硬化途中での硬化状態のモニタリングが望まれている。   Regarding photo-curing resins, it is difficult to visually determine the degree of curing, and a method for easily determining the state of the resin accompanying curing is desired. However, since there is no easy way to make judgments, the actual situation is that the curing time is set to a safe time in advance at the manufacturing site, and the manufacturing time is increased due to excessive curing. In order to stabilize the product, monitoring of the curing state during actual curing is desired.

その硬化モニタリングの方法としては、光ファイバを樹脂に接触させた状態で硬度を計測するシステムが日本板硝子株式会社より光ファイバ型接着剤硬化センサーとして製品化されている。このセンサーは、光硬化接着剤への紫外線の照射時間が長くなるに従って、すなわち接着剤の硬化の進行に従って、光硬化接着剤の屈折率が変化するという性質を利用して、屈折率を計測するシステムである。   As a method for monitoring the curing, a system for measuring hardness in a state where an optical fiber is in contact with a resin has been commercialized as an optical fiber adhesive curing sensor by Nippon Sheet Glass Co., Ltd. This sensor measures the refractive index by utilizing the property that the refractive index of the photo-curing adhesive changes as the irradiation time of the ultraviolet ray to the photo-curing adhesive becomes longer, that is, as the curing of the adhesive proceeds. System.

また、別の方法として紫外線硬化樹脂の状態を推定する方法が知られ、次のようなステップからなっている。即ち、モノマーまたはオリゴマーの少なくとも一方からなる主剤と、光重合開始剤とを含む紫外線硬化樹脂の状態を推定する方法であって、紫外線硬化樹脂に紫外線を照射する照射ステップと、その照射ステップにおいて照射される紫外線を受けて光重合開始剤によって放射される蛍光を検出する検出ステップと、その検出ステップにおいて検出される蛍光に基づいて紫外線硬化樹脂の状態を推定する推定ステップとからなっている。   As another method, a method for estimating the state of an ultraviolet curable resin is known, and includes the following steps. That is, a method for estimating the state of an ultraviolet curable resin containing a main agent composed of at least one of a monomer or an oligomer and a photopolymerization initiator, an irradiation step of irradiating the ultraviolet curable resin with ultraviolet rays, and irradiation in the irradiation step A detection step for detecting the fluorescence emitted by the photopolymerization initiator in response to the ultraviolet light, and an estimation step for estimating the state of the ultraviolet curable resin based on the fluorescence detected in the detection step.

特開2007−248244号公報JP 2007-248244 A

しかしながら、上述の光ファイバ型接着剤硬化センサーでは、樹脂と光ファイバとの界面を使って樹脂の屈折率を計測する方法であるために光ファイバを樹脂に接触させる必要があり、樹脂が硬化したときには光ファイバと樹脂とが接着されてしまうことになる。従って、樹脂の硬化後には光ファイバを切断する必要があり、光ファイバが樹脂中に残ったものが製品となる。   However, since the optical fiber type adhesive curing sensor described above is a method of measuring the refractive index of the resin using the interface between the resin and the optical fiber, it is necessary to bring the optical fiber into contact with the resin, and the resin is cured. Sometimes the optical fiber and the resin are bonded. Therefore, it is necessary to cut the optical fiber after the resin is cured, and the product in which the optical fiber remains in the resin is the product.

また、上述の紫外線硬化樹脂の状態を推定する方法では、光重合開始剤から放射される蛍光の強度を検出しているので、蛍光を発生させるための励起光である紫外線を紫外線硬化樹脂に照射する必要がある。従って、光硬化性樹脂には、光硬化用の紫外線ととともに検査用の紫外線が照射されて硬度が変化するため、検出に使用する光が樹脂の硬化に影響を与えてしまう。   Further, in the above-described method for estimating the state of the ultraviolet curable resin, the intensity of the fluorescence emitted from the photopolymerization initiator is detected. Therefore, the ultraviolet curable resin is irradiated with ultraviolet light that is excitation light for generating fluorescence. There is a need to. Accordingly, since the photo-curing resin is irradiated with the photo-curing ultraviolet light and the ultraviolet light for inspection and the hardness changes, the light used for detection affects the curing of the resin.

本発明の目的は、光硬化性樹脂に悪影響を与えることなく、光硬化性樹脂の硬化の状態を容易に検知できる光硬化性樹脂の硬化モニター方法と光硬化性樹脂を使用する光部品接続方法を提供することにある。   An object of the present invention is to provide a photocuring resin curing monitoring method capable of easily detecting the curing state of the photocurable resin without adversely affecting the photocurable resin, and an optical component connecting method using the photocurable resin. Is to provide.

本実施形態の1つの観点によれば、液状の光硬化性樹脂材と、前記光硬化性樹脂材の硬化完了状態と同等の屈折率を有する樹脂粒子とを含む光硬化性樹脂を対象物に供給する工程と、光硬化用の光の照射により前記光硬化性樹脂を硬化させながら、前記光硬化性樹脂材と前記樹脂粒子の境界と前記光硬化性樹脂材と前記樹脂粒子のそれぞれの明るさを画像により検知する工程と、前記光硬化性樹脂材と前記樹脂粒子の少なくとも一方の第1の明るさと前記境界の第2の明るさを比較し、前記第1の明るさと前記第2の明るさの差が小さくなるほど前記光硬化性樹脂の硬化が進んでいると判断する工程とを有することを特徴とする光硬化性樹脂の硬化モニター方法が提供される。
発明の目的および利点は、請求の範囲に具体的に記載された構成要素および組み合わせによって実現され達成される。前述の一般的な説明および以下の詳細な説明は、典型例および説明のためのものであって、本発明を限定するためのものではない、と理解されるものである。
According to one aspect of the present embodiment, a photo-curing resin including a liquid photo-curing resin material and resin particles having a refractive index equivalent to a cured completion state of the photo-curing resin material is an object. A step of supplying the light curable resin by curing the light curable resin by irradiation with light for light curing, and the brightness of each of the light curable resin material and the resin particle boundary, and the light curable resin material and the resin particle Comparing the first brightness of the at least one of the photocurable resin material and the resin particles with the second brightness of the boundary, and detecting the first brightness and the second brightness And a step of determining that the curing of the photo-curing resin is progressing as the difference in brightness is reduced.
The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.

本実施形態によれば、光硬化性樹脂に悪影響を与えることなく、光硬化性樹脂の硬化の状態を容易に検知することができる。   According to this embodiment, the curing state of the photocurable resin can be easily detected without adversely affecting the photocurable resin.

図1は、実施形態に係る光硬化性樹脂の硬化モニター方法に使用するモニタリング装置の構成図である。FIG. 1 is a configuration diagram of a monitoring device used in the photocuring resin curing monitoring method according to the embodiment. 図2(a)〜(c)は、実施形態に係る光硬化性樹脂の硬化モニター方法において紫外線照射されている光硬化性樹脂膜の像の時間的な変化の一例を示す平面図である。FIGS. 2A to 2C are plan views showing an example of temporal changes in the image of the photocurable resin film irradiated with ultraviolet rays in the photocuring resin curing monitoring method according to the embodiment. 図3は、実施形態に係る光硬化性樹脂の硬化モニター方法に使用する光硬化性樹脂材に混合する樹脂微粒子の作製方法の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of a method for producing resin fine particles to be mixed with the photocurable resin material used in the photocuring resin curing monitoring method according to the embodiment. 図4(a)、(b)は、実施形態に係る光硬化性樹脂の硬化モニター方法において使用される光硬化性樹脂の硬化前と硬化後の明るさの変化を例示する拡大平面図である。4A and 4B are enlarged plan views illustrating changes in brightness before and after curing of the photocurable resin used in the method of monitoring the curing of the photocurable resin according to the embodiment. . 図5(a)、(b)は、実施形態に係る光硬化性樹脂の硬化モニター方法において使用される光硬化性樹脂の硬化前と硬化後の明るさ分布の変化の測定結果の一例を示す特性図である。FIGS. 5A and 5B show examples of measurement results of changes in brightness distribution before and after curing of the photocurable resin used in the method of monitoring the curing of the photocurable resin according to the embodiment. FIG. 図6は、実施形態に係る光硬化性樹脂の硬化モニター方法において使用される樹脂微粒子を含む光硬化性樹脂の硬化前の明るさの分布の一例を示す特性図である。FIG. 6 is a characteristic diagram showing an example of the distribution of brightness before curing of the photocurable resin containing resin fine particles used in the method of monitoring the curing of the photocurable resin according to the embodiment. 図7は、実施形態に係る光硬化性樹脂の硬化モニター方法において使用される樹脂微粒子を含む光硬化性樹脂の硬化方法の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a method for curing a photocurable resin including resin fine particles used in the method for monitoring the curing of a photocurable resin according to the embodiment. 図8は、実施形態に係る光硬化性樹脂の硬化モニター方法が適用される第1の例を示す斜視図である。FIG. 8 is a perspective view showing a first example to which the photocuring resin curing monitoring method according to the embodiment is applied. 図9は、実施形態に係る光硬化性樹脂の硬化モニター方法が適用される第2の例に係る光部品の接続方法を示す側面図である。FIG. 9 is a side view showing a method for connecting optical components according to a second example to which the photocuring resin curing monitoring method according to the embodiment is applied. 図10(a)、(b)は、実施形態に係る光硬化性樹脂の硬化モニター方法が適用される第3の例を示す斜視図である。10A and 10B are perspective views illustrating a third example to which the photocuring resin curing monitoring method according to the embodiment is applied.

以下に、図面を参照して実施形態を説明する。図面において、同様の構成要素には同じ参照番号が付されている。   Embodiments will be described below with reference to the drawings. In the drawings, similar components are given the same reference numerals.

図1は、実施形態に係る光硬化性樹脂の硬化モニター方法に使用するモニター装置の構成図を示している。   FIG. 1 shows a configuration diagram of a monitoring device used in the photocuring resin curing monitoring method according to the embodiment.

光硬化モニタリング装置10は、観察対象となる光硬化性樹脂1が塗布又は滴下される部品(対象物)2を載置するためのステージ11を有している。また、光硬化モニタリング装置10は、光硬化性樹脂1の硬化状態をモニターするための観察系統部Aと、液状の光硬化性樹脂1を硬化するための照明系統部Bを有している。   The photocuring monitoring device 10 has a stage 11 for placing a component (object) 2 on which a photocurable resin 1 to be observed is applied or dropped. The photocuring monitoring device 10 also has an observation system part A for monitoring the cured state of the photocurable resin 1 and an illumination system part B for curing the liquid photocurable resin 1.

観察系統部Aは、固体撮像素子(不図示)を有するカメラ12と、カメラ12のレンズマウントに取り付けられる顕微鏡13とを有している。顕微鏡13は、例えば数μm〜数十μmの大きさの微粒子を拡大できる程度の倍率を持ったレンズを有し、さらに光硬化性樹脂1から出る光に基づく像をカメラ12の固体撮像部に結像させる構造を有している。カメラ12に組み込まれる固体撮像素子としてCCD撮像素子、MOS撮像素子、CMOS撮像素子等が適用される。固体撮像素子に結像された画像データは、カメラ12内部の信号処理部(不図示)によりデータ処理された後に、制御部14に送信されてその内部の記憶部14aに格納される。制御部14として、例えば、記憶部14a、処理部14b、表示部14c、キーボード(不図示)等を備えたコンピュータが使用される。処理部14bは、CPU、クロック、記憶デバイス等を有する。また、制御部14は、カメラ12により撮像された画像データに基づいて画像の明るさの分布を撮像素子12aの画素毎に検出して分析するプログラムが記憶部14aに格納されている。   The observation system part A has a camera 12 having a solid-state image sensor (not shown) and a microscope 13 attached to the lens mount of the camera 12. The microscope 13 has a lens having a magnification that can expand fine particles having a size of, for example, several μm to several tens of μm, and further, an image based on light emitted from the photocurable resin 1 is displayed on the solid-state imaging unit of the camera 12. It has a structure for imaging. As a solid-state image sensor incorporated in the camera 12, a CCD image sensor, a MOS image sensor, a CMOS image sensor, or the like is applied. The image data imaged on the solid-state image sensor is subjected to data processing by a signal processing unit (not shown) in the camera 12, and then transmitted to the control unit 14 and stored in the storage unit 14a therein. As the control unit 14, for example, a computer including a storage unit 14a, a processing unit 14b, a display unit 14c, a keyboard (not shown), and the like is used. The processing unit 14b includes a CPU, a clock, a storage device, and the like. The control unit 14 stores a program for detecting and analyzing the brightness distribution of the image for each pixel of the imaging element 12a based on the image data captured by the camera 12, in the storage unit 14a.

照明系統部Bは、樹脂硬化用の光、例えば紫外線(UV)を照明するための硬化用照明光源15と、硬化用照明光源15の光出射端に光ファイバ17を介して接続される光照射ヘッド16とを有している。光照射ヘッド16には、光ファイバ15を通して入射した光を拡大、縮小、等倍などに調整できるレンズが取り付けられている。硬化用照明光源15は、水銀ランプ、水銀キセノンランプ等を有し、そのオン/オフや光強度調整は制御部14のキーボード操作、マウス操作等により制御される。なお、硬化用照明光源15から出射される光は樹脂硬化用光以外の波長の光を含んでもよい。   The illumination system part B includes a curing illumination light source 15 for illuminating resin curing light, for example, ultraviolet light (UV), and light irradiation connected to a light emitting end of the curing illumination light source 15 via an optical fiber 17. And a head 16. The light irradiation head 16 is provided with a lens capable of adjusting the incident light through the optical fiber 15 to enlarge, reduce, or equal magnification. The curing illumination light source 15 includes a mercury lamp, a mercury xenon lamp, and the like, and on / off and light intensity adjustment are controlled by keyboard operation, mouse operation, and the like of the control unit 14. The light emitted from the curing illumination light source 15 may include light having a wavelength other than the resin curing light.

初期状態の液状の光硬化性樹脂1は、図2(a)に示すように、予め数μm〜数十μmの粒子状に硬化された光硬化性樹脂からなる樹脂微粒子1aを未硬化の液状光硬化性樹脂材1bに混入して形成されている。樹脂微粒子1aは、液状光硬化性樹脂材1bと同じ材料を光照射により硬化させて微粒子化したものであり、樹脂粒子と呼称されてもよい。   As shown in FIG. 2 (a), the liquid photocurable resin 1 in the initial state is made of uncured liquid resin particles 1a made of a photocurable resin that has been previously cured into particles of several μm to several tens of μm. It is mixed with the photocurable resin material 1b. The resin fine particles 1a are obtained by curing the same material as the liquid photocurable resin material 1b by light irradiation to form fine particles, and may be referred to as resin particles.

液状の光硬化性樹脂材1bは、例えば、モノマー、オリゴマー、光重合開始剤、添加剤を有している。光重合開始剤は光照射により光重合反応を開始する物質である。添加物として、例えば充填剤、着色剤、チクソ剤等がある。光重合反応では、光照射により光重合開始剤が活性化し、反応を開始するラジカル分子、カチオン等を発生させてオリゴマーやモノマー分子の重合や架橋反応を起こさせる。この反応は連鎖的に生じ、三次元的な架橋反応により分子量が増大し、樹脂が液体から固体へと変化する。光重合開始剤として、例えば、200nm〜400nmの波長を持つ紫外線により反応する材料が使用される。   The liquid photocurable resin material 1b has, for example, a monomer, an oligomer, a photopolymerization initiator, and an additive. The photopolymerization initiator is a substance that initiates a photopolymerization reaction by light irradiation. Examples of additives include fillers, colorants, and thixotropic agents. In the photopolymerization reaction, the photopolymerization initiator is activated by light irradiation to generate radical molecules, cations, and the like that initiate the reaction, thereby causing polymerization and crosslinking reaction of oligomers and monomer molecules. This reaction occurs in a chain, the molecular weight increases by a three-dimensional crosslinking reaction, and the resin changes from a liquid to a solid. As the photopolymerization initiator, for example, a material that reacts with ultraviolet rays having a wavelength of 200 nm to 400 nm is used.

樹脂微粒子1aの作成方法は特に限定されるものではなく、樹脂の塊をカッターで裁断して形成してもよいし、図3に示す方法で形成してもよい。   The method for producing the resin fine particles 1a is not particularly limited, and it may be formed by cutting a lump of resin with a cutter or by the method shown in FIG.

図3において、霧吹き器21の容器21a内に未硬化の液状光硬化性樹脂22を充填し、その中にノズル21bのチューブ21cを差し込み、さらに液状光硬化性樹脂22を圧力でノズル21bに送り込んでノズル21bの先端から霧状に噴射させる。その霧状の液状粒子22aに、例えば上記の硬化用照明光源15の光照射ヘッド16から紫外線を照射すると数μm〜数十μmの液状粒子22aは硬化が進んで硬化粒子22bとなり受け皿23に到達する。さらに、受け皿23に紫外線を照射し、硬化粒子22bを所望の硬さまで硬化させる。このような方法により硬化された硬化粒子22bを上記の樹脂微粒子1aとして使用する。なお、本実施形態における樹脂微粒子1aは、液状の光硬化性樹脂材1bが目標の硬さに硬化した後の屈折率と同等であればよく、特に材料は限定されない。   In FIG. 3, the container 21a of the atomizer 21 is filled with an uncured liquid photocurable resin 22, the tube 21c of the nozzle 21b is inserted therein, and the liquid photocurable resin 22 is further fed into the nozzle 21b with pressure. Then, it is sprayed in a mist form from the tip of the nozzle 21b. For example, when the mist-like liquid particles 22a are irradiated with ultraviolet rays from the light irradiation head 16 of the curing illumination light source 15 described above, the liquid particles 22a of several μm to several tens of μm are cured to become cured particles 22b and reach the receiving tray 23. To do. Further, the tray 23 is irradiated with ultraviolet rays to cure the cured particles 22b to a desired hardness. The cured particles 22b cured by such a method are used as the resin fine particles 1a. In addition, the resin fine particle 1a in this embodiment should just be equivalent to the refractive index after the liquid photocurable resin material 1b hardens | cured to target hardness, and a material in particular is not limited.

次に、部品2に滴下された光硬化性樹脂1の硬化方法とその硬化モニタリングについて説明する。
まず、図1に示したように、制御部14の制御により硬化用照明光源15から光ファイバ17、光照射ヘッド16を介して光硬化性樹脂1に紫外線を照射する。初期状態の光硬化性樹脂1は、液状の光硬化性樹脂材1bに樹脂微粒子1aが混合された状態となる。この状態では、樹脂微粒子1aは液状光硬化性樹脂材1bよりも屈折率が高いので、顕微鏡13により光硬化性樹脂1の像を拡大して表示部14cに表示させると、図2(a)に示したように、樹脂粒子1aと液状光硬化性樹脂材1bは目で見分けられる状態となっている。樹脂微粒子1aの屈折率、即ち硬さは、光照射によって得ようとする光硬化性樹脂1の最終的な屈折率、即ち硬さと同等になっている。
Next, a method for curing the photocurable resin 1 dropped on the component 2 and its curing monitoring will be described.
First, as shown in FIG. 1, the photocurable resin 1 is irradiated with ultraviolet rays from the curing illumination light source 15 through the optical fiber 17 and the light irradiation head 16 under the control of the control unit 14. The photocurable resin 1 in the initial state is in a state where the resin fine particles 1a are mixed with the liquid photocurable resin material 1b. In this state, since the resin fine particle 1a has a higher refractive index than the liquid photocurable resin material 1b, when the image of the photocurable resin 1 is enlarged and displayed on the display unit 14c by the microscope 13, FIG. 2 (a). As shown in FIG. 2, the resin particles 1a and the liquid photocurable resin material 1b are in a state that can be distinguished by eyes. The refractive index, that is, the hardness of the resin fine particle 1a is equal to the final refractive index, that is, the hardness of the photocurable resin 1 to be obtained by light irradiation.

光硬化性樹脂1への紫外線照射の積算時間が増加するに従って光硬化性樹脂1内の液状光硬化性樹脂材1bは化学反応による硬化が進み、その屈折率が徐々に大きくなり、樹脂粒子1aの屈折率に徐々に近づく。この状態の光硬化性樹脂1の像を顕微鏡13により拡大すると、図2(b)に示すように、樹脂粒子1aと液状光硬化性樹脂材1bの境界が見分け難い状態に変化し、樹脂微粒子1aが検知しにくくなる。   As the integrated time of ultraviolet irradiation to the photocurable resin 1 increases, the liquid photocurable resin material 1b in the photocurable resin 1 is cured by a chemical reaction, and its refractive index gradually increases, and the resin particles 1a. Gradually approach the refractive index of. When the image of the photocurable resin 1 in this state is magnified by the microscope 13, the boundary between the resin particle 1a and the liquid photocurable resin material 1b changes to a state in which it is difficult to distinguish, as shown in FIG. 1a becomes difficult to detect.

さらに、紫外線照射の積算時間が増加してゆくと、光硬化性樹脂1における液状光硬化性樹脂材1bは紫外線照射による反応が進み、その屈折率がさらに大きくなり、最終的には硬化して樹脂粒子1aの屈折率と同じになる。この最終状態の光硬化性樹脂1の像を顕微鏡13により拡大すると、図2(c)に示すように、液状光硬化性樹脂材1bは最終目標の硬さの樹脂になり、樹脂微粒子1aと一体化した硬化済みの樹脂1dに変化し、樹脂微粒子1aは見分けられなくなる。   Further, as the integrated time of the ultraviolet irradiation increases, the liquid photocurable resin material 1b in the photocurable resin 1 undergoes a reaction due to the ultraviolet irradiation, and its refractive index further increases and eventually hardens. It becomes the same as the refractive index of the resin particle 1a. When the image of the photocurable resin 1 in the final state is enlarged by the microscope 13, as shown in FIG. 2C, the liquid photocurable resin material 1b becomes a resin having the final target hardness, and the resin fine particles 1a and It changes to the integrated cured resin 1d, and the resin fine particles 1a cannot be distinguished.

以上のような光硬化性樹脂1の初期状態から最終状態までの屈折率、光透過性の変化、換言すれば硬度の変化は、屈折率を測定せずに、目視で確認することができる。従って、どのような光硬化性樹脂1であっても光硬化性樹脂1の材料の屈折率を測定することなく、その硬化の最終状態を認識することができる。   Changes in the refractive index and light transmittance from the initial state to the final state of the photocurable resin 1 as described above, in other words, changes in hardness can be visually confirmed without measuring the refractive index. Therefore, the final state of the curing can be recognized without measuring the refractive index of the material of the photocurable resin 1 for any photocurable resin 1.

目視による判断を制御部14のプログラムに従って自動的に実行させることも可能であり、次にその詳細を説明する。   It is also possible to automatically execute the visual judgment according to the program of the control unit 14, and the details will be described next.

図4(a)は、液状の未硬化の第1光硬化性樹脂材1eと紫外線照射後の硬化済みの第2光硬化性樹脂1fの境界とその周辺を顕微鏡13により拡大した像の一例を示している。第2光硬化性樹脂1fは、上記の樹脂微粒子1aより大きいものを使用している。その境界は表示部14cの画像において目で確認できる程度に現れている。顕微鏡13を通してカメラ12に撮像された画像データに基づいてX−X線に沿った位置における明るさの
分布を検出すると、図5(a)のような明るさ分布特性が得られ、未硬化の第1光硬化性樹脂材1eと硬化済みの第2光硬化性樹脂1fの境界1xにノイズのような局所的に最小値が発生する。これは、両者の屈折率の違いによるものである。
FIG. 4A shows an example of an image obtained by enlarging the boundary between the liquid uncured first photocurable resin material 1e and the cured second photocurable resin 1f after irradiation with ultraviolet rays and the vicinity thereof with the microscope 13. Show. The second photo-curable resin 1f is larger than the resin fine particles 1a. The boundary appears to the extent that it can be visually confirmed in the image of the display unit 14c. When the brightness distribution at the position along the XX line is detected based on the image data captured by the camera 12 through the microscope 13, the brightness distribution characteristic as shown in FIG. A local minimum value such as noise is generated at the boundary 1x between the first photocurable resin material 1e and the cured second photocurable resin 1f. This is due to the difference in refractive index between the two.

これに対し、未硬化状態の第1光硬化性樹脂材1eと硬化済みの第2光硬化性樹脂1fに紫外線を照射すると、図4(b)に示すように、第1光硬化性樹脂1eと第2光硬化性樹脂1fの境界1xがぼやける。この状態で、顕微鏡13を通してカメラ12に撮像された画像データに基づいてX−X線に沿った位置における明るさの分布を検出すると、図5(b)のような明るさ分布特性が得られ、第1光硬化性樹脂1eと第2光硬化性樹脂1fの境界1xでは明るさの最大の落ち込み量が初期状態よりも小さくなっている。   In contrast, when the uncured first photocurable resin material 1e and the cured second photocurable resin 1f are irradiated with ultraviolet rays, as shown in FIG. 4B, the first photocurable resin 1e. And the boundary 1x of the second photocurable resin 1f are blurred. In this state, when the brightness distribution at the position along the XX line is detected based on the image data captured by the camera 12 through the microscope 13, the brightness distribution characteristic as shown in FIG. 5B is obtained. At the boundary 1x between the first photocurable resin 1e and the second photocurable resin 1f, the maximum amount of decrease in brightness is smaller than in the initial state.

従って、測定により得られる境界1xの明るさの最大の落ち込みが消滅した時点で、制御部14のデータ処理部14bは、第1光硬化性樹脂1eの硬化が完了したと判断し、硬化用照明光源15を消灯させ、この消灯により第1光硬化性樹脂1eの光硬化処理が終了したことが作業者に告知される。この場合、その境界の消滅は、境界の明るさと第1光硬化性樹脂1e又は第2光硬化性樹脂1fの明るさを比較し、それらが互いに同じ明るさの範囲に入った時点でそれらの明るさは同等であって第1光硬化性樹脂1eが硬化したと判断される。   Therefore, when the maximum decrease in the brightness of the boundary 1x obtained by the measurement disappears, the data processing unit 14b of the control unit 14 determines that the curing of the first photocurable resin 1e is completed, and the curing illumination The light source 15 is turned off, and the operator is notified that the light curing process of the first photocurable resin 1e has been completed. In this case, the disappearance of the boundary is compared with the brightness of the boundary and the brightness of the first photocurable resin 1e or the second photocurable resin 1f, and when they enter the same brightness range, It is determined that the brightness is equivalent and the first photocurable resin 1e is cured.

図4、5の説明は第2光硬化性樹脂1fが比較的大きなブロックの場合であって、第2光硬化性樹脂1fが数μm〜数十μmの場合、即ち図2(a)に示す樹脂微粒子1aである場合には、その境界における明るさは例えば図6のようになる。即ち、樹脂微粒子1aと未硬化の光硬化性樹脂材1bの境界は図2(a)のI−I線断面では2箇所で発生し、樹脂微粒子1a自体の明るさがわかりにくい状態となる。従って、図2(a)〜(c)に示す明るさ分布の変化については、樹脂微粒子1aと液状の光硬化性樹脂の境界と液状光硬化性樹脂を比較してもよく、境界の明るさが光硬化性樹脂の明るさと同じ範囲になったことを硬化の終点検出としてもよい。   The description of FIGS. 4 and 5 is a case where the second photocurable resin 1f is a relatively large block, and the second photocurable resin 1f is several μm to several tens of μm, that is, as shown in FIG. In the case of the resin fine particles 1a, the brightness at the boundary is, for example, as shown in FIG. That is, the boundary between the resin fine particle 1a and the uncured photocurable resin material 1b is generated at two places in the cross section taken along the line II in FIG. 2A, and the brightness of the resin fine particle 1a itself is difficult to understand. 2A to 2C, the boundary between the resin fine particles 1a and the liquid photocurable resin may be compared with the liquid photocurable resin, and the brightness of the boundary may be compared. The end point of curing may be detected by the fact that is in the same range as the brightness of the photocurable resin.

次に、図7のフローに基づいて、図2に示した光硬化性樹脂1の硬化のモニター法を説明する。   Next, a method for monitoring the curing of the photocurable resin 1 shown in FIG. 2 will be described based on the flow of FIG.

まず、光照射により硬化した樹脂微粒子1aと未硬化の液状の光硬化性樹脂材1bを混合して形成した光硬化性樹脂1を部品2に滴下又は塗布する(図7のa)。その後に、制御部14は、顕微鏡13を介したカメラ12の撮像により光硬化性樹脂1の拡大画像を取得し、液状の光硬化性樹脂材1bと樹脂微粒子1aを含む領域の明るさの分布を測定し、その画像データを記憶部14aに記憶する(図7のb)。さらに、図6に例示したように、樹脂微粒子1aと液状の光硬化性樹脂材1bの境界では大きく明るさが落ち込んで最小値が現れるので、画像データの明るさ分布のデータに基づきその境界の位置を抽出し、その最小値が現れる位置を光硬化性樹脂材1bと樹脂微粒子1aの境界と判断する(図7のc)。   First, the photocurable resin 1 formed by mixing the resin fine particles 1a cured by light irradiation and the uncured liquid photocurable resin material 1b is dropped or applied to the component 2 (a in FIG. 7). Thereafter, the control unit 14 acquires an enlarged image of the photocurable resin 1 by imaging with the camera 12 through the microscope 13, and the brightness distribution of the region including the liquid photocurable resin material 1b and the resin fine particles 1a. And the image data is stored in the storage unit 14a (b in FIG. 7). Furthermore, as illustrated in FIG. 6, since the brightness is greatly reduced and the minimum value appears at the boundary between the resin fine particle 1a and the liquid photocurable resin material 1b, the boundary of the boundary is based on the brightness distribution data of the image data. The position is extracted, and the position where the minimum value appears is determined as the boundary between the photocurable resin material 1b and the resin fine particles 1a (c in FIG. 7).

その後に、光硬化性樹脂1に紫外線を照射しながら、光硬化性樹脂材1bの明るさの値と上記の境界の明るさの値を比較し、光硬化性樹脂材1bの明るさの範囲内に上記の境界の明るさが含まれる同等の状態になったかを判断する(図7のd)。紫外線照射時間が経過するにつれて光硬化性樹脂材1bの光透過性が向上して明るさが徐々に増す一方で、光硬化性樹脂材1bと樹脂微粒子1aの境界の光透過性も徐々に良くなり、ついにはその境界の位置が確認できにくくなる。   Thereafter, while irradiating the photocurable resin 1 with ultraviolet rays, the brightness value of the photocurable resin material 1b is compared with the brightness value of the above-mentioned boundary, and the brightness range of the photocurable resin material 1b is compared. It is determined whether or not an equivalent state is reached in which the brightness of the boundary is included (d in FIG. 7). As the ultraviolet irradiation time elapses, the light transmittance of the photocurable resin material 1b is improved and the brightness gradually increases, while the light transmittance at the boundary between the photocurable resin material 1b and the resin fine particles 1a is also gradually improved. Finally, it becomes difficult to confirm the position of the boundary.

続いて、光硬化性樹脂材1bの明るさを示す値の範囲に上記の境界部分の明るさが含まれる状態になったかどうかを調べる(図7のe)。そして、上記の境界の特定が不能にな
ったときには、光硬化性樹脂材1bと樹脂微粒子1aの屈折率が同等になったと判断して紫外線照射を停止する(図7のf)。なお、境界が消えたと判断した後に、予め設定した時間でオーバー光照射を行い、その時間の経過後に紫外線照射を停止させてもよい。
Subsequently, it is examined whether or not the brightness of the boundary portion is included in the range of values indicating the brightness of the photocurable resin material 1b (e in FIG. 7). When the boundary cannot be specified, it is determined that the refractive indexes of the photocurable resin material 1b and the resin fine particles 1a are equal to each other, and the ultraviolet irradiation is stopped (f in FIG. 7). In addition, after determining that the boundary has disappeared, over light irradiation may be performed for a preset time, and ultraviolet irradiation may be stopped after the time has elapsed.

なお、光硬化性樹脂1における樹脂微粒子1aは、光硬化性樹脂材1bを塗布又は滴下した後に、その表面に向けて散布されてもよい。また、図7における明るさを比較する対象は境界部分と樹脂微粒子1aであってもよい。これらについては以下の説明においても同様である。   The resin fine particles 1a in the photocurable resin 1 may be dispersed toward the surface after the photocurable resin material 1b is applied or dropped. 7 may be the boundary portion and the resin fine particles 1a. The same applies to the following description.

以上のように本実施形態によれば、硬化済みの複数の樹脂微粒子1aと液状の光硬化性樹脂材1bを含む光硬化性樹脂1に光を照射して硬化させている。このため、樹脂微粒子1aと光硬化性樹脂材1bの境界、即ち明るさの局所的な減衰が見分けられなくなった時点を光硬化性樹脂1の全体が硬化状態になったと判断することができ、必要以上の過剰な光照射を防止し、省エネに敵い、スループットを向上することができる。   As described above, according to the present embodiment, the photocurable resin 1 including the plurality of cured resin fine particles 1a and the liquid photocurable resin material 1b is irradiated with light and cured. For this reason, the boundary between the resin fine particles 1a and the photocurable resin material 1b, that is, when the local attenuation of brightness cannot be distinguished can be determined as the entire photocurable resin 1 is in a cured state, Excessive light irradiation more than necessary can be prevented, energy saving can be achieved, and throughput can be improved.

ところで、光硬化性樹脂の光照射による硬化状態の測定としては、予め、サンプルを用いて硬化が進む光硬化性樹脂中の樹脂微粒子の見え方が硬化の進行に従ってどのように変化するのかを調査しておいてもよい。例えば、樹脂微粒子の見え方の変化として、上記のような境界の明るさ(画像上の階調値)の変化に注目する方法では、硬化の進行による境界の明るさと硬化状態の関係をルックアップテーブル(LUT)として調査、記憶しておいてもよい。このときの硬化状態については、対象がサンプルであることから、直接接触式の計測器を用いた硬さ計測を行うことが可能である。こうして調べたLUTを用いて、実際の対象から得られた画像上の境界の明るさから硬化状態を計測してもよい。   By the way, as a measurement of the curing state of the photocurable resin by light irradiation, it was investigated in advance how the appearance of the resin fine particles in the photocurable resin proceeding with curing changes with the progress of curing. You may keep it. For example, in the method of focusing on the change in the brightness of the boundary (tone value on the image) as described above as a change in the appearance of the resin fine particles, the relationship between the brightness of the boundary and the curing state as the curing progresses is looked up. You may investigate and memorize | store as a table (LUT). About the hardening state at this time, since the object is a sample, it is possible to perform hardness measurement using a direct contact type measuring instrument. Using the LUT thus examined, the curing state may be measured from the brightness of the boundary on the image obtained from the actual object.

上記の説明では、部品2上に滴下又は塗布した光硬化性樹脂の硬化状態をモニターにより検出する例を説明したが、モニター対象の他の例を図8、図9及び図10に基づいて以下に説明する。   In the above description, the example in which the curing state of the photocurable resin dropped or applied on the component 2 is detected by the monitor has been described. However, other examples of the monitoring target are described below based on FIGS. 8, 9, and 10. Explained.

図8は、液晶パネルの一部を示す斜視図である。図8に示す液晶パネル30は、枠状のシール材31を介して周囲で張り合わされる一対のガラス基板32、33を有している。ガラス基板32、33のうち対向する内側のそれぞれには、例えば透明電極(不図示)等が形成され、その上には配向膜34,35が形成されている。また、枠状のシール材31の一部には液晶注入用の開口部31aが形成され、液晶36の注入後には上記と同様な液状の光硬化性樹脂1を開口部31aに充填する。その後に、上記のような方法により光硬化性樹脂1を紫外線照射により硬化し、開口部31aを封止する。   FIG. 8 is a perspective view showing a part of the liquid crystal panel. The liquid crystal panel 30 shown in FIG. 8 has a pair of glass substrates 32 and 33 that are bonded together with a frame-shaped sealing material 31 therebetween. For example, a transparent electrode (not shown) is formed on each of the glass substrates 32 and 33 facing each other, and alignment films 34 and 35 are formed thereon. In addition, an opening 31a for injecting liquid crystal is formed in a part of the frame-shaped sealing material 31, and after injecting the liquid crystal 36, the liquid photocurable resin 1 similar to the above is filled in the opening 31a. Thereafter, the photocurable resin 1 is cured by ultraviolet irradiation by the method as described above, and the opening 31a is sealed.

この場合、開口部31aの周辺、或いはガラス基板32、33の周囲から光硬化性樹脂1に紫外線(UV)が照射され、開口部31aの上方には図1に示したモニター装置10の顕微鏡13が配置される。これにより光硬化性樹脂1の像が顕微鏡13、カメラ12を介して制御部14に画像データが取り込まれる。その画像データに基づいて、図7のフローチャートに従って光硬化性樹脂1の硬化の終点を検出することができる。なお、紫外線の照射は図1に示した照明系統部Bを使用してもよいし、ガラス基板21,22の周囲に紫外線ランプ(不図示)を配置してもよい。なお、光硬化性樹脂1が目標の硬度まで硬化したと判断した後に予め定められた時間でオーバー照射を行っても良い。これにより、光硬化性樹脂1の硬度の把握が容易になり、過度な紫外線照射が防止され、作業効率が向上する。   In this case, the photocurable resin 1 is irradiated with ultraviolet rays (UV) from the periphery of the opening 31a or from the periphery of the glass substrates 32 and 33, and the microscope 13 of the monitor device 10 shown in FIG. Is placed. As a result, the image data of the image of the photocurable resin 1 is taken into the control unit 14 via the microscope 13 and the camera 12. Based on the image data, the end point of the curing of the photocurable resin 1 can be detected according to the flowchart of FIG. In addition, the irradiation system part B shown in FIG. 1 may be used for ultraviolet irradiation, and an ultraviolet lamp (not shown) may be disposed around the glass substrates 21 and 22. In addition, after determining that the photocurable resin 1 has been cured to the target hardness, the over irradiation may be performed for a predetermined time. Thereby, grasping | ascertaining of the hardness of the photocurable resin 1 becomes easy, excessive ultraviolet irradiation is prevented and work efficiency improves.

図9は、互いに光接続される光部品、例えば光導波路41と光ファイバ44を示す側面図である。
図9において、光導波路41は、例えば第1基板42の上に絶縁膜43を介してストラ
イプ状に形成されている。また、光ファイバ44は、第2基板46のV溝47に嵌め込まれている。さらに、光ファイバ44と光導波路41のそれぞれの光接続端面は、互いに突き合わされた状態で光硬化性の光硬化性接着剤40を介して接続される。光接続に使用される光硬化性接着剤40は、光ファイバ44、光導波路41内を導波させる波長の光を透過する光透過性を有している。
FIG. 9 is a side view showing optical components that are optically connected to each other, for example, the optical waveguide 41 and the optical fiber 44.
In FIG. 9, the optical waveguide 41 is formed in a stripe shape on the first substrate 42 with an insulating film 43 interposed therebetween, for example. The optical fiber 44 is fitted in the V groove 47 of the second substrate 46. Furthermore, the optical connection end faces of the optical fiber 44 and the optical waveguide 41 are connected to each other via a photocurable photocurable adhesive 40 in a state of being abutted with each other. The photocurable adhesive 40 used for the optical connection has a light transmission property that transmits light having a wavelength that is guided through the optical fiber 44 and the optical waveguide 41.

光硬化性接着剤40は、光硬化性樹脂の一種であり、例えば、図2(a)と同様に硬化済みの樹脂微粒子1aと光硬化性樹脂材1aを例えばエポキシ樹脂に混合することにより作製され、他の接着剤と同様に重合反応によって高分子を形成し、硬化して接着能力を発揮する。この場合、光を照射することで連鎖的な重合反応が生じる。   The photocurable adhesive 40 is a kind of photocurable resin, and is produced, for example, by mixing the cured resin fine particles 1a and the photocurable resin material 1a with, for example, an epoxy resin as in FIG. In the same manner as other adhesives, a polymer is formed by a polymerization reaction and cured to exhibit adhesive ability. In this case, a chain polymerization reaction occurs by irradiating light.

光部品である光導波路41と光ファイバ44のコア45を光接続する場合には、それらの間に光硬化性接着剤40を介在させるとともに、第1基板43と第2基板46の間に光硬化性接着剤40を介在させる。その状態で、図1に示した顕微鏡13を光硬化性接着剤40に近づけて拡大した像をカメラ12に結像させ、図7に示すフローチャートに従って光硬化性接着剤40の硬化を監視し、硬化させる光硬化性樹脂1bと樹脂微粒子1aの境界での明るさの強度が他の領域と同等になった時点で接着剤40の硬度が目標まで硬化したと判断し、紫外線の照射を停止する。なお、目標の硬度まで硬化したと判断した後に予め定められた時間でオーバー照射を行っても良い。これにより、光硬化性接着剤40の硬度の把握が容易になり、過剰な紫外線照射が防止され、作業効率が向上する。   When the optical waveguide 41, which is an optical component, and the core 45 of the optical fiber 44 are optically connected, a photo-curing adhesive 40 is interposed between them, and light is transmitted between the first substrate 43 and the second substrate 46. A curable adhesive 40 is interposed. In that state, the microscope 13 shown in FIG. 1 is brought close to the photocurable adhesive 40 and an enlarged image is formed on the camera 12, and the curing of the photocurable adhesive 40 is monitored according to the flowchart shown in FIG. When the intensity of brightness at the boundary between the photocurable resin 1b to be cured and the resin fine particles 1a becomes equal to that in other regions, it is determined that the hardness of the adhesive 40 has been cured to the target, and the ultraviolet irradiation is stopped. . Note that over-irradiation may be performed at a predetermined time after determining that the target hardness has been cured. Thereby, it becomes easy to grasp the hardness of the photo-curable adhesive 40, excessive ultraviolet irradiation is prevented, and work efficiency is improved.

図10(a)、(b)は、光部品である第1の光ファイバ51と第2の光ファイバ52の接続方法を示している。   10A and 10B show a method of connecting the first optical fiber 51 and the second optical fiber 52, which are optical components.

まず、図10(a)に示すように、間隔をおいて第1の光ファイバ51と第2の光ファイバ52の接続端面を対向して配置する。その後に、第1の光ファイバ51と第2の光ファイバ52の互いのコアCの光軸を合わせる。その状態で第1の波長の光の照射によって硬化する液状の光硬化性樹脂53aを第1の光ファイバ51と第2の光ファイバ52の間に介在させる。この後で、光硬化性樹脂53aを介して第1の光ファイバ51のコアCから第1の波長の光を第2の光ファイバ52のコアCに向けて照射する。これにより、第1の光ファイバ51のコアCとその延長上にある第2の光ファイバ52のコアCの間で光硬化性樹脂53aを硬化させて結合コア53を形成する。その後、未硬化の光硬化性樹脂53aを溶剤で洗い流す。   First, as shown in FIG. 10A, the connection end faces of the first optical fiber 51 and the second optical fiber 52 are arranged to face each other at an interval. Thereafter, the optical axes of the cores C of the first optical fiber 51 and the second optical fiber 52 are aligned. In this state, a liquid photocurable resin 53 a that is cured by irradiation with light of the first wavelength is interposed between the first optical fiber 51 and the second optical fiber 52. Thereafter, light having the first wavelength is irradiated toward the core C of the second optical fiber 52 from the core C of the first optical fiber 51 through the photocurable resin 53a. Thereby, the coupling core 53 is formed by curing the photocurable resin 53a between the core C of the first optical fiber 51 and the core C of the second optical fiber 52 on the extension thereof. Thereafter, the uncured photocurable resin 53a is washed away with a solvent.

続いて、図10(b)に示すように、硬化後の屈折率が結合コア53より低くなる液状の第2の光硬化性樹脂54aを結合コア53の周囲に供給し、紫外線ランプから照射される紫外線を用いて硬化させ、第2の光硬化性樹脂54aを結合クラッド54として結合コア53の周りに形成する。液状の第2の光硬化性樹脂54aは、初期状態では、図2(a)に示すと同様に、未硬化の液状の光硬化性樹脂材と硬化済みの樹脂微粒子を混合させて作製した樹脂を使用する。そして、図1に示す顕微鏡13により拡大した光硬化性樹脂54aの拡大画像を取得し、図7に示すフローに従って目標とする硬度に達した時点、又はその後のオーバー照射を経て紫外線照射を停止する。これにより、第2の光硬化性樹脂54aの硬さの把握が容易になり、過剰な紫外線照射が防止され、作業効率が向上する。   Subsequently, as shown in FIG. 10B, a liquid second photocurable resin 54 a whose refractive index after curing is lower than that of the bonded core 53 is supplied to the periphery of the bonded core 53 and irradiated from an ultraviolet lamp. The second photo-curing resin 54a is formed around the coupling core 53 as the coupling clad 54. In the initial state, the liquid second photocurable resin 54a is a resin prepared by mixing uncured liquid photocurable resin material and cured resin fine particles, as shown in FIG. 2 (a). Is used. Then, an enlarged image of the photocurable resin 54a magnified by the microscope 13 shown in FIG. 1 is acquired, and the ultraviolet irradiation is stopped when the target hardness is reached according to the flow shown in FIG. . This makes it easy to grasp the hardness of the second photocurable resin 54a, prevents excessive ultraviolet irradiation, and improves work efficiency.

ここで挙げた全ての例および条件的表現は、発明者が技術促進に貢献した発明および概念を読者が理解するのを助けるためのものであり、ここで具体的に挙げたそのような例および条件に限定することなく解釈され、また、明細書におけるそのような例の編成は本発明の優劣を示すこととは関係ない。本発明の実施形態を詳細に説明したが、本発明の精神および範囲から逸脱することなく、それに対して種々の変更、置換および変形を施すことができると理解される。   All examples and conditional expressions given here are intended to help the reader understand the inventions and concepts that have contributed to the promotion of technology, such examples and It is interpreted without being limited to the conditions, and the organization of such examples in the specification is not related to showing the superiority or inferiority of the present invention. While embodiments of the present invention have been described in detail, it will be understood that various changes, substitutions and variations can be made thereto without departing from the spirit and scope of the invention.

次に、実施形態をさらに付記する。
(付記1)液状の光硬化性樹脂材と、前記光硬化性樹脂材の硬化完了状態と同等の屈折率を有する樹脂粒子とを含む光硬化性樹脂を対象物に供給する工程と、光硬化用の光の照射により前記光硬化性樹脂を硬化させながら、前記光硬化性樹脂材と前記樹脂粒子の境界と前記光硬化性樹脂材と前記樹脂粒子のそれぞれの明るさを画像により検知する工程と、前記光硬化性樹脂材と前記樹脂粒子の少なくとも一方の第1の明るさと前記境界の第2の明るさを比較し、前記第1の明るさと前記第2の明るさの差が小さくなるほど前記光硬化性樹脂の硬化が進んでいると判断する工程と、を含む光硬化性樹脂の硬化モニター方法。
(付記2)前記第2の明るさが前記第1の明るさの範囲と同等になった状態で前記光硬化性樹脂の硬化が完了したと判断する工程を含むことを特徴とする付記1に記載の光硬化性樹脂の硬化モニター方法。
(付記3)前記樹脂粒子は、前記光硬化性樹脂材と同じ材料を硬化させて形成されることを特徴とする付記1乃至付記2のいずれか1つに記載の光硬化性樹脂の硬化モニター方法。
(付記4)前記樹脂粒子は、前記対象物の上に液状の前記光硬化性樹脂材を供給した後に前記光硬化性樹脂材の表面から混入されることを特徴とする付記1乃至付記4のいずれか1つに記載の光硬化性樹脂の硬化モニター方法。
(付記5)前記光を照射する前に、顕微鏡を介して取得された前記光硬化性樹脂の画像データに基づく明るさ分布のうち落ち込み量が最大の部分を前記境界と判断することを特徴とする付記1乃至付記5のいずれか1つに記載の光硬化性樹脂の硬化モニター方法。
(付記6)液状の光硬化性樹脂材と、前記光硬化性樹脂材の硬化完了状態と同等の屈折率を有する樹脂粒子とを含む光硬化性接着剤を第1の光部品と第2の光部品の間に挟む工程と、光硬化用の光の照射により前記光硬化性接着剤を硬化させながら、前記光硬化性樹脂材と前記樹脂粒子の境界と前記光硬化性樹脂材と前記樹脂粒子のそれぞれの明るさを画像により検知する工程と、前記光硬化性樹脂材と前記樹脂粒子の少なくとも一方の第1の明るさと前記境界の第2の明るさを比較し、前記第2の明るさが前記第1の明るさの範囲と同等になった状態で前記光硬化性接着剤の硬化が完了したと判断する工程と、を含むことを特徴とする光部品接続方法。
(付記7)前記硬化が完了と判断した後から予め設定した時間が経過した時点で前記光の照射を停止することを特徴とする付記6に記載の光部品接続方法。
(付記8)前記樹脂粒子は、前記光硬化性樹脂材と同じ材料を硬化させて形成されることを特徴とする付記6乃至付記7のいずれか1つに記載の光部品接続方法。
(付記9)前記樹脂粒子は、前記第1の光部品と前記第2の光部品の間に前記光硬化性樹脂材を挟んだ後に前記光硬化性樹脂材の表面から混入されることを特徴とする付記6乃至付記8のいずれか1つに記載の光部品接続方法。
(付記10)前記光を照射する前に、顕微鏡を介して取得された前記光硬化性樹脂の画像データに基づく明るさ分布のうち落ち込み量が最大の部分を前記境界と判断することを特徴とする付記6乃至付記9のいずれか1つに記載の光部品接続方法。
Next, the embodiment will be further described.
(Supplementary Note 1) A step of supplying a photocurable resin containing a liquid photocurable resin material and resin particles having a refractive index equivalent to the cured state of the photocurable resin material to an object, and photocuring Detecting the boundary between the photocurable resin material and the resin particles and the brightness of the photocurable resin material and the resin particles by an image while curing the photocurable resin by irradiation with light for And comparing the first brightness of at least one of the photocurable resin material and the resin particles with the second brightness of the boundary, the smaller the difference between the first brightness and the second brightness is, A step of determining that the curing of the photocurable resin is proceeding, and a method for monitoring the curing of the photocurable resin.
(Supplementary note 2) The supplementary note 1 includes a step of determining that the curing of the photocurable resin is completed in a state where the second brightness is equal to the range of the first brightness. A method for monitoring curing of the photocurable resin as described.
(Appendix 3) The photocuring resin curing monitor according to any one of appendices 1 to 2, wherein the resin particles are formed by curing the same material as the photocurable resin material. Method.
(Additional remark 4) The said resin particle is mixed from the surface of the said photocurable resin material, after supplying the said liquid photocurable resin material on the said target object, The additional description 1 thru | or the additional statement 4 characterized by the above-mentioned The curing monitoring method for a photocurable resin according to any one of the above.
(Additional remark 5) Before irradiating the said light, it is judged that the part with the largest amount of depression among the brightness distribution based on the image data of the said photocurable resin acquired through the microscope is said boundary. The curing monitoring method for a photocurable resin according to any one of Supplementary notes 1 to 5.
(Supplementary Note 6) A photocurable adhesive including a liquid photocurable resin material and resin particles having a refractive index equivalent to a cured completion state of the photocurable resin material is used as a first optical component and a second optical component. The step of sandwiching between optical components, and the curing of the photocurable adhesive by irradiation of light for photocuring, the boundary between the photocurable resin material and the resin particles, the photocurable resin material, and the resin Detecting the brightness of each of the particles by an image, comparing the first brightness of at least one of the photocurable resin material and the resin particles with the second brightness of the boundary, and the second brightness. And a step of determining that the curing of the photocurable adhesive is completed in a state in which the thickness is equal to the first brightness range.
(Supplementary note 7) The optical component connecting method according to supplementary note 6, wherein the irradiation of the light is stopped when a preset time has elapsed after it is determined that the curing is completed.
(Supplementary note 8) The optical component connecting method according to any one of supplementary notes 6 to 7, wherein the resin particles are formed by curing the same material as the photocurable resin material.
(Appendix 9) The resin particles are mixed from the surface of the photocurable resin material after the photocurable resin material is sandwiched between the first optical component and the second optical component. The optical component connecting method according to any one of Appendix 6 to Appendix 8.
(Additional remark 10) Before irradiating the said light, it is judged that the part with the largest amount of depression among the brightness distribution based on the image data of the said photocurable resin acquired through the microscope is said boundary. The optical component connecting method according to any one of Supplementary Notes 6 to 9.

1 光硬化性樹脂
1a 樹脂微粒子
1b 光硬化性樹脂材
2 部品
10 光硬化モニタリング装置
12 カメラ
13 顕微鏡
14 制御部
15 硬化用照明光源
16 光照明ヘッド
17 光ファイバ
30 液晶パネル
31 シール材
31a 開口部
32、33 ガラス基板
40 光硬化性接着剤
41 光導波路
44 光ファイバ
51、52 光ファイバ
53 結合コア
54a 光硬化性樹脂
54 結合クラッド
DESCRIPTION OF SYMBOLS 1 Photocurable resin 1a Resin fine particle 1b Photocurable resin material 2 Component 10 Photocuring monitoring apparatus 12 Camera 13 Microscope 14 Control part 15 Illumination light source 16 Curing light head 17 Optical fiber 30 Liquid crystal panel 31 Sealing material 31a Opening part 32 33 Glass substrate 40 Photocurable adhesive
41 Optical waveguide 44 Optical fibers 51 and 52 Optical fiber 53 Bonding core 54a Photocurable resin 54 Bonding clad

Claims (5)

液状の光硬化性樹脂材と、
前記光硬化性樹脂材の硬化完了状態と同等の屈折率を有する樹脂粒子とを含む光硬化性樹脂を対象物に供給する工程と、
光硬化用の光の照射により前記光硬化性樹脂を硬化させながら、前記光硬化性樹脂材と前記樹脂粒子の境界と前記光硬化性樹脂材と前記樹脂粒子のそれぞれの明るさを画像により検知する工程と、
前記光硬化性樹脂材と前記樹脂粒子の少なくとも一方の第1の明るさと前記境界の第2の明るさを比較し、前記第1の明るさと前記第2の明るさの差が小さくなるほど前記光硬化性樹脂の硬化が進んでいると判断する工程と、
を含む光硬化性樹脂の硬化モニター方法。
A liquid photocurable resin material;
Supplying a photocurable resin containing a resin particle having a refractive index equivalent to the cured state of the photocurable resin material to an object;
While curing the photocurable resin by irradiation with light for photocuring, the boundary between the photocurable resin material and the resin particles and the brightness of the photocurable resin material and the resin particles are detected by images. And a process of
The first brightness of at least one of the photocurable resin material and the resin particles is compared with the second brightness of the boundary, and the light becomes smaller as the difference between the first brightness and the second brightness becomes smaller. Determining that the curing of the curable resin is progressing,
Monitoring method for photocurable resin containing
前記樹脂粒子は、前記光硬化性樹脂材と同じ材料を硬化させて形成されることを特徴とする請求項1に記載の光硬化性樹脂の硬化モニター方法。   The method for monitoring the curing of a photocurable resin according to claim 1, wherein the resin particles are formed by curing the same material as the photocurable resin material. 前記光を照射する前に、顕微鏡を介して取得された前記光硬化性樹脂の画像データに基づく明るさ分布のうち落ち込み量が最大の部分を前記境界と判断することを特徴とする請求項1又は請求項2に記載の光硬化性樹脂の硬化モニター方法。   2. The portion of the brightness distribution based on the image data of the photocurable resin acquired through a microscope before the light irradiation is determined to be a portion having the maximum drop amount as the boundary. Or the hardening monitoring method of the photocurable resin of Claim 2. 液状の光硬化性樹脂材と、前記光硬化性樹脂材の硬化完了状態と同等の屈折率を有する樹脂粒子とを含む光硬化性接着剤を第1の光部品と第2の光部品の間に挟む工程と、
光硬化用の光の照射により前記光硬化性接着剤を硬化させながら、前記光硬化性樹脂材と前記樹脂粒子の境界と前記光硬化性樹脂材と前記樹脂粒子のそれぞれの明るさを画像により検知する工程と、
前記光硬化性樹脂材と前記樹脂粒子の少なくとも一方の第1の明るさと前記境界の第2の明るさを比較し、前記第2の明るさが前記第1の明るさの範囲と同等になった状態で前記光硬化性接着剤の硬化が完了したと判断する工程と、
を含むことを特徴とする光部品接続方法。
A photo-curing adhesive comprising a liquid photo-curing resin material and resin particles having a refractive index equivalent to the cured state of the photo-curing resin material is applied between the first optical component and the second optical component. The step of sandwiching between,
While curing the photo-curable adhesive by irradiation with light for photo-curing, the brightness of each of the photo-curable resin material and the resin particles, and the brightness of the photo-curable resin material and the resin particles is illustrated by an image. Detecting process;
The first brightness of at least one of the photocurable resin material and the resin particles is compared with the second brightness of the boundary, and the second brightness becomes equal to the range of the first brightness. A step of determining that the curing of the photocurable adhesive is completed in a state where
An optical component connection method comprising:
前記樹脂粒子は、前記第1の光部品と前記第2の光部品の間に前記光硬化性樹脂材を挟んだ後に前記光硬化性樹脂材の表面から混入されることを特徴とする請求項4に記載の光部品接続方法。   The resin particles are mixed from the surface of the photocurable resin material after the photocurable resin material is sandwiched between the first optical component and the second optical component. 5. The optical component connecting method according to 4.
JP2013016752A 2013-01-31 2013-01-31 Photocuring resin curing monitoring method and optical component connecting method Active JP5991215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016752A JP5991215B2 (en) 2013-01-31 2013-01-31 Photocuring resin curing monitoring method and optical component connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016752A JP5991215B2 (en) 2013-01-31 2013-01-31 Photocuring resin curing monitoring method and optical component connecting method

Publications (2)

Publication Number Publication Date
JP2014149168A true JP2014149168A (en) 2014-08-21
JP5991215B2 JP5991215B2 (en) 2016-09-14

Family

ID=51572270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016752A Active JP5991215B2 (en) 2013-01-31 2013-01-31 Photocuring resin curing monitoring method and optical component connecting method

Country Status (1)

Country Link
JP (1) JP5991215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746660B2 (en) 2016-07-29 2020-08-18 3M Innovative Properties Company Cure monitoring systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229256A (en) * 1984-04-26 1985-11-14 Sharp Corp Manufacture of optical memory element
US4904080A (en) * 1988-01-22 1990-02-27 The Board Of Regents Of The University Of Washington Method of monitoring solidification of a liquid composition
JPH06183788A (en) * 1992-12-16 1994-07-05 Showa Electric Wire & Cable Co Ltd Production of coated optical fiber
WO2001086261A1 (en) * 2000-05-09 2001-11-15 Hamamatsu Photonics K.K. Method and device for detecting end point of curing of resin, assembly, apparatus and method for producing assembly
JP2007248674A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Optical element, optical deflector, and image forming apparatus
JP2007248244A (en) * 2006-03-15 2007-09-27 Omron Corp State estimation method of ultraviolet curing resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229256A (en) * 1984-04-26 1985-11-14 Sharp Corp Manufacture of optical memory element
US4904080A (en) * 1988-01-22 1990-02-27 The Board Of Regents Of The University Of Washington Method of monitoring solidification of a liquid composition
JPH06183788A (en) * 1992-12-16 1994-07-05 Showa Electric Wire & Cable Co Ltd Production of coated optical fiber
WO2001086261A1 (en) * 2000-05-09 2001-11-15 Hamamatsu Photonics K.K. Method and device for detecting end point of curing of resin, assembly, apparatus and method for producing assembly
JP2007248674A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Optical element, optical deflector, and image forming apparatus
JP2007248244A (en) * 2006-03-15 2007-09-27 Omron Corp State estimation method of ultraviolet curing resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746660B2 (en) 2016-07-29 2020-08-18 3M Innovative Properties Company Cure monitoring systems and methods

Also Published As

Publication number Publication date
JP5991215B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5623754B2 (en) Display device and manufacturing method thereof
KR102185076B1 (en) Method for manufacturing image display device, and image display device
JP2019159338A (en) Resin composition and display device
TWI440929B (en) Method for manufacturing display device
JP2009058968A (en) Method of manufacturing display device
US8524127B2 (en) Method of manufacturing a panel with occluded microholes
JP2010210648A (en) Method for repairing glass substrate, process for producing glass substrate, glass substrate, and flat panel display
JP2004004563A (en) Substrate for liquid crystal display, liquid crystal display equipped with the same, its manufacturing method and manufacturing apparatus
KR20120086310A (en) Display device, process for manufacturing same, and transparent resin filler
JP5158468B2 (en) Substrate inspection system and inspection substrate inspection method
KR20150086633A (en) Apparatus of inspecting optical film and method of inspecting the same
JP5991215B2 (en) Photocuring resin curing monitoring method and optical component connecting method
CN110199340A (en) The manufacturing method of image display device
KR20110036665A (en) Light irradiation apparatus
JP2015225041A (en) Defect inspection method for laminated polarizing film
JP2016534206A (en) Adhesive with embedded curing waveguide
CN110376144A (en) Curing degree detection device
JP2010117714A (en) Optical device, directional diffusion film and method of manufacturing optical device
JP5146362B2 (en) Ink for correcting bright spot defect of polarizing plate and polarizing plate correcting method using the same
Schwartz et al. Optical Imaging Methods for Volumetric Additive Manufacturing
Sergeeva Fabrication of polymer-based optofluidic microsystems for optical fluid analysis on printed circuit boards
JP5900000B2 (en) Resin cure state monitoring device and resin cure state monitoring method
KR101706161B1 (en) Silicon optic lens and manufacturing method thereof
JP6459051B2 (en) Cover glass and reinforcement
JP3794388B2 (en) Cell gap adjusting device and method of manufacturing liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150