JP2014148494A - Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site - Google Patents

Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site Download PDF

Info

Publication number
JP2014148494A
JP2014148494A JP2013028323A JP2013028323A JP2014148494A JP 2014148494 A JP2014148494 A JP 2014148494A JP 2013028323 A JP2013028323 A JP 2013028323A JP 2013028323 A JP2013028323 A JP 2013028323A JP 2014148494 A JP2014148494 A JP 2014148494A
Authority
JP
Japan
Prior art keywords
reaction
hypervalent iodine
nobel
dib
iodine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013028323A
Other languages
Japanese (ja)
Inventor
Hideo Togo
秀雄 東郷
Masataka Iinuma
雅崇 飯沼
Katsuhiko Moriyama
克彦 森山
Kenichi Takatsuki
健一 高月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP2013028323A priority Critical patent/JP2014148494A/en
Publication of JP2014148494A publication Critical patent/JP2014148494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel trivalent hypervalent iodine compound which exhibits excellent reactivity in an oxidation reaction using a trivalent hypervalent iodine compound and which enables easy removal and recovery of a byproduct monovalent iodine compound by an extraction operation.SOLUTION: Provided is a novel trivalent hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1H)-one. With this compound, it becomes possible to oxidize even a compound which cannot be oxidized with conventional trivalent hypervalent iodine compounds, and to remove and recover a byproduct monovalent iodine compound after completion of the oxidizing reaction by washing and extraction operations.

Description

本発明は5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オン部位を有する新規超原子価ヨウ素化合物に関するものであって、有機合成の属する分野、および他の分野で要求される反応試剤に供するものである。  The present invention relates to a novel hypervalent iodine compound having a 5-nitro-1,2-benziodoxol-3- (1H) -one moiety, and is required in the field of organic synthesis and other fields. To be used in the reaction reagent.

第一級アルコールをアルデヒドに、第二級アルコールをケトンに酸化する反応は有機合成上最も重要な反応の一つであり、古くはJones試薬、Sarett試薬、Collins試薬など酸化クロムを利用する酸化剤が用いられてきた。このアルコールからアルデヒドあるいはケトンへの酸化反応は、より効率的な酸化法の開発を志向して活発な研究が行われ、数多くの優れた方法が次々と開発されている。例えば、E.J.Coreyらはジクロロメタン中、ピリジニウムクロロクロマート(以下、PCC)を用いてアルコールを酸化し、高収率でアルデヒドあるいはケトンを得ている。同じくE.J.Coreyらはジクロロメタン中、ピリジニウムジクロマート(以下、PDC)を用いてデカノールを酸化し、収率98%でデカナールを得ている(非特許文献1、2)。しかしながら、これらの酸化剤は、いずれも毒性の強い重金属酸化物を酸化剤として利用している。しかも、反応終了後、重金属副生物を目的物から完全に除く操作が繁雑になると言う問題点も有している。近年、3価の超原子価ヨウ素化合物であるビス(アセトキシ)ヨードベンゼンと触媒量の2,2,6,6−テトラメチル−1−ピペリジン1−オキシル(以下、TEMPO)を用いた系で、アリルアルコールや糖類の水酸基をアルデヒドあるいはケトンに収率よく酸化できることが報告されている(特許文献1、非特許文献3)。しかも3価の超原子価ヨウ素化合物は毒性が低い。そのため、有用な酸化剤として有機合成化学において広く用いられるようになった。3価の超原子価ヨウ素化合物の例としては、以下の構造を持つビス(アセトキシ)ヨードベンゼン、4−ニトロ−[ビス(アセトキシ)]ヨードベンゼン、およびビス(トリフルオロアセトキシ)ヨードベンゼンを挙げることができる。

Figure 2014148494
The reaction of oxidizing a primary alcohol to an aldehyde and a secondary alcohol to a ketone is one of the most important reactions in organic synthesis. In the past, oxidizing agents using chromium oxide such as Jones reagent, Sarett reagent, Collins reagent, etc. Has been used. In this oxidation reaction from alcohol to aldehyde or ketone, active research has been conducted with the aim of developing a more efficient oxidation method, and many excellent methods have been developed one after another. For example, E.I. J. et al. Corey et al. Oxidize alcohol using pyridinium chlorochromate (hereinafter referred to as PCC) in dichloromethane to obtain aldehyde or ketone in high yield. E. J. et al. Corey et al. Oxidized decanol using pyridinium dichromate (hereinafter referred to as PDC) in dichloromethane to obtain decanal in a yield of 98% (Non-patent Documents 1 and 2). However, all of these oxidizers use highly toxic heavy metal oxides as oxidizers. In addition, after the reaction is completed, there is a problem that the operation of completely removing heavy metal by-products from the target product becomes complicated. In recent years, in a system using bis (acetoxy) iodobenzene which is a trivalent hypervalent iodine compound and a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine 1-oxyl (hereinafter, TEMPO), It has been reported that hydroxyl groups of allyl alcohol and saccharides can be oxidized to aldehydes or ketones with high yield (Patent Document 1, Non-Patent Document 3). Moreover, trivalent hypervalent iodine compounds have low toxicity. Therefore, it has come to be widely used in organic synthetic chemistry as a useful oxidizing agent. Examples of trivalent hypervalent iodine compounds include bis (acetoxy) iodobenzene, 4-nitro- [bis (acetoxy)] iodobenzene, and bis (trifluoroacetoxy) iodobenzene having the following structure: Can do.
Figure 2014148494

特開2002−20322号公報JP 2002-20322 A

E.J.Corey,J.W.Suggs,Tetrahedron Lett.1975,2647.E. J. et al. Corey, J .; W. Suggs, Tetrahedron Lett. 1975, 2647. E.J.Corey,G.Schmidt,Tetrahedron Lett.1979,399.E. J. et al. Corey, G.M. Schmidt, Tetrahedron Lett. 1979, 399. A.D.Mico,R.Margarita,L.Parlanti,A.Vescovi,G.Piancatelli,J.Org.Chem.1997,62,6974.A. D. Mico, R.M. Margarita, L.M. Parlanti, A.M. Vescovi, G.M. Piancatelli, J.A. Org. Chem. 1997, 62, 6974.

従来の3価の超原子価ヨウ素化合物は、毒性の低い優れた酸化剤である。しかしながら、これらの3価の超原子価ヨウ素化合物の反応性は一般に低いため、第二級アルコールの酸化には適用できないか、できたとしても収率が低くなることがある。また、これらの3価の超原子価ヨウ素化合物を用いる酸化反応では副生する1価のヨードベンゼンを目的物から除去するために、クロマトグラフィーなどの煩雑な手段を伴う場合もある。反応性が良く、かつ後処理の容易な酸化剤が求められている。  Conventional trivalent hypervalent iodine compounds are excellent oxidizing agents with low toxicity. However, since the reactivity of these trivalent hypervalent iodine compounds is generally low, it may not be applicable to the oxidation of secondary alcohols, or the yield may be low. In addition, the oxidation reaction using these trivalent hypervalent iodine compounds may involve complicated means such as chromatography in order to remove monovalent iodobenzene by-produced from the target product. There is a need for an oxidizing agent that has good reactivity and is easily post-treated.

そこで、発明者は鋭意研究を重ねた結果、本発明を完成するに至った。すなわち、本発明は構造式(1)で示される5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オン部位を有する新規超原子価ヨウ素化合物(以下、Nobel−DIB)に関するものである。  Thus, as a result of intensive studies, the inventors have completed the present invention. That is, the present invention relates to a novel hypervalent iodine compound (hereinafter referred to as Nobel-DIB) having a 5-nitro-1,2-benziodoxol-3- (1H) -one moiety represented by the structural formula (1). Is.

Figure 2014148494
Figure 2014148494

本発明の実施形態について説明する。本発明化合物をアルコールの酸化反応に用いると、従来の3価の超原子価ヨウ素化合物では酸化できなかった化合物でも酸化することができる。また、副生する1価の2−ヨード−5−ニトロ安息香酸は洗浄と抽出操作により容易に回収することができ、後処理が容易である。なお、Nobel−DIBは、文献未掲載の新規化合物である。以下に、Nobel−DIBの代表例として構造式(2)で示される1−アセトキシ−5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オンの合成法を明らかにするが、これは例示であり、これに限定されるものではない。  An embodiment of the present invention will be described. When the compound of the present invention is used in an alcohol oxidation reaction, even a compound that could not be oxidized by a conventional trivalent hypervalent iodine compound can be oxidized. Moreover, the monovalent | monohydric 2-iodo-5-nitrobenzoic acid byproduced can be easily collect | recovered by washing | cleaning and extraction operation, and an after-treatment is easy. Note that Nobel-DIB is a novel compound not yet published in literature. Hereinafter, as a representative example of Nobel-DIB, a method for synthesizing 1-acetoxy-5-nitro-1,2-benziodoxol-3- (1H) -one represented by the structural formula (2) will be clarified. This is an example, and the present invention is not limited to this.

Figure 2014148494
Figure 2014148494

Nobel−DIB(2)は下記反応式に従って2段階で合成される。

Figure 2014148494
Nobel-DIB (2) is synthesized in two steps according to the following reaction formula.
Figure 2014148494

第1工程は2−ヨード安息香酸(A)と硫酸、硝酸を反応させることで2−ヨード−5−ニトロ安息香酸(B)を得る工程である。反応温度は、反応を進行させることができる限りにおいて限定されるものではないが、例えば室温から140℃の範囲が好ましい。反応時間は反応温度により異なるが、30分から12時間の間で適宜選択される。  The first step is a step of obtaining 2-iodo-5-nitrobenzoic acid (B) by reacting 2-iodobenzoic acid (A) with sulfuric acid and nitric acid. Although reaction temperature is not limited as long as reaction can be advanced, For example, the range of room temperature to 140 degreeC is preferable. The reaction time varies depending on the reaction temperature, but is appropriately selected between 30 minutes and 12 hours.

第2工程は2−ヨード−5−ニトロ安息香酸(B)に酢酸を3−クロロ過安息香酸(MCPBA)存在下で反応させることで、Nobel−DIB(2)を得る工程である。反応温度は、反応を進行させることができる限りにおいて限定されるものではないが、例えば室温から70℃の範囲が好ましい。反応時間は反応温度により異なるが、3時間から72時間の間で適宜選択される。  The second step is a step of obtaining Nobel-DIB (2) by reacting 2-iodo-5-nitrobenzoic acid (B) with acetic acid in the presence of 3-chloroperbenzoic acid (MCPBA). Although reaction temperature is not limited as long as reaction can be advanced, For example, the range of room temperature to 70 degreeC is preferable. The reaction time varies depending on the reaction temperature, but is appropriately selected between 3 hours and 72 hours.

以下に、本発明の代表的例としてNobel−DIB(2)を取り上げ、アルコール類からアルデヒドあるいはケトンへの酸化反応への応用を参考例として示し、従来の3価の超原子価ヨウ素化合物の酸化反応への応用を比較例として示すことで、本発明の有用性を明らかにする。  In the following, taking Nobel-DIB (2) as a representative example of the present invention, application to the oxidation reaction from alcohols to aldehydes or ketones is shown as a reference example, and oxidation of a conventional trivalent hypervalent iodine compound is performed. The usefulness of the present invention will be clarified by showing the application to the reaction as a comparative example.

反応は、下記反応式に従って進行する。すなわちNobel−DIBが酸化剤として働き、アルコール類をアルデヒドあるいはケトンに収率よく変換する。反応温度は、反応を進行させることができる限りにおいて限定されるものではないが、例えば−20℃から70℃の範囲が好ましい。反応時間は、使用する溶媒の種類、反応温度により異なるが、30分から72時間の間で適宜選択される。

Figure 2014148494
The reaction proceeds according to the following reaction formula. That is, Nobel-DIB acts as an oxidizing agent and converts alcohols into aldehydes or ketones with high yield. Although reaction temperature is not limited as long as reaction can be advanced, For example, the range of -20 degreeC to 70 degreeC is preferable. The reaction time varies depending on the type of solvent used and the reaction temperature, but is appropriately selected between 30 minutes and 72 hours.
Figure 2014148494

参考例1
4−メチルベンジルアルコール122mg(1mmol)のDMF(4mL)溶液にNobel−DIB(2)351mg(1mmol)を加えて65℃で12時間撹拌した。次いで、Nobel−DIB(2)351mg(1mmol)を加えてさらに12時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液10mLとヘキサン/エーテル=2/1の混合溶媒10mLを加えて分液した。有機層を硫酸ナトリウムで乾燥し、有機層を濃縮することで4−メチルベンズアルデヒド117mgを得た(収率97%、純度98%)。
Reference example 1
To a solution of 122 mg (1 mmol) of 4-methylbenzyl alcohol in DMF (4 mL), 351 mg (1 mmol) of Nobel-DIB (2) was added and stirred at 65 ° C. for 12 hours. Next, 351 mg (1 mmol) of Nobel-DIB (2) was added, and the mixture was further stirred for 12 hours. After completion of the reaction, 10 mL of a saturated aqueous sodium hydrogen carbonate solution and 10 mL of a mixed solvent of hexane / ether = 2/1 were added to separate the layers. The organic layer was dried over sodium sulfate, and the organic layer was concentrated to obtain 117 mg of 4-methylbenzaldehyde (yield 97%, purity 98%).

比較例1−1
Nobel−DIB(2)の代わりにビス(アセトキシ)ヨードベンゼン322mg(1mmol)を用いて参考例1と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することで4−メチルベンズアルデヒド19mgを得た(収率16%)。
Comparative Example 1-1
By using 322 mg (1 mmol) of bis (acetoxy) iodobenzene in place of Nobel-DIB (2), the same reaction operation as in Reference Example 1 was performed, and 19 mg of 4-methylbenzaldehyde was obtained by purification by silica gel column chromatography. (Yield 16%).

比較例1−2
Nobel−DIB(2)の代わりに4−ニトロ−ビス(アセトキシ)ヨードベンゼン367mg(1mmol)を用いて参考例1と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することで4−メチルベンズアルデヒド42mgを得た(収率35%)。
Comparative Example 1-2
By using 367 mg (1 mmol) of 4-nitro-bis (acetoxy) iodobenzene in place of Nobel-DIB (2), the same reaction operation as in Reference Example 1 was carried out and purified by silica gel column chromatography to obtain 4-methyl 42 mg of benzaldehyde was obtained (35% yield).

参考例2
4−クロロベンジルアルコール143mg(1mmol)のDMF(4mL)溶液にNobel−DIB(2)351mg(1mmol)を加えて65℃で12時間撹拌した。次いで、Nobel−DIB(2)351mg(1mmol)を加えてさらに12時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液10mLとヘキサン/エーテル=2/1の混合溶媒10mLを加えて分液した。有機層を硫酸ナトリウムで乾燥し、有機層を濃縮することで4−クロロベンズアルデヒド122mgを得た(収率87%、純度86%)。
Reference example 2
To a solution of 143 mg (1 mmol) of 4-chlorobenzyl alcohol in DMF (4 mL), 351 mg (1 mmol) of Nobel-DIB (2) was added and stirred at 65 ° C. for 12 hours. Next, 351 mg (1 mmol) of Nobel-DIB (2) was added, and the mixture was further stirred for 12 hours. After completion of the reaction, 10 mL of a saturated aqueous sodium hydrogen carbonate solution and 10 mL of a mixed solvent of hexane / ether = 2/1 were added to separate the layers. The organic layer was dried over sodium sulfate, and the organic layer was concentrated to obtain 122 mg of 4-chlorobenzaldehyde (yield 87%, purity 86%).

比較例2−1
Nobel−DIB(2)の代わりにビス(アセトキシ)ヨードベンゼン322mg(1mmol)を用いて参考例2と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することで4−クロロベンズアルデヒド32mgを得た(収率23%)。
Comparative Example 2-1
The same reaction operation as in Reference Example 2 was carried out using 322 mg (1 mmol) of bis (acetoxy) iodobenzene in place of Nobel-DIB (2), and purified by silica gel column chromatography to obtain 32 mg of 4-chlorobenzaldehyde. (Yield 23%).

比較例2−2
Nobel−DIB(2)の代わりに4−ニトロ−ビス(アセトキシ)ヨードベンゼン367mg(1mmol)を用いて参考例2と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することで4−クロロベンズアルデヒド49mgを得た(収率35%)。
Comparative Example 2-2
By using 367 mg (1 mmol) of 4-nitro-bis (acetoxy) iodobenzene in place of Nobel-DIB (2), the same reaction operation as in Reference Example 2 was carried out, followed by purification by silica gel column chromatography. 49 mg of benzaldehyde was obtained (35% yield).

参考例3
1−フェニル−1−プロパノール136mg(1mmol)のDMF(4mL)溶液にNobel−DIB(2)351mg(1mmol)を加えて65℃で12時間撹拌した。次いで、Nobel−DIB(2)351mg(1mmol)を加えてさらに12時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液10mLとヘキサン/エーテル=2/1の混合溶媒10mLを加えて分液した。有機層を硫酸ナトリウムで乾燥し、有機層を濃縮することでプロピオフェノン117mgを得た(収率87%、純度86%)。
Reference example 3
351 mg (1 mmol) of Nobel-DIB (2) was added to a DMF (4 mL) solution of 136 mg (1 mmol) of 1-phenyl-1-propanol and stirred at 65 ° C. for 12 hours. Next, 351 mg (1 mmol) of Nobel-DIB (2) was added, and the mixture was further stirred for 12 hours. After completion of the reaction, 10 mL of a saturated aqueous sodium hydrogen carbonate solution and 10 mL of a mixed solvent of hexane / ether = 2/1 were added to separate the layers. The organic layer was dried over sodium sulfate, and the organic layer was concentrated to obtain 117 mg of propiophenone (yield 87%, purity 86%).

比較例3−1
Nobel−DIB(2)の代わりにビス(アセトキシ)ヨードベンゼン322mg(1mmol)を用いて参考例3と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することでプロピオフェノン27mgを得た(収率20%)。
Comparative Example 3-1
The same reaction operation as in Reference Example 3 was performed using 322 mg (1 mmol) of bis (acetoxy) iodobenzene instead of Nobel-DIB (2), and 27 mg of propiophenone was obtained by purification by silica gel column chromatography. (Yield 20%).

比較例3−2
Nobel−DIB(2)の代わりに4−ニトロ−ビス(アセトキシ)ヨードベンゼン367mg(1mmol)を用いて参考例3と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することでプロピオフェノン42mgを得た(収率31%)。
Comparative Example 3-2
Propiofenone is obtained by performing the same reaction operation as in Reference Example 3 using 367 mg (1 mmol) of 4-nitro-bis (acetoxy) iodobenzene instead of Nobel-DIB (2) and purifying by silica gel column chromatography. 42 mg was obtained (yield 31%).

参考例4
シクロドデカノール184mg(1mmol)のDMF(4mL)溶液にNobel−DIB(2)351mg(1mmol)を加えて65℃で12時間撹拌した。次いで、Nobel−DIB(2)351mg(1mmol)を加えてさらに12時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液10mLとヘキサン/エーテル=2/1の混合溶媒10mLを加えて分液した。有機層を硫酸ナトリウムで乾燥し、有機層を濃縮することでシクロドデカノン146mgを得た(収率90%、純度95%)
Reference example 4
351 mg (1 mmol) of Nobel-DIB (2) was added to a DMF (4 mL) solution of 184 mg (1 mmol) of cyclododecanol, and the mixture was stirred at 65 ° C. for 12 hours. Next, 351 mg (1 mmol) of Nobel-DIB (2) was added, and the mixture was further stirred for 12 hours. After completion of the reaction, 10 mL of a saturated aqueous sodium hydrogen carbonate solution and 10 mL of a mixed solvent of hexane / ether = 2/1 were added to separate the layers. The organic layer was dried over sodium sulfate, and the organic layer was concentrated to obtain 146 mg of cyclododecanone (yield 90%, purity 95%).

比較例4−1
Nobel−DIB(2)の代わりにビス(アセトキシ)ヨードベンゼン322mg(1mmol)を用いて参考例4と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製したがシクロドデカノンは痕跡量しか得られなかった。
Comparative Example 4-1
The same reaction operation as in Reference Example 4 was carried out using 322 mg (1 mmol) of bis (acetoxy) iodobenzene instead of Nobel-DIB (2) and purified by silica gel column chromatography, but only a trace amount of cyclododecanone was obtained. I couldn't.

比較例4−2
Nobel−DIB(2)の代わりに4−ニトロ−ビス(アセトキシ)ヨードベンゼン367mg(1mmol)を用いて参考例4と同様の反応操作を行い、シルカゲルカラムクロマトグラフィーで精製することでシクロドデカノン9mgを得た(収率5%)。
Comparative Example 4-2
Cyclododecanone is obtained by performing the same reaction operation as in Reference Example 4 using 367 mg (1 mmol) of 4-nitro-bis (acetoxy) iodobenzene instead of Nobel-DIB (2) and purifying by silica gel column chromatography. 9 mg was obtained (yield 5%).

以上のように、本発明に係るNobel−DIBをアルコール酸化反応に用いると、従来の3価の超原子価ヨウ素化合物では酸化できなかった化合物でも酸化することができる。また、副生する1価の2−ヨード−5−ニトロ安息香酸は洗浄と抽出操作により容易に回収することができ、後処理が容易である。  As described above, when Nobel-DIB according to the present invention is used in an alcohol oxidation reaction, even a compound that could not be oxidized by a conventional trivalent hypervalent iodine compound can be oxidized. Moreover, the monovalent | monohydric 2-iodo-5-nitrobenzoic acid byproduced can be easily collect | recovered by washing | cleaning and extraction operation, and an after-treatment is easy.

次に、本発明を実施例により更に詳細に説明する。なお、これは例示の目的であり、本発明を制限するものではない。本発明の範囲内で変形が可能なことは当業者には明らかであろう。  Next, the present invention will be described in more detail with reference to examples. This is for illustrative purposes and does not limit the present invention. It will be apparent to those skilled in the art that variations are possible within the scope of the invention.

実施例1
1−アセトキシ−5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オン(Nobel−DIB(2)の合成)
フラスコに2−ヨード安息香酸1.24g(5mmol)を加えて0℃に冷却した。硝酸4mLと硫酸6mLの混合溶液をゆっくり滴下後、室温で30分間、さらに130℃で3時間撹拌した。室温にした反応液に氷水30mLを加え、析出した沈殿物をろ過し、減圧乾燥することで前駆体(B)に相当する2−ヨード−5−ニトロ安息香酸を得た(1.244g、85%)。
Example 1
1-acetoxy-5-nitro-1,2-benziodoxol-3- (1H) -one (synthesis of Nobel-DIB (2))
To the flask, 1.24 g (5 mmol) of 2-iodobenzoic acid was added and cooled to 0 ° C. A mixed solution of 4 mL of nitric acid and 6 mL of sulfuric acid was slowly added dropwise, followed by stirring at room temperature for 30 minutes and further at 130 ° C. for 3 hours. 30 mL of ice water was added to the reaction solution brought to room temperature, and the deposited precipitate was filtered and dried under reduced pressure to obtain 2-iodo-5-nitrobenzoic acid corresponding to the precursor (B) (1.244 g, 85 %).

フラスコに2−ヨード−5−ニトロ安息香酸1.46g(5mmol)、次いで酢酸30mLを加えて均一になるまで撹拌した。3−クロロ過安息香酸(純度65%)1.59g(6mmol)を加えて65℃で48時間撹拌した。反応液を0℃に冷却し、エーテルを加える。析出した沈殿物をろ過し、減圧乾燥することで1−アセトキシ−5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オン(Nobel−DIB(2))が得られた(1.666g、95%)。以下に得られた(Nobel−DIB(2))の物性を示す。
融点:175−179℃
IR(neat):1697(C=O),1665(C=O),1525(−NO),1346(−NO),cm−1
H−NMR(500MHz,CDCl):δ=2.30(s,3H),8.28(d,J=8.9Hz,1H),8.71(dd,J=2.6Hz,J=2.5Hz,1H),9.04(d,J=2.6Hz,1H).
To the flask, 1.46 g (5 mmol) of 2-iodo-5-nitrobenzoic acid and then 30 mL of acetic acid were added and stirred until homogeneous. 1.59 g (6 mmol) of 3-chloroperbenzoic acid (purity 65%) was added and stirred at 65 ° C. for 48 hours. Cool the reaction to 0 ° C. and add ether. The deposited precipitate was filtered and dried under reduced pressure to obtain 1-acetoxy-5-nitro-1,2-benziodoxol-3- (1H) -one (Nobel-DIB (2)) ( 1.666 g, 95%). The physical properties of the obtained (Nobel-DIB (2)) are shown below.
Melting point: 175-179 ° C
IR (neat): 1697 (C = O), 1665 (C = O), 1525 (-NO 2), 1346 (-NO 2), cm -1;
1 H-NMR (500 MHz, CDCl 3 ): δ = 2.30 (s, 3H), 8.28 (d, J = 8.9 Hz, 1H), 8.71 (dd, J = 2.6 Hz, J = 2.5 Hz, 1H), 9.04 (d, J = 2.6 Hz, 1H).

以上の様に本発明に関わる5−ニトロ−1,2−ベンズヨードキソール−3−(1H)−オン部位を有する新規超原子価ヨウ素化合物(Nobel−DIB)は、酸化反応に用いることができる。3価の超原子価状態を持つ超原子価ヨウ素化合物は、温和な酸化剤として有機合成化学において広く用いられているが、一般にその反応性は低いため、第二級アルコールの酸化に適用できないか、もしくは酸化収率が低くなることがある。また、これらの3価の超原子価ヨウ素化合物を用いる酸化反応では副生する1価のヨードベンゼンを目的物から除去することが必要があり、その操作はクロマトグラフィーなどの煩雑な手段を伴う。これらのことが問題点として挙げられており、その解決が強く望まれている。本発明に関わるNobel−DIBを酸化反応に用いた場合、従来の3価の超原子価ヨウ素化合物では酸化できなかった化合物でも酸化することができる。また、副生する1価の2−ヨード−5−ニトロ安息香酸は洗浄と抽出操作により容易に回収することができ、後処理が容易である。参考例と比較例からも明らかなように、本発明に係るNobel−DIBを用いる酸化反応は、従来の3価の超原子価ヨウ素化合物を用いる方法に比べてより反応性が高く扱い易い方法である。  As described above, the novel hypervalent iodine compound (Nobel-DIB) having a 5-nitro-1,2-benziodoxol-3- (1H) -one moiety according to the present invention can be used for an oxidation reaction. it can. Hypervalent iodine compounds having a trivalent hypervalent state are widely used in organic synthetic chemistry as mild oxidants, but are not generally applicable to the oxidation of secondary alcohols because of their low reactivity. Or, the oxidation yield may be low. Further, in the oxidation reaction using these trivalent hypervalent iodine compounds, it is necessary to remove monovalent iodobenzene produced as a by-product from the target product, and this operation involves complicated means such as chromatography. These are listed as problems, and the solution is strongly desired. When Nobel-DIB according to the present invention is used in an oxidation reaction, even a compound that could not be oxidized by a conventional trivalent hypervalent iodine compound can be oxidized. Moreover, the monovalent | monohydric 2-iodo-5-nitrobenzoic acid byproduced can be easily collect | recovered by washing | cleaning and extraction operation, and an after-treatment is easy. As is clear from the reference examples and comparative examples, the oxidation reaction using Nobel-DIB according to the present invention is more reactive and easy to handle than the conventional method using a trivalent hypervalent iodine compound. is there.

Claims (1)

下記構造式(1)
Figure 2014148494
(式中、R、R、Rはそれぞれ独立した水素原子、メチル基、エチル基、プロピル基、iso−のプロピル基、ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、フェニル基、またはふっ素原子)で示される新規超原子価ヨウ素化合物。
The following structural formula (1)
Figure 2014148494
(In the formula, R 1 , R 2 and R 3 are each an independent hydrogen atom, methyl group, ethyl group, propyl group, iso-propyl group, butyl group, tert-butyl group, pentyl group, hexyl group, phenyl group. , Or a fluorine atom).
JP2013028323A 2013-01-30 2013-01-30 Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site Pending JP2014148494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028323A JP2014148494A (en) 2013-01-30 2013-01-30 Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028323A JP2014148494A (en) 2013-01-30 2013-01-30 Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site

Publications (1)

Publication Number Publication Date
JP2014148494A true JP2014148494A (en) 2014-08-21

Family

ID=51571797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028323A Pending JP2014148494A (en) 2013-01-30 2013-01-30 Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site

Country Status (1)

Country Link
JP (1) JP2014148494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241769A1 (en) * 2014-02-21 2015-08-27 Sumitomo Chemical Company, Limited Photoresist composition, compound and process of producing photoresist pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241769A1 (en) * 2014-02-21 2015-08-27 Sumitomo Chemical Company, Limited Photoresist composition, compound and process of producing photoresist pattern
US9448475B2 (en) * 2014-02-21 2016-09-20 Sumitomo Chemical Company, Limited Photoresist composition, compound and process of producing photoresist pattern

Similar Documents

Publication Publication Date Title
JP2017538690A5 (en)
JP5371033B2 (en) Trifunctional nitrile oxide and method for producing the same
JP2015063501A (en) NOVEL HYPERVALENT IODINE COMPOUND HAVING 5-X(X=F,Cl,Br)-1,2-BENZIODOXOL-3-(1H)-ON PART
JP6029090B2 (en) Fluoride isolation method
JP2017025014A (en) Method for producing benzoxazole compound
JP2014148494A (en) Novel hypervalent iodine compound possessing a 5-nitro-1,2-benziodoxol-3(1h)-one site
JP5816037B2 (en) Method for producing 3,3,3-trifluoropropanols
JP2009508851A (en) Process for producing β-ketoester compound
JP2006298855A (en) Method for producing 3,3,3-trifluoropropionic acid
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JP2008255050A (en) Method for producing cross-coupled compound
JP2010235589A (en) 4-polyfluoroacylphenylalkyl ketone, and method of producing the same
JP4386881B2 (en) Method for producing 3,3,3-trifluoropropionic acid
JP2013129645A (en) Novel hypervalent iodine compound having quaternary alkylammonium sulfonate part
JP5170987B2 (en) Novel fluorine-containing unsaturated silyl ether compound and method for producing fluorine-containing unsaturated alcohol derivative using the compound as an intermediate
JP5818278B2 (en) Improved synthesis of peretinoin
JP4356296B2 (en) Method for producing 2-naphthol derivative
JP2016169165A (en) Method for producing 2,6-difluorobenzoylformate compound
JP5000031B2 (en) Method for producing aromatic-o-dialdehyde compound
JP6897469B2 (en) Method for producing diol
JPS61212538A (en) Production of alpha-arylalkanoic acid ester
JP4060718B2 (en) New production method of enol ether
JP3056360B2 (en) Production method of γ-coronal
JP2001513751A (en) Method for producing 2-fluoroisobutyrate
JP2010083798A (en) METHOD FOR PRODUCING omega-HYDROXY LONG-CHAIN FATTY ACID DERIVATIVE