JP2014148423A - Method for producing single crystal graphene, and touch panel using single crystal graphene - Google Patents

Method for producing single crystal graphene, and touch panel using single crystal graphene Download PDF

Info

Publication number
JP2014148423A
JP2014148423A JP2013016268A JP2013016268A JP2014148423A JP 2014148423 A JP2014148423 A JP 2014148423A JP 2013016268 A JP2013016268 A JP 2013016268A JP 2013016268 A JP2013016268 A JP 2013016268A JP 2014148423 A JP2014148423 A JP 2014148423A
Authority
JP
Japan
Prior art keywords
graphene
substrate
producing
region
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013016268A
Other languages
Japanese (ja)
Inventor
Kalita Golap
ゴラップ カリタ
Masayuki Tanemura
眞幸 種村
Sharma Subash
スバス シャルマ
Masayoshi Umeno
正義 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2013016268A priority Critical patent/JP2014148423A/en
Publication of JP2014148423A publication Critical patent/JP2014148423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】樟脳等の炭素源を用いたCVDにより、6角形状のグラフェンあるいは連続膜からなるグラフェンの製造方法を提供する。
【解決手段】炭素源の熱分解によりグラフェンを製造する方法であって、第1の領域に炭素源である化合物を配置させ、第2の領域に基板を配置させ、前記第1の領域を加熱して前記化合物を蒸気化し、加熱した前記第2の領域に少なくともアルゴンと水素とを含むキャリアガスにより前記樟脳の蒸気を導き、当該加熱された第2の領域において、前記炭素化合物を基板上で熱分解することで、前記基板の表面上にドメイン形状のグラフェンを複数個形成する、あるいは基板面全体に連続してグラフェンを形成する、単結晶グラフェンの製造方法。
【選択図】 図1
A method for producing hexagonal graphene or graphene comprising a continuous film is provided by CVD using a carbon source such as camphor.
A method for producing graphene by pyrolysis of a carbon source, wherein a compound as a carbon source is disposed in a first region, a substrate is disposed in a second region, and the first region is heated. Then, the compound is vaporized, and the camphor vapor is guided to the heated second region by a carrier gas containing at least argon and hydrogen. In the heated second region, the carbon compound is deposited on the substrate. A method for producing single crystal graphene, in which a plurality of domain-shaped graphenes are formed on the surface of the substrate by pyrolysis, or the graphene is continuously formed on the entire substrate surface.
[Selection] Figure 1

Description

本発明は、透明電極あるいは電子デバイス等に用いられる単結晶グラフェンの製造方法に関する。 The present invention relates to a method for producing single crystal graphene used for a transparent electrode or an electronic device.

グラフェンは、炭素原子が六角形に繋がった平面構造であって化学的に安定しており、透明で、かつバリスティック伝導特性、大電流密度耐性などの優れた電気特性を持つことから、透明電極あるいは高移動度のFET(電界効果トランジスタ)などの電子デバイスに利用できる材料として注目されている。グラフェン膜としては単層、二層、あるいは数〜数十層のものが知られている。 Graphene has a planar structure with carbon atoms connected to a hexagon, is chemically stable, transparent, and has excellent electrical properties such as ballistic conductivity and resistance to large current density. Alternatively, it has attracted attention as a material that can be used for electronic devices such as high mobility FETs (field effect transistors). As the graphene film, a single layer, a double layer, or several to several tens of layers are known.

グラフェン膜の製造方法としては、テープを用い、グラファイトから基板にグラフェンを転写する方法が知られている。しかしながら、この方法では大面積のグラフェン膜の作製が困難であり、大面積化に向けて、炭化ケイ素(SiC)から選択的にSiを除く方法、あるいはCVD(化学蒸気相合成)法などが検討されている。 As a method for producing a graphene film, a method of transferring graphene from graphite to a substrate using a tape is known. However, it is difficult to produce a large-area graphene film by this method, and methods for selectively removing Si from silicon carbide (SiC) or CVD (Chemical Vapor Phase Synthesis) methods are being investigated for the purpose of increasing the area. Has been.

CVDを利用してグラフェン膜を形成する方法として、キャリアガスとしてアルゴンガスを流しながら、炭素源、特に樟脳を熱分解させ、加熱したNi等の基板上に、20〜35層のグラフェン積層体を形成することが開示されている(特許文献1)。樟脳の供給量が少なく、基板温度が高いとグラフェン積層体を合成できるとしている。 As a method of forming a graphene film using CVD, a carbon source, particularly camphor, is pyrolyzed while flowing argon gas as a carrier gas, and 20 to 35 layers of graphene laminates are formed on a heated substrate such as Ni. It is disclosed to form (Patent Document 1). The graphene stack can be synthesized when the supply amount of camphor is small and the substrate temperature is high.

金属基板上へのCVDによる単層あるいは数層のグラフェン形成の大面積化の研究もなされ、メタンガスの流量を多くした大気圧中で、Cu箔上に6角形状ドメイン群状の層数の少ないグラフェン膜が形成されること(非特許文献1)、一方、同じく金属箔上に、低メタン分圧で、大きなサイズの6角形状ドメイン群の単層グラフェン膜が形成されることも知られている。このグラフェンドメイン群をmm幅の大きさに成長させることにより11000cm−1−1という大きなキャリア移動度が得られることが確認されている。(非特許文献2)。ドメイン状とは、基板表面に島状(アイランド状)の単結晶グラフェン膜(ドメイン)が複数個独立して存在している状態を示す。 Research has also been conducted to increase the area of single-layer or several-layer graphene formation on a metal substrate, and the number of hexagonal domain groups on the Cu foil is small at atmospheric pressure with an increased methane gas flow rate. It is also known that a graphene film is formed (Non-Patent Document 1), and that a single-layer graphene film of a large hexagonal domain group is also formed on a metal foil at a low methane partial pressure. Yes. It has been confirmed that a large carrier mobility of 11000 cm 2 V −1 s −1 can be obtained by growing this graphene domain group to a size of mm width. (Non-patent document 2). The domain shape indicates a state where a plurality of island-like (island-like) single-crystal graphene films (domains) exist independently on the substrate surface.

しかし、上記従来の方法では、6角形等の規則正しい形状の多数層からなるグラフェンが安定的に得られていなかった。このため、金属基板からプラスチック等の他の基板へ転写する場合には、何度も転写作業を繰り返さなければならず、その手間がかかること、また転写による品質の劣化は避けられなかった。特にタッチパネル等への応用には、可視光の透過率が多少低下しても導電性の向上がより重要であり、多数積層された所定形状のグラフェンへのニーズが高い。 However, in the conventional method, graphene composed of a large number of regular layers such as hexagons has not been stably obtained. For this reason, when transferring from a metal substrate to another substrate such as plastic, the transfer operation has to be repeated many times, which is troublesome and deterioration of quality due to transfer is inevitable. In particular, for application to a touch panel or the like, improvement in conductivity is more important even if the visible light transmittance is somewhat reduced, and there is a high need for graphene having a predetermined shape in which a large number of layers are laminated.

特許第4804272号Japanese Patent No. 4804272

A. W. Robertson, J. H. Warner, Nano Lett. 2011, 11, 1182-1189A. W. Robertson, J. H. Warner, Nano Lett. 2011, 11, 1182-1189 Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel,C. Kittrell, and J. M. Tour, ACS Nano 2012,6, 9110.Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, ACS Nano 2012, 6, 9110.

本発明の課題は、上記問題点に鑑みて、樟脳等の炭素源を用いたCVDにより、ドメイン形状あるいは連続膜からなるグラフェンの製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the graphene which consists of a domain shape or a continuous film by CVD using carbon sources, such as camphor, in view of the said problem.

本発明者らは、CVDの条件を工夫することにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の単結晶グラフェンの製造方法等が提供される。 The present inventors have found that the above-mentioned problems can be solved by devising the CVD conditions. That is, according to the present invention, the following method for producing single crystal graphene and the like are provided.

[1]炭素源の熱分解によりグラフェンを製造する方法であって、第1の領域に炭素
源である化合物を配置させ、第2の領域に基板を配置させ、前記第1の領域を加熱して前記化合物を蒸気化し、加熱した前記第2の領域に少なくともアルゴンと水素とを含むキャリアガスにより前記樟脳の蒸気を導き、当該加熱された第2の領域において、前記化合物を基板上で熱分解することで、前記基板の表面上に所定のドメイン形状のグラフェンを複数個形成する、あるいは基板面全体に連続してグラフェンを形成する、単結晶グラフェンの製造方法。
[1] A method for producing graphene by pyrolysis of a carbon source, wherein a compound that is a carbon source is disposed in a first region, a substrate is disposed in a second region, and the first region is heated. The compound is vaporized and the camphor vapor is guided to the heated second region by a carrier gas containing at least argon and hydrogen, and the compound is pyrolyzed on the substrate in the heated second region. Thus, a method for producing single crystal graphene, in which a plurality of graphenes having a predetermined domain shape are formed on the surface of the substrate, or the graphene is continuously formed on the entire substrate surface.

[2]前記基板が、前記キャリアガスの流れる方向に対して、10°〜80°傾斜している、前記[1]に記載の単結晶グラフェンの製造方法。 [2] The method for producing single crystal graphene according to [1], wherein the substrate is inclined by 10 ° to 80 ° with respect to a direction in which the carrier gas flows.

[3]前記キャリアガスの導入側とは反対側の基板面にグラフェンを形成する前記[1]または[2]に記載の単結晶グラフェンの製造方法。 [3] The method for producing single-crystal graphene according to [1] or [2], wherein graphene is formed on a substrate surface opposite to the carrier gas introduction side.

[4]前記炭素源が、炭素の6員環、炭化水素、および酸素を含む化合物である、前記[1]〜[3]のいずれかに記載のグラフェンの製造方法。 [4] The method for producing graphene according to any one of [1] to [3], wherein the carbon source is a compound containing a carbon six-membered ring, a hydrocarbon, and oxygen.

[5]前記炭素源が樟脳を含む炭素源である、前記[1]〜[4]のいずれかに記載のグラフェンの製造方法。 [5] The method for producing graphene according to any one of [1] to [4], wherein the carbon source is a carbon source including camphor.

[6]前記アルゴンガスに対する水素ガスの流量比が0.020〜0.20である、前記[1]〜[5]のいずれかに記載のグラフェンの製造方法。 [6] The method for producing graphene according to any one of [1] to [5], wherein a flow rate ratio of hydrogen gas to argon gas is 0.020 to 0.20.

[7]前記基板が少なくともその表面に、Cu、Al、Fe、Co、Ni、Au、Ag のいずれかまたはそれらの合金、またはそれらの化合物、炭化ケイ素、あるいは白金その他の貴金属が形成されている、前記[1]〜[6]のいずれかに記載のグラフェンの製造方法。 [7] At least on the surface of the substrate, any of Cu, Al, Fe, Co, Ni, Au, Ag, or an alloy thereof, a compound thereof, silicon carbide, platinum, or other noble metal is formed. The method for producing graphene according to any one of [1] to [6].

[8]前記グラフェンが、6角形、円形、またはリボン形状のグラフェン構造である、前記[1]〜[7]のいずれかに記載のグラフェンの製造方法。 [8] The method for producing graphene according to any one of [1] to [7], wherein the graphene has a hexagonal, circular, or ribbon-shaped graphene structure.

[9]前記グラフェンが100層以下の積層体である、前記[1]〜[8]のいずれかに記載のグラフェンの製造方法。 [9] The method for producing graphene according to any one of [1] to [8], wherein the graphene is a laminate of 100 layers or less.

[10]前記[9]によって得られたグラフェンの積層体が転写されたタッチパネル。 [10] A touch panel onto which the graphene laminate obtained in [9] is transferred.

従来の一般的なCVDでの基板の配置(図1-a)と本発明の基板の配置(図1-b)を示す模式図である。It is a schematic diagram which shows arrangement | positioning (FIG. 1-a) of the board | substrate in conventional general CVD (FIG. 1-a), and arrangement | positioning (FIG. 1-b) of the board | substrate of this invention. 炭素源として樟脳の固体粉末(図2-a)、その分子構造(図2-b)、およびそのラマンスペクトラム(図2-c)を示す図である。It is a figure which shows the solid powder of a camphor as a carbon source (FIG. 2-a), its molecular structure (FIG. 2-b), and its Raman spectrum (FIG. 2-c). 基板表面に形成されるグラフェン膜と基板裏面に形成されるグラフェンの形態の違いをそれぞれ模式的に示した図である。It is the figure which showed typically the difference in the form of the graphene film formed in a substrate surface, and the graphene formed in a substrate back surface, respectively. 6角形状グラフェンの光学顕微鏡観察による写真である。It is the photograph by the optical microscope observation of hexagonal graphene. 6角形状グラフェンの走査電子顕微鏡観察による写真である。It is the photograph by the scanning electron microscope observation of hexagonal graphene. 円形状グラフェンの光学顕微鏡観察による写真(図6-a)、および走査電子顕微鏡観察による写真(図6-b)を示す図であるIt is a figure which shows the photograph (FIG. 6-a) by optical microscope observation of circular graphene (FIG. 6-a), and the photograph (FIG. 6-b) by scanning electron microscope observation. 個々のドメインが面内方向に成長して連続的なグラフェン膜になった状態を光学顕微鏡で観察した図である。It is the figure which observed the state in which each domain grew in the in-plane direction and became a continuous graphene film with an optical microscope. Cu箔上のグラフェンを化学エッチングによりプラスチックその他の基板に転写することを模式的に示す図である。It is a figure which shows typically transferring graphene on Cu foil to a plastics other board | substrate by chemical etching. 厚みの異なるグラフェン膜の透光性の光波長依存性を測定した結果を示す図である。It is a figure which shows the result of having measured the light wavelength dependence of the translucency of the graphene film from which thickness differs. 本発明によって得られたグラフェン膜の光波長550nmに対する透光度とシート抵抗との関係を示す図である。It is a figure which shows the relationship between the transmissivity with respect to the light wavelength 550nm of the graphene film obtained by this invention, and sheet resistance.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1-aに示すように、通常CVDは円筒状容器内でキャリアガスを流す方向の上流側に昇華あるいは蒸発させる原料を配置し、下流側に基板を配置する。そして、基板はキャリアガスの流れる方向に平行に膜形成を行う面を向ける。すなわち、本発明の製造方法においては、CVD装置の第1の領域に炭素源の化合物、第2の領域に基板を配置させる。前記第1の領域を加熱して前記炭素源の化合物を蒸気化し、加熱した前記第2の領域に少なくともアルゴンと水素とを含むキャリアガスにより前記蒸気を導き、当該加熱された第2の領域において、前記化合物を基板上で熱分解することで、前記基板の表面上にドメイン形状のグラフェンあるいは基板全体に連続したグラフェンを形成する。ただし、本発明においては、図1-bに示すように、基板が前記キャリアガスの流れる方向に対して、10°〜80°傾斜していることが好ましく、キャリアガスの導入側(基板表面側)とは反対側の基板面、すなわち、基板表面側より炭素化合物の蒸気の少ない裏面にグラフェンを形成することがより好ましい。一方、炭素原子の量を減らすことにより、基板表面側にドメイン形状のグラフェンを成長させることもできる。すなわち、基板面近傍のガス圧がグラフェン形状にクリティカルな影響を与える。 基板表面側では基板裏面側に比してガス圧が高く、非定型形状のグラフェンが形成されやすい。一方、基板裏面側ではガス圧が相対的に低く、特有の核形成と核成長が生じて6角形状グラフェン等の定型のグラフェンが形成される。さらに、前記炭素源が、炭素の6員環、炭化水素、および酸素を含む化合物であることが好ましく、樟脳であることがより好ましい。キャリアガスとして、アルゴンガスに対する水素ガスの流量比が0.020〜0.20であり、CVD装置内は減圧でも構わないが、大気圧であることがより好ましい。基板としては、少なくともその表面に、Cu、Fe、Co、Niのいずれかまたはそれらの合金、またはそれらの化合物、炭化ケイ素、あるいは白金その他の貴金属が形成されていることが好ましい。なお、基板は600℃〜1100℃に加熱することが好ましく、800℃〜1000℃がより好ましい。 As shown in FIG. 1A, in general CVD, a raw material to be sublimated or evaporated is arranged on the upstream side in the flow direction of the carrier gas in a cylindrical container, and a substrate is arranged on the downstream side. The substrate faces the surface on which the film is formed in parallel with the direction in which the carrier gas flows. That is, in the manufacturing method of the present invention, the compound of the carbon source is disposed in the first region of the CVD apparatus, and the substrate is disposed in the second region. The first region is heated to vaporize the compound of the carbon source, the vapor is guided to the heated second region by a carrier gas containing at least argon and hydrogen, and in the heated second region By thermally decomposing the compound on the substrate, domain-shaped graphene or continuous graphene is formed on the entire surface of the substrate. However, in the present invention, as shown in FIG. 1B, it is preferable that the substrate is inclined by 10 ° to 80 ° with respect to the flow direction of the carrier gas. It is more preferable to form graphene on the substrate surface opposite to (), that is, on the back surface with less vapor of the carbon compound than on the substrate surface side. On the other hand, domain-shaped graphene can be grown on the substrate surface side by reducing the amount of carbon atoms. That is, the gas pressure near the substrate surface has a critical effect on the graphene shape. The gas pressure on the substrate front side is higher than that on the back side of the substrate, and atypical graphene is easily formed. On the other hand, the gas pressure is relatively low on the back side of the substrate, and specific nucleation and growth occur to form regular graphene such as hexagonal graphene. Furthermore, the carbon source is preferably a compound containing a carbon 6-membered ring, a hydrocarbon, and oxygen, and more preferably camphor. As a carrier gas, the flow rate ratio of hydrogen gas to argon gas is 0.020 to 0.20, and the inside of the CVD apparatus may be depressurized, but is preferably atmospheric pressure. As the substrate, it is preferable that at least the surface thereof is formed of any one of Cu, Fe, Co, Ni or an alloy thereof, a compound thereof, silicon carbide, platinum, or other noble metal. In addition, it is preferable to heat a board | substrate at 600 to 1100 degreeC, and 800 to 1000 degreeC is more preferable.

基板に形成されるグラフェンは、6角形、円形、リボン形状のドメイン構造であることが好ましく、あるいは基板面全体に連続した膜であってもよい。また、ドメイン状でも連続した膜であっても、100層以下の積層体であることが好ましい。さらには、この積層体をプラスチック等の他の基板に転写してタッチパネルを形成することが好ましい。 The graphene formed on the substrate preferably has a hexagonal, circular, or ribbon-shaped domain structure, or may be a film continuous over the entire substrate surface. Moreover, it is preferable that it is a laminated body of 100 layers or less, whether it is a domain shape or a continuous film. Furthermore, it is preferable to transfer the laminate to another substrate such as plastic to form a touch panel.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

炭素源として、図2-aのように、植物由来の樟脳の固体粉末を用いた。樟脳の分子構造はグラフェンの成長に影響し、図2-bに示すように、炭素の6員環、炭化水素、および酸素を含む化合物であり、200℃での加熱により容易に昇華する。図2-cのように、固体の樟脳のラマンスペクトラムは、炭素の員環に対応して、652cm−1に最も大きなピークが得られ、C=O拡張振動結合に対応して1741cm−1にも次に大きなピーク、さらにはC-Hに対応して857、1093、および1447cm−1に小さなピークが存在する。 As a carbon source, as shown in FIG. 2-a, plant-derived camphor solid powder was used. The molecular structure of camphor affects the growth of graphene, and as shown in FIG. 2B, it is a compound containing a 6-membered ring of carbon, a hydrocarbon, and oxygen, and is easily sublimated by heating at 200 ° C. As in FIG. 2-c, the Raman spectrum of the solid camphor, corresponding to membered ring of carbon, the largest peak is obtained 652cm -1, the 1741Cm -1 corresponds to C = O extension vibration bond There are also the next largest peaks and even smaller peaks at 857, 1093 and 1447 cm −1 corresponding to C—H.

キャリアガス中の、アルゴンガスに対する水素ガスの流量を変え、さらに、キャリアガスとして他に、NとNHを流した。基板としてのCu箔はキャリアガスが流れる方向に対して45°傾けて設置した。基板は1000℃に加熱した。 The flow rate of hydrogen gas relative to argon gas in the carrier gas was changed, and N 2 and NH 3 were also flowed as the carrier gas. The Cu foil as the substrate was installed at an angle of 45 ° with respect to the direction in which the carrier gas flows. The substrate was heated to 1000 ° C.

なお、合成されたグラフェン膜の評価はラマン分光、光学顕微鏡、および走査電子顕微鏡(SEM)にて行った。ラマン分光は、NRS3300レーザーラマン分光計(波長532.08nmのレーザー励起)、光学顕微鏡はデジタルマイクロスコープVHX-500、走査電子顕微鏡はHitachi S-4300を使用した。なお、プラスチック上のグラフェン膜の透光度評価はJAS-V570分光計にてUV-Vis-NIRを用いて行った。 Note that the synthesized graphene film was evaluated by Raman spectroscopy, an optical microscope, and a scanning electron microscope (SEM). For Raman spectroscopy, an NRS3300 laser Raman spectrometer (laser excitation with a wavelength of 532.08 nm) was used, a digital microscope VHX-500 was used as the optical microscope, and a Hitachi S-4300 was used as the scanning electron microscope. Note that the transmittance of the graphene film on the plastic was evaluated using UV-Vis-NIR with a JAS-V570 spectrometer.

キャリアガスが、H:1sccmおよびAr:98sccmの条件では、デンドライト(樹枝状)の核が発生したが、H:2sccmおよびAr:98sccmの条件では、6角形のグラフェンが形成された。さらに、Hの流量と基板表面への樟脳の量により、形成されるグラフェンの形態が異なり、ガス供給側の基板表面ではグラフェンの連続膜が形成されるが、基板裏面では6角形状のグラフェンドメイン群が形成される(図3-a、図3-b参照)。グラフェンドメインを光学顕微鏡で観察した結果を図4に示す。基板面のCu箔表面より明るく見えているのはグラフェンドメインである(図4-a)。グラフェンドメインは、多結晶Cu箔の結晶粒界にまたがって形成され、このドメインを拡大してみると6角形となっており、ドメインの大きさは8〜11μmである(図4-b)。さらに、高分解能で観察すると多結晶Cu箔の結晶粒界をまたいでドメインが成長している(図4-c)。本発明の樟脳を炭素源とするグラフェンのドメインは、既報告のメタンガスを炭素源とするグラフェンと同じようにその形状が制御できる。 Dendritic (dendritic) nuclei were generated when the carrier gas was H 2 : 1 sccm and Ar: 98 sccm, but hexagonal graphene was formed under the conditions of H 2 : 2 sccm and Ar: 98 sccm. Furthermore, the amount of camphor to the flow rate and substrate surface H 2, different forms of graphene formed, in the substrate surface of the gas supply side continuous film of graphene is formed, in the substrate back surface de hexagonal shape A graphene domain group is formed (see FIGS. 3-a and 3-b). The result of observing the graphene domain with an optical microscope is shown in FIG. The graphene domains appear brighter than the Cu foil surface on the substrate surface (FIG. 4-a). The graphene domain is formed across the crystal grain boundary of the polycrystalline Cu foil. When this domain is enlarged, it is hexagonal, and the size of the domain is 8 to 11 μm (FIG. 4B). Furthermore, when observed with high resolution, domains grow across the grain boundaries of the polycrystalline Cu foil (FIG. 4-c). The shape of the graphene domain using camphor as a carbon source in the present invention can be controlled in the same manner as the graphene using methane gas as a carbon source.

ドメイン状グラフェンの結晶性およびその均一性を評価するため、ラマン分光を行った。6角形のドメイン内のラマン分光マッピングからは、D〜Gのピーク、さらにはG〜2Dのピークともに、ドメイン内分布は見られず、欠陥がきわめて少なく、均一な膜であることが判明した。   In order to evaluate the crystallinity and uniformity of domain graphene, Raman spectroscopy was performed. From the Raman spectroscopic mapping in the hexagonal domain, it was found that neither the D to G peak nor the G to 2D peak was observed in the domain, and the film was uniform with very few defects.

6角形グラフェンドメインのエッジ形状をより明確に確認するため、走査電子顕微鏡観察を行った。6角形であることが明確に確認され、また近接するドメイン同士が同じ方向に整列して成長していることが分かった(図5-a)。また、6角形グラフェンドメインがCu箔の結晶粒界にまたがって成長していることが分かる(図5-b)。このことより、ドメインの成長は基板の結晶粒界に影響されないことが分かる。   In order to more clearly confirm the edge shape of the hexagonal graphene domain, observation with a scanning electron microscope was performed. It was clearly confirmed to be hexagonal, and it was found that adjacent domains grew in alignment in the same direction (FIG. 5-a). It can also be seen that hexagonal graphene domains grow across the crystal grain boundaries of the Cu foil (FIG. 5-b). This shows that the domain growth is not affected by the crystal grain boundaries of the substrate.

上記のように、6角形のドメインのグラフェン以外に、円形のドメインが形成された。
円形のドメインの光学顕微鏡写真と走査電子顕微鏡写真をそれぞれ示す(図6-a、図6-b)。これらドメイン形状の差異はキャリアガスの組成に大きく影響される。Cu箔上にドメイン状のグラフェンが形成され、個々のドメインが面内方向に成長して連続的なグラフェン膜になった状態を光学顕微鏡で観察した(図7)。グラフェン膜が欠陥なく、Cu表面全体を覆っており、そのなかに6角形のドメイン状グラフェンが確認できる。このような連続膜は基板表面が多量の樟脳分子に晒され、グラフェン核形成密度が大きくなることに拠ると考える。
As described above, in addition to hexagonal domain graphene, circular domains were formed.
An optical micrograph and a scanning electron micrograph of the circular domain are shown (FIGS. 6a and 6b), respectively. These domain shape differences are greatly influenced by the composition of the carrier gas. Domain-shaped graphene was formed on the Cu foil, and the state in which individual domains grew in the in-plane direction to form a continuous graphene film was observed with an optical microscope (FIG. 7). The graphene film has no defects and covers the entire Cu surface, and hexagonal domain graphene can be confirmed therein. It is considered that such a continuous film is based on the fact that the substrate surface is exposed to a large amount of camphor molecules and the graphene nucleation density is increased.

Cu箔上に合成されたグラフェンは種々の電子デバイスに応用できる。ガス供給側の基板表面に形成されるグラフェン連続膜は、透明導電膜あるいは種々の電子デバイスの光学窓に好適である。一方、6角形グラフェンドメインは、高速トランジスタ、ダイオード、あるいはセンサーに好適である。   Graphene synthesized on Cu foil can be applied to various electronic devices. The graphene continuous film formed on the substrate surface on the gas supply side is suitable for an optical window of a transparent conductive film or various electronic devices. On the other hand, hexagonal graphene domains are suitable for high-speed transistors, diodes, or sensors.

Cu箔上のグラフェンを化学エッチングによりプラスチックその他の基板に転写するプロセスを図8に模式的に示す。グラフェンの層数はキャリアガスの組成および流量によって制御できる。この形成される層数の制御は、電子デバイスに必要な、透光性を有しつつ大きな導電性を得るために重要であり、本発明によりこの両立性を制御できるようになった。厚みの異なるグラフェン膜の透光性の光波長依存性を測定した結果を図9に示す。波長550nmの光に対する透光度が89%と73%であった(グラフェン膜の厚みはそれぞれ0.0045μm、0.011μm)。また、光波長550nmに対する透光度とシート抵抗との関係を図10に示す。透光度が大きいほどシート抵抗が大きくなることを示している。   FIG. 8 schematically shows a process of transferring graphene on a Cu foil to a plastic or other substrate by chemical etching. The number of graphene layers can be controlled by the composition and flow rate of the carrier gas. The control of the number of layers to be formed is important for obtaining large conductivity while having translucency necessary for an electronic device, and this compatibility can be controlled by the present invention. FIG. 9 shows the results of measuring the light wavelength dependency of the translucency of graphene films having different thicknesses. The transmissivity for light having a wavelength of 550 nm was 89% and 73% (the thicknesses of the graphene films were 0.0045 μm and 0.011 μm, respectively). Further, FIG. 10 shows the relationship between the light transmittance and the sheet resistance with respect to the light wavelength of 550 nm. It shows that the sheet resistance increases as the translucency increases.

本発明の製造方法によって得られたグラフェンは透明電極あるいは電子デバイス等に利用することができる。

The graphene obtained by the production method of the present invention can be used for a transparent electrode or an electronic device.

Claims (10)

炭素源の熱分解によりグラフェンを製造する方法であって、第1の領域に炭素源である化合物を配置させ、第2の領域に基板を配置させ、前記第1の領域を加熱して前記化合物を蒸気化し、加熱した前記第2の領域に少なくともアルゴンと水素とを含むキャリアガスにより前記樟脳を含む炭素源の蒸気を導き、当該加熱された第2の領域において、前記炭素化合物を基板上で熱分解することで、前記基板の表面上に正多角形様あるいは円形のドメイン群からなるグラフェン、あるいは基板面全体に連続してグラフェンを形成する、単結晶グラフェンの製造方法。 A method of producing graphene by pyrolysis of a carbon source, wherein a compound that is a carbon source is disposed in a first region, a substrate is disposed in a second region, and the first region is heated to form the compound The carbon source vapor including camphor is guided to the heated second region by a carrier gas containing at least argon and hydrogen, and the carbon compound is introduced onto the substrate in the heated second region. A method for producing single-crystal graphene, wherein graphene is formed on a surface of the substrate by forming a regular polygon-like or circular domain group, or graphene is continuously formed on the entire substrate surface by pyrolysis. 前記基板が、前記キャリアガスの流れる方向に対して、10°〜80°傾斜している、前記請求項1に記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the substrate is inclined by 10 ° to 80 ° with respect to a direction in which the carrier gas flows. 前記キャリアガスの導入側とは反対側の基板面にグラフェンを形成する請求項1または2に記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein graphene is formed on a substrate surface opposite to the carrier gas introduction side. 前記炭素源が、炭素の6員環、炭化水素、および酸素を含む化合物である、請求項1〜3のいずれかに記載のグラフェンの製造方法。 The method for producing graphene according to any one of claims 1 to 3, wherein the carbon source is a compound containing a carbon six-membered ring, a hydrocarbon, and oxygen. 前記炭素源が樟脳を含む炭素源である、請求項1〜4のいずれかに記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the carbon source is a carbon source containing camphor. 前記アルゴンガスに対する水素ガスの流量比が0.020〜0.20である、請求項1〜5のいずれかに記載のグラフェンの製造方法。 The method for producing graphene according to any one of claims 1 to 5, wherein a flow ratio of hydrogen gas to argon gas is 0.020 to 0.20. 前記基板が少なくともその表面に、Cu、Fe、Coのいずれかまたはそれらの合金、またはそれらの化合物、炭化ケイ素、あるいは白金その他の貴金属が形成されている、請求項1〜6のいずれかに記載のグラフェンの製造方法。 7. The substrate according to any one of claims 1 to 6, wherein at least a surface of the substrate is formed of any one of Cu, Fe, Co, or an alloy thereof, a compound thereof, silicon carbide, platinum, or other noble metal. Graphene production method. 前記グラフェンが、6角形、円形、またはリボン形状のドメイン構造である、請求項1〜7のいずれかに記載のグラフェンの製造方法。 The graphene production method according to claim 1, wherein the graphene has a hexagonal, circular, or ribbon-shaped domain structure. 前記グラフェンが100層以下の積層体である、請求項1〜8のいずれかに記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the graphene is a laminate of 100 layers or less. 請求項9のグラフェンの積層体が転写されたタッチパネル。

A touch panel to which the graphene laminate of claim 9 is transferred.

JP2013016268A 2013-01-31 2013-01-31 Method for producing single crystal graphene, and touch panel using single crystal graphene Pending JP2014148423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016268A JP2014148423A (en) 2013-01-31 2013-01-31 Method for producing single crystal graphene, and touch panel using single crystal graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016268A JP2014148423A (en) 2013-01-31 2013-01-31 Method for producing single crystal graphene, and touch panel using single crystal graphene

Publications (1)

Publication Number Publication Date
JP2014148423A true JP2014148423A (en) 2014-08-21

Family

ID=51571739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016268A Pending JP2014148423A (en) 2013-01-31 2013-01-31 Method for producing single crystal graphene, and touch panel using single crystal graphene

Country Status (1)

Country Link
JP (1) JP2014148423A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695012A (en) * 2015-03-24 2015-06-10 山东大学 Device and method for preparing large-size high-quality graphene single crystal
CN106119806A (en) * 2016-06-27 2016-11-16 重庆墨希科技有限公司 A kind of continuous-flow type continuous Large-scale graphene film preparation device
CN108411277A (en) * 2018-04-26 2018-08-17 福州大学 A kind of method and apparatus of metal surface growth in situ polycrystalline graphite alkene anti-corrosion film
JP2020153772A (en) * 2019-03-19 2020-09-24 株式会社東芝 Base material, electronic element, and molecule detection device
CN112435915A (en) * 2019-08-26 2021-03-02 北京石墨烯研究院 Preparation method and device of graphene wafer
GB2590176A (en) * 2019-10-29 2021-06-23 Bae Systems Plc Method and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695012A (en) * 2015-03-24 2015-06-10 山东大学 Device and method for preparing large-size high-quality graphene single crystal
CN104695012B (en) * 2015-03-24 2017-03-22 山东大学 Device and method for preparing large-size high-quality graphene single crystal
CN106119806A (en) * 2016-06-27 2016-11-16 重庆墨希科技有限公司 A kind of continuous-flow type continuous Large-scale graphene film preparation device
CN106119806B (en) * 2016-06-27 2018-12-28 重庆墨希科技有限公司 A kind of continuous Large-scale graphene film preparation device of continuous-flow type
CN108411277A (en) * 2018-04-26 2018-08-17 福州大学 A kind of method and apparatus of metal surface growth in situ polycrystalline graphite alkene anti-corrosion film
JP2020153772A (en) * 2019-03-19 2020-09-24 株式会社東芝 Base material, electronic element, and molecule detection device
JP7102364B2 (en) 2019-03-19 2022-07-19 株式会社東芝 Electronic elements and molecular detectors
CN112435915A (en) * 2019-08-26 2021-03-02 北京石墨烯研究院 Preparation method and device of graphene wafer
CN112435915B (en) * 2019-08-26 2024-07-02 北京石墨烯研究院 Preparation method and device of graphene wafer
GB2590176A (en) * 2019-10-29 2021-06-23 Bae Systems Plc Method and apparatus
GB2590176B (en) * 2019-10-29 2022-05-04 Bae Systems Plc Method and apparatus

Similar Documents

Publication Publication Date Title
Xu et al. Chemical vapor deposition of graphene on thin-metal films
De Arco et al. Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition
KR102026736B1 (en) Insulating sheet having heterogeneous laminated structure, manufacturing method thereof, and electric device including the insulating sheet
JP5105028B2 (en) Conductive thin film and transparent conductive film containing graphene
KR101636442B1 (en) Method of fabricating graphene using alloy catalyst
KR101999564B1 (en) METHOD FOR PREPARING THICKNESS-CONTROLLED GRAPHENE USING CHEMICAL VAPOR DEPOSITION AND Cu-Ni THIN FILM LAMINATE CATALYST
JP2014148423A (en) Method for producing single crystal graphene, and touch panel using single crystal graphene
Feng et al. Few-atomic-layer boron nitride sheets syntheses and applications for semiconductor diodes
KR20090043418A (en) Graphene sheet and its manufacturing method
Antonova Chemical vapor deposition growth of graphene on copper substrates: current trends
CN104334495A (en) Methods of growing uniform, large-scale, multilayer graphene films
Sharma et al. Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition
Sajjad et al. Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets
Kaplas et al. Ultra-thin graphitic film: synthesis and physical properties
JP6190562B2 (en) Graphene growth method
Singh et al. Growth of large sp2 domain size single and multi-layer graphene films at low substrate temperature using hot filament chemical vapor deposition
Han et al. Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene
Dathbun et al. Effects of three parameters on graphene synthesis by chemical vapor deposition
Hong et al. Controlled growth of in-plane graphene/h-BN heterostructure on a single crystal Ge substrate
Chen et al. Synthesis of well-aligned millimeter-sized tetragon-shaped graphene domains by tuning the copper substrate orientation
JP2013159521A (en) Method for producing graphene film
US20150345010A1 (en) Methods of magnetically enhanced physical vapor deposition
Lu et al. Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles
Song et al. Boron and nitrogen co-doping of diamond-like carbon film for transparent conductive films
Lee et al. Large-scale synthesis of graphene films by joule-heating-induced chemical vapor deposition