JP2014146549A - Shield cable - Google Patents

Shield cable Download PDF

Info

Publication number
JP2014146549A
JP2014146549A JP2013015528A JP2013015528A JP2014146549A JP 2014146549 A JP2014146549 A JP 2014146549A JP 2013015528 A JP2013015528 A JP 2013015528A JP 2013015528 A JP2013015528 A JP 2013015528A JP 2014146549 A JP2014146549 A JP 2014146549A
Authority
JP
Japan
Prior art keywords
dielectric constant
insulator
conductors
low dielectric
shielded cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013015528A
Other languages
Japanese (ja)
Inventor
Takashi Kumakura
崇 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2013015528A priority Critical patent/JP2014146549A/en
Publication of JP2014146549A publication Critical patent/JP2014146549A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a shield cable that is compact in size and has a small dielectric loss.SOLUTION: A shield cable includes two conductors 2 disposed in parallel with each other, an insulator 3 covering the two conductors 2 in a collective manner, and an external conductor 4 covering the circumference of the insulator 3. Between the two conductors 2, a low dielectric constant part 5 is provided, the low dielectric constant part having a lower dielectric constant than that of the insulator 3. The low dielectric constant part is formed to come into contact with the two conductors, and the low dielectric constant part is composed of an air layer, a non-foamed insulation resin, or a foamed insulation resin.

Description

本発明は、差動信号を伝送するシールドケーブルに関するものである。   The present invention relates to a shielded cable that transmits a differential signal.

差動信号を伝送するためのシールドケーブルとして、従来より、導体を絶縁体で被覆した絶縁電線2本を平行または撚り合わせて配置し、これを共通の外部導体(シールド)で覆った構造のものがある。   Conventionally, a shielded cable for transmitting differential signals has a structure in which two insulated wires covered with an insulator are parallel or twisted and covered with a common outer conductor (shield). There is.

このようなシールドケーブルでは、両絶縁電線の絶縁体と外部導体との間に隙間が発生し、この隙間の一方に接地用のドレイン線が配置されたり、外部導体が変形して隙間に侵入したりすることにより、構造の対称性が失われ、スキュー等の特性劣化を招き易いという問題があった。   In such a shielded cable, a gap is generated between the insulator of both insulated wires and the outer conductor, and a grounding drain wire is disposed in one of the gaps, or the outer conductor is deformed and enters the gap. As a result, the symmetry of the structure is lost, and there is a problem that characteristic deterioration such as skew is likely to occur.

この問題を解決したシールドケーブルとして、図4に示すように、平行に配置した2つの導体42を一括して被覆するように絶縁体43を設け、その絶縁体43の外周に外部導体44を設けたものがある。   As a shielded cable that solves this problem, as shown in FIG. 4, an insulator 43 is provided so as to collectively cover two conductors 42 arranged in parallel, and an outer conductor 44 is provided on the outer periphery of the insulator 43. There is something.

図4のシールドケーブル41では、絶縁体43と外部導体44との間に隙間が存在しないため、構造の対称性を保持することが可能であり、構造の対称性が失われることによる特性劣化を抑制することが可能となる。   In the shielded cable 41 of FIG. 4, since there is no gap between the insulator 43 and the outer conductor 44, it is possible to maintain the symmetry of the structure, and the characteristic deterioration due to the loss of the symmetry of the structure. It becomes possible to suppress.

なお、この出願の発明に関連する先行技術文献情報としては、特許文献1〜4がある。   In addition, there exists patent documents 1-4 as prior art document information relevant to the invention of this application.

特開2000−40423号公報JP 2000-40423 A 米国特許第5283390号明細書US Pat. No. 5,283,390 特開2008−226564号公報JP 2008-226564 A 特開2008−293862号公報JP 2008-293862 A

しかしながら、図4のシールドケーブル41では、外部導体44の内部に隙間(空気層)などの誘電率の低い部分を含まないために、所望のインピーダンスを得るためには絶縁体43のサイズ(つまり外部導体44よりも内側の断面積)が大きくなり、シールドケーブル全体の大型化を招き、また誘電損も大きくなってしまうという問題がある。   However, since the shielded cable 41 in FIG. 4 does not include a portion having a low dielectric constant such as a gap (air layer) inside the outer conductor 44, the size of the insulator 43 (that is, the external conductor) is required to obtain a desired impedance. There is a problem that the cross-sectional area inside the conductor 44 is increased, leading to an increase in the size of the entire shielded cable and an increase in dielectric loss.

従来より、絶縁体43として誘電率の低い発泡絶縁体を用いることで小型化、誘電損の抑制を図っているが、更なる小型化、誘電損の抑制が可能なシールドケーブルが望まれている。   Conventionally, a foamed insulator having a low dielectric constant is used as the insulator 43 to reduce the size and the dielectric loss. However, a shielded cable that can further reduce the size and suppress the dielectric loss is desired. .

本発明は上記事情に鑑み為されたものであり、小型で誘電損の小さいシールドケーブルを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a shielded cable that is small and has a small dielectric loss.

本発明は上記目的を達成するために創案されたものであり、平行に配置された2本の導体と、該2本の導体を一括して覆う絶縁体と、該絶縁体の外周を覆う外部導体と、を備え、前記2本の導体間に、前記絶縁体よりも誘電率が低い低誘電率部を設けたシールドケーブルである。   The present invention was devised to achieve the above object, and includes two conductors arranged in parallel, an insulator that collectively covers the two conductors, and an external that covers the outer periphery of the insulator. A shield cable provided with a low dielectric constant portion having a dielectric constant lower than that of the insulator between the two conductors.

前記低誘電率部は、前記2本の導体と接触するように形成されてもよい。   The low dielectric constant portion may be formed in contact with the two conductors.

前記低誘電率部が、空気層からなってもよい。   The low dielectric constant portion may include an air layer.

前記絶縁体が非発泡絶縁樹脂からなってもよい。   The insulator may be made of a non-foamed insulating resin.

前記絶縁体が発泡絶縁樹脂からなってもよい。   The insulator may be made of a foam insulating resin.

本発明によれば、小型で誘電損の小さいシールドケーブルを提供できる。   According to the present invention, it is possible to provide a shielded cable that is small and has a small dielectric loss.

本発明の一実施の形態に係るシールドケーブルの横断面図である。It is a cross-sectional view of a shielded cable according to an embodiment of the present invention. 図1のシールドケーブルの一変形例を示す横断面図である。It is a cross-sectional view which shows the modification of the shielded cable of FIG. (a)〜(c)は、図1のシールドケーブルの製造方法を説明する図である。(A)-(c) is a figure explaining the manufacturing method of the shielded cable of FIG. 従来のシールドケーブルの横断面図である。It is a cross-sectional view of a conventional shielded cable.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係るシールドケーブルの横断面図である。   FIG. 1 is a cross-sectional view of a shielded cable according to the present embodiment.

図1に示すように、シールドケーブル1は、平行に配置された2本(一対)の導体2と、2本の導体2を一括して覆う絶縁体3と、絶縁体3の外周を覆う外部導体4と、を備えている。外部導体4の外周にさらにシース(ジャケット)を備えてもよい。   As shown in FIG. 1, the shielded cable 1 includes two (a pair) conductors 2 arranged in parallel, an insulator 3 that collectively covers the two conductors 2, and an external that covers the outer periphery of the insulator 3. And a conductor 4. A sheath (jacket) may be further provided on the outer periphery of the outer conductor 4.

絶縁体3は、その外形が断面視で長円形状(2本の並列した平行な直線の端部同士を円弧により接続した形状)に形成されており、その外周に、隙間無く外部導体4が設けられている。シールドケーブル1は、断面視において、その幅方向(図示左右方向)の中心に対して線対称に形成されると共に、厚さ方向(図示上下方向)の中心に対して線対称に形成され、さらに、幅方向と厚さ方向の中心に対して点対称(180度回転対称)に形成されている。   The outer shape of the insulator 3 is formed in an oval shape (a shape in which two parallel parallel straight ends are connected by an arc) in a cross-sectional view, and the outer conductor 4 has no gap on the outer periphery thereof. Is provided. The shielded cable 1 is formed in line symmetry with respect to the center in the width direction (left-right direction in the figure) and in line symmetry with respect to the center in the thickness direction (up-down direction in the figure) in the cross-sectional view. They are formed in point symmetry (180 degree rotational symmetry) with respect to the center in the width direction and the thickness direction.

本実施の形態に係るシールドケーブル1では、2本の導体2間に、絶縁体3よりも誘電率が低い低誘電率部5を設けている。   In the shielded cable 1 according to the present embodiment, a low dielectric constant portion 5 having a dielectric constant lower than that of the insulator 3 is provided between the two conductors 2.

本実施の形態では、絶縁体3を非発泡絶縁樹脂とし、低誘電率部5を空気層とした。絶縁体3として非発泡絶縁樹脂を用いることで、発泡絶縁樹脂を用いた場合と比較して製造コストを低減できると共に、絶縁体3の寸法ばらつきを低減することが可能になる。なお、ここでは低誘電率部5を空気層としているが、低誘電率部5は絶縁体3よりの誘電率が低いものであればよく、例えば、絶縁体3に用いる絶縁樹脂にシリカ等を添加して誘電率を調整したものや、絶縁体3に用いる絶縁樹脂を発泡した発泡絶縁樹脂などを用いてもよい。ただし、小型化や誘電損を低減する観点からは、低誘電率部5はなるべく誘電率が小さいことが望ましく、誘電率の最も小さい空気層を低誘電率部5とすることが最も望ましい。絶縁体3に用いる絶縁樹脂としては、例えばPE(ポリエチレン)が挙げられる。   In the present embodiment, the insulator 3 is a non-foamed insulating resin, and the low dielectric constant portion 5 is an air layer. By using a non-foamed insulating resin as the insulator 3, it is possible to reduce the manufacturing cost as compared to the case where a foamed insulating resin is used, and to reduce the dimensional variation of the insulator 3. Here, although the low dielectric constant portion 5 is an air layer, the low dielectric constant portion 5 only needs to have a lower dielectric constant than that of the insulator 3. For example, silica or the like is used for the insulating resin used for the insulator 3. A dielectric material whose dielectric constant is adjusted by addition, or a foamed insulating resin obtained by foaming an insulating resin used for the insulator 3 may be used. However, from the viewpoint of miniaturization and reduction of dielectric loss, it is desirable that the low dielectric constant portion 5 has a dielectric constant as small as possible, and the air layer having the smallest dielectric constant is most desirably the low dielectric constant portion 5. Examples of the insulating resin used for the insulator 3 include PE (polyethylene).

さらに、本実施の形態では絶縁体3として非発泡絶縁樹脂を用いているが、これに限らず、発泡絶縁樹脂を用いることも当然可能である。この場合、上述のように、絶縁体3として発泡絶縁樹脂を用いた場合と比較して、製造コストや寸法ばらつきが大きくなるものの、より小型でより誘電損の小さいシールドケーブル1を実現できる。   Furthermore, in the present embodiment, a non-foamed insulating resin is used as the insulator 3, but this is not a limitation, and a foamed insulating resin can naturally be used. In this case, as described above, the shielded cable 1 can be realized with a smaller size and a smaller dielectric loss, although the manufacturing cost and dimensional variation are larger than when the foamed insulating resin is used as the insulator 3.

本実施の形態では、低誘電率部5を2本の導体2の両者と接触するように形成しており、2本の導体2間に誘電率の高い絶縁体3が存在しない構成となっている。ここでは、低誘電率部5が空気層からなるので、両導体2はその一部(対向する導体2側の一部)が空気層に露出するように配置されることになる。差動成分の電界は主に導体2間に分布するので、両導体2に接触するように低誘電率部5を形成することで、差動成分に対する誘電損を低減することが可能になる。   In the present embodiment, the low dielectric constant portion 5 is formed so as to be in contact with both of the two conductors 2, and the insulator 3 having a high dielectric constant does not exist between the two conductors 2. Yes. Here, since the low dielectric constant portion 5 is formed of an air layer, both the conductors 2 are arranged so that a part thereof (a part on the side of the opposing conductor 2) is exposed to the air layer. Since the electric field of the differential component is mainly distributed between the conductors 2, the dielectric loss for the differential component can be reduced by forming the low dielectric constant portion 5 so as to contact both the conductors 2.

ここでは、低誘電率部5を断面視で矩形状に形成したが、低誘電率部5の形状はこれに限定されるものではなく、例えば、図2に示すように低誘電率部5を断面視で楕円形状に形成するなど、任意の形状とすることが可能である。   Here, the low dielectric constant portion 5 is formed in a rectangular shape in cross-sectional view, but the shape of the low dielectric constant portion 5 is not limited to this. For example, as shown in FIG. An arbitrary shape such as an elliptical shape in a cross-sectional view is possible.

低誘電率部5の幅wと高さhは、所望のインピーダンス等に応じて適宜設定すればよいが、構造の対称性を保つため、低誘電率部5は対称形状に形成される必要がある。つまり、低誘電率部5は、シールドケーブル1の幅方向の中心に対して線対称であり、高さ方向の中心に対して線対称であり、かつ、幅方向と高さ方向の中心に対して点対称(180度回転対称)な形状に形成される。   The width w and height h of the low dielectric constant portion 5 may be appropriately set according to the desired impedance or the like. However, in order to maintain the symmetry of the structure, the low dielectric constant portion 5 needs to be formed in a symmetrical shape. is there. That is, the low dielectric constant portion 5 is line symmetric with respect to the center in the width direction of the shielded cable 1, is line symmetric with respect to the center in the height direction, and is centered with respect to the centers in the width direction and the height direction. It is formed into a point-symmetrical (180 degree rotationally symmetric) shape.

シールドケーブル1を製造する際には、図3(a)〜(c)に示すように、導体2の周囲に絶縁体3の一部を押出成型したパーツ31を2つ形成し、両パーツ31の絶縁体3を融着接続し、その後、絶縁体3の周囲に外部導体4を形成するようにすればよい。パーツ31の形状や融着接続の際の融着度合いによって、製造するシールドケーブル1の構造を任意に決定することが可能である。   When the shielded cable 1 is manufactured, as shown in FIGS. 3A to 3C, two parts 31 obtained by extruding a part of the insulator 3 around the conductor 2 are formed. Insulator 3 may be fusion spliced, and then outer conductor 4 may be formed around insulator 3. The structure of the shielded cable 1 to be manufactured can be arbitrarily determined according to the shape of the part 31 and the degree of fusion at the time of fusion splicing.

図3(a)では、幅方向の中央で2分割してパーツ31を形成した場合、図3(b)では、低誘電率部5の高さ方向の一方(図示下側)を覆う部位3aを一方(図示右側)のパーツ31に、他方(図示上側)を覆う部位3bを他方(図示左側)のパーツ31に形成するよう分割した場合、図3(c)では、低誘電率部5の高さ方向の両方を覆う部位3a,3bを一方(図示右側)のパーツ31にまとめて形成するよう形成した場合をそれぞれ示しているが、どのように分割するかは適宜変更可能である。ただし、製造コストを低減するために、図3(a)や図3(b)のように、2つのパーツ31を同じ形状として部品点数を低減することがより望ましい。   In FIG. 3A, when the part 31 is formed by being divided into two at the center in the width direction, in FIG. 3B, a portion 3a that covers one of the low dielectric constant portions 5 in the height direction (the lower side in the drawing). Is divided into one (right side in the drawing) part 31 and a part 3b covering the other (upper side in the drawing) is formed on the other part (left side in the drawing), in FIG. Although the case where it forms so that the site | parts 3a and 3b which cover both of the height direction may be collectively formed in the part 31 of one side (illustration right side) is shown, it can change suitably how it divides | segments. However, in order to reduce the manufacturing cost, it is more desirable to reduce the number of parts by making the two parts 31 the same shape as shown in FIGS. 3 (a) and 3 (b).

なお、図3のような融着接続を行わずに、2本の導体2を押出機に一括して送り込み、両導体2の周囲に絶縁体3を一括して押出成型して、シールドケーブル1を製造することも可能である。この場合、押出成型時に低誘電率部5である空気層も同時に形成することになる。   It should be noted that the two conductors 2 are collectively fed into the extruder without performing the fusion splicing as shown in FIG. 3, and the insulator 3 is collectively extruded around the two conductors 2 so that the shielded cable 1 Can also be manufactured. In this case, an air layer which is the low dielectric constant portion 5 is also formed at the time of extrusion molding.

本実施の形態の作用を説明する。   The operation of the present embodiment will be described.

本実施の形態に係るシールドケーブル1では、2本の導体2間に、絶縁体3よりも誘電率が低い低誘電率部5を設けている。   In the shielded cable 1 according to the present embodiment, a low dielectric constant portion 5 having a dielectric constant lower than that of the insulator 3 is provided between the two conductors 2.

信号の差動成分の電界は主に導体2間に分布するので、導体2間に低誘電率部5を設けることで、差動成分に対して作用する誘電率を低くし、グランドに対する容量を小さくすることが可能となり、従来と比較して、同じインピーダンスとしたときのシールドケーブル1のサイズ(すなわち外部導体4よりも内側の断面積)を小さくすることが可能になると共に、差動成分に対する誘電損を小さくすることが可能になる。   Since the electric field of the differential component of the signal is mainly distributed between the conductors 2, by providing the low dielectric constant portion 5 between the conductors 2, the dielectric constant acting on the differential component is lowered, and the capacitance with respect to the ground is increased. Compared to the conventional case, the size of the shielded cable 1 (that is, the cross-sectional area inside the outer conductor 4) can be reduced when compared with the conventional case, and the differential component can be reduced. The dielectric loss can be reduced.

また、シールドケーブル1では、低誘電率部5を2本の導体2と接触するように形成しているため、両導体2間に誘電率が比較的高い絶縁体3が存在しないこととなり、さらなる小型化と誘電損の抑制が可能となる。   Further, in the shielded cable 1, since the low dielectric constant portion 5 is formed so as to be in contact with the two conductors 2, there is no insulator 3 having a relatively high dielectric constant between the two conductors 2. Miniaturization and suppression of dielectric loss are possible.

また、シールドケーブル1では、低誘電率部5を樹脂を用いた場合よりも誘電率が低い空気層で構成しているため、さらなる小型化と誘電損の抑制が可能となる。   Moreover, in the shielded cable 1, since the low dielectric constant part 5 is comprised by the air layer whose dielectric constant is lower than the case where resin is used, further size reduction and suppression of dielectric loss are attained.

具体的には、シールドケーブル1では、図4の従来のシールドケーブル41と比較して、その断面積を3〜4割程低減できると共に、10GHzでのSDD21(差動モード利得)を0.8dB程度改善でき、その効果は大きい。   Specifically, the shielded cable 1 can reduce the cross-sectional area by 30 to 40% compared to the conventional shielded cable 41 of FIG. 4, and the SDD 21 (differential mode gain) at 10 GHz is 0.8 dB. It can be improved to some extent and the effect is great.

さらに、シールドケーブル1では、低誘電率部5である空気層が絶縁体3に覆われた構成となっているため空気層に外部導体4が侵入して構造の対称性が損なわれることを抑制できる。   Further, in the shielded cable 1, since the air layer which is the low dielectric constant portion 5 is covered with the insulator 3, it is possible to prevent the outer conductor 4 from entering the air layer and losing the symmetry of the structure. it can.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

図1のシールドケーブル1において、絶縁体3として誘電率ε=2.27の非発泡のPE(PEソリッド)を用いた実施例1、および、絶縁体3として誘電率ε=1.764の発泡PE(発泡度35%)を用いた実施例2について、差動インピーダンスZdiffを100Ω、同相インピーダンスZcommを38Ωとしたときのシールドケーブル1の幅(長径)と高さ(短径)、および周波数10GHzでのSDD21(差動モード利得、SDD21@10GHz)をシミュレーションにより求めた。 In the shielded cable 1 of FIG. 1, Example 1 using non-foamed PE (PE solid) having a dielectric constant ε = 2.27 as the insulator 3 and foaming having a dielectric constant ε = 1.664 as the insulator 3. For Example 2 using PE (foaming degree 35%), the width (major axis) and height (minor axis) of the shielded cable 1 when the differential impedance Z diff is 100Ω and the common-mode impedance Z comm is 38Ω, and SDD21 (differential mode gain, SDD21 @ 10 GHz) at a frequency of 10 GHz was obtained by simulation.

低誘電率部5(空気層)の幅wは、導体2間の中心間隔と同じ値とし、高さhは0.67mmとした。具体的には、実施例1における低誘電率部5(空気層)の幅wは0.59mm、高さhは0.67mmとし、実施例2における低誘電率部5(空気層)の幅wは0.55mm、高さhは0.67mmとした。   The width w of the low dielectric constant portion 5 (air layer) was set to the same value as the center interval between the conductors 2 and the height h was set to 0.67 mm. Specifically, the width w of the low dielectric constant portion 5 (air layer) in the first embodiment is 0.59 mm and the height h is 0.67 mm, and the width of the low dielectric constant portion 5 (air layer) in the second embodiment. w was 0.55 mm, and height h was 0.67 mm.

また、比較のために、図4の従来のシールドケーブル41において、絶縁体43として誘電率ε=2.27の非発泡のPE(PEソリッド)を用いた比較例1、および、絶縁体43として誘電率ε=1.764の発泡PE(発泡度35%)を用いた比較例2について、差動インピーダンスZdiffを100Ω、同相インピーダンスZcommを38Ωとしたときのシールドケーブル1の幅(長径)と高さ(短径)、および周波数10GHzでのSDD21(差動モード利得、SDD21@10GHz)をシミュレーションにより求めた。結果をまとめて表1に示す。 For comparison, in the conventional shielded cable 41 of FIG. 4, as the insulator 43, a comparative example 1 in which non-foamed PE (PE solid) having a dielectric constant ε = 2.27 is used as the insulator 43. dielectric constant epsilon = 1.764 foamed PE Comparative example 2 using (foaming degree of 35%), differential impedance Z diff of 100 [Omega, shielded cable 1 having a width when the phase impedance Z comm and 38Omu (long diameter) And SDD21 (differential mode gain, SDD21 @ 10 GHz) at a height (minor axis) and a frequency of 10 GHz were obtained by simulation. The results are summarized in Table 1.

表1に示すように、比較例1,2の幅/高さは、それぞれ2.57mm/1.32mm、2.16mm/1.11mmであったが、実施例1,2の幅/高さは、それぞれ2.00mm/1.10mm、1.80mm/1.00mmであり、共に比較例1,2よりも小型なシールドケーブル1が実現できた。   As shown in Table 1, the width / height of Comparative Examples 1 and 2 were 2.57 mm / 1.32 mm and 2.16 mm / 1.11 mm, respectively. Are 2.00 mm / 1.10 mm and 1.80 mm / 1.00 mm, respectively, and a shielded cable 1 smaller than Comparative Examples 1 and 2 could be realized.

また、比較例1,2の周波数10GHzでのSDD21は、それぞれ−4.15dB/m、−3.74dB/mであったが、実施例1,2の周波数10GHzでのSDD21は、それぞれ−3.40dB/m、−3.23dB/mであり、共に比較例1よりも低損失なシールドケーブル1が実現できた。   In addition, the SDD 21 at the frequency of 10 GHz in Comparative Examples 1 and 2 was −4.15 dB / m and −3.74 dB / m, respectively. The SDD 21 at the frequency of 10 GHz in Examples 1 and 2 was −3 respectively. The shielded cable 1 was .40 dB / m and −3.23 dB / m, both of which were lower in loss than the comparative example 1.

実施例1と比較例2とを比較すれば分かるように、本発明によれば、絶縁体3として非発泡絶縁樹脂を用いた場合であっても、従来構造で絶縁体43として発泡絶縁体を用いた場合よりも、小型化および低損失化が可能になることが分かる。   As can be seen from a comparison between Example 1 and Comparative Example 2, according to the present invention, even when a non-foamed insulating resin is used as the insulator 3, a foamed insulator is used as the insulator 43 in the conventional structure. It can be seen that the size and the loss can be reduced as compared with the case of using.

以上の結果より、2本の導体間に低誘電率部5である空気層を設けることで、小型で誘電損の小さいシールドケーブル1が得られることが確認できた。   From the above results, it was confirmed that the shield cable 1 having a small size and a small dielectric loss can be obtained by providing an air layer as the low dielectric constant portion 5 between the two conductors.

1 シールドケーブル
2 導体
3 絶縁体
4 外部導体
5 低誘電率部
1 Shielded cable 2 Conductor 3 Insulator 4 Outer conductor 5 Low dielectric constant part

Claims (5)

平行に配置された2本の導体と、
該2本の導体を一括して覆う絶縁体と、
該絶縁体の外周を覆う外部導体と、を備え、
前記2本の導体間に、前記絶縁体よりも誘電率が低い低誘電率部を設けた
ことを特徴とするシールドケーブル。
Two conductors arranged in parallel;
An insulator that collectively covers the two conductors;
An outer conductor covering the outer periphery of the insulator,
A shielded cable, wherein a low dielectric constant portion having a dielectric constant lower than that of the insulator is provided between the two conductors.
前記低誘電率部は、前記2本の導体と接触するように形成される
請求項1記載のシールドケーブル。
The shielded cable according to claim 1, wherein the low dielectric constant portion is formed so as to be in contact with the two conductors.
前記低誘電率部が、空気層からなる
請求項1または2記載のシールドケーブル。
The shielded cable according to claim 1, wherein the low dielectric constant portion is formed of an air layer.
前記絶縁体が非発泡絶縁樹脂からなる
請求項1〜3いずれかに記載のシールドケーブル。
The shield cable according to claim 1, wherein the insulator is made of a non-foamed insulating resin.
前記絶縁体が発泡絶縁樹脂からなる
請求項1〜3いずれかに記載のシールドケーブル。
The shield cable according to claim 1, wherein the insulator is made of foamed insulating resin.
JP2013015528A 2013-01-30 2013-01-30 Shield cable Pending JP2014146549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015528A JP2014146549A (en) 2013-01-30 2013-01-30 Shield cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015528A JP2014146549A (en) 2013-01-30 2013-01-30 Shield cable

Publications (1)

Publication Number Publication Date
JP2014146549A true JP2014146549A (en) 2014-08-14

Family

ID=51426614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015528A Pending JP2014146549A (en) 2013-01-30 2013-01-30 Shield cable

Country Status (1)

Country Link
JP (1) JP2014146549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127622A1 (en) * 2021-12-29 2023-07-06 株式会社オートネットワーク技術研究所 Communication electric cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127622A1 (en) * 2021-12-29 2023-07-06 株式会社オートネットワーク技術研究所 Communication electric cable

Similar Documents

Publication Publication Date Title
JP6834732B2 (en) Two-core parallel cable
JP5699872B2 (en) Differential signal transmission cable
JP5920278B2 (en) Differential signal transmission cable and multi-pair differential signal transmission cable
US8546691B2 (en) Differential signal transmission cable
JP5508614B2 (en) High-speed differential cable
US9443646B2 (en) Data cable
JP5092213B2 (en) 2-core balanced cable
JP2011222262A (en) Shield cable
JP6075698B2 (en) Cable for differential signal transmission and cable with connector
US20210098158A1 (en) Cable
TWI464988B (en) Differential transmission cable connection method, differential transmission cable and electrical equipment
US9961813B2 (en) Shielded cable
KR20070115767A (en) Conductor with non-circular cross-section
KR20180088668A (en) Data cable for high-speed data transmissions
JP2001035270A (en) Parallel coaxial cable with low skew and manufacture thereof
KR20140001728A (en) Insulated wire, coaxial cable and multiconductor cable
JP2012243502A (en) Cable for differential signal transmission and harness using the same
TWM552657U (en) Cable
JP7327421B2 (en) Two core parallel cable
JP2014146549A (en) Shield cable
KR20150021181A (en) Communication cable comprising discontinuous shield tape and discontinuous shield tape
JP5863156B2 (en) Differential signal transmission cable
US20140060913A1 (en) S-shield twisted pair cable design for multi-ghz performance
CN111048243B (en) Cable with improved cable characteristics
JP6707885B2 (en) Low voltage differential signal transmission cable