JP2014145036A - Molding material, method for manufacturing molding material, and carbon fiber-reinforced composite material - Google Patents

Molding material, method for manufacturing molding material, and carbon fiber-reinforced composite material Download PDF

Info

Publication number
JP2014145036A
JP2014145036A JP2013014681A JP2013014681A JP2014145036A JP 2014145036 A JP2014145036 A JP 2014145036A JP 2013014681 A JP2013014681 A JP 2013014681A JP 2013014681 A JP2013014681 A JP 2013014681A JP 2014145036 A JP2014145036 A JP 2014145036A
Authority
JP
Japan
Prior art keywords
carbon fiber
sizing agent
molding material
mass
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013014681A
Other languages
Japanese (ja)
Other versions
JP5516769B1 (en
Inventor
Tomoko Ichikawa
智子 市川
Atsuki Tsuchiya
敦岐 土谷
Makoto Endo
真 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013014681A priority Critical patent/JP5516769B1/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to CN201380053979.2A priority patent/CN104736759B/en
Priority to EP13847900.1A priority patent/EP2910676B1/en
Priority to MX2015004661A priority patent/MX2015004661A/en
Priority to KR1020157009733A priority patent/KR101580437B1/en
Priority to PCT/JP2013/071274 priority patent/WO2014061336A1/en
Priority to HUE13847900A priority patent/HUE036249T2/en
Priority to US14/435,793 priority patent/US10501605B2/en
Priority to TW102134031A priority patent/TWI504648B/en
Application granted granted Critical
Publication of JP5516769B1 publication Critical patent/JP5516769B1/en
Publication of JP2014145036A publication Critical patent/JP2014145036A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding material which is excellent interfacial adhesion between a carbon fiber and a thermoplastic resin, and is excellent in mechanical characteristics.SOLUTION: A molding material contains at least a sizing agent-coated carbon fiber in which a carbon fiber is coated with a sizing agent, and a matrix resin. The sizing agent contains at least an aliphatic epoxy compound (A), and an aromatic epoxy compound (B1) as an aromatic compound (B). In the sizing agent-coated carbon fiber, a ratio (a)/(b) between (a) a height (cps) of a component of a binding energy (284.6 eV) attributed to CHx, C-C and C=C of Cinner shell spectrum obtained by measuring the surface of the sizing agent with an X-ray photoelectron spectroscopy at a photoelectron exiting angle of 15°, and (b) a height (cps) of a component of a binding energy (286.1 eV) attributed to C-O is 0.50-0.90. The carbon fiber in the molding material is in a bundle or single fiber state, and is substantially two-dimensionally oriented.

Description

本発明は、航空機部材、宇宙機部材、自動車部材および船舶部材などに好適に用いられる成形材料、成形材料の製造方法および炭素繊維強化複合材料に関するものである。   The present invention relates to a molding material suitably used for aircraft members, spacecraft members, automobile members, ship members, and the like, a method for manufacturing the molding material, and a carbon fiber reinforced composite material.

炭素繊維は、軽量でありながら、強度および弾性率に優れるため、種々のマトリックス樹脂と組み合わせた複合材料は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。炭素繊維を用いた複合材料において、炭素繊維の優れた特性を活かすには、炭素繊維とマトリックス樹脂との界面接着性が優れることが重要である。   Since carbon fiber is lightweight and has excellent strength and elastic modulus, many composite materials combined with various matrix resins are used for aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials, and sporting goods. Used in the field. In a composite material using carbon fibers, it is important that the interfacial adhesion between the carbon fibers and the matrix resin is excellent in order to utilize the excellent characteristics of the carbon fibers.

炭素繊維とマトリックス樹脂との界面接着性を向上させるため、通常、炭素繊維に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入する方法が行われている。例えば、炭素繊維に電解処理を施すことにより、界面接着性の指標である層間剪断強度を向上させる方法が提案されている(特許文献1参照)。しかしながら、近年、複合材料への要求特性のレベルが向上するにしたがって、このような酸化処理のみで達成できる界面接着性では不十分になりつつある。   In order to improve the interfacial adhesion between the carbon fiber and the matrix resin, a method is generally employed in which the carbon fiber is subjected to an oxidation treatment such as gas phase oxidation or liquid phase oxidation, and oxygen-containing functional groups are introduced to the carbon fiber surface. Yes. For example, a method of improving the interlaminar shear strength, which is an index of interfacial adhesiveness, by subjecting carbon fibers to electrolytic treatment has been proposed (see Patent Document 1). However, in recent years, as the level of required properties for composite materials has improved, the interfacial adhesion that can be achieved only by such oxidation treatment is becoming insufficient.

一方、炭素繊維は脆く、集束性および耐摩擦性に乏しいため、高次加工工程において毛羽や糸切れが発生しやすい。このため、炭素繊維にサイジング剤を塗布する方法が提案されている(特許文献2および3参照)。   On the other hand, since carbon fiber is brittle and has poor convergence and friction resistance, fluff and yarn breakage are likely to occur in the high-order processing step. For this reason, the method of apply | coating a sizing agent to carbon fiber is proposed (refer patent document 2 and 3).

例えば、サイジング剤として、脂肪族タイプの複数のエポキシ基を有する化合物が提案されている(特許文献4、5、6参照)。また、サイジング剤としてポリアルキレングリコールのエポキシ付加物を炭素繊維に塗布する方法が提案されている(特許文献7、8および9参照)。   For example, compounds having a plurality of aliphatic type epoxy groups have been proposed as sizing agents (see Patent Documents 4, 5, and 6). Further, a method of applying an epoxy adduct of polyalkylene glycol as a sizing agent to carbon fibers has been proposed (see Patent Documents 7, 8 and 9).

また、芳香族系のサイジング剤としてビスフェノールAのジグリシジルエーテルを炭素繊維に塗布する方法が提案されている(特許文献2および3参照)。また、サイジング剤としてビスフェノールAのポリアルキレンオキサイド付加物を炭素繊維に塗布する方法が提案されている(特許文献10および11参照)。また、サイジング剤としてビスフェノールAのポリアルキレンオキサイド付加物にエポキシ基を付加させたものを炭素繊維に塗布する方法が提案されている(特許文献12および13参照)。   In addition, a method of applying diglycidyl ether of bisphenol A to carbon fibers as an aromatic sizing agent has been proposed (see Patent Documents 2 and 3). In addition, a method of applying a polyalkylene oxide adduct of bisphenol A as a sizing agent to carbon fibers has been proposed (see Patent Documents 10 and 11). In addition, a method of applying a bisphenol A polyalkylene oxide adduct having an epoxy group added thereto to a carbon fiber as a sizing agent has been proposed (see Patent Documents 12 and 13).

上記したサイジング剤により、炭素繊維に接着性や集束性を付与することができるものの、1種類のエポキシ化合物からなるサイジング剤では十分とは言えず、求める機能により2種類以上のエポキシ化合物を併用する手法が近年提案されている。   Although the above-described sizing agent can impart adhesion and convergence to the carbon fiber, a sizing agent composed of one kind of epoxy compound is not sufficient, and two or more kinds of epoxy compounds are used in combination depending on the desired function. Techniques have been proposed in recent years.

例えば、表面エネルギーを規定した2種以上のエポキシ化合物を組み合わせたサイジング剤が提案されている(特許文献14〜17参照)。特許文献14では、脂肪族エポキシ化合物と芳香族エポキシ化合物の組み合わせが開示されている。特許文献14では、外層に多くあるサイジング剤が、内層に多くあるサイジング剤成分に対し、大気との遮断効果をもたらし、エポキシ基が大気中の水分により開環するのを抑止するとされている。また、特許文献14では、サイジング剤の好ましい範囲について、脂肪族エポキシ化合物と芳香族エポキシ化合物との比率は10/90〜40/60と規定され、芳香族エポキシ化合物の量が多いほうが好適とされている。   For example, a sizing agent in which two or more types of epoxy compounds that define surface energy are combined has been proposed (see Patent Documents 14 to 17). Patent Document 14 discloses a combination of an aliphatic epoxy compound and an aromatic epoxy compound. In Patent Document 14, a sizing agent that is abundant in the outer layer has a blocking effect on the sizing agent component that is abundant in the inner layer, and prevents the epoxy groups from opening due to moisture in the atmosphere. Moreover, in patent document 14, about the preferable range of a sizing agent, the ratio of an aliphatic epoxy compound and an aromatic epoxy compound is prescribed | regulated as 10 / 90-40 / 60, and the one where the quantity of an aromatic epoxy compound is large is considered suitable. ing.

また、特許文献16および17では、表面エネルギーの異なる2種以上のエポキシ化合物を使用したサイジング剤が開示されている。特許文献16および17は、マトリックス樹脂との接着性の向上を目的としているため、2種以上のエポキシ化合物の組み合わせとして芳香族エポキシ化合物と脂肪族エポキシ化合物の併用は限定されておらず、接着性の観点から選択される脂肪族エポキシ化合物の一般的例示がないものである。   Patent Documents 16 and 17 disclose sizing agents using two or more epoxy compounds having different surface energies. Since Patent Documents 16 and 17 are intended to improve the adhesiveness with a matrix resin, the combination of an aromatic epoxy compound and an aliphatic epoxy compound is not limited as a combination of two or more epoxy compounds, and the adhesiveness is not limited. There is no general example of the aliphatic epoxy compound selected from the viewpoint of the above.

さらに、ビスフェノールA型エポキシ化合物と脂肪族ポリエポキシ樹脂を質量比50/50〜90/10で配合するサイジング剤が開示されている(特許文献18参照)。しかしながら、この特許文献18も、芳香族エポキシ化合物であるビスフェノールA型エポキシ化合物の配合量が多いものである。   Furthermore, the sizing agent which mix | blends a bisphenol A type epoxy compound and aliphatic polyepoxy resin by mass ratio 50 / 50-90 / 10 is disclosed (refer patent document 18). However, Patent Document 18 also has a large amount of bisphenol A type epoxy compound, which is an aromatic epoxy compound.

また、芳香族エポキシ化合物および脂肪族エポキシ化合物の組み合わせを規定したサイジング剤として、炭素繊維束の表面に多官能の脂肪族化合物、上面にエポキシ樹脂、アルキレンオキシド付加物と不飽和二塩基酸との縮合物、フェノール類のアルキレンオキシド付加物を組み合わせたものが開示されている(特許文献19参照)。   In addition, as a sizing agent that defines a combination of an aromatic epoxy compound and an aliphatic epoxy compound, a polyfunctional aliphatic compound on the surface of the carbon fiber bundle, an epoxy resin on the upper surface, an alkylene oxide adduct and an unsaturated dibasic acid A combination of a condensate and an alkylene oxide adduct of phenols is disclosed (see Patent Document 19).

さらに、2種以上のエポキシ化合物の組み合わせとして、脂肪族エポキシ化合物と芳香族エポキシ化合物であるビスフェノールA型エポキシ化合物の組み合わせが開示されている。脂肪族エポキシ化合物は環状脂肪族エポキシ化合物および/または長鎖脂肪族エポキシ化合物である(特許文献20参照)。   Furthermore, as a combination of two or more epoxy compounds, a combination of an aliphatic epoxy compound and a bisphenol A type epoxy compound that is an aromatic epoxy compound is disclosed. The aliphatic epoxy compound is a cycloaliphatic epoxy compound and / or a long-chain aliphatic epoxy compound (see Patent Document 20).

また、性状の異なるエポキシ化合物の組み合わせが開示されている。25℃で液体と固体の2種のエポキシ化合物の組み合わせが開示されている(特許文献21参照)。さらに、分子量の異なるエポキシ樹脂の組み合わせ、単官能脂肪族エポキシ化合物とエポキシ樹脂の組み合わせが提案されている(特許文献22および23参照)。   Further, combinations of epoxy compounds having different properties are disclosed. A combination of two epoxy compounds that are liquid and solid at 25 ° C. is disclosed (see Patent Document 21). Furthermore, combinations of epoxy resins having different molecular weights, and combinations of monofunctional aliphatic epoxy compounds and epoxy resins have been proposed (see Patent Documents 22 and 23).

しかしながら、サイジング剤塗布炭素繊維と熱可塑性樹脂等のマトリックス樹脂とを含む成形材料の物性向上には、前述の2種類以上を混合したサイジング剤(例えば、特許文献20〜23など)においても十分とは言えないのが実情であった。炭素繊維と熱可塑性樹脂との高い接着性を満たすには、以下の2つの要件を満たすことが必要と考えられるが、従来の任意のエポキシ樹脂の組み合わせからなるサイジング剤ではそれらの要件を満たしていなかったからと推測される。2つの要件の一つ目は、サイジング層内側(炭素繊維側)に接着性の高いエポキシ化合物が存在し、炭素繊維とエポキシ化合物とが強固に相互作用を行うこと、二つ目が、サイジング層表層(マトリックス樹脂である熱可塑性樹脂側)には、内層にある炭素繊維との接着性の高いエポキシ化合物ならびに外層の熱可塑性樹脂と強い相互作用が可能な化学組成が必要であることである。   However, in order to improve the physical properties of a molding material containing sizing agent-coated carbon fibers and a matrix resin such as a thermoplastic resin, a sizing agent (for example, Patent Documents 20 to 23) in which two or more of the above are mixed is sufficient. I couldn't say that. In order to satisfy the high adhesion between carbon fiber and thermoplastic resin, it is considered necessary to satisfy the following two requirements, but a sizing agent consisting of a combination of any conventional epoxy resin does not meet these requirements. It is presumed that there was not. The first of the two requirements is that an epoxy compound with high adhesion exists inside the sizing layer (carbon fiber side), and the carbon fiber and the epoxy compound interact strongly, and the second is the sizing layer. The surface layer (the thermoplastic resin side which is the matrix resin) needs to have a chemical composition capable of strong interaction with the epoxy compound having high adhesion to the carbon fiber in the inner layer and the thermoplastic resin in the outer layer.

例えば、特許文献14には、炭素繊維とサイジング剤との接着性を高めるため、サイジング剤に傾斜構造を持たせることは開示されているが、特許文献14およびその他いずれの文献(特許文献15〜18など)においても、サイジング剤塗布炭素繊維と熱可塑性樹脂とを含む成形材料において、サイジング層内層に接着性の高い成分を配置し、サイジング層表層に熱可塑性樹脂との相互作用が高い成分を配置することで炭素繊維と熱可塑性樹脂の界面接着性の向上を実現する思想は皆無と言える。   For example, Patent Document 14 discloses that the sizing agent has an inclined structure in order to enhance the adhesion between the carbon fiber and the sizing agent, but Patent Document 14 and any other documents (Patent Documents 15 to 15). 18), in the molding material containing the sizing agent-coated carbon fiber and the thermoplastic resin, a component having high adhesiveness is disposed on the inner layer of the sizing layer, and a component having high interaction with the thermoplastic resin is disposed on the surface layer of the sizing layer. It can be said that there is no idea to improve the interfacial adhesion between the carbon fiber and the thermoplastic resin by arranging them.

また、特許文献19には、サイジング剤内層に多官能脂肪族化合物が存在し、外層に反応性の低い芳香族エポキシ樹脂および芳香族系反応物が存在するものが開示されている。しかし、脂肪族化合物と芳香族化合物が分離しているため高い接着性を実現することは困難であるといえる。   Patent Document 19 discloses that a polyfunctional aliphatic compound is present in the inner layer of the sizing agent and an aromatic epoxy resin and an aromatic reactant having low reactivity are present in the outer layer. However, it can be said that it is difficult to achieve high adhesiveness because the aliphatic compound and the aromatic compound are separated.

以上のように、従来の技術では、マトリックス樹脂として、特に熱可塑性樹脂を用いた場合、炭素繊維との界面接着性は乏しく、さらなる界面接着性向上技術が必要となっている。   As described above, in the conventional technique, particularly when a thermoplastic resin is used as the matrix resin, the interfacial adhesion with the carbon fiber is poor, and a further interfacial adhesion improving technique is required.

特開平04−361619号公報Japanese Patent Laid-Open No. 04-361619 米国特許第3,957,716号明細書US Pat. No. 3,957,716 特開昭57−171767号公報JP-A-57-171767 特公昭63−14114号公報Japanese Examined Patent Publication No. 63-14114 特開平07−279040号公報Japanese Patent Laid-Open No. 07-279040 特開平08−113876号公報JP 08-113876 A 特開昭57−128266号公報JP-A-57-128266 米国特許第4,555,446号明細書U.S. Pat. No. 4,555,446 特開昭62−033872号公報JP 62-033872 A 特開平07−009444号公報JP 07-009444 A 特開2000−336577号公報JP 2000-336577 A 特開昭61−028074号公報JP 61-028074 A 特開平01−272867号公報Japanese Patent Laid-Open No. 01-272867 特開2005−179826号公報JP 2005-179826 A 特開2005−256226号公報JP 2005-256226 A 国際公開第03/010383号公報International Publication No. 03/010383 特開2008−280624号公報JP 2008-280624 A 特開2005−213687号公報JP 2005-213687 A 特開2002−309487号公報JP 2002-309487 A 特開平02−307979号公報Japanese Patent Laid-Open No. 02-307979 特開2002−173873号公報JP 2002-173873 A 特開昭59−71479号公報JP 59-71479 A 特開昭58−41973号公報JP 58-41973 A

そこで本発明の目的は、上記の従来技術における問題点に鑑み、炭素繊維とマトリックス樹脂との界面接着性に優れ、湿潤下での力学特性に優れる成形材料、成形材料の製造方法および炭素繊維強化複合材料を提供することにある。   Therefore, in view of the above-mentioned problems in the prior art, the object of the present invention is a molding material excellent in interfacial adhesion between carbon fiber and matrix resin, and excellent in mechanical properties under wet conditions, a method for producing the molding material, and carbon fiber reinforcement It is to provide a composite material.

本発明者らは、複数の特定の化合物を組み合わせたサイジング剤を塗布した炭素繊維のサイジング剤表面が、特定の化学組成にあるサイジング剤塗布炭素繊維と、マトリックス樹脂から構成され、該サイジング剤塗布炭素繊維は束状または単繊維状で実質的に2次元配向する成形材料において、上述した目的を達成することができることを見出した。すなわち、本発明において、個々のサイジング剤自体は、既知のサイジング剤を用いることができるが、特定の化合物の組み合わせにおいて、サイジング剤塗布炭素繊維のサイジング剤表面を特定の化学組成にすることがサイジング手法として重要なものであって、かつ新規なものであるといえるものである。   The inventors of the present invention have a sizing agent surface of a carbon fiber coated with a sizing agent in which a plurality of specific compounds are combined, the sizing agent-coated carbon fiber having a specific chemical composition, and a matrix resin. It has been found that the above-mentioned object can be achieved in a molding material in which carbon fibers are bundled or single fibers and are substantially two-dimensionally oriented. That is, in the present invention, a known sizing agent can be used as the individual sizing agent itself, but in the combination of specific compounds, the sizing agent-coated carbon fiber sizing agent surface has a specific chemical composition. It is an important technique and can be said to be novel.

本発明は、前記課題を解決するために、次のような手段を採用するものである。すなわち、本発明は、少なくとも炭素繊維にサイジング剤が塗布されたサイジング剤塗布炭素繊維およびマトリックス樹脂を含んでなる成形材料であって、前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含むものであり、かつ、前記サイジング剤塗布炭素繊維は、該サイジング剤表面をX線源としてAlKα1,2を用い、X線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、前記成形材料中の炭素繊維は束状または単繊維状で実質的に2次元配向していることを特徴とする。 The present invention employs the following means in order to solve the above problems. That is, the present invention is a molding material comprising a sizing agent-coated carbon fiber in which at least carbon fiber is coated with a sizing agent and a matrix resin, wherein the sizing agent includes an aliphatic epoxy compound (A) and an aromatic compound. (B) contains at least an aromatic epoxy compound (B1), and the sizing agent-coated carbon fiber uses AlKα 1,2 with the surface of the sizing agent as an X-ray source, by X-ray photoelectron spectroscopy. The height (cps) of the component of the binding energy (284.6 eV) attributed to (a) CHx, C—C, C = C of the C 1s inner shell spectrum measured at a photoemission angle of 15 °, (b ) The ratio (a) / (b) of the binding energy (286.1 eV) attributed to C—O to the height (cps) of the component is 0.50 to 0.90. The carbon fibers in the molding composition is characterized in that it is substantially aligned two-dimensionally in a bundle or single fiber.

また、本発明の成形材料は、上記発明において、前記サイジング剤塗布炭素繊維の水分率は、0.010〜0.030質量%であることを特徴とする。   The molding material according to the present invention is characterized in that, in the above invention, the sizing agent-coated carbon fiber has a moisture content of 0.010 to 0.030% by mass.

また、本発明の成形材料は、上記発明において、前記サイジング剤中の脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)の質量比は、52/48〜80/20であることを特徴とする。   In the molding material of the present invention, the mass ratio of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) in the sizing agent is 52/48 to 80/20. And

また、本発明の成形材料は、上記発明において、前記脂肪族エポキシ化合物(A)は、分子内にエポキシ基を2以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物であることを特徴とする。   In the molding material of the present invention, in the above invention, the aliphatic epoxy compound (A) is a polyether type polyepoxy compound and / or a polyol type polyepoxy compound having two or more epoxy groups in the molecule. Features.

また、本発明の成形材料は、上記発明において、前記脂肪族エポキシ化合物(A)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることを特徴とする。   Further, the molding material of the present invention is the above invention, wherein the aliphatic epoxy compound (A) is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, Tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, Neopentyl glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol , Characterized in that sorbitol, and a arabitol, glycidyl ether type epoxy compound obtained by reaction with epichlorohydrin.

また、本発明の成形材料は、上記発明において、前記芳香族エポキシ化合物(B1)は、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the aromatic epoxy compound (B1) is a bisphenol A type epoxy compound or a bisphenol F type epoxy compound.

また、本発明の成形材料は、上記発明において、前記サイジング剤塗布炭素繊維は、該サイジング剤塗布炭素繊維を、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすものであることを特徴とする。
(I)超音波処理前の前記サイジング剤塗布炭素繊維の表面の(a)/(b)の値
(II)前記サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
In the molding material of the present invention, the sizing agent-coated carbon fiber is measured at a photoelectron escape angle of 55 ° by X-ray photoelectron spectroscopy using 400 eV X-rays. Of the C1s inner shell spectrum (a) the height (cps) of the component of the binding energy (284.6 eV) attributed to CHx, CC, C = C, and (b) the bond attributed to CO The values of (I) and (II) obtained from the ratio (a) / (b) with the height (cps) of the component of energy (286.1 eV) satisfy the relationship of (III) Features.
(I) Value of (a) / (b) on the surface of the sizing agent-coated carbon fiber before sonication (II) Sizing agent adhesion by sonicating the sizing agent-coated carbon fiber in an acetone solvent (A) / (b) value (III) 0.50 ≦ (I) ≦ 0.90 and 0.60 <on the surface of the sizing agent-coated carbon fiber washed to 0.09 to 0.20% by mass (II) / (I) <1.0

また、本発明の成形材料は、上記発明において、前記成形材料を、該成形材料を構成する前記マトリックス樹脂を溶解する溶媒中で超音波処理することで、前記サイジング剤塗布炭素繊維表面のサイジング剤付着量を0.09〜0.20質量%まで洗浄された該サイジング剤塗布炭素繊維の表面は、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.30〜0.70となるものであることを特徴とする。   Further, the molding material of the present invention is the sizing agent on the surface of the carbon fiber coated with the sizing agent by ultrasonicating the molding material in a solvent that dissolves the matrix resin constituting the molding material. The surface of the carbon fiber coated with the sizing agent, which has been washed to an adhesion amount of 0.09 to 0.20% by mass, is measured in the C1s measured at a photoelectron escape angle of 55 ° by X-ray photoelectron spectroscopy using 400 eV X-rays. The height (cps) of the component of the binding energy (284.6 eV) attributed to (a) CHx, C—C, C═C of the shell spectrum, and (b) the binding energy (286) attributed to C—O. .1 eV) component height (cps) ratio (a) / (b) is 0.30 to 0.70.

また、本発明の成形材料は、上記発明において、前記脂肪族エポキシ化合物(A)の付着量は、0.2〜2.0質量%であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the amount of the aliphatic epoxy compound (A) attached is 0.2 to 2.0% by mass.

また、本発明の成形材料は、上記発明において、前記炭素繊維の化学修飾X線光電子分光法により測定される表面カルボキシル基濃度COOH/Cは0.003〜0.015、表面水酸基濃度COH/Cは0.001〜0.050であることを特徴とする。   Further, the molding material of the present invention is the above invention, wherein the surface carboxyl group concentration COOH / C measured by chemical modification X-ray photoelectron spectroscopy of the carbon fiber is 0.003 to 0.015, and the surface hydroxyl group concentration COH / C. Is 0.001 to 0.050.

また、本発明の成形材料は、上記発明において、前記マトリックス樹脂は、熱可塑性樹脂であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the matrix resin is a thermoplastic resin.

また、本発明の成形材料は、上記発明において、前記熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリスチレン系樹脂およびポリオレフィン系樹脂から選ばれる一種以上であることを特徴とする。   Further, the molding material of the present invention is the above invention, wherein the thermoplastic resin is a polyarylene sulfide resin, a polyether ether ketone resin, a polyphenylene ether resin, a polyoxymethylene resin, a polyester resin, a polycarbonate resin, a polystyrene resin, and the like. It is at least one selected from polyolefin resins.

また、本発明の成形材料は、上記発明において、前記熱可塑性樹脂は、ポリアミドであることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the thermoplastic resin is polyamide.

また、本発明の成形材料は、上記発明において、前記マトリックス樹脂は、熱硬化性樹脂であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the matrix resin is a thermosetting resin.

また、本発明の成形材料は、上記発明において、前記熱硬化性樹脂は、ラジカル重合系樹脂であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the thermosetting resin is a radical polymerization resin.

また、本発明の成形材料は、上記発明において、前記成形材料は、ウェブ状、不織布状、フェルト状、またはマット状であることを特徴とする。   The molding material of the present invention is characterized in that, in the above invention, the molding material is in a web shape, a nonwoven fabric shape, a felt shape, or a mat shape.

また、本発明は、上記のいずれか一つに記載の成形材料を製造する成形材料の製造方法であって、炭素繊維を、ウェブ状、不織布状、フェルト状、またはマット状の生地に加工する加工工程と、前記加工工程で得られた生地100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部付与する付与工程と、前記付与工程でサイジング剤が付与された生地1〜80質量%に対し、マトリックス樹脂20〜99質量%を付与して、複合化する複合化工程を含むことを特徴とする。   The present invention also provides a molding material manufacturing method for manufacturing the molding material according to any one of the above, wherein the carbon fiber is processed into a web-like, non-woven fabric, felt-like, or mat-like fabric. With respect to 100 parts by mass of the dough obtained in the processing step and the processing step, 35 to 65% by mass of the aliphatic epoxy compound (A) and 35 to 65% of the aromatic compound (B) with respect to the total amount of the sizing agent excluding the solvent. An application step of applying 0.1 to 10 parts by mass of a sizing agent containing at least 60% by mass, and a matrix resin of 20 to 99% by mass with respect to 1 to 80% by mass of the dough provided with the sizing agent in the application step. It is characterized by including a compounding step of applying and compounding.

また、本発明は、上記のいずれか一つに記載の成形材料を製造する成形材料の製造方法であって、炭素繊維100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部塗布してサイジング剤塗布炭素繊維を得る塗布工程と、前記塗布工程で得られたサイジング剤塗布炭素繊維を1〜50mmに切断する切断工程と、前記切断工程で切断されたサイジング剤塗布炭素繊維1〜80質量%と、マトリックス樹脂20〜99質量%とを混合し、複合化する複合化工程と、を含むことを特徴とする。   Further, the present invention is a method for producing a molding material for producing the molding material according to any one of the above, and is aliphatic with respect to 100 parts by mass of the carbon fiber relative to the total amount of the sizing agent excluding the solvent An application step of obtaining 0.1 to 10 parts by mass of a sizing agent containing at least 35 to 65% by mass of an epoxy compound (A) and 35 to 60% by mass of an aromatic compound (B) to obtain a sizing agent-coated carbon fiber; A cutting step for cutting the sizing agent-coated carbon fibers obtained in the coating step into 1 to 50 mm, a sizing agent-coated carbon fiber cut in the cutting step in an amount of 1 to 80% by mass, and a matrix resin in an amount of 20 to 99% by mass. And a compounding step of mixing and compounding.

また、本発明の炭素繊維強化複合材料は、上記のいずれか一つに記載の成形材料、または、上記のいずれかの記載の方法で製造された成形材料を成形してなることを特徴とする。   Moreover, the carbon fiber reinforced composite material of the present invention is formed by molding the molding material according to any one of the above, or the molding material manufactured by any of the methods described above. .

本発明にかかる成形材料および成形材料の製造方法は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含むサイジング剤を炭素繊維に塗布して、サイジング剤塗布炭素繊維のサイジング剤表面を特定の化学組成とすることにより、炭素繊維と、マトリックス樹脂との界面接着性を向上するとともに、湿潤下においても高い力学特性が維持できる。
また、本発明の炭素繊維強化複合材料は、軽量でありながら強度、弾性率が優れるため、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。
The molding material and the manufacturing method of the molding material according to the present invention are obtained by applying a sizing agent containing at least an aromatic epoxy compound (B1) as an aliphatic epoxy compound (A) and an aromatic compound (B) to carbon fibers, and sizing By making the surface of the sizing agent of the agent-coated carbon fiber have a specific chemical composition, the interfacial adhesion between the carbon fiber and the matrix resin can be improved, and high mechanical properties can be maintained even under wet conditions.
Further, since the carbon fiber reinforced composite material of the present invention is lightweight and has excellent strength and elastic modulus, it is suitable for many fields such as aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials and sports equipment. Can be used.

以下、更に詳しく、本発明の成形材料、成形材料の製造方法および炭素繊維強化複合材料を実施するための形態について説明をする。   Hereinafter, in more detail, the form for implementing the molding material of this invention, the manufacturing method of a molding material, and a carbon fiber reinforced composite material is demonstrated.

本発明は、少なくとも炭素繊維にサイジング剤が塗布されたサイジング剤塗布炭素繊維およびマトリックス樹脂を含んでなる成形材料であって、前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含むものであり、かつ、前記サイジング剤塗布炭素繊維は、該サイジング剤表面をX線源としてAlKα1,2を用いX線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、前記成形材料中の炭素繊維は束状または単繊維状で実質的に2次元配向していることを特徴とする成形材料である。 The present invention is a molding material comprising at least a sizing agent-coated carbon fiber in which a sizing agent is applied to carbon fibers and a matrix resin, and the sizing agent includes an aliphatic epoxy compound (A) and an aromatic compound (B). ) And at least the aromatic epoxy compound (B1), and the sizing agent-coated carbon fiber has a photoelectron escape angle by X-ray photoelectron spectroscopy using AlKα 1,2 using the sizing agent surface as an X-ray source. The height (cps) of the component of the binding energy (284.6 eV) attributed to (a) CHx, C-C, C = C in the C 1s core spectrum measured at 15 °, and (b) C- The ratio (a) / (b) of the binding energy (286.1 eV) attributed to O to the height (cps) of the component is 0.50 to 0.90, Carbon fiber in is the molding material characterized in that it is substantially aligned two-dimensionally in a bundle or single fiber.

本発明者らの知見によれば、かかる範囲のものは、炭素繊維とマトリックス樹脂との界面接着性が高く、優れた力学特性を有するとともに、マトリックス樹脂として吸湿性が高い樹脂を使用した際にも、湿潤下での物性低下が抑制された炭素繊維強化複合材料を得ることができる。   According to the knowledge of the present inventors, those in such a range have a high interfacial adhesion between the carbon fiber and the matrix resin, have excellent mechanical properties, and use a highly hygroscopic resin as the matrix resin. In addition, it is possible to obtain a carbon fiber reinforced composite material in which deterioration of physical properties under moisture is suppressed.

エポキシ化合物として脂肪族エポキシ化合物(A)のみからなるサイジング剤を塗布した炭素繊維は、炭素繊維とサイジング剤の相互作用が強く接着性が良好であることから、それを用いた炭素繊維強化複合材料の物性が良好になることが確認されている。そのメカニズムは確かではないが、脂肪族エポキシ化合物(A)は柔軟な骨格および自由度が高い構造に由来して、炭素繊維表面のカルボキシル基および水酸基等の官能基と、サイジング剤である脂肪族エポキシ化合物(A)が強い相互作用を形成することが可能であると考えられる。しかしながら、脂肪族エポキシ化合物(A)は、炭素繊維表面との相互作用により高い接着性を発現する一方、その構造に由来して水との相互作用が強いことから、脂肪族エポキシ化合物(A)のみからなるサイジング剤を塗布した炭素繊維は水分率が高く、特に吸湿性の高い樹脂を用いた場合には、これを含む成形材料は湿潤下での物性が若干低下する課題があることが確認されている。   Carbon fiber coated with a sizing agent composed only of an aliphatic epoxy compound (A) as an epoxy compound has a strong interaction between the carbon fiber and the sizing agent and has good adhesiveness. Therefore, a carbon fiber reinforced composite material using the carbon fiber is used. It has been confirmed that the physical properties of the film become good. Although the mechanism is not certain, the aliphatic epoxy compound (A) is derived from a flexible skeleton and a structure having a high degree of freedom, so that a functional group such as a carboxyl group and a hydroxyl group on the surface of the carbon fiber and an aliphatic that is a sizing agent It is considered that the epoxy compound (A) can form a strong interaction. However, while the aliphatic epoxy compound (A) exhibits high adhesiveness due to the interaction with the carbon fiber surface, the aliphatic epoxy compound (A) has a strong interaction with water due to its structure. Carbon fiber coated with a sizing agent consisting of only high moisture content, especially when a highly hygroscopic resin is used, it is confirmed that the molding material containing this has a problem that the physical properties under wetness are slightly reduced Has been.

一方、エポキシ化合物として、芳香族エポキシ化合物(B1)のみからなり、脂肪族エポキシ化合物(A)を含まないサイジング剤を塗布した炭素繊維とマトリックス樹脂を含む成形材料は、剛直な界面層を形成することができるという利点がある。また、サイジング剤の疎水性が高く炭素繊維表面の水分率を低くすることができるという利点もある。しかしながら、芳香族エポキシ化合物(B1)はその化合物の剛直さに由来して、脂肪族エポキシ化合物(A)と比較して、炭素繊維とサイジング剤の相互作用が若干劣るため、それを用いた成形材料の力学特性が若干劣ることが確認されている。   On the other hand, a molding material comprising a carbon fiber and a matrix resin coated with a sizing agent composed only of an aromatic epoxy compound (B1) and not containing an aliphatic epoxy compound (A) as an epoxy compound forms a rigid interface layer. There is an advantage that you can. In addition, there is an advantage that the sizing agent is highly hydrophobic and the moisture content of the carbon fiber surface can be lowered. However, since the aromatic epoxy compound (B1) is derived from the rigidity of the compound and the interaction between the carbon fiber and the sizing agent is slightly inferior to the aliphatic epoxy compound (A), molding using the aromatic epoxy compound (B1) It has been confirmed that the mechanical properties of the material are slightly inferior.

本発明において、脂肪族エポキシ化合物(A)と芳香族化合物(B)を混合したサイジング剤を使用した場合、より極性の高い脂肪族エポキシ化合物(A)が炭素繊維側に多く偏在し、炭素繊維と逆側のサイジング層の最外層に極性の低い芳香族化合物(B)が偏在しやすいという現象が見られることが重要である。このサイジング層の傾斜構造の結果として、脂肪族エポキシ化合物(A)は炭素繊維近傍で炭素繊維と強い相互作用を及ぼし、極性の低い芳香族化合物(B)はマトリックス樹脂と強い相互作用を行う。その結果、炭素繊維とマトリックス樹脂の界面接着性を高めることができ、得られる炭素繊維強化複合材料の物性を高くすることができる。また、外層に多く存在する芳香族化合物(B)は、成形材料または炭素繊維強化複合材料中で炭素繊維近傍の水分率を低下させる役割を果たす。このことにより、吸湿性の高い樹脂をマトリックス樹脂として用いた場合にも、湿潤下において炭素繊維近傍の水分率が低くなるため成形材料から得られた炭素繊維強化複合材料の物性の低下が抑制される。そこで、X線光電子分光法によって測定されるサイジング剤表層の脂肪族エポキシ化合物(A)と芳香族化合物(B)の存在比率が重要である。   In the present invention, when a sizing agent in which an aliphatic epoxy compound (A) and an aromatic compound (B) are mixed is used, the aliphatic epoxy compound (A) having higher polarity is unevenly distributed on the carbon fiber side, and the carbon fiber It is important that the phenomenon that the aromatic compound (B) having a low polarity tends to be unevenly distributed is found in the outermost layer of the sizing layer on the opposite side. As a result of the gradient structure of the sizing layer, the aliphatic epoxy compound (A) has a strong interaction with the carbon fiber in the vicinity of the carbon fiber, and the aromatic compound (B) having a low polarity has a strong interaction with the matrix resin. As a result, the interfacial adhesion between the carbon fiber and the matrix resin can be enhanced, and the physical properties of the obtained carbon fiber reinforced composite material can be enhanced. Moreover, the aromatic compound (B) which exists abundantly in an outer layer plays the role which reduces the moisture content of carbon fiber vicinity in a molding material or a carbon fiber reinforced composite material. As a result, even when a highly hygroscopic resin is used as the matrix resin, the moisture content in the vicinity of the carbon fibers becomes low when wet, so that the deterioration of the physical properties of the carbon fiber reinforced composite material obtained from the molding material is suppressed. The Therefore, the abundance ratio of the aliphatic epoxy compound (A) and the aromatic compound (B) on the sizing agent surface layer measured by X-ray photoelectron spectroscopy is important.

本発明において使用するサイジング剤は、脂肪族エポキシ化合物(A)と芳香族化合物(B)とを少なくとも含む。脂肪族エポキシ化合物(A)は、塗布されたサイジング剤全量に対して35〜65質量%含まれることが好ましい。脂肪族エポキシ化合物(A)が35質量%以上の割合で炭素繊維に塗布されていることで、マトリックス樹脂との界面接着性が向上し、炭素繊維強化複合材料の物性が向上する。また、65質量%以下であることで、サイジング剤として脂肪族エポキシ化合物(A)以外の成分を用いることができ、サイジング剤とマトリックス樹脂との相互作用が高くなり、これにより成形材料から得られた炭素繊維強化複合材料の物性が良好になる。脂肪族エポキシ化合物(A)の割合は38質量%以上がより好ましく、40質量%以上がさらに好ましい。また、脂肪族エポキシ化合物(A)の割合は60質量%以下がより好ましく、55質量%以上がさらに好ましい。   The sizing agent used in the present invention contains at least the aliphatic epoxy compound (A) and the aromatic compound (B). It is preferable that 35-65 mass% of an aliphatic epoxy compound (A) is contained with respect to the apply | coated sizing agent whole quantity. When the aliphatic epoxy compound (A) is applied to the carbon fibers at a ratio of 35% by mass or more, the interfacial adhesion with the matrix resin is improved, and the physical properties of the carbon fiber reinforced composite material are improved. Moreover, components other than the aliphatic epoxy compound (A) can be used as the sizing agent when the amount is 65% by mass or less, and the interaction between the sizing agent and the matrix resin is increased, thereby obtaining the molding material. The physical properties of the carbon fiber reinforced composite material are improved. The proportion of the aliphatic epoxy compound (A) is more preferably 38% by mass or more, and further preferably 40% by mass or more. The proportion of the aliphatic epoxy compound (A) is more preferably 60% by mass or less, and further preferably 55% by mass or more.

芳香族化合物(B)は、塗布されたサイジング剤全量に対して35〜60質量%含まれることが好ましい。芳香族化合物(B)を35質量%以上含むことで、サイジング剤外層中の芳香族化合物(B)の組成を高く維持することができるため、マトリックス樹脂との相互作用が強くなるとともに、成形材料から得られた炭素繊維強化複合材料中の炭素繊維近傍の水分率を低くできる。芳香族化合物(B)の割合が60質量%以下であることで、上述したサイジング剤中の傾斜構造を発現することができ、接着性を維持することができることから好ましい。芳香族化合物(B)の割合は37質量%以上がより好ましく、39質量%以上がさらに好ましい。また、芳香族化合物(B)の割合は55質量%以下がより好ましく、45質量%以上がさらに好ましい。   It is preferable that 35-60 mass% of aromatic compounds (B) are contained with respect to the applied sizing agent total amount. By containing 35% by mass or more of the aromatic compound (B), the composition of the aromatic compound (B) in the outer layer of the sizing agent can be maintained high, so that the interaction with the matrix resin becomes strong and the molding material The moisture content near the carbon fiber in the carbon fiber reinforced composite material obtained from the above can be lowered. It is preferable that the ratio of the aromatic compound (B) is 60% by mass or less because the above-described inclined structure in the sizing agent can be expressed and the adhesiveness can be maintained. The proportion of the aromatic compound (B) is more preferably 37% by mass or more, and further preferably 39% by mass or more. The proportion of the aromatic compound (B) is more preferably 55% by mass or less, and further preferably 45% by mass or more.

本発明におけるサイジング剤中のエポキシ成分としては、脂肪族エポキシ化合物(A)と芳香族化合物(B)である芳香族エポキシ化合物(B1)とが含まれる。サイジング剤中の脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)との質量比(A)/(B1)は52/48〜80/20であることが好ましい。(A)/(B1)が52/48以上で、炭素繊維表面に存在する脂肪族エポキシ化合物(A)の比率が大きくなり、炭素繊維との界面接着性が向上する。その結果、炭素繊維強化複合材料の曲げ強度などのコンポジット物性が高くなるため好ましい。また、脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)との質量比(A)/(B1)が80/20以下とすることで、水分率の高い脂肪族エポキシ化合物が炭素繊維強化複合材料の炭素繊維表面に存在する量が少なくなるとともに、マトリックス樹脂と相互作用が可能な芳香族化合物(B)が増えることから好ましい。(A)/(B1)の質量比は55/45以上がより好ましく、60/40以上がさらに好ましい。また、75/35以下がより好ましく、73/37以下がさらに好ましい。   The epoxy component in the sizing agent in the present invention includes an aliphatic epoxy compound (A) and an aromatic epoxy compound (B1) that is an aromatic compound (B). The mass ratio (A) / (B1) between the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) in the sizing agent is preferably 52/48 to 80/20. When (A) / (B1) is 52/48 or more, the ratio of the aliphatic epoxy compound (A) present on the carbon fiber surface is increased, and the interfacial adhesion with the carbon fiber is improved. As a result, the composite physical properties such as the bending strength of the carbon fiber reinforced composite material are increased, which is preferable. Moreover, when the mass ratio (A) / (B1) of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) is 80/20 or less, the aliphatic epoxy compound having a high moisture content is reinforced with carbon fiber. This is preferable because the amount of the composite material present on the carbon fiber surface decreases and the amount of the aromatic compound (B) capable of interacting with the matrix resin increases. The mass ratio of (A) / (B1) is more preferably 55/45 or more, and still more preferably 60/40 or more. Moreover, 75/35 or less is more preferable, and 73/37 or less is further more preferable.

また、本発明において、脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)の125℃における表面張力は35〜45mJ/mであることが好ましい。表面張力が近似する脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)を組み合わせることで、2種の化合物の混合性が良好となるとともに、サイジング剤が塗布された炭素繊維の保管時に、サイジング剤成分のブリードアウト等の発生を抑制することができる。 Moreover, in this invention, it is preferable that the surface tension in 125 degreeC of an aliphatic epoxy compound (A) and an aromatic epoxy compound (B1) is 35-45 mJ / m < 2 >. By combining the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) whose surface tensions are close to each other, the mixing property of the two types of compounds is improved, and at the time of storing the carbon fiber coated with the sizing agent, Generation | occurrence | production of the bleed-out etc. of a sizing agent component can be suppressed.

ここで、本発明において、脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)の125℃における表面張力の値は、次の手法にて白金プレートを用いたウィルヘルミ法により得ることができるものである。   Here, in the present invention, the surface tension value at 125 ° C. of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) can be obtained by the Wilhelmi method using a platinum plate by the following method. It is.

各成分のみからなる125℃に温度調節したサイジング液中に白金プレートを接触させると、サイジング液が白金プレートに対してぬれ上がり、このときにプレートの周囲に沿って表面張力が働き、プレートをサイジング液中に引き込もうとする。この力を読み取り算出する。例えば、協和界面科学社製の表面張力計DY−500を用いて、静的な表面張力として測定することができる。   When a platinum plate is brought into contact with a sizing solution that is composed of only the components and is adjusted to a temperature of 125 ° C., the sizing solution wets the platinum plate. At this time, surface tension acts along the periphery of the plate, and the plate is sized. Try to pull into the liquid. This force is read and calculated. For example, it can be measured as a static surface tension using a surface tension meter DY-500 manufactured by Kyowa Interface Science Co., Ltd.

本発明において使用する脂肪族エポキシ化合物(A)は、芳香環を含まないエポキシ化合物である。自由度の高い柔軟な骨格を有していることから、炭素繊維と強い相互作用を有することが可能である。その結果、サイジング剤を塗布した炭素繊維との界面接着性が向上し、それを用いた炭素繊維強化複合材料の物性が向上する。   The aliphatic epoxy compound (A) used in the present invention is an epoxy compound containing no aromatic ring. Since it has a flexible skeleton with a high degree of freedom, it can have a strong interaction with carbon fibers. As a result, the interfacial adhesion with the carbon fiber coated with the sizing agent is improved, and the physical properties of the carbon fiber reinforced composite material using the same are improved.

本発明において、脂肪族エポキシ化合物(A)は分子内に1個以上のエポキシ基を有する。そのことにより、炭素繊維と脂肪族エポキシ化合物(A)中のエポキシ基の強固な結合を形成することができる。分子内のエポキシ基は、2個以上であることが好ましく、3個以上であることがより好ましい。分子内に2個以上のエポキシ基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りのエポキシ基が外層の芳香族エポキシ化合物(B1)あるいはマトリックス樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上するため好ましい。エポキシ基の数の上限は特にないが、界面接着性が飽和する場合があるため10個で十分である。   In the present invention, the aliphatic epoxy compound (A) has one or more epoxy groups in the molecule. Thereby, a strong bond between the carbon fiber and the epoxy group in the aliphatic epoxy compound (A) can be formed. The number of epoxy groups in the molecule is preferably 2 or more, and more preferably 3 or more. When the epoxy compound has two or more epoxy groups in the molecule, even if one epoxy group forms a covalent bond with the oxygen-containing functional group on the surface of the carbon fiber, the remaining epoxy group is the aromatic epoxy of the outer layer. A covalent bond or a hydrogen bond can be formed with the compound (B1) or the matrix resin, and the adhesiveness is further improved, which is preferable. There is no particular upper limit on the number of epoxy groups, but 10 is sufficient because the interfacial adhesion may be saturated.

本発明において、脂肪族エポキシ化合物(A)は2種以上の官能基を3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を4個以上有するエポキシ化合物であることがより好ましい。脂肪族エポキシ化合物(A)が有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基から選択されるものが好ましい。分子内に3個以上のエポキシ基または他の官能基を有する脂肪族エポキシ化合物(A)であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基が芳香族エポキシ化合物(B1)あるいはマトリックス樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、接着性の観点から10個で十分である。   In the present invention, the aliphatic epoxy compound (A) is preferably an epoxy compound having 3 or more of 2 or more types of functional groups, and more preferably an epoxy compound having 4 or more of 2 or more types of functional groups. . The functional group possessed by the aliphatic epoxy compound (A) is preferably selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, or a sulfo group in addition to the epoxy group. In the case of the aliphatic epoxy compound (A) having three or more epoxy groups or other functional groups in the molecule, even when one epoxy group forms a covalent bond with the oxygen-containing functional group on the carbon fiber surface, The remaining two or more epoxy groups or other functional groups can form a covalent bond or a hydrogen bond with the aromatic epoxy compound (B1) or the matrix resin, and the adhesion is further improved. There is no particular upper limit on the number of functional groups containing an epoxy group, but 10 is sufficient from the viewpoint of adhesiveness.

本発明において、脂肪族エポキシ化合物(A)のエポキシ当量は、360g/eq.未満であることが好ましく、より好ましくは270g/eq.未満であり、さらに好ましくは180g/eq.未満である。エポキシ当量が360g/eq.未満であると、高密度で炭素繊維との相互作用が形成され、炭素繊維との界面接着性がさらに向上する。また、脂肪族エポキシ化合物(A)のエポキシ当量の下限は特にないが、界面接着性が飽和する場合があるため90g/eq.以上であれば十分である。   In the present invention, the epoxy equivalent of the aliphatic epoxy compound (A) is 360 g / eq. Is preferably less than 270 g / eq. Less, more preferably 180 g / eq. Is less than. Epoxy equivalent is 360 g / eq. If it is less than the above, the interaction with the carbon fiber is formed at a high density, and the interfacial adhesion with the carbon fiber is further improved. Moreover, there is no particular lower limit of the epoxy equivalent of the aliphatic epoxy compound (A), but the interface adhesiveness may be saturated, so that 90 g / eq. That's enough.

本発明において、脂肪族エポキシ化合物(A)の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物が挙げられる。   In the present invention, specific examples of the aliphatic epoxy compound (A) include, for example, a glycidyl ether type epoxy compound derived from a polyol, a glycidyl amine type epoxy compound derived from an amine having a plurality of active hydrogens, and a polycarboxylic acid. Examples thereof include an induced glycidyl ester type epoxy compound and an epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule.

グリシジルエーテル型エポキシ化合物としては、例えば、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。また、グリシジルエーテル型エポキシ化合物として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、またはアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物も例示される。また、このグリシジルエーテル型エポキシ化合物として、ジシクロペンタジエン骨格を有するグリシジルエーテル型エポキシ化合物も例示される。   Examples of the glycidyl ether type epoxy compound include a glycidyl ether type epoxy compound obtained by a reaction with epichlorohydrin. Further, as glycidyl ether type epoxy compounds, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4 -Cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, glycerol, diglycerol, polyglycerol, trimethylolpropane, pen Erythritol, sorbitol or a arabitol, glycidyl ether type epoxy compound obtained by reaction of epichlorohydrin are also exemplified. Examples of the glycidyl ether type epoxy compound include a glycidyl ether type epoxy compound having a dicyclopentadiene skeleton.

グリシジルアミン型エポキシ化合物としては、例えば、1,3−ビス(アミノメチル)シクロヘキサンが挙げられる。
グリシジルエステル型エポキシ化合物としては、例えば、ダイマー酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ化合物が挙げられる。
Examples of the glycidylamine type epoxy compound include 1,3-bis (aminomethyl) cyclohexane.
Examples of the glycidyl ester type epoxy compound include a glycidyl ester type epoxy compound obtained by reacting dimer acid with epichlorohydrin.

分子内に複数の2重結合を有する化合物を酸化させて得られるエポキシ化合物としては、例えば、分子内にエポキシシクロヘキサン環を有するエポキシ化合物が挙げられる。さらに、このエポキシ化合物としては、エポキシ化大豆油が挙げられる。
本発明に使用する脂肪族エポキシ化合物(A)として、これらのエポキシ化合物以外にも、トリグリシジルイソシアヌレートのようなエポキシ化合物が使用可能である。
Examples of the epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule include an epoxy compound having an epoxycyclohexane ring in the molecule. Furthermore, the epoxy compound includes epoxidized soybean oil.
In addition to these epoxy compounds, an epoxy compound such as triglycidyl isocyanurate can be used as the aliphatic epoxy compound (A) used in the present invention.

本発明における脂肪族エポキシ化合物(A)は、1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基およびスルホ基から選ばれる、少なくとも1個以上の官能基を有することが好ましい。脂肪族エポキシ化合物(A)の具体例として、例えば、エポキシ基と水酸基を有する化合物、エポキシ基とアミド基を有する化合物、エポキシ基とイミド基を有する化合物、エポキシ基とウレタン基を有する化合物、エポキシ基とウレア基を有する化合物、エポキシ基とスルホニル基を有する化合物、エポキシ基とスルホ基を有する化合物が挙げられる。   The aliphatic epoxy compound (A) in the present invention is selected from one or more epoxy groups and a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, a carboxyl group, an ester group, and a sulfo group, It preferably has one or more functional groups. Specific examples of the aliphatic epoxy compound (A) include, for example, a compound having an epoxy group and a hydroxyl group, a compound having an epoxy group and an amide group, a compound having an epoxy group and an imide group, a compound having an epoxy group and a urethane group, and an epoxy A compound having a group and a urea group, a compound having an epoxy group and a sulfonyl group, and a compound having an epoxy group and a sulfo group.

エポキシ基に加えて水酸基を有する化合物としては、例えば、ソルビトール型ポリグリシジルエーテルおよびグリセロール型ポリグリシジルエーテル等が挙げられ、具体的には“デナコール(登録商標)”EX−611、EX−612、EX−614、EX−614B、EX−622、EX−512、EX−521、EX−421、EX−313、EX−314およびEX−321(ナガセケムテックス株式会社製)等が挙げられる。   Examples of the compound having a hydroxyl group in addition to the epoxy group include sorbitol-type polyglycidyl ether and glycerol-type polyglycidyl ether. Specifically, “Denacol (registered trademark)” EX-611, EX-612, EX -614, EX-614B, EX-622, EX-512, EX-521, EX-421, EX-313, EX-314, and EX-321 (manufactured by Nagase ChemteX Corporation).

エポキシ基に加えてアミド基を有する化合物としては、例えば、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシは、脂肪族ジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。   Examples of the compound having an amide group in addition to the epoxy group include an amide-modified epoxy compound. The amide-modified epoxy can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of an aliphatic dicarboxylic acid amide.

エポキシ基に加えてウレタン基を有する化合物としては、例えば、ウレタン変性エポキシ化合物が挙げられ、具体的には“アデカレジン(登録商標)”EPU−78−13S、EPU−6、EPU−11、EPU−15、EPU−16A、EPU−16N、EPU−17T−6、EPU−1348およびEPU−1395(株式会社ADEKA製)等が挙げられる。または、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートなどが挙げられる。   Examples of the compound having a urethane group in addition to the epoxy group include a urethane-modified epoxy compound. Specifically, “Adeka Resin (registered trademark)” EPU-78-13S, EPU-6, EPU-11, EPU- 15, EPU-16A, EPU-16N, EPU-17T-6, EPU-1348, EPU-1395 (manufactured by ADEKA Corporation) and the like. Alternatively, by reacting the terminal hydroxyl group of polyethylene oxide monoalkyl ether with a polyvalent isocyanate equivalent to the amount of the hydroxyl group, and then reacting the isocyanate residue of the obtained reaction product with the hydroxyl group in the polyvalent epoxy compound. Can be obtained. Here, examples of the polyvalent isocyanate used include hexamethylene diisocyanate, isophorone diisocyanate, and norbornane diisocyanate.

エポキシ基に加えてウレア基を有する化合物としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシは脂肪族ジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。   Examples of the compound having a urea group in addition to the epoxy group include a urea-modified epoxy compound. A urea-modified epoxy can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of an aliphatic dicarboxylic acid urea.

本発明で用いる脂肪族エポキシ化合物(A)は、上述した中でも高い接着性が得られる観点から、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、またはアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物がより好ましい。   The aliphatic epoxy compound (A) used in the present invention is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene from the viewpoint of obtaining high adhesiveness among the above-mentioned. Glycol, tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentane Diol, neopentyl glycol, 1,6-hexanediol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, sorbitol, or alcohol And Bitoru, glycidyl ether type epoxy compound obtained by reaction of epichlorohydrin is more preferable.

上記の中でも本発明における脂肪族エポキシ化合物(A)は、高い接着性の観点から、分子内にエポキシ基を2以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物が好ましい。   Among the above, the aliphatic epoxy compound (A) in the present invention is preferably a polyether type polyepoxy compound and / or a polyol type polyepoxy compound having two or more epoxy groups in the molecule from the viewpoint of high adhesiveness.

また、脂肪族エポキシ化合物(A)が、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、またはアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることがより好ましい。   In addition, the aliphatic epoxy compound (A) is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1 , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1 , 4-cyclohexanedimethanol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, sorbitol, or arabitol; More preferably glycidyl ether type epoxy compound obtained by reaction of the chlorohydrin.

本発明において、脂肪族エポキシ化合物(A)は、ポリグリセロールポリグリシジルエーテルがさらに好ましい。   In the present invention, the aliphatic epoxy compound (A) is more preferably polyglycerol polyglycidyl ether.

本発明において、芳香族化合物(B)は、分子内に芳香環を1個以上有する化合物である。芳香環とは、炭素からのみからなる芳香環炭化水素でも良いし、窒素あるいは酸素などのヘテロ原子を含むフラン、チオフェン、ピロール、イミダゾールなどの複素芳香環でも構わない。また、芳香環はナフタレン、アントラセンなどの多環式芳香環でも構わない。サイジング剤が塗布された炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料において、炭素繊維近傍のいわゆる界面層は、炭素繊維あるいはサイジング剤の影響を受け、マトリックス樹脂とは異なる特性を有する場合がある。芳香族化合物(B)が芳香環を1個以上有すると、剛直な界面層が形成され、炭素繊維とマトリックス樹脂との間の応力伝達能力が向上し、炭素繊維強化複合材料の曲げ強度等の力学特性が向上する。特に、マトリックス樹脂として芳香環あるいは炭化水素系を多く含む疎水性の高い樹脂を用いた場合には、サイジング剤に含まれる芳香族化合物(B)との相互作用が高く接着性が向上するため好ましい。また、芳香環を有するエポキシ化合物は耐熱性が高いため、ポリアリーレンスルフィド樹脂に代表されるような成形温度が高い熱可塑性樹脂等の場合でも熱分解により消失することなく、本来の炭素繊維表面の酸素含有官能基との反応およびマトリックス樹脂との相互作用の機能を保つことが可能である。また、芳香環により疎水性が向上することにより、炭素繊維近傍の水分率を低下させることができるため、吸湿性の高いマトリックス樹脂を用いた場合にも湿潤下での炭素繊維複合材料の物性低下が抑制されるため好ましい。芳香環を2個以上有することで、芳香環による上述の効果が高まるため好ましい。芳香環の数の上限は特にないが、10個あれば力学特性が飽和することがあるため十分である。   In the present invention, the aromatic compound (B) is a compound having one or more aromatic rings in the molecule. The aromatic ring may be an aromatic ring hydrocarbon composed only of carbon, or a heteroaromatic ring such as furan, thiophene, pyrrole or imidazole containing a heteroatom such as nitrogen or oxygen. The aromatic ring may be a polycyclic aromatic ring such as naphthalene or anthracene. In a carbon fiber reinforced composite material composed of a carbon fiber coated with a sizing agent and a matrix resin, the so-called interface layer in the vicinity of the carbon fiber is affected by the carbon fiber or the sizing agent and may have different characteristics from the matrix resin. is there. When the aromatic compound (B) has one or more aromatic rings, a rigid interface layer is formed, the stress transmission ability between the carbon fiber and the matrix resin is improved, and the bending strength of the carbon fiber reinforced composite material is increased. Mechanical properties are improved. In particular, when a highly hydrophobic resin containing a large amount of aromatic rings or hydrocarbons is used as the matrix resin, it is preferable because the interaction with the aromatic compound (B) contained in the sizing agent is high and the adhesiveness is improved. . In addition, since an epoxy compound having an aromatic ring has high heat resistance, even if it is a thermoplastic resin having a high molding temperature such as polyarylene sulfide resin, it does not disappear due to thermal decomposition, and the original carbon fiber surface It is possible to maintain the function of the reaction with the oxygen-containing functional group and the interaction with the matrix resin. In addition, because the hydrophobicity is improved by the aromatic ring, the moisture content in the vicinity of the carbon fiber can be reduced, so even when a highly hygroscopic matrix resin is used, the physical properties of the carbon fiber composite material are reduced under wet conditions. Is preferable. It is preferable to have two or more aromatic rings because the above-described effects of the aromatic ring are enhanced. There is no particular upper limit on the number of aromatic rings, but ten is sufficient because the mechanical properties may be saturated.

本発明において、芳香族化合物(B)は分子内に1種以上の官能基を有することができる。また、サイジング剤に使用する芳香族化合物(B)は、1種類であっても良いし、複数の化合物を組み合わせて用いても良い。サイジング剤に複数の芳香族化合物(B)を使用する場合、使用する芳香族化合物(B)の中の少なくとも1種を分子内に1個以上のエポキシ基と1個以上の芳香環を有する芳香族エポキシ化合物(B1)とする。芳香族化合物(B)が分子内に有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基またはスルホ基から選択されるものが好ましく、1分子内に2種以上含んでいても良い。エポキシ基あるいはエポキシ基以外の官能基を用いることで、マトリックス樹脂と相互作用をもつことができて好ましい。サイジング剤に使用する芳香族化合物(B)は、芳香族エポキシ化合物(B1)以外には、化合物の安定性、高次加工性を良好にすることから、芳香族エステル化合物、芳香族ウレタン化合物が好ましく用いられる。   In the present invention, the aromatic compound (B) can have one or more functional groups in the molecule. Moreover, the aromatic compound (B) used for a sizing agent may be one kind, and may be used in combination of a some compound. When a plurality of aromatic compounds (B) are used for the sizing agent, at least one of the aromatic compounds (B) to be used has a fragrance having one or more epoxy groups and one or more aromatic rings in the molecule. Group epoxy compound (B1). The functional group that the aromatic compound (B) has in the molecule is selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, a carboxyl group, an ester group, or a sulfo group in addition to the epoxy group. It is preferable that two or more kinds may be contained in one molecule. It is preferable to use an epoxy group or a functional group other than an epoxy group because it can interact with the matrix resin. The aromatic compound (B) used for the sizing agent, in addition to the aromatic epoxy compound (B1), improves the stability and higher processability of the compound. Preferably used.

本発明において、芳香族エポキシ化合物(B1)のエポキシ基は、2個以上であることが好ましく、3個以上であることがより好ましい。また、10個以下で十分である。   In the present invention, the number of epoxy groups of the aromatic epoxy compound (B1) is preferably 2 or more, and more preferably 3 or more. Also, 10 or less is sufficient.

本発明において、芳香族エポキシ化合物(B1)は2種以上の官能基を3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を4個以上有するエポキシ化合物であることがより好ましい。芳香族エポキシ化合物(B1)が有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基から選択されるものが好ましい。分子内に3個以上のエポキシ基および他の官能基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基がマトリックス樹脂と共有結合、水素結合などの相互作用を形成することができ、マトリックス樹脂との界面接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、界面接着性が飽和する点から10個で十分である。   In the present invention, the aromatic epoxy compound (B1) is preferably an epoxy compound having 3 or more functional groups of 2 or more, more preferably an epoxy compound having 4 or more of 2 or more functional groups. . The functional group possessed by the aromatic epoxy compound (B1) is preferably selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, or a sulfo group in addition to the epoxy group. In the case of an epoxy compound having three or more epoxy groups and other functional groups in the molecule, even if one epoxy group forms a covalent bond with an oxygen-containing functional group on the surface of the carbon fiber, the remaining two or more These epoxy groups or other functional groups can form interactions such as covalent bonds and hydrogen bonds with the matrix resin, and the interfacial adhesion with the matrix resin is further improved. There is no particular upper limit on the number of functional groups including an epoxy group, but 10 is sufficient from the viewpoint of interfacial adhesion saturation.

本発明において、芳香族エポキシ化合物(B1)のエポキシ当量は、360g/eq.未満であることが好ましく、より好ましくは270g/eq.未満であり、さらに好ましくは180g/eq.未満である。芳香族エポキシ化合物(B1)のエポキシ当量が360g/eq.未満であると、高密度で共有結合が形成され、炭素繊維、脂肪族エポキシ化合物(A)あるいはマトリックス樹脂との界面接着性がさらに向上するため好ましい。芳香族エポキシ化合物(B1)のエポキシ当量の下限は特にないが、90g/eq.以上であれば界面接着性が飽和する観点から十分である。   In the present invention, the epoxy equivalent of the aromatic epoxy compound (B1) is 360 g / eq. Is preferably less than 270 g / eq. Less, more preferably 180 g / eq. Is less than. The epoxy equivalent of the aromatic epoxy compound (B1) is 360 g / eq. If it is less than the range, covalent bonds are formed at high density, and the interfacial adhesion with the carbon fiber, aliphatic epoxy compound (A) or matrix resin is further improved, which is preferable. There is no particular lower limit of the epoxy equivalent of the aromatic epoxy compound (B1), but 90 g / eq. The above is sufficient from the viewpoint of saturation of the interfacial adhesion.

本発明において、芳香族エポキシ化合物(B1)の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物が挙げられる。   In the present invention, specific examples of the aromatic epoxy compound (B1) include, for example, a glycidyl ether type epoxy compound derived from a polyol, a glycidyl amine type epoxy compound derived from an amine having a plurality of active hydrogens, and a polycarboxylic acid. Examples thereof include an induced glycidyl ester type epoxy compound and an epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule.

グリシジルエーテル型エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、1,6−ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、トリス(p−ヒドロキシフェニル)メタン、およびテトラキス(p−ヒドロキシフェニル)エタンが挙げられる。また、グリシジルエーテル型エポキシ化合物として、ビフェニルアラルキル骨格を有するグリシジルエーテル型エポキシ化合物も例示される。   Examples of the glycidyl ether type epoxy compound include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetrabromobisphenol A, phenol novolac, cresol novolac, hydroquinone, resorcinol, 4,4′-dihydroxy-3,3 ′, 5. , 5′-tetramethylbiphenyl, 1,6-dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, tris (p-hydroxyphenyl) methane, and tetrakis (p-hydroxyphenyl) ethane. Examples of the glycidyl ether type epoxy compound include a glycidyl ether type epoxy compound having a biphenylaralkyl skeleton.

グリシジルアミン型エポキシ化合物としては、例えば、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、m−キシリレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタンおよび9,9−ビス(4−アミノフェニル)フルオレンが挙げられる。   Examples of the glycidylamine type epoxy compound include N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, m-xylylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane and 9,9. -Bis (4-aminophenyl) fluorene.

さらに、例えば、グリシジルアミン型エポキシ化合物として、m−アミノフェノール、p−アミノフェノール、および4−アミノ−3−メチルフェノールのアミノフェノール類の水酸基とアミノ基の両方を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。   Further, for example, as a glycidylamine type epoxy compound, both the hydroxyl group and amino group of aminophenols of m-aminophenol, p-aminophenol, and 4-amino-3-methylphenol are reacted with epichlorohydrin. And an epoxy compound obtained.

グリシジルエステル型エポキシ化合物としては、例えば、フタル酸、テレフタル酸、ヘキサヒドロフタル酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ化合物が挙げられる。   Examples of the glycidyl ester type epoxy compound include glycidyl ester type epoxy compounds obtained by reacting phthalic acid, terephthalic acid, and hexahydrophthalic acid with epichlorohydrin.

本発明に使用する芳香族エポキシ化合物(B1)として、これらのエポキシ化合物以外にも、上に挙げたエポキシ化合物を原料として合成されるエポキシ化合物、例えば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ化合物が挙げられる。   In addition to these epoxy compounds, the aromatic epoxy compound (B1) used in the present invention is an epoxy compound synthesized from the above-mentioned epoxy compound, for example, oxazolidone from bisphenol A diglycidyl ether and tolylene diisocyanate. An epoxy compound synthesized by a ring formation reaction is exemplified.

本発明において、芳香族エポキシ化合物(B1)は、1個以上のエポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、エステル基およびスルホ基から選ばれる、少なくとも1個以上の官能基を有する芳香族エポキシ化合物(B1)が好ましく用いられる。例えば、エポキシ基と水酸基を有する化合物、エポキシ基とアミド基を有する化合物、エポキシ基とイミド基を有する化合物、エポキシ基とウレタン基を有する化合物、エポキシ基とウレア基を有する化合物、エポキシ基とスルホニル基を有する化合物、エポキシ基とスルホ基を有する化合物が挙げられる。   In the present invention, the aromatic epoxy compound (B1) is selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, a carboxyl group, an ester group, and a sulfo group in addition to one or more epoxy groups. An aromatic epoxy compound (B1) having at least one functional group is preferably used. For example, compounds having epoxy group and hydroxyl group, compounds having epoxy group and amide group, compounds having epoxy group and imide group, compounds having epoxy group and urethane group, compounds having epoxy group and urea group, epoxy group and sulfonyl Examples thereof include compounds having a group and compounds having an epoxy group and a sulfo group.

エポキシ基に加えてアミド基を有する芳香族エポキシ化合物(B1)としては、例えば、グリシジルベンズアミド、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシ化合物は、芳香環を含有するジカルボン酸アミドのカルボキシル基に、2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。   Examples of the aromatic epoxy compound (B1) having an amide group in addition to the epoxy group include glycidyl benzamide and an amide-modified epoxy compound. The amide-modified epoxy compound can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of a dicarboxylic acid amide containing an aromatic ring.

エポキシ基に加えてイミド基を有する芳香族エポキシ化合物(B1)としては、例えば、グリシジルフタルイミド等が挙げられる。具体的には“デナコール(登録商標)”EX−731(ナガセケムテックス株式会社製)等が挙げられる。   Examples of the aromatic epoxy compound (B1) having an imide group in addition to the epoxy group include glycidyl phthalimide. Specific examples include “Denacol (registered trademark)” EX-731 (manufactured by Nagase ChemteX Corporation).

エポキシ基に加えてウレタン基を有する芳香族エポキシ化合物(B1)としては、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の芳香環を含有する多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、2,4−トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネートおよびビフェニル−2,4,4’−トリイソシアネートなどが挙げられる。   As the aromatic epoxy compound (B1) having a urethane group in addition to the epoxy group, the terminal hydroxyl group of the polyethylene oxide monoalkyl ether is reacted with a polyvalent isocyanate containing an aromatic ring equivalent to the amount of the hydroxyl group, and then obtained. It can obtain by making the isocyanate residue of the obtained reaction product react with the hydroxyl group in a polyhydric epoxy compound. Here, examples of the polyvalent isocyanate used include 2,4-tolylene diisocyanate, metaphenylene diisocyanate, paraphenylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, and biphenyl-2,4,4′-triisocyanate. It is done.

エポキシ基に加えてウレア基を有する芳香族エポキシ化合物(B1)としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシはジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有する芳香環を含有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
エポキシ基に加えてスルホニル基を有する芳香族エポキシ化合物(B1)としては、例えば、ビスフェノールS型エポキシ化合物等が挙げられる。
Examples of the aromatic epoxy compound (B1) having a urea group in addition to the epoxy group include a urea-modified epoxy compound. The urea-modified epoxy can be obtained by reacting the epoxy group of an epoxy compound containing an aromatic ring having two or more epoxy groups with the carboxyl group of the dicarboxylic acid urea.
Examples of the aromatic epoxy compound (B1) having a sulfonyl group in addition to the epoxy group include a bisphenol S-type epoxy compound.

エポキシ基に加えてスルホ基を有する芳香族エポキシ化合物(B1)としては、例えば、p−トルエンスルホン酸グリシジルおよび3−ニトロベンゼンスルホン酸グリシジル等が挙げられる。   Examples of the aromatic epoxy compound (B1) having a sulfo group in addition to the epoxy group include glycidyl p-toluenesulfonate and glycidyl 3-nitrobenzenesulfonate.

本発明において、芳香族エポキシ化合物(B1)は、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、またはテトラグリシジルジアミノジフェニルメタン、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることが好ましい。これらの芳香族エポキシ化合物(B1)は、エポキシ基数が多いため、エポキシ当量が小さく、これにより、炭素繊維、脂肪族エポキシ化合物(A)、およびマトリックス樹脂との相互作用が強く、界面接着性を向上させて成形材料から得られた炭素繊維強化複合材料の曲げ強度等の力学特性を向上させるとともに、芳香環の割合が高いことから湿潤時の力学特性が良好になることで好ましい。芳香族エポキシ化合物(B1)は、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることがより好ましい。   In the present invention, the aromatic epoxy compound (B1) is preferably a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, tetraglycidyl diaminodiphenylmethane, a bisphenol A type epoxy compound or a bisphenol F type epoxy compound. Since these aromatic epoxy compounds (B1) have a large number of epoxy groups, they have a small epoxy equivalent, and thus have a strong interaction with carbon fibers, aliphatic epoxy compounds (A), and matrix resins, and have an interfacial adhesive property. It is preferable because the mechanical properties such as bending strength of the carbon fiber reinforced composite material obtained from the molding material are improved and the mechanical properties when wet are improved because the ratio of aromatic rings is high. The aromatic epoxy compound (B1) is more preferably a bisphenol A type epoxy compound or a bisphenol F type epoxy compound.

さらに、本発明で用いられるサイジング剤は、脂肪族エポキシ化合物(A)と芳香族化合物(B)である芳香族エポキシ化合物(B1)以外の成分を1種類以上含んでも良い。炭素繊維とサイジング剤との接着性を高める接着性促進成分や、サイジング剤が塗布された炭素繊維に収束性あるいは柔軟性を付与することで取扱い性、耐擦過性および耐毛羽性を高め、マトリックス樹脂の含浸性を向上させる収束剤を配合することができる。また、本発明にかかる成形材料から得られた炭素繊維複合材料の物性を向上させる目的で、分散剤および界面活性剤等の補助成分を添加しても良い。   Furthermore, the sizing agent used in the present invention may contain one or more components other than the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) that is the aromatic compound (B). Adhesion promoting component that enhances the adhesion between carbon fiber and sizing agent, and by adding convergence or flexibility to carbon fiber coated with sizing agent, handling property, scratch resistance and fluff resistance are improved, and matrix A sizing agent that improves the impregnation property of the resin can be blended. In addition, auxiliary components such as a dispersant and a surfactant may be added for the purpose of improving the physical properties of the carbon fiber composite material obtained from the molding material according to the present invention.

本発明で用いられるサイジング剤は、脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)以外に、分子内にエポキシ基を持たないエステル化合物(C)を、溶媒を除いたサイジング剤全量に対して2〜35質量%含有することができる。含有割合は、15〜30質量%であることがより好ましい。サイジング剤がエステル化合物(C)を含有することで、炭素繊維の収束性が向上して取り扱い性が向上する。また、エステル化合物(C)として芳香族エステル化合物(C1)を用いた場合には、炭素繊維近傍の疎水性が高くなり、湿潤下での力学特性が高くなるため好ましい。なお、芳香族エステル化合物(C1)は、分子内にエポキシ化合物を持たないエステル化合物(C)に含まれるのと同時に、本発明における芳香族化合物(B)に含まれる(この場合(B)の全てが(C1)となることはなく、前述のとおり(B)は(B1)と(C1)を含んで構成されることになる)。エステル化合物(C)として芳香族エステル化合物(C1)を用いると、サイジング剤が塗布された炭素繊維の取り扱い性が向上するため好ましい。また、エステル化合物(C)は、エステル基以外の官能基を有することができ、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、カルボキシル基、およびスルホ基を有するエステル化合物(C)が好ましい。芳香族エステル化合物(C1)として、具体的にはビスフェノール類のアルキレンオキシド付加物と不飽和二塩基酸との縮合物からなるエステル化合物を用いるのが好ましい。不飽和二塩基酸としては、酸無水物低級アルキルエステルを含み、フマル酸、マレイン酸、シトラコン酸、イタコン酸などが好ましく使用される。ビスフェノール類のアルキレンオキシド付加物としてはビスフェノールのエチレンオキシド、プロピレンオキシド、ブチレンオキシドなどが好ましく使用される。上記縮合物のうち、好ましくはフマル酸またはマレイン酸とビスフェノールAのエチレンオキシドまたは/およびプロピレンオキシド付加物との縮合物が使用される。   In addition to the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1), the sizing agent used in the present invention is an ester compound (C) that does not have an epoxy group in the molecule, and the total amount of the sizing agent excluding the solvent. It can contain 2 to 35 mass% with respect to it. The content ratio is more preferably 15 to 30% by mass. When the sizing agent contains the ester compound (C), the convergence of the carbon fiber is improved and the handleability is improved. Further, when the aromatic ester compound (C1) is used as the ester compound (C), the hydrophobicity in the vicinity of the carbon fiber is increased, and the mechanical properties under wet conditions are increased, which is preferable. The aromatic ester compound (C1) is contained in the aromatic compound (B) in the present invention at the same time as the ester compound (C) having no epoxy compound in the molecule (in this case (B) Not all are (C1), and (B) includes (B1) and (C1) as described above). Use of the aromatic ester compound (C1) as the ester compound (C) is preferable because the handleability of the carbon fiber coated with the sizing agent is improved. Further, the ester compound (C) can have a functional group other than the ester group, and has an hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, a carboxyl group, and a sulfo group (C ) Is preferred. As the aromatic ester compound (C1), specifically, an ester compound composed of a condensate of an alkylene oxide adduct of bisphenols and an unsaturated dibasic acid is preferably used. The unsaturated dibasic acid includes an acid anhydride lower alkyl ester, and fumaric acid, maleic acid, citraconic acid, itaconic acid and the like are preferably used. As the alkylene oxide adduct of bisphenols, ethylene oxide, propylene oxide, butylene oxide, etc. of bisphenol are preferably used. Among the condensates, a condensate of fumaric acid or maleic acid and bisphenol A ethylene oxide or / and propylene oxide adduct is preferably used.

ビスフェノール類へのアルキレンオキシドの付加方法は限定されず、公知の方法を用いることができる。上記の不飽和二塩基酸には、必要により、その一部に飽和二塩基酸や少量の一塩基酸を、また、ビスフェノール類のアルキレンオキシド付加物には、通常のグリコール、ポリエーテルグリコールおよび少量の多価アルコール、一価アルコールなどを、接着性等の特性が損なわれない範囲で加えることもできる。ビスフェノール類のアルキレンオキシド付加物と不飽和二塩基酸との縮合法は、公知の方法を用いることができる。   The method for adding alkylene oxide to bisphenols is not limited, and known methods can be used. If necessary, the unsaturated dibasic acid mentioned above contains a saturated dibasic acid or a small amount of monobasic acid, and the bisphenol alkylene oxide adduct contains ordinary glycol, polyether glycol and a small amount. Polyhydric alcohols, monohydric alcohols, and the like can be added as long as the properties such as adhesion are not impaired. A known method can be used as the condensation method of the alkylene oxide adduct of bisphenol and the unsaturated dibasic acid.

本発明において、炭素繊維とサイジング剤成分中のエポキシ化合物との接着性を高め、炭素繊維とマトリックス樹脂との界面接着性を高める目的で、接着性を促進する成分を用いることが好ましい。接着性を促進する成分としては、3級アミン化合物および/または3級アミン塩、カチオン部位を有する4級アンモニウム塩、4級ホスホニウム塩および/またはホスフィン化合物から選択される少なくとも1種の化合物を用いることができる。該化合物は、溶媒を除いたサイジング剤全量に対して、0.1〜25質量%添加されることが好ましい。2〜10質量%がより好ましい。   In this invention, it is preferable to use the component which accelerates | stimulates adhesiveness for the purpose of improving the adhesiveness of carbon fiber and the epoxy compound in a sizing agent component, and improving the interface adhesiveness of carbon fiber and a matrix resin. As a component that promotes adhesion, at least one compound selected from a tertiary amine compound and / or a tertiary amine salt, a quaternary ammonium salt having a cation moiety, a quaternary phosphonium salt, and / or a phosphine compound is used. be able to. It is preferable that 0.1-25 mass% of this compound is added with respect to the sizing agent whole quantity except a solvent. 2-10 mass% is more preferable.

脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)に上記の3級アミン化合物および/または3級アミン塩、カチオン部位を有する4級アンモニウム塩、4級ホスホニウム塩および/またはホスフィン化合物から選択される少なくとも1種の化合物を併用したサイジング剤を、炭素繊維に塗布し、特定の条件で熱処理することにより接着性が向上する。そのメカニズムは確かではないが、まず、接着性を促進する成分である化合物が本発明で用いられる炭素繊維のカルボキシル基および水酸基等の酸素含有官能基に作用し、これらの官能基に含まれる水素イオンを引き抜きアニオン化した後、このアニオン化した官能基と脂肪族エポキシ化合物(A)または芳香族エポキシ化合物(B1)成分に含まれるエポキシ基が求核反応するものと考えられる。これにより、本発明で用いられる炭素繊維とサイジング剤中のエポキシ基の強固な結合が形成され、接着性が向上する。   The aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) are selected from the above-mentioned tertiary amine compounds and / or tertiary amine salts, quaternary ammonium salts having a cation moiety, quaternary phosphonium salts and / or phosphine compounds. Adhesion is improved by applying a sizing agent in combination with at least one kind of compound to carbon fibers and heat-treating them under specific conditions. The mechanism is not certain, but first, a compound that promotes adhesion acts on oxygen-containing functional groups such as carboxyl groups and hydroxyl groups of the carbon fiber used in the present invention, and hydrogen contained in these functional groups. After the ions are extracted and anionized, the anionized functional group and the epoxy group contained in the aliphatic epoxy compound (A) or aromatic epoxy compound (B1) component are considered to undergo a nucleophilic reaction. Thereby, the strong coupling | bonding of the carbon group used by this invention and the epoxy group in a sizing agent is formed, and adhesiveness improves.

接着性を促進する具体的な化合物としては、N−ベンジルイミダゾール、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ[4,3,0]−5−ノネン(DBN)およびその塩であることが好ましく、特に1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ[4,3,0]−5−ノネン(DBN)およびその塩が好適である。   Specific compounds that promote adhesion include N-benzylimidazole, 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) and salts thereof, or 1,5-diazabicyclo [4, 3,0] -5-Nonene (DBN) and a salt thereof are preferable, and 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) and a salt thereof, or 1,5- Diazabicyclo [4,3,0] -5-nonene (DBN) and its salts are preferred.

上記のDBU塩としては、具体的には、DBUのフェノール塩(U−CAT SA1、サンアプロ株式会社製)、DBUのオクチル酸塩(U−CAT SA102、サンアプロ株式会社製)、DBUのp−トルエンスルホン酸塩(U−CAT SA506、サンアプロ株式会社製)、DBUのギ酸塩(U−CAT SA603、サンアプロ株式会社製)、DBUのオルソフタル酸塩(U−CAT SA810)、およびDBUのフェノールノボラック樹脂塩(U−CAT SA810、SA831、SA841、SA851、SA881、サンアプロ株式会社製)などが挙げられる。   Specific examples of the DBU salt include DBU phenol salt (U-CAT SA1, manufactured by San Apro Corporation), DBU octylate (U-CAT SA102, manufactured by San Apro Corporation), DBU p-toluene. Sulfonate (U-CAT SA506, manufactured by San Apro Co., Ltd.), DBU formate (U-CAT SA603, manufactured by San Apro Co., Ltd.), DBU orthophthalate (U-CAT SA810), and DBU phenol novolac resin salt (U-CAT SA810, SA831, SA841, SA851, SA881, manufactured by San Apro Corporation) and the like.

本発明において、トリブチルアミンまたはN,N−ジメチルベンジルアミン、ジイソプロピルエチルアミン、トリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、トリエタノールアミン、N,N−ジイソプロピルエチルアミンであることが好ましく、特にトリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、ジイソプロピルエチルアミンが好適である。   In the present invention, tributylamine or N, N-dimethylbenzylamine, diisopropylethylamine, triisopropylamine, dibutylethanolamine, diethylethanolamine, triisopropanolamine, triethanolamine, N, N-diisopropylethylamine is preferable, In particular, triisopropylamine, dibutylethanolamine, diethylethanolamine, triisopropanolamine, and diisopropylethylamine are preferable.

上記以外にも、界面活性剤などの添加剤として例えば、ポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイド、高級アルコール、多価アルコール、アルキルフェノール、およびスチレン化フェノール等にポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイドが付加した化合物、およびエチレンオキサイドとプロピレンオキサイドとのブロック共重合体等のノニオン系界面活性剤が好ましく用いられる。また、本発明の効果に影響しない範囲で、適宜、ポリエステル樹脂、および不飽和ポリエステル化合物等を添加してもよい。   In addition to the above, examples of additives such as surfactants include polyalkylene oxides such as polyethylene oxide and polypropylene oxide, higher alcohols, polyhydric alcohols, alkylphenols, and polyalkylenes such as polyethylene oxide and polypropylene oxide in styrenated phenols. Nonionic surfactants such as compounds added with oxides and block copolymers of ethylene oxide and propylene oxide are preferably used. Moreover, you may add a polyester resin, an unsaturated polyester compound, etc. suitably in the range which does not affect the effect of this invention.

次に本発明で使用する炭素繊維について説明する。
本発明において、炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系、レーヨン系およびピッチ系の炭素繊維が挙げられる。なかでも、強度と弾性率のバランスに優れたPAN系炭素繊維が好ましく用いられる。
Next, the carbon fiber used in the present invention will be described.
In the present invention, examples of the carbon fiber include polyacrylonitrile (PAN) -based, rayon-based, and pitch-based carbon fibers. Of these, PAN-based carbon fibers having an excellent balance between strength and elastic modulus are preferably used.

本発明において、得られた炭素繊維束のストランド強度が、3.5GPa以上であることが好ましく、より好ましくは4GPa以上であり、さらに好ましくは5GPa以上である。また、得られた炭素繊維束のストランド弾性率が、220GPa以上であることが好ましく、より好ましくは240GPa以上であり、さらに好ましくは280GPa以上である。   In the present invention, the strand strength of the obtained carbon fiber bundle is preferably 3.5 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa or more. Moreover, it is preferable that the strand elastic modulus of the obtained carbon fiber bundle is 220 GPa or more, More preferably, it is 240 GPa or more, More preferably, it is 280 GPa or more.

本発明において、上記の炭素繊維束のストランド引張強度と弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めることができる。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、130℃、30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。   In the present invention, the strand tensile strength and elastic modulus of the carbon fiber bundle can be determined according to the following procedure in accordance with the resin impregnated strand test method of JIS-R-7608 (2004). As the resin formulation, “Celoxide (registered trademark)” 2021P (manufactured by Daicel Chemical Industries) / 3 boron trifluoride monoethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) / Acetone = 100/3/4 (part by mass) is used. As curing conditions, normal pressure, 130 ° C., and 30 minutes are used. Ten strands of the carbon fiber bundle were measured, and the average value was defined as the strand tensile strength and the strand elastic modulus.

本発明において用いられる炭素繊維は、表面粗さ(Ra)が6.0〜100nmであることが好ましい。より好ましくは15〜80nmであり、30〜60nmが好適である。表面粗さ(Ra)が6.0〜60nmである炭素繊維は、表面に高活性なエッジ部分を有するため、前述したサイジング剤のエポキシ基等との相互作用が向上し、炭素繊維とマトリックス樹脂の界面接着性を向上することができ好ましい。また、表面粗さ(Ra)が6.0〜100nmである炭素繊維は、表面に凹凸を有しているため、サイジング剤のアンカー効果によって界面接着性を向上することができ好ましい。   The carbon fiber used in the present invention preferably has a surface roughness (Ra) of 6.0 to 100 nm. More preferably, it is 15-80 nm, and 30-60 nm is suitable. The carbon fiber having a surface roughness (Ra) of 6.0 to 60 nm has a highly active edge portion on the surface, so that the interaction with the epoxy group of the sizing agent described above is improved, and the carbon fiber and the matrix resin. The interfacial adhesion can be improved. Moreover, since the carbon fiber whose surface roughness (Ra) is 6.0-100 nm has an unevenness | corrugation on the surface, it can improve interface adhesiveness by the anchor effect of a sizing agent, and is preferable.

炭素繊維の表面粗さ(Ra)は、原子間力顕微鏡(AFM)を用いることにより測定することができる。例えば、炭素繊維を長さ数mm程度にカットしたものを用意し、銀ペーストを用いて基板(シリコンウエハ)上に固定し、原子間力顕微鏡(AFM)によって各単繊維の中央部において、3次元表面形状の像を観測すればよい。原子間力顕微鏡としてはDigital Insturments社製NanoScope IIIaにおいてDimension3000ステージシステムなどが使用可能であり、以下の観測条件で観測することができる。
・走査モード:タッピングモード
・探針:シリコンカンチレバー
・走査範囲:0.6μm×0.6μm
・走査速度:0.3Hz
・ピクセル数:512×512
・測定環境:室温、大気中。
また、各試料について、単繊維1本から1箇所ずつ観察して得られた像について、繊維断面の丸みを3次曲面で近似し、得られた像全体を対象として、炭素繊維の表面粗さ(Ra)を算出し、単繊維5本について、炭素繊維の表面粗さ(Ra)を求め、平均値を評価することが好ましい。
The surface roughness (Ra) of the carbon fiber can be measured by using an atomic force microscope (AFM). For example, a carbon fiber cut to several millimeters in length is prepared, fixed on a substrate (silicon wafer) using a silver paste, and 3 atomic fibers at the center of each single fiber by an atomic force microscope (AFM). What is necessary is just to observe the image of a three-dimensional surface shape. As an atomic force microscope, a Dimension 3000 stage system or the like can be used in NanoScope IIIa manufactured by Digital Instruments and can be observed under the following observation conditions.
・ Scanning mode: Tapping mode ・ Probe: Silicon cantilever ・ Scanning range: 0.6μm × 0.6μm
・ Scanning speed: 0.3Hz
-Number of pixels: 512 × 512
・ Measurement environment: Room temperature, in air.
In addition, for each sample, for the images obtained by observing one single fiber from one point at a time, the roundness of the fiber cross section is approximated by a cubic surface, and the surface roughness of the carbon fiber is obtained for the entire obtained image. It is preferable to calculate (Ra), obtain the surface roughness (Ra) of the carbon fiber for five single fibers, and evaluate the average value.

本発明において炭素繊維の総繊度は、400〜3000テックスであることが好ましい。また、炭素繊維のフィラメント数は好ましくは1000〜100000本であり、さらに好ましくは3000〜50000本である。   In the present invention, the total fineness of the carbon fibers is preferably 400 to 3000 tex. Moreover, the number of filaments of carbon fiber is preferably 1000 to 100,000, and more preferably 3000 to 50000.

本発明において、炭素繊維の単繊維径は4.5〜7.5μmが好ましい。7.5μm以下であることで、強度と弾性率の高い炭素繊維を得られるため、好ましく用いられる。6μm以下であることがより好ましく、さらには5.5μm以下であることが好ましい。4.5μm以上で工程における単繊維切断が起きにくくなり生産性が低下しにくく好ましい。   In the present invention, the single fiber diameter of the carbon fiber is preferably 4.5 to 7.5 μm. Since it is 7.5 micrometers or less, since a carbon fiber with high intensity | strength and elastic modulus can be obtained, it is used preferably. More preferably, it is 6 μm or less, and further preferably 5.5 μm or less. When the thickness is 4.5 μm or more, it is difficult to cause single fiber cutting in the process, and productivity is hardly lowered.

本発明において、炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.05〜0.50の範囲内であるものが好ましく、より好ましくは0.06〜0.30の範囲内のものであり、さらに好ましくは0.07〜0.25の範囲内のものである。表面酸素濃度(O/C)が0.05以上であることにより、炭素繊維表面の酸素含有官能基を確保し、マトリックス樹脂との強固な界面接着性を得ることができる。また、表面酸素濃度(O/C)が0.50以下であることにより、酸化による炭素繊維自体の強度の低下を抑えることができる。   In the present invention, the carbon fiber has a surface oxygen concentration (O / C), which is a ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy. The thing within the range of 05-0.50 is preferable, More preferably, it is a thing within the range of 0.06-0.30, More preferably, it is a thing within the range of 0.07-0.25. When the surface oxygen concentration (O / C) is 0.05 or more, the oxygen-containing functional group on the surface of the carbon fiber can be secured and strong interface adhesion with the matrix resin can be obtained. Moreover, when the surface oxygen concentration (O / C) is 0.50 or less, a decrease in strength of the carbon fiber itself due to oxidation can be suppressed.

炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求めたものである。まず、溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10−8Torrに保ち測定した。光電子脱出角度90°で測定した。測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求められる。表面酸素濃度O/Cは、上記O1sピーク面積の比を装置固有の感度補正値で割ることにより算出した原子数比で表す。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用いる場合、上記装置固有の感度補正値は2.33である。 The surface oxygen concentration of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, carbon fibers from which dirt and the like adhering to the carbon fiber surface were removed with a solvent were cut into 20 mm, spread and arranged on a copper sample support base, and then AlKα 1 and 2 were used as X-ray sources. The inside of the chamber was measured at 1 × 10 −8 Torr. Measurement was performed at a photoelectron escape angle of 90 °. As a correction value for the peak accompanying charging during measurement, the binding energy value of the C 1s main peak (peak top) is adjusted to 284.6 eV. The C 1s peak area is obtained by drawing a straight base line in the range of 282 to 296 eV, and the O 1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV. The surface oxygen concentration O / C is represented by an atomic ratio calculated by dividing the ratio of the O 1s peak area by the sensitivity correction value unique to the apparatus. When ESCA-1600 manufactured by ULVAC-PHI Co., Ltd. is used as the X-ray photoelectron spectroscopy apparatus, the sensitivity correction value unique to the apparatus is 2.33.

本発明に用いる炭素繊維において、化学修飾X線光電子分光法により測定される炭素繊維表面のカルボキシル基(COOH)と炭素(C)の原子数の比で表される表面カルボキシル基濃度(COOH/C)は、0.003〜0.015の範囲内であることが好ましい。より、好ましい範囲は、0.004〜0.010である。また、化学修飾X線光電子分光法により測定される炭素繊維表面の水酸基(OH)と炭素(C)の原子数の比で表される表面水酸基濃度(COH/C)は、0.001〜0.050の範囲内であることが好ましい。より好ましくは0.010〜0.040の範囲である。   In the carbon fiber used in the present invention, the surface carboxyl group concentration (COOH / C) represented by the ratio of the number of carbon group (COOH) and carbon (C) atoms measured by chemical modification X-ray photoelectron spectroscopy. ) Is preferably in the range of 0.003 to 0.015. A more preferable range is 0.004 to 0.010. The surface hydroxyl group concentration (COH / C) represented by the ratio of the number of hydroxyl groups (OH) and carbon (C) on the surface of the carbon fiber measured by chemical modification X-ray photoelectron spectroscopy is 0.001 to 0. It is preferable to be within the range of .050. More preferably, it is the range of 0.010-0.040.

炭素繊維の表面カルボキシル基濃度、水酸基濃度は、X線光電子分光法により、次の手順に従って求められるものである。
表面水酸基濃度OH/Cは、次の手順に従って化学修飾X線光電子分光法により求められる。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.04モル/リットルの無水3弗化酢酸気体を含んだ乾燥窒素ガス中に室温で10分間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、 682〜695eVの範囲で直線のベースラインを引くことにより求められる。また、同時に化学修飾処理したポリビニルアルコールのC1sピーク分割から反応率rが求められる。
The surface carboxyl group concentration and hydroxyl group concentration of the carbon fiber are determined according to the following procedure by X-ray photoelectron spectroscopy.
The surface hydroxyl group concentration OH / C is determined by chemical modification X-ray photoelectron spectroscopy according to the following procedure. First, carbon fiber bundles from which the sizing agent and the like have been removed with a solvent are cut, spread and arranged on a platinum sample support, and placed in dry nitrogen gas containing 0.04 mol / liter of anhydrous trifluoride acetic acid gas. After 10 minutes of exposure at room temperature and chemical modification treatment, it was mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °, AlKα 1 , 2 was used as the X-ray source, and the inside of the sample chamber was 1 × 10 −8 Torr. Keep the degree of vacuum. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s is adjusted to 284.6 eV. The C 1s peak area [C 1s ] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the F 1s peak area [F 1s ] is obtained by drawing a straight base line in the range of 682 to 695 eV. Desired. Moreover, reaction rate r is calculated | required from C1s peak division | segmentation of the polyvinyl alcohol chemically modified simultaneously.

表面水酸基濃度(COH/C)は、下式により算出した値で表される。
COH/C={[F1s]/(3k[C1s]−2[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いる場合、上記装置固有の感度補正値は3.919である。
The surface hydroxyl group concentration (COH / C) is represented by a value calculated by the following equation.
COH / C = {[F 1s ] / (3k [C 1s ] −2 [F 1s ]) r} × 100 (%)
Note that k is the sensitivity correction value of the F 1s peak area with respect to the C 1s peak area unique to the apparatus, and when using the model SSX-100-206 manufactured by SSI of the United States, the sensitivity correction value specific to the apparatus is 3.919. .

表面カルボキシル基濃度COOH/Cは、次の手順に従って化学修飾X線光電子分光法により求められる。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.02モル/リットルの3弗化エタノール気体,0.001モル/リットルのジシクロヘキシルカルボジイミド気体及び0.04モル/リットルのピリジン気体を含む空気中に60℃で8時間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求められる。また、同時に化学修飾処理したポリアクリル酸のC1sピーク分割から反応率rを、O1sピーク分割からジシクロヘキシルカルボジイミド誘導体の残存率mが求められる。 The surface carboxyl group concentration COOH / C is determined by chemical modification X-ray photoelectron spectroscopy according to the following procedure. First, carbon fiber bundles from which the sizing agent and the like have been removed with a solvent are cut and spread and arranged on a platinum sample support, and 0.02 mol / liter of trifluorinated ethanol gas, 0.001 mol / liter of dicyclohexyl. The sample was exposed to air containing carbodiimide gas and 0.04 mol / liter pyridine gas at 60 ° C for 8 hours, chemically modified, mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °, and used as an X-ray source. Using AlKα 1 and 2 , the inside of the sample chamber is kept at a vacuum of 1 × 10 −8 Torr. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s is adjusted to 284.6 eV. The C 1s peak area [C 1s ] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the F 1s peak area [F 1s ] is obtained by drawing a straight base line in the range of 682 to 695 eV. Desired. Simultaneously, the reaction rate r is determined from the C 1s peak splitting of the polyacrylic acid chemically modified, and the residual rate m of the dicyclohexylcarbodiimide derivative is determined from the O 1s peak splitting.

表面カルボキシル基濃度COOH/Cは、下式により算出した値で表した。
COOH/C={[F1s]/(3k[C1s]−(2+13m)[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いる場合の、上記装置固有の感度補正値は3.919である。
The surface carboxyl group concentration COOH / C was represented by the value calculated by the following formula.
COOH / C = {[F 1s ] / (3k [C 1s ] − (2 + 13 m) [F 1s ]) r} × 100 (%)
Note that k is the sensitivity correction value of the F 1s peak area with respect to the C 1s peak area unique to the apparatus, and the sensitivity correction value specific to the apparatus when using the model SSX-100-206 manufactured by SSI of the United States is 3.919. is there.

本発明に用いられる炭素繊維としては、表面自由エネルギーの極性成分が8mJ/m以上50mJ/m以下のものであることが好ましい。表面自由エネルギーの極性成分が8mJ/m以上であることで脂肪族エポキシ化合物(A)がより炭素繊維表面に近づくことでサイジング層を構成する成分が偏在化した構造が得られ、界面接着性が向上するため好ましい。50mJ/m以下で、炭素繊維間へのマトリックス樹脂の含浸性が良好になるため、複合材料として用いた場合に用途展開が広がり好ましい。 The carbon fibers used in the present invention, it is preferred polar component of the surface free energy is of 8 mJ / m 2 or more 50 mJ / m 2 or less. When the polar component of the surface free energy is 8 mJ / m 2 or more, the structure in which the components constituting the sizing layer are unevenly distributed is obtained as the aliphatic epoxy compound (A) comes closer to the carbon fiber surface, and the interfacial adhesiveness is obtained. Is preferable. When it is 50 mJ / m 2 or less, since the impregnation property of the matrix resin between the carbon fibers becomes good, the use development is preferable when used as a composite material.

該炭素繊維表面の表面自由エネルギーの極性成分は、より好ましくは15mJ/m以上45mJ/m以下であり、最も好ましくは25mJ/m 以上40mJ/m以下である。炭素繊維の表面自由エネルギーの極性成分は、炭素繊維を水、エチレングリコール、燐酸トリクレゾールの各液体において、ウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した表面自由エネルギーの極性成分である。 Polar component of the surface free energy of the carbon fiber surface is more preferably 15 mJ / m 2 or more 45 mJ / m 2 or less, and most preferably 25 mJ / m 2 or more 40 mJ / m 2 or less. The polar component of the surface free energy of the carbon fiber was calculated using an Owens approximation formula based on the contact angles measured by the Wilhelmi method in each liquid of water, ethylene glycol, and tricresole phosphate. Polar component of surface free energy.

本発明に用いられる脂肪族エポキシ化合物(A)は、表面自由エネルギーの極性成分が9mJ/m以上、50mJ/m以下のものであることが好ましい。また、芳香族エポキシ化合物(B1)は表面自由エネルギーの極性成分が0mJ/m以上、9mJ/m未満であることが好ましい。
脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)の表面自由エネルギーの極性成分は、脂肪族エポキシ化合物(A)または芳香族エポキシ化合物(B1)のみからなる溶液に炭素繊維束を浸漬して引き上げた後、120〜150℃で10分間乾燥後、上述の通り、水、エチレングリコール、燐酸トリクレゾールの各液体において、ウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した表面自由エネルギーの極性成分である。
本発明において、炭素繊維の表面自由エネルギーの極性成分ECFと脂肪族エポキシ化合物(A)、芳香族エポキシ化合物(B1)の表面自由エネルギーの極性成分E、EB1がECF≧E>EB1を満たすことが好ましい。
The aliphatic epoxy compound (A) used in the present invention preferably has a surface free energy polar component of 9 mJ / m 2 or more and 50 mJ / m 2 or less. Further, the aromatic epoxy compound (B1) is a polar component of surface free energy 0 mJ / m 2 or more, is preferably less than 9 mJ / m 2.
The polar component of the surface free energy of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) is obtained by immersing the carbon fiber bundle in a solution consisting only of the aliphatic epoxy compound (A) or the aromatic epoxy compound (B1). After being pulled up and dried at 120 to 150 ° C. for 10 minutes, as described above, in each liquid of water, ethylene glycol, and tricresole phosphate, an approximate expression of Owens based on each contact angle measured by the Wilhelmi method Is the polar component of the surface free energy calculated using
In the present invention, the polar component E CF of the surface free energy of the carbon fiber and the polar components E A and E B1 of the surface free energy of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) are E CF ≧ E A > It is preferable to satisfy E B1 .

次に、本発明に好ましく用いられるPAN系炭素繊維の製造方法について説明する。
炭素繊維の前駆体繊維を得るための紡糸方法としては、湿式、乾式および乾湿式等の紡糸方法を用いることができる。高強度の炭素繊維が得られやすいという観点から、湿式あるいは乾湿式紡糸方法を用いることが好ましい。乾湿式紡糸方法を用いることで、強度の高い炭素繊維を得ることができることから好ましく、湿式紡糸方法を用いることで表面粗さが大きくなり炭素繊維とマトリックス樹脂との界面接着性がさらに向上するため好ましい。界面接着性と炭素繊維の強度のバランスにより、紡糸方法は適宜選択することができる。
Next, the manufacturing method of the PAN type carbon fiber preferably used for this invention is demonstrated.
As a spinning method for obtaining a carbon fiber precursor fiber, spinning methods such as wet, dry, and dry-wet can be used. From the viewpoint of easily obtaining high-strength carbon fibers, it is preferable to use a wet or dry wet spinning method. By using the dry and wet spinning method, it is preferable because a carbon fiber having high strength can be obtained. By using the wet spinning method, the surface roughness is increased and the interfacial adhesion between the carbon fiber and the matrix resin is further improved. preferable. The spinning method can be appropriately selected depending on the balance between the interfacial adhesion and the strength of the carbon fiber.

紡糸原液には、ポリアクリロニトリルのホモポリマーあるいは共重合体を溶剤に溶解した溶液を用いることができる。溶剤としてはジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの有機溶剤や、硝酸、ロダン酸ソーダ、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液を使用する。ジメチルスルホキシド、ジメチルアセトアミドが溶剤として好適である。   As the spinning dope, a solution obtained by dissolving a homopolymer or copolymer of polyacrylonitrile in a solvent can be used. As the solvent, an organic solvent such as dimethyl sulfoxide, dimethylformamide, or dimethylacetamide, or an aqueous solution of an inorganic compound such as nitric acid, sodium rhodanate, zinc chloride, or sodium thiocyanate is used. Dimethyl sulfoxide and dimethylacetamide are suitable as the solvent.

上記の紡糸原液を口金に通して紡糸し、紡糸浴中、あるいは空気中に吐出した後、紡糸浴中で凝固させる。紡糸浴としては、紡糸原液の溶剤として使用した溶剤の水溶液を用いることができる。紡糸原液の溶剤と同じ溶剤を含む紡糸液とすることが好ましく、ジメチルスルホキシド水溶液、ジメチルアセトアミド水溶液が好適である。紡糸浴中で凝固した繊維を、水洗、延伸して前駆体繊維とする。得られた前駆体繊維を耐炎化処理と炭化処理し、必要によってはさらに黒鉛化処理をすることにより炭素繊維を得る。炭化処理と黒鉛化処理の条件としては、最高熱処理温度が1100℃以上であることが好ましく、より好ましくは1400〜3000℃である。   The above spinning solution is spun through a die, discharged in a spinning bath or in the air, and then coagulated in the spinning bath. As the spinning bath, an aqueous solution of a solvent used as a solvent for the spinning dope can be used. It is preferable to use a spinning solution containing the same solvent as the spinning solution, and a dimethyl sulfoxide aqueous solution and a dimethylacetamide aqueous solution are preferable. The fiber solidified in the spinning bath is washed with water and drawn to obtain a precursor fiber. The obtained precursor fiber is subjected to flameproofing treatment and carbonization treatment, and further subjected to graphitization treatment as necessary to obtain carbon fiber. As conditions for carbonization treatment and graphitization treatment, the maximum heat treatment temperature is preferably 1100 ° C. or higher, more preferably 1400 to 3000 ° C.

得られた炭素繊維は、マトリックス樹脂との界面接着性を向上させるために、通常、酸化処理が施され、酸素含有官能基が導入される。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。   The obtained carbon fiber is usually subjected to an oxidation treatment in order to improve interfacial adhesion with the matrix resin, and oxygen-containing functional groups are introduced. As the oxidation treatment method, vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used.

本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられるが接着性の観点からアルカリ性電解液中で液相電解酸化した後、サイジング剤を塗布することがより好ましい。
酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。
In the present invention, examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution. From the viewpoint of adhesion, a liquid phase electrolytic oxidation is performed in an alkaline electrolytic solution, and then a sizing agent is applied. Is more preferable.
Examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used.

アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。   Specific examples of the alkaline electrolyte include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate, aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate, ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine. Among these, an aqueous solution of ammonium carbonate and ammonium hydrogen carbonate, or an aqueous solution of tetraalkylammonium hydroxide exhibiting strong alkalinity is preferably used.

本発明において用いられる電解液の濃度は、0.01〜5モル/リットルの範囲内であることが好ましく、より好ましくは0.1〜1モル/リットルの範囲内である。電解液の濃度が0.01モル/リットル以上であると、電解処理電圧が下げられ、運転コスト的に有利になる。一方、電解液の濃度が5モル/リットル以下であると、安全性の観点から有利になる。   The concentration of the electrolytic solution used in the present invention is preferably in the range of 0.01 to 5 mol / liter, more preferably in the range of 0.1 to 1 mol / liter. When the concentration of the electrolytic solution is 0.01 mol / liter or more, the electrolytic treatment voltage is lowered, which is advantageous in terms of operating cost. On the other hand, when the concentration of the electrolytic solution is 5 mol / liter or less, it is advantageous from the viewpoint of safety.

本発明において用いられる電解液の温度は、10〜100℃の範囲内であることが好ましく、より好ましくは10〜40℃の範囲内である。電解液の温度が10℃以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電解液の温度が100℃未満であると、安全性の観点から有利になる。   The temperature of the electrolytic solution used in the present invention is preferably in the range of 10 to 100 ° C, more preferably in the range of 10 to 40 ° C. When the temperature of the electrolytic solution is 10 ° C. or higher, the efficiency of the electrolytic treatment is improved, which is advantageous in terms of operating cost. On the other hand, when the temperature of the electrolytic solution is less than 100 ° C., it is advantageous from the viewpoint of safety.

本発明において、液相電解酸化における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましく、高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
本発明において、液相電解酸化における電流密度は、電解処理液中の炭素繊維の表面積1m当たり1.5〜1000アンペア/mの範囲内であることが好ましく、より好ましくは3〜500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
In the present invention, the amount of electricity in the liquid phase electrolytic oxidation is preferably optimized in accordance with the carbonization degree of the carbon fiber, and a larger amount of electricity is required when processing the carbon fiber having a high elastic modulus.
In the present invention, the current density in the liquid phase electrolytic oxidation is preferably in the range of 1.5 to 1000 amperes / m 2 per 1 m 2 of the surface area of the carbon fiber in the electrolytic treatment solution, more preferably 3 to 500 amperes. / M 2 within the range. When the current density is 1.5 amperes / m 2 or more, the efficiency of the electrolytic treatment is improved, which is advantageous in terms of operating cost. On the other hand, when the current density is 1000 amperes / m 2 or less, it is advantageous from the viewpoint of safety.

本発明において、電解処理の後、炭素繊維を水洗および乾燥することが好ましい。洗浄する方法としては、例えば、ディップ法とスプレー法を用いることができる。なかでも、洗浄が容易であるという観点から、ディップ法を用いることが好ましく、さらには、炭素繊維を超音波で加振させながらディップ法を用いることが好ましい態様である。また、乾燥温度が高すぎると炭素繊維の最表面に存在する官能基は熱分解により消失し易いため、できる限り低い温度で乾燥することが望ましく、具体的には乾燥温度が好ましくは250℃以下、さらに好ましくは210℃以下で乾燥することが好ましい。   In the present invention, it is preferable to wash and dry the carbon fiber after the electrolytic treatment. As a cleaning method, for example, a dip method and a spray method can be used. Especially, it is preferable to use a dip method from a viewpoint that washing | cleaning is easy, Furthermore, it is a preferable aspect to use a dip method, vibrating a carbon fiber with an ultrasonic wave. Also, if the drying temperature is too high, the functional groups present on the outermost surface of the carbon fiber are likely to disappear due to thermal decomposition, so it is desirable to dry at the lowest possible temperature. Specifically, the drying temperature is preferably 250 ° C. or lower. More preferably, drying is performed at 210 ° C. or lower.

次に、上述した炭素繊維にサイジング剤を塗布したサイジング剤塗布炭素繊維について説明する。
本発明において、サイジング剤塗布炭素繊維とは、連続する炭素繊維にサイジング剤を塗布したもの、ならびにウェブ状、不織布状、フェルト状、マット状等の生地に加工された炭素繊維にサイジング剤を付与したもの意味する。
本発明におけるサイジング剤として、脂肪族エポキシ化合物(A)および芳香族化合物(B)である芳香族エポキシ化合物(B1)を少なくとも含み、それ以外の成分を含んでも良い。
Next, the sizing agent-coated carbon fiber obtained by applying the sizing agent to the above-described carbon fiber will be described.
In the present invention, the sizing agent-coated carbon fiber means that the sizing agent is applied to continuous carbon fibers coated with a sizing agent, and carbon fibers processed into web-like, non-woven fabric, felt-like, matte-like fabrics. Means what
The sizing agent in the present invention includes at least the aromatic epoxy compound (B1) which is the aliphatic epoxy compound (A) and the aromatic compound (B), and may include other components.

炭素繊維へのサイジング剤の塗布方法としては、溶媒に、脂肪族エポキシ化合物(A)および芳香族エポキシ化合物(B1)を少なくとも含む芳香族化合物(B)、ならびにその他の成分を同時に溶解または分散したサイジング剤含有液を用いて、1回で塗布する方法や、各化合物(A)、(B1)、(B)やその他の成分を任意に選択し個別に溶媒に溶解または分散したサイジング剤含有液を用い、複数回において炭素繊維に塗布する方法が好ましく用いられる。本発明においては、サイジング剤を塗布した炭素繊維の表面の組成を特定の値にするために、サイジング剤の構成成分をすべて含むサイジング剤含有液を、炭素繊維に1回で塗布する1段付与を採用することが効果および処理のしやすさからより好ましく用いられる。   As a method for applying the sizing agent to the carbon fiber, the aromatic compound (B) containing at least the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) and other components were simultaneously dissolved or dispersed in a solvent. Sizing agent-containing liquid in which sizing agent-containing liquid is applied at once, each compound (A), (B1), (B) and other components are arbitrarily selected and dissolved or dispersed individually in a solvent A method of applying to carbon fiber in a plurality of times is preferably used. In the present invention, in order to set the composition of the surface of the carbon fiber coated with the sizing agent to a specific value, the sizing agent-containing liquid containing all the components of the sizing agent is applied to the carbon fiber in one step. Is more preferably used because of its effect and ease of processing.

本発明において、サイジング剤を溶媒で希釈してサイジング液として用いることができる。このような溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミドが挙げられるが、なかでも、取扱いが容易であり、安全性の観点から有利であることから、界面活性剤で乳化させた水分散液あるいは水溶液が好ましく用いられる。   In the present invention, the sizing agent can be diluted with a solvent and used as a sizing solution. Examples of such a solvent include water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, dimethylformamide, and dimethylacetamide. Among them, handling is easy and advantageous from the viewpoint of safety. Therefore, an aqueous dispersion or aqueous solution emulsified with a surfactant is preferably used.

溶解の順番は、芳香族化合物(B)を少なくとも含む成分を界面活性剤で乳化させることで水エマルジョン液を作成し、脂肪族エポキシ化合物(A)を少なくとも含む溶液を混合してサイジング液をつくることが好ましい。この時に、脂肪族エポキシ化合物(A)が水溶性の場合には、あらかじめ水に溶解して水溶液にしておき、芳香族化合物(B)を少なくとも含む水エマルジョンと混合する方法が、乳化安定性の点から好ましく用いられる。また、脂肪族エポキシ化合物(A)と芳香族化合物(B)およびその他の成分を界面活性剤で乳化させた水分散剤を用いることが、サイジング剤の長期安定性の点から好ましく用いることができる。   In order of dissolution, a component containing at least the aromatic compound (B) is emulsified with a surfactant to prepare a water emulsion, and a solution containing at least the aliphatic epoxy compound (A) is mixed to form a sizing solution. It is preferable. At this time, when the aliphatic epoxy compound (A) is water-soluble, a method in which it is dissolved in water in advance to form an aqueous solution and mixed with a water emulsion containing at least the aromatic compound (B) is emulsified. It is preferably used from the viewpoint. In addition, it is preferable to use a water dispersant obtained by emulsifying the aliphatic epoxy compound (A), the aromatic compound (B) and other components with a surfactant from the viewpoint of long-term stability of the sizing agent.

サイジング液におけるサイジング剤の濃度は、サイジング液の付与方法および付与した後に余剰のサイジング液を絞り取る絞り量の調整等によって適宜調節する必要があるが、通常は0.2質量%〜20質量%の範囲が好ましい。   The concentration of the sizing agent in the sizing liquid needs to be adjusted as appropriate by adjusting the method of applying the sizing liquid and adjusting the amount of squeezing out the excess sizing liquid after the application, but usually 0.2% by mass to 20% by mass. The range of is preferable.

サイジング剤の炭素繊維への付与(塗布)手段としては、例えば、ローラを介してサイジング液に炭素繊維または炭素繊維を加工した生地を浸漬する方法、サイジング液の付着したローラに炭素繊維または生地を接する方法、サイジング液を霧状にして炭素繊維または生地に吹き付ける方法などがある。また、サイジング剤の付与手段は、バッチ式と連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましく用いられる。この際、炭素繊維または炭素繊維を加工した生地に対するサイジング剤の有効成分の付着量が適正範囲内で均一に付着するように、サイジング液濃度、温度および糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に、炭素繊維を超音波で加振させることも好ましい態様である。   Examples of means for applying (applying) the sizing agent to the carbon fiber include a method of immersing the carbon fiber or a fabric processed with the carbon fiber in a sizing liquid through a roller, and a carbon fiber or fabric on a roller to which the sizing liquid is adhered. There are a method of contacting, a method of spraying carbon fiber or fabric on a sizing solution in a mist form. Further, the sizing agent applying means may be either a batch type or a continuous type, but a continuous type capable of improving productivity and reducing variation is preferably used. At this time, it is preferable to control the sizing solution concentration, temperature, yarn tension, and the like so that the amount of the active component of the sizing agent attached to the carbon fiber or the fabric processed from the carbon fiber uniformly adheres within an appropriate range. Moreover, it is also a preferable aspect that the carbon fiber is vibrated with ultrasonic waves when the sizing agent is applied.

サイジング液の液温は、溶媒蒸発によるサイジング剤の濃度変動を抑えるため、10〜50℃の範囲であることが好ましい。また、サイジング液を付与した後に、余剰のサイジング液を絞り取る絞り量を調整することにより、サイジング剤の付着量および炭素繊維内への均一付与ができる。   The liquid temperature of the sizing liquid is preferably in the range of 10 to 50 ° C. in order to suppress fluctuations in the concentration of the sizing agent due to solvent evaporation. Further, after applying the sizing liquid, the amount of sizing agent attached and the carbon fiber can be uniformly applied by adjusting the amount of squeezing out excess sizing liquid.

本発明においては、炭素繊維または炭素繊維を加工した生地にサイジング剤を塗布した後、160〜260℃の温度範囲で30〜600秒間熱処理することが好ましい。熱処理条件は、好ましくは170〜250℃の温度範囲で30〜500秒間であり、より好ましくは180〜240℃の温度範囲で30〜300秒間である。熱処理条件が、160℃以上および/または30秒以上であると、サイジング剤のエポキシ化合物と炭素繊維表面の酸素含有官能基との間の相互作用が促進され、炭素繊維とマトリックス樹脂との界面接着性が十分となるため好ましい。一方、熱処理条件が、260℃以下および/または600秒以下の場合、サイジング剤の分解および揮発を抑制でき、炭素繊維との相互作用が促進され、炭素繊維とマトリックス樹脂との界面接着性が十分となるため好ましい。   In this invention, after apply | coating a sizing agent to the fabric which processed the carbon fiber or carbon fiber, it is preferable to heat-process for 30 to 600 second in the temperature range of 160-260 degreeC. The heat treatment conditions are preferably in a temperature range of 170 to 250 ° C. for 30 to 500 seconds, and more preferably in a temperature range of 180 to 240 ° C. for 30 to 300 seconds. When the heat treatment condition is 160 ° C. or higher and / or 30 seconds or longer, the interaction between the epoxy compound of the sizing agent and the oxygen-containing functional group on the surface of the carbon fiber is promoted, and the interfacial adhesion between the carbon fiber and the matrix resin is promoted. This is preferable because of sufficient properties. On the other hand, when the heat treatment condition is 260 ° C. or less and / or 600 seconds or less, the decomposition and volatilization of the sizing agent can be suppressed, the interaction with the carbon fiber is promoted, and the interfacial adhesion between the carbon fiber and the matrix resin is sufficient. This is preferable.

また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。マイクロ波照射および/または赤外線照射によりサイジング剤を塗布した炭素繊維または生地を加熱処理した場合、マイクロ波が炭素繊維内部に侵入し、吸収されることにより、短時間に被加熱物である炭素繊維を所望の温度に加熱できる。また、マイクロ波照射および/または赤外線照射により、炭素繊維内部の加熱も速やかに行うことができるため、炭素繊維束の内側と外側の温度差を小さくすることができ、サイジング剤の接着ムラを小さくすることが可能となる。   The heat treatment can also be performed by microwave irradiation and / or infrared irradiation. When carbon fiber or fabric coated with a sizing agent by microwave irradiation and / or infrared irradiation is heat-treated, the microwave penetrates into the carbon fiber and is absorbed, so that the carbon fiber that is the object to be heated in a short time Can be heated to the desired temperature. In addition, since the inside of the carbon fiber can be quickly heated by microwave irradiation and / or infrared irradiation, the temperature difference between the inside and outside of the carbon fiber bundle can be reduced, and the adhesion unevenness of the sizing agent can be reduced. It becomes possible to do.

本発明にかかるサイジング剤塗布炭素繊維は、サイジング剤表面をX線源としてAlKα1,2を用い、光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90である。好ましくは、比率(a)/(b)が0.55以上、さらに好ましくは0.57以上である。また、好ましくは比率(a)/(b)が0.80以下、より好ましくは0.74以下である。(a)/(b)が大きいということは、サイジング剤表面近傍に芳香族由来の化合物が多く、脂肪族由来の化合物が少ないことを示す。したがって、本発明においては、この(a)/(b)が、特定の範囲に入るときに、炭素繊維とサイジング剤との接着性に優れ、またサイジング剤とマトリックス樹脂との相互作用が高くなる。その結果、炭素繊維とマトリックス樹脂との界面接着性に優れ、得られる炭素繊維強化複合材料の物性が良好になる。また、該炭素繊維を用いた場合に、吸湿性の高いマトリックス樹脂を用いた場合にも、得られる炭素繊維強化複合材料の湿潤下での力学特性も良好になることを見出してなされたものである。 The sizing agent-coated carbon fiber according to the present invention has a C 1s inner shell spectrum (a) measured by X-ray photoelectron spectroscopy at a photoelectron escape angle of 15 ° using AlKα 1 and 2 with the sizing agent surface as the X-ray source. The height (cps) of the component of the bond energy (284.6 eV) attributed to CHx, C—C, C = C, and (b) of the component of the bond energy (286.1 eV) attributed to C—O The ratio (a) / (b) to the height (cps) is 0.50 to 0.90. The ratio (a) / (b) is preferably 0.55 or more, more preferably 0.57 or more. The ratio (a) / (b) is preferably 0.80 or less, more preferably 0.74 or less. A large (a) / (b) indicates that there are many aromatic-derived compounds and few aliphatic-derived compounds in the vicinity of the sizing agent surface. Therefore, in the present invention, when (a) / (b) falls within a specific range, the adhesion between the carbon fiber and the sizing agent is excellent, and the interaction between the sizing agent and the matrix resin is increased. . As a result, the interfacial adhesion between the carbon fiber and the matrix resin is excellent, and the properties of the resulting carbon fiber reinforced composite material are improved. In addition, when the carbon fiber is used, even when a highly hygroscopic matrix resin is used, the obtained carbon fiber reinforced composite material is found to have good mechanical properties under wet conditions. is there.

X線光電子分光法とは、超高真空中で試料のサイジング剤塗布炭素繊維にX線を照射し、炭素繊維の表面から放出される光電子の運動エネルギーをエネルギーアナライザーとよばれる装置で測定する分析手法のことである。この試料の炭素繊維表面から放出される光電子の運動エネルギーを調べることにより、試料の炭素繊維に入射したX線のエネルギー値から換算される結合エネルギーが一意的に求まり、その結合エネルギーと光電子強度から、試料の最表面(〜nm)に存在する元素の種類と濃度、その化学状態を解析することができる。   X-ray photoelectron spectroscopy is an analysis in which the sizing agent-coated carbon fiber of a sample is irradiated with X-rays in an ultra-high vacuum, and the kinetic energy of photoelectrons emitted from the surface of the carbon fiber is measured with an apparatus called an energy analyzer. It is a technique. By examining the kinetic energy of the photoelectrons emitted from the carbon fiber surface of the sample, the binding energy converted from the energy value of the X-rays incident on the carbon fiber of the sample is uniquely determined. From the binding energy and the photoelectron intensity The type and concentration of elements present on the outermost surface (˜nm) of the sample and the chemical state thereof can be analyzed.

本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求められるものである。サイジング剤が塗布された炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10−8Torrに保ち測定が行われる。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせる。このときに、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求められる。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(a)/(b)が算出される。 In the present invention, the peak ratio of (a) and (b) on the surface of the sizing agent-coated carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. The carbon fiber coated with the sizing agent is cut to 20 mm, spread and arranged on a copper sample support, and AlKα 1 and 2 are used as an X-ray source, and the sample chamber is kept at 1 × 10 −8 Torr. Measurement is performed. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s is adjusted to 286.1 eV. At this time, the peak area of C 1s is obtained by drawing a straight baseline in the range of 282 to 296 eV. Further, a linear base line of 282 to 296 eV obtained by calculating the area at the C 1s peak is defined as the origin (zero point) of the photoelectron intensity, and (b) the peak of the binding energy 286.1 eV attributed to the CO component is obtained. The height (cps: photoelectron intensity per unit time) and the height (cps) of the component having a binding energy of 284.6 eV attributed to (a) CHx, C—C, C = C are obtained, and (a) / ( b) is calculated.

本発明にかかるサイジング剤塗布炭素繊維は、炭素繊維に塗布したサイジング剤表面を400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすことが好ましい。
(I)超音波処理前のサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(II)サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
The sizing agent-coated carbon fiber according to the present invention has a C1s inner shell spectrum (a) of the sizing agent surface coated on the carbon fiber, measured at a photoelectron escape angle of 55 ° by X-ray photoelectron spectroscopy using 400 eV X-rays. The height (cps) of the component of the bond energy (284.6 eV) attributed to CHx, C—C, C = C, and (b) of the component of the bond energy (286.1 eV) attributed to C—O It is preferable that the values of (I) and (II) obtained from the ratio (a) / (b) to the height (cps) satisfy the relationship of (III).
(I) The value of (a) / (b) on the surface of the sizing agent-coated carbon fiber before sonication (II) The sizing agent-coated carbon fiber is sonicated in an acetone solvent to reduce the sizing agent adhesion amount. The value of (a) / (b) (III) 0.50 ≦ (I) ≦ 0.90 and 0.60 <(II) on the surface of the sizing agent-coated carbon fiber washed to 0.09 to 0.20% by mass. ) / (I) <1.0

超音波処理前のサイジング剤塗布炭素繊維表面の(a)/(b)値である(I)が上記範囲に入ることは、サイジング剤の表面に芳香族由来の化合物が多く、脂肪族由来の化合物が少ないことを示す。超音波処理前の(a)/(b)値である(I)は好ましくは、0.55以上、さらに好ましくは0.57以上である。また、超音波処理前の(a)/(b)値である(I)が、好ましくは0.80以下、より好ましくは0.74以下である。
超音波処理前後のサイジング剤塗布炭素繊維表面の(a)/(b)値の比である(II)/(I)が上記範囲に入ることは、サイジング剤表面に比べて、サイジング剤の内層に脂肪族由来の化合物の割合が多いことを示す。(II)/(I)は好ましくは0.65以上である。また、(II)/(I)は0.85以下であることが好ましい。
(I)および(II)の値が、(III)の関係を満たすことで、マトリックス樹脂との接着性に優れ、マトリックス樹脂との相互作用が高く良好な物性の炭素繊維強化材料が得られる。なお、ここで説明される超音波処理とは、サイジング剤塗布炭素繊維2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施し、続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥する処理を意味する。
The fact that (I), which is the (a) / (b) value on the surface of the sizing agent-coated carbon fiber before ultrasonic treatment, falls within the above range means that there are many aromatic-derived compounds on the surface of the sizing agent. It shows that there are few compounds. The (a) / (b) value (I) before sonication is preferably 0.55 or more, more preferably 0.57 or more. Moreover, (I) which is (a) / (b) value before ultrasonic treatment is preferably 0.80 or less, more preferably 0.74 or less.
The fact that (II) / (I), which is the ratio of (a) / (b) values on the sizing agent-coated carbon fiber surface before and after the ultrasonic treatment, falls within the above range, indicates that the inner layer of the sizing agent compared to the sizing agent surface. Indicates that the ratio of the aliphatic compound is large. (II) / (I) is preferably 0.65 or more. Further, (II) / (I) is preferably 0.85 or less.
When the values of (I) and (II) satisfy the relationship of (III), a carbon fiber reinforced material having excellent physical properties with excellent adhesion to the matrix resin and high interaction with the matrix resin can be obtained. In addition, the ultrasonic treatment described here means that 2 g of sizing agent-coated carbon fiber is immersed in 50 ml of acetone and ultrasonic cleaning is performed for 30 minutes three times, followed by immersion in 50 ml of methanol and ultrasonic cleaning 30. It means the process of performing a minute once and drying.

本発明において、炭素繊維へのサイジング剤の付着量は、炭素繊維100質量部に対して、0.1〜10.0質量部の範囲であることが好ましく、より好ましくは0.2〜3.0質量部の範囲である。サイジング剤の付着量が0.1質量部以上であると、サイジング剤を塗布した炭素繊維をマトリックス樹脂と配合する際に、通過する金属ガイド等による摩擦に耐えることができ、毛羽発生が抑えられ、炭素繊維シートの平滑性などの品位が優れる。一方、サイジング剤の付着量が10.0質量部以下であると、サイジング剤を塗布した炭素繊維の周囲のサイジング剤膜に阻害されることなくマトリックス樹脂が炭素繊維内部に含浸され、得られる炭素繊維強化複合材料のボイド生成が抑えられ、品位が優れ、同時に機械物性が優れるため好ましい。   In this invention, it is preferable that the adhesion amount of the sizing agent to carbon fiber is the range of 0.1-10.0 mass parts with respect to 100 mass parts of carbon fibers, More preferably, 0.2-3. The range is 0 part by mass. When the sizing agent adhesion amount is 0.1 parts by mass or more, when the carbon fiber coated with the sizing agent is mixed with the matrix resin, it can withstand friction caused by a metal guide or the like passing through, and fluff generation can be suppressed. Excellent quality such as smoothness of carbon fiber sheet. On the other hand, when the adhesion amount of the sizing agent is 10.0 parts by mass or less, the carbon resin obtained by impregnating the matrix resin inside the carbon fiber without being inhibited by the sizing agent film around the carbon fiber coated with the sizing agent is obtained. It is preferable because void generation in the fiber reinforced composite material is suppressed, the quality is excellent, and the mechanical properties are excellent at the same time.

炭素繊維へのサイジング剤の付着量は、サイジング剤が塗布された炭素繊維を約2±0.5g採取し、窒素雰囲気中450℃にて加熱処理を15分間行ったときの該加熱処理前後の質量の変化を測定して求められ、サイジング剤を塗布された炭素繊維または炭素繊維を加工した生地100質量部あたりの質量変化量をサイジング剤の付着量(質量部)とする。   The amount of the sizing agent attached to the carbon fiber was measured by collecting about 2 ± 0.5 g of the carbon fiber coated with the sizing agent and performing the heat treatment at 450 ° C. for 15 minutes in a nitrogen atmosphere before and after the heat treatment. The amount of mass change per 100 parts by mass of the carbon fiber coated with the sizing agent or the fabric processed with the carbon fiber, which is obtained by measuring the change in mass, is defined as the adhering amount (part by mass) of the sizing agent.

本発明において、炭素繊維に塗布されたサイジング剤のエポキシ当量は350〜550g/eq.であることが好ましい。550g/eq.以下であることで、サイジング剤を塗布した炭素繊維およびマトリックス樹脂の界面接着性が向上し、炭素繊維強化複合材料の物性が向上するため好ましい。また、350g/eq.以上であることで、接着性の点から十分である。   In the present invention, the epoxy equivalent of the sizing agent applied to the carbon fiber is 350 to 550 g / eq. It is preferable that 550 g / eq. The following is preferable because the interfacial adhesion between the carbon fiber coated with the sizing agent and the matrix resin is improved, and the physical properties of the carbon fiber reinforced composite material are improved. 350 g / eq. The above is sufficient from the viewpoint of adhesiveness.

本発明におけるサイジング剤を塗布した炭素繊維のエポキシ当量とは、サイジング剤塗布炭素繊維をN,N−ジメチルホルムアミドに代表される溶媒中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めることができる。エポキシ当量は360g/eq.以上が好ましく、380g/eq.以上がより好ましい。また、530g/eq.以下が好ましく、500g/eq.以下がより好ましい。なお、炭素繊維に塗布されたサイジング剤のエポキシ当量は、塗布に用いるサイジング剤のエポキシ当量および塗布後の乾燥での熱履歴などにより、制御することができる。   The epoxy equivalent of the carbon fiber coated with the sizing agent in the present invention is that the carbon fiber coated with the sizing agent is immersed in a solvent typified by N, N-dimethylformamide and eluted from the fiber by ultrasonic cleaning. After that, the epoxy group can be opened with hydrochloric acid, and it can be determined by acid-base titration. Epoxy equivalent is 360 g / eq. The above is preferable, and 380 g / eq. The above is more preferable. In addition, 530 g / eq. The following is preferable, and 500 g / eq. The following is more preferable. In addition, the epoxy equivalent of the sizing agent applied to the carbon fiber can be controlled by the epoxy equivalent of the sizing agent used for application and the heat history in drying after application.

本発明において、炭素繊維または炭素繊維を加工した生地への脂肪族エポキシ化合物(A)の付着量は、炭素繊維100質量部に対して、0.05〜5.0質量部の範囲であることが好ましく、より好ましくは0.2〜2.0質量部の範囲である。さらに好ましくは0.3〜1.0質量部である。脂肪族エポキシ化合物(A)の付着量が0.05質量部以上であると、炭素繊維表面に脂肪族エポキシ化合物(A)でサイジング剤が塗布された炭素繊維とマトリックス樹脂の界面接着性が向上するため好ましい。   In this invention, the adhesion amount of the aliphatic epoxy compound (A) to the cloth which processed carbon fiber or carbon fiber shall be the range of 0.05-5.0 mass parts with respect to 100 mass parts of carbon fibers. Is more preferable, and the range of 0.2 to 2.0 parts by mass is more preferable. More preferably, it is 0.3-1.0 mass part. When the adhesion amount of the aliphatic epoxy compound (A) is 0.05 parts by mass or more, the interfacial adhesion between the carbon fiber and the matrix resin in which the sizing agent is applied to the carbon fiber surface with the aliphatic epoxy compound (A) is improved. Therefore, it is preferable.

本発明において、炭素繊維に塗布され乾燥されたサイジング剤層の厚さは、2.0〜20nmの範囲内で、かつ、厚さの最大値が最小値の2倍を超えないことが好ましい。このような厚さの均一なサイジング剤層により、安定して大きな接着性向上効果が得られ、さらには、安定して優れた高次加工性が得られる。   In the present invention, the thickness of the sizing agent layer applied to the carbon fiber and dried is preferably within a range of 2.0 to 20 nm, and the maximum value of the thickness does not exceed twice the minimum value. By such a uniform sizing agent layer, a large effect of improving adhesiveness can be obtained stably, and furthermore, excellent high-order workability can be obtained.

また、本発明において、サイジング剤が塗布された炭素繊維をアセトニトリル/クロロホルム混合溶媒により溶出した際、溶出される脂肪族エポキシ化合物(A)の割合は、サイジング剤が塗布された炭素繊維100質量部に対し2.0質量部以下であることが好ましく、より好ましくは0.3質量部以下である。特に、脂肪族エポキシ化合物(A)の溶出量が0.3質量部以下であると、本発明のサイジング剤を塗布した炭素繊維をマトリックス樹脂に混合した時に、炭素繊維表面の水分率が低下すること、マトリックス樹脂との相互作用が強くなることから好ましい。かかる観点から、前記の溶出された脂肪族エポキシ化合物(A)の割合は、サイジング剤が塗布された炭素繊維100質量部に対し、0.1質量部以下がより好ましく、0.05質量部以下がさらに好ましい。   In the present invention, when the carbon fiber coated with the sizing agent is eluted with an acetonitrile / chloroform mixed solvent, the proportion of the aliphatic epoxy compound (A) eluted is 100 parts by mass of the carbon fiber coated with the sizing agent. The amount is preferably 2.0 parts by mass or less, and more preferably 0.3 parts by mass or less. In particular, when the elution amount of the aliphatic epoxy compound (A) is 0.3 parts by mass or less, the moisture content on the carbon fiber surface decreases when the carbon fiber coated with the sizing agent of the present invention is mixed with the matrix resin. It is preferable because the interaction with the matrix resin becomes strong. From this viewpoint, the proportion of the eluted aliphatic epoxy compound (A) is more preferably 0.1 parts by mass or less, and 0.05 parts by mass or less with respect to 100 parts by mass of the carbon fiber to which the sizing agent is applied. Is more preferable.

溶出された脂肪族エポキシ化合物(A)の割合は、サイジング剤が塗布された炭素繊維の試験片を、アセトニトリル/クロロホルム混合液(体積比9/1)に浸漬し、20分間超音波洗浄を行ない、サイジング剤をアセトニトリル/クロロホルム混合液に溶出した溶出液について、液体クロマトグラフィーを用いて下記条件で分析することができる。
・分析カラム:Chromolith Performance RP−18e(4.6×100mm)
・移動相:水/アセトニトリルを使用し、分析開始から7分で、水/アセトニトリル=60%/40%からアセトニトリル100%とした後、12分までアセトニトリル100%を保持し、その後12.1分までに水/アセトニトリル=60%/40%とし、17分まで水/アセトニトリル=60%/40%を保持した。
・流量:2.5mL/分
・カラム温度:45℃
・検出器:蒸発光散乱検出器(ELSD)
・検出器温度:60℃
The proportion of the eluted aliphatic epoxy compound (A) was determined by immersing a carbon fiber test piece coated with a sizing agent in an acetonitrile / chloroform mixed solution (volume ratio 9/1) and performing ultrasonic cleaning for 20 minutes. The eluate obtained by eluting the sizing agent into an acetonitrile / chloroform mixture can be analyzed under the following conditions using liquid chromatography.
・ Analytical column: Chromolis Performance RP-18e (4.6 × 100 mm)
-Mobile phase: Water / acetonitrile was used, and after 7 minutes from the start of analysis, water / acetonitrile = 60% / 40% to acetonitrile 100%, then 100% acetonitrile was retained for 12 minutes, and then 12.1 minutes By the time, water / acetonitrile = 60% / 40%, and water / acetonitrile = 60% / 40% was maintained until 17 minutes.
-Flow rate: 2.5 mL / min-Column temperature: 45 ° C
Detector: Evaporative light scattering detector (ELSD)
-Detector temperature: 60 ° C

本発明において、サイジング剤塗布炭素繊維の水分率は、0.010〜0.030質量%であることが好ましい。サイジング剤塗布炭素繊維の水分率が0.030質量%以下であることで、湿潤下においても炭素繊維強化複合材料の高い力学特性が維持できる。サイジング剤塗布炭素繊維の水分率は、好ましくは0.024質量%以下であり、さらに好ましくは0.022質量%以下であるまた、水分率の下限は0.010質量%以上であることで、炭素繊維に塗布されたサイジング剤の均一塗布性が向上するため好ましい。0.015質量%以上がより好ましい。サイジング剤塗布炭素繊維の水分量の測定は、サイジング剤塗布炭素繊維を約2g秤量し、三菱化学アナリテック社製KF−100(容量法カールフィッシャー水分計)等の水分計を用いて測定できる。測定時の加熱温度は150℃で実施した。   In this invention, it is preferable that the moisture content of sizing agent application | coating carbon fiber is 0.010-0.030 mass%. When the moisture content of the sizing agent-coated carbon fiber is 0.030% by mass or less, high mechanical properties of the carbon fiber-reinforced composite material can be maintained even under wet conditions. The moisture content of the sizing agent-coated carbon fiber is preferably 0.024% by mass or less, more preferably 0.022% by mass or less, and the lower limit of the moisture content is 0.010% by mass or more. This is preferable because the uniform application property of the sizing agent applied to the carbon fiber is improved. 0.015 mass% or more is more preferable. The moisture content of the sizing agent-coated carbon fiber can be measured by weighing about 2 g of the sizing agent-coated carbon fiber and using a moisture meter such as KF-100 (capacity method Karl Fischer moisture meter) manufactured by Mitsubishi Chemical Analytech. The heating temperature at the time of measurement was 150 ° C.

続いて、本発明にかかる成形材料および炭素繊維強化複合材料の製造方法について説明する。本発明にかかる成形材料は、下記の2つの方法により好適に製造される。
第1の方法は、
炭素繊維を、ウェブ状、不織布状、フェルト状、またはマット状の生地に加工する加工工程と、
前記加工工程で得られた生地100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部付与する付与工程と、
前記付与工程でサイジング剤が付与された生地1〜80質量%に対し、マトリックス樹脂20〜99質量%を付与して、複合化する複合化工程と、を少なくとも含む。
Then, the manufacturing method concerning the molding material and carbon fiber reinforced composite material concerning this invention is demonstrated. The molding material concerning this invention is suitably manufactured by the following two methods.
The first method is
A processing step of processing carbon fiber into a web-like, non-woven, felt-like, or mat-like fabric;
For 100 parts by mass of the dough obtained in the processing step, 35 to 65% by mass of the aliphatic epoxy compound (A) and 35 to 60% by mass of the aromatic compound (B) with respect to the total amount of the sizing agent excluding the solvent; An application step of applying 0.1 to 10 parts by mass of a sizing agent containing at least
A compounding step in which 20 to 99% by mass of the matrix resin is applied to 1 to 80% by mass of the dough to which the sizing agent is applied in the applying step.

第2の方法は、
炭素繊維100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部塗布してサイジング剤塗布炭素繊維を得る塗布工程と、
前記塗布工程で得られたサイジング剤塗布炭素繊維を1〜50mmに切断する切断工程と、
前記切断工程で切断されたサイジング剤塗布炭素繊維1〜80質量%と、マトリックス樹脂20〜99質量%とを混合し、複合化する複合化工程と、を少なくとも含む。
The second method is
A sizing agent containing at least 35 to 65% by mass of an aliphatic epoxy compound (A) and 35 to 60% by mass of an aromatic compound (B) with respect to 100 parts by mass of carbon fiber, based on the total amount of the sizing agent excluding the solvent An application step of applying 0.1 to 10 parts by mass to obtain a sizing agent-coated carbon fiber;
A cutting step of cutting the sizing agent-coated carbon fiber obtained in the coating step into 1 to 50 mm;
It includes at least a compounding step in which 1 to 80% by mass of sizing agent-coated carbon fibers cut in the cutting step and 20 to 99% by mass of a matrix resin are mixed and compounded.

まず、炭素繊維が単繊維状で、実質的に2次元配向している成形材料の製造方法である第1の方法について説明する。   First, a first method, which is a method for producing a molding material in which carbon fibers are monofilamentous and substantially two-dimensionally oriented, will be described.

第1の方法では、炭素繊維を、ウェブ状、不織布状、フェルト状、マット状の生地に加工する(加工工程)。ウェブ状等の炭素繊維の生地は、炭素繊維束を分散加工して製造され得る。炭素繊維束は上述の炭素繊維であれば、連続した炭素繊維から構成されるもの、あるいは不連続な炭素繊維から構成されるもののどちらでも良いが、より良好な分散状態を達成するためには、不連続な炭素繊維が好ましく、チョップド炭素繊維がより好ましい。   In the first method, the carbon fiber is processed into a web-like, non-woven fabric, felt-like, or mat-like fabric (processing step). A web-like carbon fiber fabric can be manufactured by dispersing and processing carbon fiber bundles. As long as the carbon fiber bundle is the above-described carbon fiber, either a continuous carbon fiber or a discontinuous carbon fiber may be used, but in order to achieve a better dispersion state, Discontinuous carbon fibers are preferred, and chopped carbon fibers are more preferred.

炭素繊維の分散は、湿式法、或いは乾式法のいずれかによることができる。湿式法とは炭素繊維束を水中で分散させ抄造する方法であり、乾式法とは炭素繊維束を空気中で分散させる方法である。   The dispersion of the carbon fiber can be performed by either a wet method or a dry method. The wet method is a method in which carbon fiber bundles are dispersed and made in water, and the dry method is a method in which carbon fiber bundles are dispersed in air.

湿式法の場合、炭素繊維束の分散を水中で行い得られるスラリーを抄造してシート状の炭素繊維生地を得ることができる。   In the case of a wet method, a sheet-like carbon fiber fabric can be obtained by making a slurry obtained by dispersing a carbon fiber bundle in water.

炭素繊維束を分散させる水(分散液)は、通常の水道水のほか、蒸留水、精製水等の水を使用することができる。水には必要に応じて界面活性剤を混合し得る。界面活性剤は、陽イオン型、陰イオン型、非イオン型、両性の各種に分類されるが、このうち非イオン性界面活性剤が好ましく用いられ、中でもポリオキシエチレンラウリルエーテルがより好ましく用いられる。界面活性剤を水に混合する場合の界面活性剤の濃度は、通常は0.0001質量%以上0.1質量%以下、好ましくは0.0005質量%以上0.05質量%以下である。   As water (dispersion liquid) for dispersing the carbon fiber bundle, water such as distilled water and purified water can be used in addition to normal tap water. A surfactant may be mixed in the water as necessary. Surfactants are classified into a cation type, an anion type, a nonionic type, and an amphoteric type. Of these, nonionic surfactants are preferably used, and polyoxyethylene lauryl ether is more preferably used. . The concentration of the surfactant when mixing the surfactant with water is usually 0.0001% by mass or more and 0.1% by mass or less, preferably 0.0005% by mass or more and 0.05% by mass or less.

水(分散液)に対する炭素繊維束の添加量は、水(分散液)1lに対する量として、通常0.1g以上10g以下、好ましくは0.3g以上5g以下の範囲で調整し得る。前記範囲とすることにより、炭素繊維束が水(分散液)に効率よく分散し、均一に分散したスラリーを短時間で得ることができる。水(分散液)に対し炭素繊維束を分散させる際には、必要に応じて撹拌を行う。   The amount of the carbon fiber bundle added to water (dispersion) can be adjusted in the range of usually 0.1 g or more and 10 g or less, preferably 0.3 g or more and 5 g or less as the amount of water (dispersion) 1 l. By setting it as the said range, the carbon fiber bundle can disperse | distribute efficiently to water (dispersion liquid), and the slurry disperse | distributed uniformly can be obtained in a short time. When the carbon fiber bundle is dispersed in water (dispersion), stirring is performed as necessary.

スラリーとは固体粒子が分散している懸濁液をいい、本発明においては水系スラリーであることが好ましい。スラリーにおける固形分濃度(スラリー中の炭素繊維の質量含有量)は、0.01質量%以上1質量%以下であることが好ましく、0.03質量%以上0.5質量%以下であることがより好ましい。上記範囲であることにより抄造を効率よく行うことができる。   The slurry refers to a suspension in which solid particles are dispersed. In the present invention, an aqueous slurry is preferable. The solid content concentration (mass content of carbon fibers in the slurry) in the slurry is preferably 0.01% by mass or more and 1% by mass or less, and preferably 0.03% by mass or more and 0.5% by mass or less. More preferred. Papermaking can be performed efficiently by being in the above range.

スラリーの抄造は、上記スラリーから水を吸引して行うことができる。スラリーの抄造は、いわゆる抄紙法に倣って行うことができる。一例を挙げて説明すると、底部に抄紙面を有し水を底部から吸引できる槽に、スラリーを流し込み水を吸引して行うことができる。前記槽としては、熊谷理機工業株式会社製、No.2553−I(商品名)、底部に幅200mmの抄紙面を有するメッシュコンベアを備える槽が例示される。このようにして炭素繊維シートが得られる。   The slurry can be made by sucking water from the slurry. Slurry papermaking can be performed according to a so-called papermaking method. For example, the slurry can be poured into a tank having a papermaking surface at the bottom and capable of sucking water from the bottom, and the water can be sucked. As said tank, the Kumagaya Riki Kogyo Co., Ltd. make, No. 2553-I (trade name), and a tank provided with a mesh conveyor having a papermaking surface with a width of 200 mm at the bottom. In this way, a carbon fiber sheet is obtained.

乾式法の場合、炭素繊維束を気相中で分散させて炭素繊維シートを得ることができる。すなわち、炭素繊維束を気相中で分散させて、分散後の炭素繊維束を堆積させて、炭素繊維シートを得ることができる。   In the case of the dry method, the carbon fiber bundle can be dispersed in the gas phase to obtain a carbon fiber sheet. That is, it is possible to obtain a carbon fiber sheet by dispersing the carbon fiber bundles in the gas phase and depositing the dispersed carbon fiber bundles.

炭素繊維束の気相中での分散は、炭素繊維束を非接触式で開繊し開繊した炭素繊維束を堆積させて行う方法(非接触式法)、炭素繊維束に空気流を当てて開繊し、開繊した炭素繊維束を堆積させて行う方法(空気流を用いる方法)、炭素繊維束の気相中での分散を、炭素繊維束を接触式で開繊し、開繊した炭素繊維束を堆積させて行う方法(接触式法)の3種類がある。   Dispersion of carbon fiber bundles in the gas phase is performed by opening the carbon fiber bundles in a non-contact manner and depositing the opened carbon fiber bundles (non-contact method), applying an air flow to the carbon fiber bundles. The carbon fiber bundles that are opened and deposited, and the carbon fiber bundles are deposited (method using an air flow). The dispersion of the carbon fiber bundles in the gas phase is performed by opening the carbon fiber bundles in a contact manner. There are three types of methods (contact method) in which the carbon fiber bundles deposited are deposited.

非接触式法は、炭素繊維束に固体や開繊装置を接触させることなく開繊させる方法である。例えば、空気や不活性ガスなどの気体を強化繊維束に吹き付ける方法、なかでもコスト面で有利な空気を加圧して吹き付ける方法が好ましく挙げられる。   The non-contact method is a method of opening a carbon fiber bundle without bringing a solid or a fiber opening device into contact therewith. For example, a method of spraying a gas such as air or an inert gas onto the reinforcing fiber bundle, particularly a method of pressurizing and spraying air advantageous in terms of cost is preferable.

空気流を用いる方法において、炭素繊維束に対し空気流を当てる条件は特に限定されない。一例を挙げると、加圧空気(通常0.1MPa以上10MPa以下、好ましくは0.5MPa以上5MPa以下の圧力がかかるような空気流)を炭素繊維束が開繊するまで当てる。空気流を用いる方法において、使用し得る装置は特に限定されないが、空気管を備え、空気吸引が可能であり、炭素繊維束を収容し得る容器を例示し得る。かかる容器を用いることにより、炭素繊維束の開繊と堆積を一つの容器内で行うことができる。   In the method using an air flow, the conditions for applying the air flow to the carbon fiber bundle are not particularly limited. As an example, pressurized air (usually an air flow that applies a pressure of 0.1 MPa to 10 MPa, preferably 0.5 MPa to 5 MPa) is applied until the carbon fiber bundle is opened. In the method using an air flow, an apparatus that can be used is not particularly limited, and examples thereof include a container that includes an air tube and is capable of air suction and can contain a carbon fiber bundle. By using such a container, the opening and deposition of the carbon fiber bundle can be performed in one container.

接触式法とは、炭素繊維束に固体や開繊装置を物理的に接触させて開繊させる方法である。接触式法としては、カーディング、ニードルパンチ、ローラ開繊が例示されるが、このうちカーディング、ニードルパンチによることが好ましく、カーディングによることがより好ましい。接触式法の実施条件は特に限定されず、炭素繊維束が開繊する条件を適宜定めることができる。   The contact method is a method in which a carbon fiber bundle is physically contacted with a solid or an opening device to open the fiber. Examples of the contact method include carding, needle punching, and roller opening. Of these, carding and needle punching are preferable, and carding is more preferable. The conditions for carrying out the contact method are not particularly limited, and conditions for opening the carbon fiber bundle can be appropriately determined.

上記のようにして製造したシート状の炭素繊維生地の目付は、10〜500g/m2であることが好ましく、50〜300g/m2であることがより好ましい。10g/m2未満であると基材の破れなどの取り扱い性に不具合を生じるおそれがあり、500g/m2を超えると、湿式法では基材の乾燥に長時間かかることや、乾式法ではシートが厚くなる場合があり、その後のプロセスで取り扱い性が難しくなるおそれがある。 Sheet having a basis weight of the carbon fiber fabric was prepared as described above is preferably 10 to 500 g / m 2, and more preferably 50 to 300 g / m 2. 10 g / m can cause a risk of failure is less than 2 handling properties such as tear of the base material, when it exceeds 500 g / m 2, and it takes a long time to dry the substrate by a wet method, a dry method Sheet May become thick, and handling may be difficult in subsequent processes.

加工工程の後、得られた生地である炭素繊維シート100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部付与する(付与工程)。脂肪族エポキシ化合物(A)および芳香族化合物(B)を含んでなるサイジング剤は、本発明の第1の方法において、「バインダー」とも称されるが、工程中における炭素繊維の取り扱い性を高める観点および炭素繊維とマトリックス樹脂との界面接着性に対して重要である。サイジング剤が0.1質量部以上で、炭素繊維シートの取り扱い性が良好になり、成形材料の生産効率が高くなる。また、10質量部以下で、炭素繊維とマトリックス樹脂との界面接着性が高くなる。   After the processing step, 35 to 65% by mass of the aliphatic epoxy compound (A) and the aromatic compound (B) with respect to 100 parts by mass of the carbon fiber sheet that is the obtained dough, based on the total amount of the sizing agent excluding the solvent. 0.1 to 10 parts by mass of a sizing agent containing at least 35 to 60% by mass is applied (applying step). The sizing agent comprising the aliphatic epoxy compound (A) and the aromatic compound (B) is also referred to as a “binder” in the first method of the present invention, and improves the handleability of the carbon fiber in the process. It is important for the viewpoint and the interfacial adhesion between the carbon fiber and the matrix resin. When the sizing agent is 0.1 parts by mass or more, the handleability of the carbon fiber sheet is improved, and the production efficiency of the molding material is increased. Moreover, the interface adhesiveness of carbon fiber and matrix resin becomes high at 10 mass parts or less.

炭素繊維シートへのサイジング剤の付与は、サイジング剤を含む水溶液、エマルジョンまたはサスペンジョンを用いて行うことが好ましい。水溶液とは、脂肪族エポキシ化合物(A)および芳香族化合物(B)が水にほぼ完全に溶解した状態の溶液を意味する。エマルジョンとは、分散媒である液体中に脂肪族エポキシ化合物(A)および芳香族化合物(B)を含む液体が微細粒子を形成して分散している状態を意味する。サスペンジョンとは、固体の脂肪族エポキシ化合物(A)および芳香族化合物(B)が水に懸濁した状態を意味する。液中の成分粒径の大きさは、水溶液<エマルジョン<サスペンジョンの順である。サイジング剤を炭素繊維シートに付与する方法は、特に制限されないが、例えば、サイジング剤水溶液、エマルジョンまたはサスペンジョンに炭素繊維シートを浸漬する方法、サイジング剤水溶液、エマルジョンまたはサスペンジョンを炭素繊維シートにシャワーする方法等によることができる。付与後は、例えば吸引除去する方法または吸収紙などの吸収材へ吸収させる方法などで、過剰分の水溶液、エマルジョンまたはサスペンジョンを除去しておくことが好ましい。   The sizing agent is preferably applied to the carbon fiber sheet by using an aqueous solution, emulsion or suspension containing the sizing agent. The aqueous solution means a solution in which the aliphatic epoxy compound (A) and the aromatic compound (B) are almost completely dissolved in water. An emulsion means a state in which a liquid containing an aliphatic epoxy compound (A) and an aromatic compound (B) is dispersed in a liquid serving as a dispersion medium by forming fine particles. Suspension means a state where solid aliphatic epoxy compound (A) and aromatic compound (B) are suspended in water. The component particle sizes in the liquid are in the order of aqueous solution <emulsion <suspension. The method for applying the sizing agent to the carbon fiber sheet is not particularly limited. For example, a method of immersing the carbon fiber sheet in an aqueous sizing agent solution, emulsion or suspension, or a method of showering the aqueous sizing agent solution, emulsion or suspension on the carbon fiber sheet. Etc. After the application, it is preferable to remove the excess aqueous solution, emulsion, or suspension by, for example, a method of removing by suction or a method of absorbing into an absorbent material such as absorbent paper.

付与工程において、炭素繊維シートは、サイジング剤の付与後に加熱されることが好ましい。これにより、サイジング剤が付与された後の炭素繊維シートに含まれる水分を除去し、次工程に要する時間を短縮し、成形材料を短時間で得ることができる。加熱温度は、適宜設定することができ、100℃以上300℃以下であることが好ましく、120℃以上250℃以下であることがより好ましい。   In the application step, the carbon fiber sheet is preferably heated after application of the sizing agent. Thereby, the water | moisture content contained in the carbon fiber sheet after a sizing agent was provided is removed, the time which a next process requires can be shortened, and a molding material can be obtained in a short time. The heating temperature can be appropriately set and is preferably 100 ° C. or higher and 300 ° C. or lower, and more preferably 120 ° C. or higher and 250 ° C. or lower.

サイジング剤が付与された炭素繊維シートを短時間に多く製造するためには、引き取りを行うことが好ましい。またその際、炭素繊維シートにしわ、たるみが発生しないよう引張強力が1N/cm以上の状態として引き取ることが好ましい。引張強力は、より好ましくは3N/cm以上、さらに好ましくは5N/cm以上である。炭素繊維シートにかけることができる引張強力は、サイジング剤の種類や付与量を調整することで制御でき、付与量を多くすると引張強力を高くすることができる。また、かけられる引張強力が1N/cm未満の状態となると、炭素繊維シートがちぎれ易い状態であり、炭素繊維シートの取り扱い性の観点からも、引張強力が1N/cm以上あることが好ましい。引張強力の上限は特に限定されないが、100N/cmもあれば、炭素繊維シートの取り扱い性も十分に満足できる状態である。   In order to produce a large number of carbon fiber sheets to which a sizing agent has been applied in a short time, it is preferable to perform take-up. At that time, it is preferable to pull the carbon fiber sheet in a state where the tensile strength is 1 N / cm or more so that wrinkles and sagging do not occur. The tensile strength is more preferably 3 N / cm or more, and further preferably 5 N / cm or more. The tensile strength that can be applied to the carbon fiber sheet can be controlled by adjusting the type and application amount of the sizing agent, and the tensile strength can be increased by increasing the application amount. Moreover, when the applied tensile strength is less than 1 N / cm, the carbon fiber sheet is easily broken, and the tensile strength is preferably 1 N / cm or more from the viewpoint of the handleability of the carbon fiber sheet. The upper limit of the tensile strength is not particularly limited, but if it is 100 N / cm, the handleability of the carbon fiber sheet is sufficiently satisfactory.

複合化工程では、付与工程において得られるサイジング剤が付与された炭素繊維シートにマトリックス樹脂を含浸させ、炭素繊維シートと熱可塑性樹脂とを複合化し、成形材料を得る。   In the compounding step, the carbon fiber sheet provided with the sizing agent obtained in the applying step is impregnated with a matrix resin, and the carbon fiber sheet and the thermoplastic resin are combined to obtain a molding material.

第1の方法において、成形材料に対する炭素繊維、サイジング剤および熱可塑性樹脂の含有量は、炭素繊維が1〜70質量%、サイジング剤が0.1〜10質量%、マトリックス樹脂が20〜98.9質量%である。この範囲とすることにより、炭素繊維の補強を効率良く発揮可能な成形材料が得られ易い。より好ましくは、炭素繊維が10〜60質量%、サイジング剤が0.5〜10質量%、マトリックス樹脂が30〜89.5質量%である。さらに好ましくは、炭素繊維が20〜60質量%、サイジング剤が1〜8質量%、マトリックス樹脂が32〜79質量%である。   In the first method, the carbon fiber, the sizing agent, and the thermoplastic resin are contained in the molding material in an amount of 1 to 70 mass% for the carbon fiber, 0.1 to 10 mass% for the sizing agent, and 20 to 98 mass% for the matrix resin. 9% by mass. By setting it as this range, the molding material which can exhibit the reinforcement of carbon fiber efficiently can be obtained easily. More preferably, the carbon fiber is 10 to 60% by mass, the sizing agent is 0.5 to 10% by mass, and the matrix resin is 30 to 89.5% by mass. More preferably, the carbon fiber is 20 to 60% by mass, the sizing agent is 1 to 8% by mass, and the matrix resin is 32 to 79% by mass.

第1の方法において、マトリックス樹脂として熱可塑性樹脂を用いる場合には、熱可塑性樹脂と、サイジング剤が付与された炭素繊維シートとの複合化は、熱可塑性樹脂を炭素繊維シートに接触させることにより行うことができる。この場合の熱可塑性樹脂の形態は、特に限定されないが、例えば布帛、不織布およびフィルムから選択される少なくとも1種の形態であることが好ましい。接触の方式は特に限定されないが、熱可塑性樹脂の布帛、不織布またはフィルムを2枚用意し、サイジング剤が付与された炭素繊維シートの上下両面に配置する方式が例示される。   In the first method, when a thermoplastic resin is used as the matrix resin, the composite of the thermoplastic resin and the carbon fiber sheet to which the sizing agent is applied is performed by bringing the thermoplastic resin into contact with the carbon fiber sheet. It can be carried out. The form of the thermoplastic resin in this case is not particularly limited, but is preferably at least one form selected from, for example, a fabric, a nonwoven fabric, and a film. Although the contact method is not particularly limited, a method of preparing two thermoplastic resin fabrics, non-woven fabrics, or films and arranging them on both upper and lower surfaces of a carbon fiber sheet provided with a sizing agent is exemplified.

第1の方法において、熱可塑性樹脂と、サイジング剤が付与された炭素繊維シートとの複合化は、加圧および/または加熱により行われることが好ましく、加圧と加熱の両方が同時に行われることがより好ましい。加圧の条件は0.01MPa以上10MPa以下であることが好ましく、0.05MPa以上5MPa以下であることがより好ましい。加熱の条件は、用いる熱可塑性樹脂が溶融または流動可能な温度であることが好ましく、温度領域では50℃以上400℃以下であることが好ましく、80℃以上350℃以下であることがより好ましい。加圧および/または加熱は、熱可塑性樹脂をサイジング剤が付与された炭素繊維シートに接触させた状態で行うことができる。例えば、熱可塑性樹脂の布帛、不織布またはフィルムを2枚用意し、サイジング剤が付与された炭素繊維シートの上下両面に配置し、両面から加熱および/または加熱を行う(ダブルベルトプレス装置で挟み込む方法等)方法が挙げられる。   In the first method, the composite of the thermoplastic resin and the carbon fiber sheet provided with the sizing agent is preferably performed by pressurization and / or heating, and both pressurization and heating are performed simultaneously. Is more preferable. The pressurization condition is preferably 0.01 MPa or more and 10 MPa or less, and more preferably 0.05 MPa or more and 5 MPa or less. The heating condition is preferably a temperature at which the thermoplastic resin to be used can be melted or flowed, and is preferably 50 ° C. or higher and 400 ° C. or lower, more preferably 80 ° C. or higher and 350 ° C. or lower in the temperature range. The pressurization and / or heating can be performed in a state where the thermoplastic resin is in contact with the carbon fiber sheet to which the sizing agent is applied. For example, two thermoplastic resin fabrics, non-woven fabrics or films are prepared, placed on both upper and lower surfaces of a carbon fiber sheet provided with a sizing agent, and heated and / or heated from both sides (a method of sandwiching with a double belt press device) Etc.) method.

第1の方法で製造された本発明の成形材料において、炭素繊維は単繊維状で実質的に2次元配向である。「2次元配向である」とは、成形材料を構成する炭素繊維単繊維と最も近接する他の炭素繊維単繊維とで形成される二次元配向角の平均値が10〜80°であることを意味する。成形材料を光学顕微鏡あるいは電子顕微鏡で観察することで、二次元配向角を測定することができる。成形材料において、400本の炭素繊維の二次元配向角を測定して平均値をとる。「実質的に」炭素繊維が2次元配向であるとは、上記400本の炭素繊維のうち通常本数で70%以上、好ましくは95%以上、より好ましくは全ての炭素繊維が2次元配向であることを意味する。   In the molding material of the present invention produced by the first method, the carbon fibers are monofilamentous and have a substantially two-dimensional orientation. “Two-dimensional orientation” means that the average value of the two-dimensional orientation angle formed by the carbon fiber single fiber constituting the molding material and the other closest carbon fiber single fiber is 10 to 80 °. means. The two-dimensional orientation angle can be measured by observing the molding material with an optical microscope or an electron microscope. In the molding material, the two-dimensional orientation angle of 400 carbon fibers is measured and an average value is obtained. “Substantially” the carbon fibers are in a two-dimensional orientation means that the number of carbon fibers is usually 70% or more, preferably 95% or more, more preferably all of the 400 carbon fibers are in a two-dimensional orientation. Means that.

続いて、炭素繊維が束状で、実質的に2次元配向している成形材料の製造方法である第2の方法について説明する。第2の方法は、少なくとも塗布工程、切断工程および複合化工程からなる。   Subsequently, a second method, which is a method for producing a molding material in which carbon fibers are bundled and substantially two-dimensionally oriented, will be described. The second method comprises at least a coating process, a cutting process, and a compounding process.

塗布工程では、炭素繊維100質量部に対して、溶媒を除去したサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部付着してサイジング剤塗布炭素繊維を得る。サイジング剤の炭素繊維への付与方法は、上記したように、ローラを介してサイジング液に炭素繊維を浸漬する方法、サイジング液の付着したローラに炭素繊維を接する方法、サイジング液を霧状にして炭素繊維に吹き付ける方法等が使用できる。   In an application | coating process, 35-65 mass% of aliphatic epoxy compounds (A) and 35-60 mass% of aromatic compounds (B) with respect to 100 mass parts of carbon fibers with respect to the sizing agent whole quantity which removed the solvent at least. A sizing agent-coated carbon fiber is obtained by adhering 0.1 to 10 parts by mass of the sizing agent. As described above, the method of applying the sizing agent to the carbon fiber includes the method of immersing the carbon fiber in the sizing liquid through the roller, the method of contacting the carbon fiber with the roller to which the sizing liquid is attached, and the sizing liquid being atomized. A method of spraying on carbon fiber can be used.

切断工程では、塗布工程で得られたサイジング剤塗布炭素繊維を1〜50mmにカットする。炭素繊維の長さは1〜50mmとすることが好ましい。1mm未満であると炭素繊維による補強硬化を効率よく発揮することが困難となるおそれがあり、50mmを超えると分散を良好に保つのが困難となるおそれがあるためである。カットは、ギロチンカッターや、ロービングカッター等のロータリー式カッターなど公知の方法で行うことができる。   In a cutting process, the sizing agent application | coating carbon fiber obtained at the application | coating process is cut into 1-50 mm. The length of the carbon fiber is preferably 1 to 50 mm. This is because if it is less than 1 mm, it may be difficult to efficiently exhibit reinforcement and hardening by carbon fibers, and if it exceeds 50 mm, it may be difficult to maintain good dispersion. The cutting can be performed by a known method such as a guillotine cutter or a rotary cutter such as a roving cutter.

複合化工程では、切断工程で切断されたサイジング剤塗布炭素繊維とマトリックス樹脂とを、サイジング剤塗布炭素繊維が1〜80質量%、マトリックス樹脂が20〜99質量%となるよう混合し、複合化する。サイジング剤塗布炭素繊維とマトリックス樹脂との配合割合は、サイジング剤塗布炭素繊維が1〜80質量%、マトリックス樹脂が20〜99質量%とすることが好ましく、より好ましくは、サイジング剤塗布炭素繊維が10〜70質量%、マトリックス樹脂が30〜90質量%、さらに好ましくはサイジング剤塗布炭素繊維が20〜60質量%、マトリックス樹脂が40〜80質量%である。   In the compounding step, the sizing agent-coated carbon fiber and the matrix resin cut in the cutting step are mixed so that the sizing agent-coated carbon fiber is 1 to 80% by mass and the matrix resin is 20 to 99% by mass to be compounded. To do. The blending ratio between the sizing agent-coated carbon fiber and the matrix resin is preferably 1 to 80% by mass for the sizing agent-coated carbon fiber and 20 to 99% by mass for the matrix resin, and more preferably, the sizing agent-coated carbon fiber is 10-70 mass%, matrix resin is 30-90 mass%, More preferably, sizing agent application | coating carbon fiber is 20-60 mass%, and matrix resin is 40-80 mass%.

第2の方法で製造された本発明の成形材料において、炭素繊維は束状で実質的に2次元配向である。「2次元配向である」は、第1の方法と同様の意味を有する。   In the molding material of the present invention produced by the second method, the carbon fibers are bundled and have a substantially two-dimensional orientation. “Two-dimensional orientation” has the same meaning as in the first method.

第1の方法および第2の方法において、複合化工程で使用するマトリックス樹脂としては、熱硬化性樹脂または熱可塑性樹脂が用いられる。特に第1の方法においては、成形性の観点から熱可塑性樹脂が好ましく用いられる。   In the first method and the second method, a thermosetting resin or a thermoplastic resin is used as the matrix resin used in the compounding step. In particular, in the first method, a thermoplastic resin is preferably used from the viewpoint of moldability.

熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、シアネートエステル樹脂およびビスマレイミド樹脂等が挙げられる。なかでも、不飽和ポリエステル樹脂等のラジカル重合系樹脂が好適に使用される。   Examples of the thermosetting resin include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, melamine resins, urea resins, cyanate ester resins, and bismaleimide resins. Among these, radical polymerization resins such as unsaturated polyester resins are preferably used.

不飽和ポリエステル樹脂は不飽和多塩基酸又は場合により飽和多塩基酸を含む不飽和多塩基酸と多価アルコールから得ることができる。不飽和多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、メサコン酸、シトラコン酸、無水シトラコン酸、クロロマレイン酸、ピロメリト酸等あるいはこれらの(ジ)アルキルエステルなどを挙げることができる。これらの不飽和多塩基酸は1種を単独で用いることができ、あるいは2種以上を組み合わせて用いることもできる。又、不飽和多塩基酸の一部を置き換える飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロ無水フタル酸、アゼライン酸、アジピン酸、セバシン酸、ヘット酸等を挙げることができる。これらの飽和多塩基酸は1種を単独で用いることができ、あるいは2種以上を組み合わせて用いることもできる。   Unsaturated polyester resins can be obtained from unsaturated polybasic acids or optionally unsaturated polybasic acids including saturated polybasic acids and polyhydric alcohols. Examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, mesaconic acid, citraconic acid, citraconic anhydride, chloromaleic acid, pyromellitic acid and the like (di) Examples include alkyl esters. These unsaturated polybasic acids can be used individually by 1 type, or can also be used in combination of 2 or more type. Examples of the saturated polybasic acid that replaces part of the unsaturated polybasic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, hexahydrophthalic anhydride, azelaic acid, adipic acid, sebacic acid, and het acid Etc. These saturated polybasic acids can be used individually by 1 type, or can also be used in combination of 2 or more type.

多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,2−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジオール、ネオペンチルグリコール、2,2,4−トリメチル−1,3−ペンタンジオール、グリセリンモノアリルエール、ビスフェノールA、水素化ビスフェノールA、ビスフェノールAのプロピレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、グリシジル化ビスフェノールA、グリシジル化ビスフェノールF、グリセリン、トリメチロールプロパン、ペンタエリスリトール、エチレンオキシド、プロピレンオキシド、エピクロルヒドリン等を挙げることができる。これらの多価アルコールは、1種を単独で用いても、あるいは2種以上組み合わせても良い。   Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,2-pentane. Propylene oxide addition of diol, 1,6-hexanediol, cyclohexanediol, neopentyl glycol, 2,2,4-trimethyl-1,3-pentanediol, glycerin monoallyl ale, bisphenol A, hydrogenated bisphenol A, bisphenol A , Bisphenol A ethylene oxide adduct, glycidylated bisphenol A, glycidylated bisphenol F, glycerin, trimethylolpropane, pentaerythritol, ethylene oxide, pro Ren'okishido, can be mentioned epichlorohydrin. These polyhydric alcohols may be used alone or in combination of two or more.

また、成形材料の軽量化を目的として、熱硬化性樹脂に、熱可塑性樹脂を含ませることができる。室温で固体の熱可塑性樹脂組成物が、軽量化のためには好ましい。特に、飽和ポリエステル、ポリビニル化合物、ポリアセテート又はポリ(メタ)アクリレートのいずれか一つ又はこれらの組み合わせからなる組成物を好ましく用いることができ、中でも、ポリ(メタ)アクリレートは取り扱いが容易であり且つ安価であるから最も好ましく用いることができる。   For the purpose of reducing the weight of the molding material, a thermoplastic resin can be included in the thermosetting resin. A thermoplastic resin composition that is solid at room temperature is preferred for weight reduction. In particular, a composition comprising any one of a saturated polyester, a polyvinyl compound, a polyacetate or a poly (meth) acrylate, or a combination thereof can be preferably used. Among them, the poly (meth) acrylate is easy to handle and Since it is inexpensive, it can be most preferably used.

熱可塑性樹脂の熱硬化性樹脂中への配合量は、10質量%以上、特に20質量%以上が好ましく、60質量%以下、特に40質量%以下が好ましい。熱可塑性樹脂の量が60質量%を超えると、炭素繊維強化複合材料に整形した場合の強度が低下するためである。   The blending amount of the thermoplastic resin in the thermosetting resin is preferably 10% by mass or more, particularly preferably 20% by mass or more, and preferably 60% by mass or less, particularly preferably 40% by mass or less. This is because if the amount of the thermoplastic resin exceeds 60% by mass, the strength when shaped into a carbon fiber reinforced composite material is lowered.

なお、本発明で用いることのできる熱硬化性樹脂には、上記の熱可塑性樹脂のほか、硬化剤(重合開始剤)、硬化触媒、離型剤、増粘剤、着色剤、その他充填剤等の添加剤を加えることは差し支えない。例えば、硬化剤としてはアゾ化合物や過酸化物等を、硬化触媒としてはメルカプタン類を始めとする連鎖移動剤等を、剥離材としてはステアリン酸などの高級脂肪酸又はそれらの金属塩等を、増粘剤としてはアルカリ土類金属の酸化物等を、着色剤としては無機顔料やトナー等を適量用いることが可能である。   The thermosetting resin that can be used in the present invention includes the above-mentioned thermoplastic resin, a curing agent (polymerization initiator), a curing catalyst, a release agent, a thickener, a colorant, and other fillers. It is possible to add other additives. For example, azo compounds and peroxides as the curing agent, chain transfer agents such as mercaptans as the curing catalyst, and higher fatty acids such as stearic acid or their metal salts as the release agent are increased. An alkaline earth metal oxide or the like can be used as the sticking agent, and an appropriate amount of an inorganic pigment or toner can be used as the coloring agent.

熱可塑性樹脂を使用する場合、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン、酸変性ポリエチレン(m−PE)、酸変性ポリプロピレン(m−PP)、酸変性ポリブチレン等のポリオレフィン系樹脂;ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド樹脂;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN);ポリテトラフルオロエチレン等のフッ素系樹脂;液晶ポリマー(LCP)」等の結晶性樹脂、「ポリスチレン(PS)、アクリロニトリルスチレン(AS)、アクリロニトリルブタジエンスチレン(ABS)等のポリスチレン系樹脂、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、未変性または変性されたポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」等の非晶性樹脂;フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリブタジエン系エラストマー、ポリイソプレン系エラストマー、フッ素系樹脂およびアクリロニトリル系エラストマー等の各種熱可塑エラストマー等、これらの共重合体および変性体等から選ばれる少なくとも1種が好ましく用いられる。なお、熱可塑性樹脂としては、本発明の目的を損なわない範囲で、これらの熱可塑性樹脂を複数種使用してもよい。   When using a thermoplastic resin, for example, “polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), liquid crystal polyester; polyethylene (PE ), Polypropylene (PP), polybutylene, acid-modified polyethylene (m-PE), acid-modified polypropylene (m-PP), acid-modified polybutylene, and other polyolefin resins; polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide Polyarylene sulfide resins such as (PPS); polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyethernitrile (PEN); fluororesin such as polytetrafluoroethylene; crystalline resin such as liquid crystal polymer (LCP), polystyrene resin such as “polystyrene (PS), acrylonitrile styrene (AS), acrylonitrile butadiene styrene (ABS)”, Polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), unmodified or modified polyphenylene ether (PPE), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyarylate (PAR) "and other amorphous resins; phenolic resins, phenoxy resins, polystyrene elastomers, polyolefin elastomers, polyurethane elastomers, poly Preferably used are at least one selected from a copolymer, a modified body, and the like such as stealth elastomer, polyamide elastomer, polybutadiene elastomer, polyisoprene elastomer, various thermoplastic elastomers such as fluororesin and acrylonitrile elastomer. It is done. In addition, as a thermoplastic resin, you may use multiple types of these thermoplastic resins in the range which does not impair the objective of this invention.

上記の熱可塑性樹脂の中でも、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリスチレン系樹脂およびポリオレフィン系樹脂からなる群から選択される少なくとも1種の熱可塑性樹脂であれば、芳香族化合物(B)との相互作用が大きく、サイジング剤と熱可塑性樹脂の相互作用が強くなることで強固な界面を形成できるため好ましい。   Among the above thermoplastic resins, at least selected from the group consisting of polyarylene sulfide resins, polyether ether ketone resins, polyphenylene ether resins, polyoxymethylene resins, polyester resins, polycarbonate resins, polystyrene resins and polyolefin resins. One type of thermoplastic resin is preferable because the interaction with the aromatic compound (B) is large and the interaction between the sizing agent and the thermoplastic resin becomes strong, so that a strong interface can be formed.

また、本発明において用いられる熱可塑性樹脂としては、耐熱性の観点からは、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂が好ましい。寸法安定性の観点からは、ポリフェニレンエーテル樹脂が好ましい。摩擦・磨耗特性の観点からは、ポリオキシメチレン樹脂が好ましい。強度の観点からは、ポリアミド樹脂が好ましい。表面外観の観点からは、ポリカーボネートやポリスチレン系樹脂のような非晶性樹脂が好ましい。軽量性の観点からは、ポリオレフィン系樹脂が好ましい。   The thermoplastic resin used in the present invention is preferably a polyarylene sulfide resin or a polyether ether ketone resin from the viewpoint of heat resistance. From the viewpoint of dimensional stability, polyphenylene ether resin is preferable. From the viewpoint of friction and wear characteristics, polyoxymethylene resin is preferred. From the viewpoint of strength, a polyamide resin is preferable. From the viewpoint of surface appearance, an amorphous resin such as polycarbonate or polystyrene resin is preferable. From the viewpoint of lightness, polyolefin resin is preferable.

より好ましくは、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂およびポリオレフィン系樹脂から選ばれる一種以上あるいはポリアミドである。ポリアリーレンスルフィド樹脂は耐熱性の点から、ポリオレフィン系樹脂は軽量性の点から特に好ましい。   More preferably, it is at least one selected from polyarylene sulfide resin, polycarbonate resin and polyolefin resin, or polyamide. Polyarylene sulfide resins are particularly preferable from the viewpoint of heat resistance, and polyolefin resins are particularly preferable from the viewpoint of light weight.

また、ポリアミドなどに代表される吸水性の高い樹脂を用いた場合には、炭素繊維表面の芳香族化合物(B)による水分率低下の効果により、吸水時にも物性が維持されるため好ましい。特にポリアミド樹脂は強度が高く好ましい。   In addition, when a highly water-absorbing resin typified by polyamide or the like is used, it is preferable because the physical properties are maintained even during water absorption due to the effect of lowering the moisture content by the aromatic compound (B) on the carbon fiber surface. In particular, a polyamide resin is preferable because of its high strength.

本発明において、上記好ましい熱可塑性樹脂を用いた場合のサイジング剤との相互作用について説明する。
本発明において、サイジング剤に含まれる炭素繊維との相互作用に関与しない残りのエポキシ基、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基は、熱可塑性樹脂の主鎖にあるエーテル基、エステル基、スルフィド基、アミド基、側鎖にある酸無水物基、シアノ基、および末端にある水酸基、カルボキシル基、アミノ基等の官能基と共有結合や水素結合などの相互作用を形成し、界面接着性を向上させるものと考えられる。特に、サイジング剤の外層に多く存在する芳香族化合物(B)の官能基が熱可塑性樹脂と相互作用を形成し、界面接着性を高めると考えられる。
In the present invention, the interaction with the sizing agent when the preferred thermoplastic resin is used will be described.
In the present invention, the remaining epoxy group, hydroxyl group, amide group, imide group, urethane group, urea group, sulfonyl group, or sulfo group that does not participate in the interaction with the carbon fiber contained in the sizing agent is the main component of the thermoplastic resin. Ether groups, ester groups, sulfide groups, amide groups in the chain, acid anhydride groups in the side chain, cyano groups, and functional groups such as terminal hydroxyl groups, carboxyl groups, amino groups, and covalent bonds and hydrogen bonds It is considered that an interaction is formed and interfacial adhesion is improved. In particular, it is considered that the functional group of the aromatic compound (B) present in a large amount in the outer layer of the sizing agent forms an interaction with the thermoplastic resin and enhances the interfacial adhesion.

ポリアリーレンスルフィド樹脂をマトリックス樹脂として使用する場合、ポリアリーレンスルフィド樹脂の末端にあるチオール基やカルボキシル基と、サイジング剤のエポキシ基との共有結合等の相互作用、主鎖にあるスルフィド基とサイジング剤、特に芳香族化合物(B)に含まれるエポキシ基や水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。特に、熱可塑性樹脂中の芳香環とサイジング剤の芳香族化合物(B)との相互作用により高い接着性が得られると考えられる。   When polyarylene sulfide resin is used as a matrix resin, interaction such as covalent bond between thiol group or carboxyl group at the terminal of polyarylene sulfide resin and epoxy group of sizing agent, sulfide group in main chain and sizing agent In particular, a strong interface can be formed by hydrogen bonding with an epoxy group, a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, or a sulfo group contained in the aromatic compound (B). It is done. In particular, it is considered that high adhesiveness can be obtained by the interaction between the aromatic ring in the thermoplastic resin and the aromatic compound (B) of the sizing agent.

また、ポリアミド樹脂をマトリックス樹脂として使用する場合、ポリアミド樹脂の末端にあるカルボキシル基やアミノ基と、サイジング剤に含まれるエポキシ基との共有結合などの相互作用、主鎖にあるアミド基とサイジング剤、特に芳香族化合物(B)に含まれるエポキシ基、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。   In addition, when a polyamide resin is used as a matrix resin, an interaction such as a covalent bond between a carboxyl group or amino group at the end of the polyamide resin and an epoxy group contained in the sizing agent, an amide group in the main chain, and a sizing agent In particular, a strong interface can be formed by hydrogen bonding with an epoxy group, a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, or a sulfo group contained in the aromatic compound (B). It is done.

また、ポリエステル系樹脂やポリカーボネート樹脂をマトリックス樹脂として使用する場合、ポリエステル系樹脂やポリカーボネート樹脂の末端にあるカルボキシル基や水酸基と、サイジング剤に含まれるエポキシ基との共有結合などの相互作用、主鎖にあるエステル基と、サイジング剤、特に芳香族化合物(B)に含まれるエポキシ基や水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。特に、熱可塑性樹脂中の芳香環とサイジング剤の芳香族化合物(B)との相互作用により高い接着性が得られると考えられる。   In addition, when using a polyester resin or polycarbonate resin as a matrix resin, interaction such as covalent bond between the carboxyl group or hydroxyl group at the end of the polyester resin or polycarbonate resin and the epoxy group contained in the sizing agent, the main chain Strong interface due to hydrogen bonding between the ester group in the sizing agent, particularly the epoxy group, hydroxyl group, amide group, imide group, urethane group, urea group, sulfonyl group, or sulfo group contained in the aromatic compound (B) It is thought that can be formed. In particular, it is considered that high adhesiveness can be obtained by the interaction between the aromatic ring in the thermoplastic resin and the aromatic compound (B) of the sizing agent.

特に第2の方法において、好ましい熱可塑性樹脂としては、例えば、ポリメチルメタクリレート等の(メタ)アクリル系樹脂、ポリスチレン等のポリスチレン系樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、ポリエステル樹脂、ポリプロピレン、ポリエチレン、ポリカーボネート等が挙げられる。中でも、耐候性が良好な(メタ)アクリル系樹脂が特に好ましい。   Particularly in the second method, preferable thermoplastic resins include, for example, (meth) acrylic resins such as polymethyl methacrylate, polystyrene resins such as polystyrene, vinyl acetate resins, vinyl chloride resins, polyester resins, polypropylene, polyethylene, Examples include polycarbonate. Among these, (meth) acrylic resins having good weather resistance are particularly preferable.

第2の方法において、熱可塑性樹脂をマトリックス樹脂として使用する場合、成形時の流動性を確保するために、熱可塑性樹脂の重合性モノマーを配合することができる。熱可塑性樹脂の重合性モノマーは、炭素繊維強化複合材料に成形する際の成形性を高めるように作用する。また、重合性モノマーは、炭素繊維への濡れ性を高めるので、より多量の炭素繊維を成形材料中に含有させることができる。重合性モノマーは、重合時に熱可塑性重合体を形成することができるものである。このような重合性モノマーは、例えば、ラジカル重合可能な炭素−炭素二重結合を分子内にひとつ有し、分子量1000以下の分子である。炭素−炭素二重結合を分子内にひとつ有する重合性モノマーを用いることによって、これを含有する成形材料を重合硬化させてなる炭素繊維強化複合材料は、非架橋重合体からなり、熱可塑性を発現する。従って、本発明の熱硬化性樹脂をマトリックス樹脂として使用する成形材料はマテリアルリサイクルが可能となる。   In the second method, when a thermoplastic resin is used as the matrix resin, a polymerizable monomer of the thermoplastic resin can be blended in order to ensure fluidity during molding. The polymerizable monomer of the thermoplastic resin acts so as to improve the formability when forming into a carbon fiber reinforced composite material. Moreover, since a polymerizable monomer improves the wettability to carbon fiber, a larger amount of carbon fiber can be contained in the molding material. The polymerizable monomer is capable of forming a thermoplastic polymer during polymerization. Such a polymerizable monomer is, for example, a molecule having one radically polymerizable carbon-carbon double bond in the molecule and a molecular weight of 1000 or less. By using a polymerizable monomer having one carbon-carbon double bond in the molecule, a carbon fiber reinforced composite material obtained by polymerizing and curing a molding material containing this is made of a non-crosslinked polymer and exhibits thermoplasticity. To do. Accordingly, material recycling is possible for the molding material using the thermosetting resin of the present invention as the matrix resin.

熱可塑性樹脂の重合性モノマーは、具体的には、スチレン等の芳香族ビニル、酢酸ビニル、塩化ビニル、無水マレイン酸、マレイン酸、フマル酸、フマル酸エステル、メチルメタクリレートやメタクリル酸等の(メタ)アクリル系単量体が使用例として挙げられる。これらの単量体は、必要に応じて単独であるいは二種以上を併用することができる。また、熱可塑性樹脂の重合性モノマーは、成形材料に適度の流動性を付与することができるかぎり、上記重合性モノマーなどのオリゴマーの形態であってもよい。中でも、硬化後の耐候性が良好な(メタ)アクリル系単量体が特に好ましい。   Specific examples of the polymerizable monomer for the thermoplastic resin include aromatic vinyl such as styrene, vinyl acetate, vinyl chloride, maleic anhydride, maleic acid, fumaric acid, fumaric acid ester, methyl methacrylate and methacrylic acid ( ) Acrylic monomer is used as an example. These monomers can be used alone or in combination of two or more as required. In addition, the polymerizable monomer of the thermoplastic resin may be in the form of an oligomer such as the polymerizable monomer as long as it can impart appropriate fluidity to the molding material. Among these, (meth) acrylic monomers having good weather resistance after curing are particularly preferable.

第2の方法において、マトリックス樹脂として熱硬化性樹脂を使用する場合、離型フィルム上に均一に溶融樹脂を塗布したフィルム状等のシートとして使用する。該シート上に切断工程でカットした束状のサイジング剤塗布炭素繊維を均一に落下または散布した後、同様に溶融樹脂を塗布したシートを貼り合わせて炭素繊維を挟み込むことにより、複合化する。得られたシートを、所定時間加温(例えば、40℃にて24時間)することにより、マトリックス樹脂を増粘化し、本発明の成形材料であるシートを得ることができる。
第2の方法において、マトリックス樹脂として熱可塑性樹脂を用いた場合、熱可塑性樹脂は、熱硬化性樹脂と同様に離型フィルム上に均一に溶融樹脂を塗布したフィルム状等のシートとして使用する。重合性モノマーを配合した熱可塑性樹脂を使用する場合、離型フィルムの脇から液ダレが起こらないような粘度とすることが好ましい。熱可塑性樹脂を塗布したシート上に切断工程でカットした束状のサイジング剤塗布炭素繊維を均一に落下または散布した後、同様に溶融樹脂を塗布したシートを貼り合わせて炭素繊維を挟み込んで、複合化する。
In the second method, when a thermosetting resin is used as the matrix resin, it is used as a film-like sheet in which a molten resin is uniformly applied on a release film. A bundle of sizing agent-coated carbon fibers cut in the cutting step is uniformly dropped or dispersed on the sheet, and then a sheet coated with a molten resin is bonded together to sandwich the carbon fiber to form a composite. By heating the obtained sheet for a predetermined time (for example, at 40 ° C. for 24 hours), the viscosity of the matrix resin can be increased and the sheet which is the molding material of the present invention can be obtained.
In the second method, when a thermoplastic resin is used as the matrix resin, the thermoplastic resin is used as a film-like sheet in which a molten resin is uniformly applied on a release film, similarly to the thermosetting resin. When using the thermoplastic resin which mix | blended the polymerizable monomer, it is preferable to set it as the viscosity which does not cause dripping from the side of a release film. A bundle of sizing agent-coated carbon fibers cut in a cutting process is uniformly dropped or dispersed on a sheet coated with a thermoplastic resin, and then a sheet coated with a molten resin is bonded together to sandwich the carbon fiber. Turn into.

本発明の成形材料を、該成形材料を構成する前記マトリックス樹脂を溶解する溶媒中で超音波処理することで、前記サイジング剤塗布炭素繊維表面のサイジング剤付着量を0.09〜0.20質量%まで洗浄された該サイジング剤塗布炭素繊維の表面は、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.3〜0.7となるものであることが好ましい。(a)/(b)が0.3以上であることでマトリックス樹脂とサイジング剤の相互作用が向上するため好ましい。より好ましくは0.35以上である。また、(a)/(b)が0.7以下であることで、炭素繊維とサイジング剤の接着性が向上することから炭素繊維複合材料の物性が良好になることで好ましい。より好ましくは0.6以下である。なお、成形材料のマトリックス樹脂及びサイジング剤を溶出する溶媒は、マトリックス樹脂を溶解可能かつ洗浄後のサイジング剤の付着量が上記範囲になれば良く、限定されない。例えば、マトリックス樹脂としてポリアミド樹脂を用いる場合には蟻酸、ポリカーボネート樹脂を用いる場合にはジクロロメタンが好ましく用いられる。   The molding material of the present invention is subjected to ultrasonic treatment in a solvent that dissolves the matrix resin constituting the molding material, so that the amount of sizing agent attached to the surface of the sizing agent-coated carbon fiber is 0.09 to 0.20 mass. The surface of the carbon fiber coated with the sizing agent, which has been washed up to 50%, is (a) CHx, C-C of the C1s inner shell spectrum measured at a photoelectron escape angle of 55 ° by X-ray photoelectron spectroscopy using 400 eV X-ray. , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. It is preferable that the ratio (a) / (b) is 0.3 to 0.7. It is preferable that (a) / (b) is 0.3 or more because the interaction between the matrix resin and the sizing agent is improved. More preferably, it is 0.35 or more. Moreover, since (a) / (b) is 0.7 or less, since the adhesiveness of carbon fiber and a sizing agent improves, it is preferable because the physical property of a carbon fiber composite material becomes favorable. More preferably, it is 0.6 or less. The solvent for eluting the matrix resin and the sizing agent of the molding material is not limited as long as the matrix resin can be dissolved and the amount of the sizing agent after washing falls within the above range. For example, formic acid is used when a polyamide resin is used as the matrix resin, and dichloromethane is preferably used when a polycarbonate resin is used.

本発明の成形材料には、力学特性を阻害しない範囲で、用途等に応じて、上記以外の他の成分が含まれていてもよく、また、充填剤や添加剤等が含まれていてもよい。充填剤あるいは添加剤としては、無機充填剤、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、発泡剤およびカップリング剤などが挙げられる。   The molding material of the present invention may contain other components other than those described above depending on the application, etc., as long as the mechanical properties are not impaired, and may contain fillers, additives, and the like. Good. As fillers or additives, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat Stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, foaming agents, coupling agents and the like can be mentioned.

添加剤として、特に、難燃性が要求される用途向けには難燃剤の添加や、導電性が要求される用途向けには導電性付与剤の添加が好ましく採用される。難燃剤としては、例えば、ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物、シリコーン化合物、フッ素化合物、フェノール化合物および金属水酸化物などの難燃剤を使用することができる。中でも、環境負荷を抑えるという観点から、ポリリン酸アンモニウム、ポリホスファゼン、ホスフェート、ホスホネート、ホスフィネート、ホスフィンオキシドおよび赤リンなどのリン化合物を好ましく使用することができる。   As an additive, the addition of a flame retardant is particularly preferably used for applications that require flame retardancy, and the addition of a conductivity imparting agent for applications that require electrical conductivity. Examples of the flame retardant include flame retardants such as halogen compounds, antimony compounds, phosphorus compounds, nitrogen compounds, silicone compounds, fluorine compounds, phenol compounds, and metal hydroxides. Among these, from the viewpoint of suppressing environmental burden, phosphorus compounds such as ammonium polyphosphate, polyphosphazene, phosphate, phosphonate, phosphinate, phosphine oxide, and red phosphorus can be preferably used.

導電性付与剤としては、例えば、カーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、気相成長炭素繊維およびカーボンナノチューブ等を採用することができる。   Examples of the conductivity imparting agent that can be used include carbon black, amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch microbeads, vapor-grown carbon fiber, and carbon nanotube.

本発明の成形材料を成形してなる炭素繊維強化複合材料の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材および外板、風車の羽根などが挙げられる。特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体およびトレイやシャーシなどに好ましく用いられる。   Applications of the carbon fiber reinforced composite material formed by molding the molding material of the present invention include, for example, personal computers, displays, OA equipment, mobile phones, personal digital assistants, facsimiles, compact discs, portable MDs, portable radio cassettes, PDAs (Personal digital assistants such as electronic notebooks), video cameras, digital still cameras, optical equipment, audio equipment, air conditioners, lighting equipment, entertainment equipment, toy products, other electrical appliances such as housings, trays, chassis, etc. Interior materials and cases, mechanical parts, panels and other building materials applications, motor parts, alternator terminals, alternator connectors, IC regulators, light meter potentiometer bases, suspension parts, exhaust gas valves and other valves, fuel-related, exhaust systems Or suck Various pipes, air intake nozzle snorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pump, gasoline tank, CNG tank, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling Water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump Impeller, turbine vane, wiper motor related parts, distributor, starter switch, starter , Wire harness for transmission, window washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, battery tray, AT bracket, headlamp support, pedal housing, handle, door beam, protector, chassis, frame, Armrest, horn terminal, step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, noise shield, radiator support, spare tire cover, seat shell, solenoid bobbin, engine oil filter, ignition device case, under cover, scuff plate, Pillar trim, propeller shaft, wheel, fender, fascia, bumper, bumper beam, Bonnets, aero parts, platforms, cowl louvers, roofs, instrument panels, spoilers and various modules, automobile-related parts, parts and skins, landing gear pods, winglets, spoilers, edges, ladders, elevators, and failings And aircraft related parts such as ribs, members and outer plates, windmill blades, and the like. In particular, it is preferably used for aircraft members, windmill blades, automobile outer plates, casings of electronic devices, trays, chassis, and the like.

次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。次に示す実施例の成形材料の作製環境および評価は、特に断りのない限り、温度25℃±2℃、50%RH(相対湿度)の雰囲気で行ったものである。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited by these Examples. The production environment and evaluation of the molding materials of the following examples are conducted in an atmosphere of a temperature of 25 ° C. ± 2 ° C. and 50% RH (relative humidity) unless otherwise specified.

(1)サイジング剤塗布炭素繊維のサイジング剤表面のX線光電子分光法(X線源:AlKα1,2
本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求めた。サイジング剤塗布炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10−8Torrに保ち測定を行った。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせた。この時に、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求めた。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(a)/(b)を算出した。
なお、(b)より(a)のピークが大きい場合には、C1sの主ピークの結合エネルギー値を286.1に合わせた場合、C1sのピークが282〜296eVの範囲に入らない。その場合には、C1sの主ピークの結合エネルギー値を284.6eVに合わせた後、上記手法にて(a)/(b)を算出した。
(1) X-ray photoelectron spectroscopy of sizing agent-coated carbon fiber sizing agent surface (X-ray source: AlKα 1,2 )
In the present invention, the peak ratio of (a) and (b) on the surface of the sizing agent-coated carbon fiber was determined by X-ray photoelectron spectroscopy according to the following procedure. Cut the sizing agent-coated carbon fiber to 20 mm, and spread and arrange it on a copper sample support. Then, use AlKα 1,2 as the X-ray source and keep the sample chamber at 1 × 10 −8 Torr for measurement. It was. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s was adjusted to 286.1 eV. At this time, the peak area of C 1s was obtained by drawing a straight baseline in the range of 282 to 296 eV. Further, a linear base line of 282 to 296 eV obtained by calculating the area at the C 1s peak is defined as the origin (zero point) of the photoelectron intensity, and (b) the peak of the binding energy 286.1 eV attributed to the CO component is obtained. The height (cps: photoelectron intensity per unit time) and the height (cps) of the component having a binding energy of 284.6 eV attributed to (a) CHx, C—C, C = C are obtained, and (a) / ( b) was calculated.
Incidentally, when the peak of from (a) is large (b), when combined binding energy of the main peak of C 1s to 286.1, the peak of C 1s does not fall within the scope of 282~296EV. In that case, after adjusting the binding energy value of the C 1s main peak to 284.6 eV, (a) / (b) was calculated by the above method.

(2)サイジング剤塗布炭素繊維のサイジング剤の洗浄
サイジング剤塗布炭素繊維2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施した。続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥した。
(2) Cleaning of sizing agent of sizing agent-coated carbon fiber 2 g of sizing agent-coated carbon fiber was immersed in 50 ml of acetone and subjected to ultrasonic cleaning for 30 minutes three times. Subsequently, the substrate was immersed in 50 ml of methanol, subjected to ultrasonic cleaning for 30 minutes once and dried.

(3)サイジング剤塗布炭素繊維の400eVでのX線光電子分光法
本発明において、サイジング剤塗布炭素繊維のサイジング剤表面の(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求めた。サイジング剤塗布炭素繊維およびサイジング剤を洗浄したサイジング剤塗布炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源として佐賀シンクトロトン放射光を用い、励起エネルギーは400eVで実施した。試料チャンバー中を1×10−8Torrに保ち測定を行った。なお、光電子脱出角度55°で実施した。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせた。この時に、C1sのピーク面積は282〜296eVの範囲で直線ベースラインを引くことにより求めた。また、C1sピークにて面積を求めた282〜296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と、(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(a)/(b)を算出した。
なお、(b)より(a)のピークが大きい場合には、C1sの主ピークの結合エネルギー値を286.1に合わせた場合、C1sのピークが282〜296eVの範囲に入らない。その場合には、C1sの主ピークの結合エネルギー値を284.6eVに合わせた後、上記手法にて(a)/(b)を算出した。
(3) X-ray photoelectron spectroscopy at 400 eV of sizing agent-coated carbon fiber In the present invention, the peak ratio of (a) and (b) on the sizing agent-coated carbon fiber surface is determined by X-ray photoelectron spectroscopy. It was determined according to the following procedure. The sizing agent-coated carbon fiber and the sizing agent-coated carbon fiber washed with the sizing agent are cut to 20 mm, spread and arranged on a copper sample support, and then Saga synchroton radiation is used as an X-ray source, and the excitation energy is 400 eV. It carried out in. The measurement was performed while keeping the inside of the sample chamber at 1 × 10 −8 Torr. The photoelectron escape angle was 55 °. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s was adjusted to 286.1 eV. At this time, the peak area of C 1s was obtained by drawing a straight baseline in the range of 282 to 296 eV. Further, a linear base line of 282 to 296 eV obtained by calculating the area at the C 1s peak is defined as the origin (zero point) of the photoelectron intensity, and (b) the peak of the binding energy 286.1 eV attributed to the CO component is obtained. Obtain the height (cps: photoelectron intensity per unit time) and (a) the height (cps) of the component having a binding energy of 284.6 eV attributed to CHx, C—C, C = C. (B) was calculated.
Incidentally, when the peak of from (a) is large (b), when combined binding energy of the main peak of C 1s to 286.1, the peak of C 1s does not fall within the scope of 282~296EV. In that case, after adjusting the binding energy value of the C 1s main peak to 284.6 eV, (a) / (b) was calculated by the above method.

(4)炭素繊維束のストランド引張強度と弾性率
炭素繊維束のストランド引張強度とストランド弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めた。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いた。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
(4) Strand tensile strength and elastic modulus of carbon fiber bundles Strand tensile strength and strand elastic modulus of carbon fiber bundles were determined according to the following procedure in accordance with the resin-impregnated strand test method of JIS-R-7608 (2004). . As the resin formulation, “Celoxide (registered trademark)” 2021P (manufactured by Daicel Chemical Industries) / 3 boron trifluoride monoethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) / Acetone = 100/3/4 (part by mass) is used. As curing conditions, normal pressure, temperature of 125 ° C., and time of 30 minutes were used. Ten strands of the carbon fiber bundle were measured, and the average value was defined as the strand tensile strength and the strand elastic modulus.

(5)炭素繊維の表面酸素濃度(O/C)
炭素繊維の表面酸素濃度(O/C)は、次の手順に従いX線光電子分光法により求めた。まず、溶媒で表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10−8Torrに保った。続いて、X線源としてAlKα1,2を用い、光電子脱出角度を90°として測定を行った。なお、測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせた。C1sピーク面積は282〜296eVの範囲で直線のベースラインを引くことにより求めた。また、O1sピーク面積は528〜540eVの範囲で直線のベースラインを引くことにより求めた。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用い、上記装置固有の感度補正値は2.33であった。
(5) Surface oxygen concentration of carbon fiber (O / C)
The surface oxygen concentration (O / C) of the carbon fiber was determined by X-ray photoelectron spectroscopy according to the following procedure. First, the carbon fiber from which the dirt adhering to the surface with a solvent is removed is cut to about 20 mm and spread on a copper sample support. Next, the sample support was set in the sample chamber, and the inside of the sample chamber was kept at 1 × 10 −8 Torr. Subsequently, AlKα 1 and 2 were used as the X-ray source, and the photoelectron escape angle was 90 °. In addition, the binding energy value of the C 1s main peak (peak top) was adjusted to 284.6 eV as a correction value for the peak accompanying charging during measurement. The C 1s peak area was determined by drawing a straight base line in the range of 282 to 296 eV. The O 1s peak area was determined by drawing a straight base line in the range of 528 to 540 eV. Here, the surface oxygen concentration is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area. As the X-ray photoelectron spectroscopy apparatus, ESCA-1600 manufactured by ULVAC-PHI Co., Ltd. was used, and the sensitivity correction value unique to the apparatus was 2.33.

(6)炭素繊維の表面カルボキシル基濃度(COOH/C)、表面水酸基濃度(COH/C)
表面水酸基濃度(COH/C)は、次の手順に従って化学修飾X線光電子分光法により求めた。
溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.04モル/リットルの無水3弗化酢酸気体を含んだ乾燥窒素ガス中に室温で10分間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求めた。また、同時に化学修飾処理したポリビニルアルコールのC1sピーク分割から反応率rを求めた。
表面水酸基濃度(COH/C)は、下式により算出した値で表した。
COH/C={[F1s]/(3k[C1s]−2[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206での、上記装置固有の感度補正値は3.919であった。
(6) Carbon fiber surface carboxyl group concentration (COOH / C), surface hydroxyl group concentration (COH / C)
The surface hydroxyl group concentration (COH / C) was determined by chemical modification X-ray photoelectron spectroscopy according to the following procedure.
The carbon fiber bundles from which the sizing agent and the like have been removed with a solvent are cut and spread and arranged on a platinum sample support. At room temperature in dry nitrogen gas containing 0.04 mol / liter of anhydrous trifluoride acetic acid gas. After 10 minutes exposure and chemical modification treatment, it was mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °, AlKα 1,2 was used as an X-ray source, and the inside of the sample chamber was at a vacuum of 1 × 10 −8 Torr. Keep on. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s is adjusted to 284.6 eV. The C 1s peak area [C 1s ] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the F 1s peak area [F 1s ] is obtained by drawing a straight base line in the range of 682 to 695 eV. Asked. Moreover, the reaction rate r was calculated | required from C1s peak division | segmentation of the polyvinyl alcohol chemically modified simultaneously.
The surface hydroxyl group concentration (COH / C) was represented by the value calculated by the following formula.
COH / C = {[F 1s ] / (3k [C 1s ] −2 [F 1s ]) r} × 100 (%)
Note that k is a sensitivity correction value of the F 1s peak area with respect to the C 1s peak area specific to the apparatus, and the sensitivity correction value specific to the apparatus in the model SSX-100-206 manufactured by SSI of the United States was 3.919. .

表面カルボキシル基濃度(COOH/C)は、次の手順に従って化学修飾X線光電子分光法により求めた。先ず、溶媒でサイジング剤などを除去した炭素繊維束をカットして白金製の試料支持台上に拡げて並べ、0.02モル/リットルの3弗化エタノール気体、0.001モル/リットルのジシクロヘキシルカルボジイミド気体及び0.04モル/リットルのピリジン気体を含む空気中に60℃で8時間さらし、化学修飾処理した後、X線光電子分光装置に光電子脱出角度を35゜としてマウントし、X線源としてAlKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を284.6eVに合わせる。C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、F1sピーク面積[F1s]は、682〜695eVの範囲で直線のベースラインを引くことにより求めた。また、同時に化学修飾処理したポリアクリル酸のC1sピーク分割から反応率rを、O1sピーク分割からジシクロヘキシルカルボジイミド誘導体の残存率mを求めた。
表面カルボキシル基濃度COOH/Cは、下式により算出した値で表した。
COOH/C={[F1s]/(3k[C1s]−(2+13m)[F1s])r}×100(%)
なお、kは装置固有のC1sピーク面積に対するF1sピーク面積の感度補正値であり、米国SSI社製モデルSSX−100−206を用いた場合の、上記装置固有の感度補正値は3.919であった。
The surface carboxyl group concentration (COOH / C) was determined by chemical modification X-ray photoelectron spectroscopy according to the following procedure. First, carbon fiber bundles from which the sizing agent and the like have been removed with a solvent are cut and spread and arranged on a platinum sample support, and 0.02 mol / liter of trifluorinated ethanol gas, 0.001 mol / liter of dicyclohexyl. The sample was exposed to air containing carbodiimide gas and 0.04 mol / liter pyridine gas at 60 ° C for 8 hours, chemically modified, mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °, and used as an X-ray source. Using AlKα 1 and 2 , the inside of the sample chamber is kept at a vacuum of 1 × 10 −8 Torr. As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1s is adjusted to 284.6 eV. The C 1s peak area [C 1s ] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the F 1s peak area [F 1s ] is obtained by drawing a straight base line in the range of 682 to 695 eV. Asked. Simultaneously, the reaction rate r was determined from the C 1s peak splitting of the polyacrylic acid chemically modified, and the residual rate m of the dicyclohexylcarbodiimide derivative was determined from the O 1s peak splitting.
The surface carboxyl group concentration COOH / C was represented by the value calculated by the following formula.
COOH / C = {[F 1s ] / (3k [C 1s ] − (2 + 13 m) [F 1s ]) r} × 100 (%)
Note that k is a sensitivity correction value of the F 1s peak area with respect to the C 1s peak area unique to the apparatus, and the sensitivity correction value specific to the apparatus when the model SSX-100-206 manufactured by SSI of the United States is used is 3.919. Met.

(7)サイジング剤のエポキシ当量、炭素繊維に塗布されたサイジング剤のエポキシ当量
サイジング剤のエポキシ当量は、溶媒を除去したサイジング剤をN,N−ジメチルホルムアミドに溶解し、塩酸でエポキシ基を開環させ、酸塩基滴定で求めた。炭素繊維に塗布されたサイジング剤のエポキシ当量は、サイジング剤塗布炭素繊維をN,N−ジメチルホルムアミド中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めた。
(7) Epoxy equivalent of the sizing agent, epoxy equivalent of the sizing agent applied to the carbon fiber The epoxy equivalent of the sizing agent is obtained by dissolving the solvent-free sizing agent in N, N-dimethylformamide and opening the epoxy group with hydrochloric acid. Ringed and determined by acid-base titration. The epoxy equivalent of the sizing agent applied to the carbon fiber is determined by immersing the sizing agent-coated carbon fiber in N, N-dimethylformamide and elution from the fiber by ultrasonic cleaning, and then opening the epoxy group with hydrochloric acid. Ringed and determined by acid-base titration.

(8)サイジング付着量の測定方法
約2gのサイジング付着炭素繊維を秤量(W1)(少数第4位まで読み取り)した後、50ミリリットル/分の窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させる。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)(少数第4位まで読み取り)して、W1−W2によりサイジング付着量を求める。このサイジング付着量を炭素繊維束100質量部に対する量に換算した値(小数点第3位を四捨五入)を、付着したサイジング剤の質量部とした。測定は2回行い、その平均値をサイジング剤の質量部とした。
(8) Measuring method of sizing adhesion amount Electric furnace set to a temperature of 450 ° C. in a nitrogen stream of 50 ml / min after weighing (W1) about 2 g of sizing adhesion carbon fiber (reading to the fourth decimal place) Leave in (capacity 120 cm 3 ) for 15 minutes to completely pyrolyze the sizing agent. Then, the carbon fiber bundle is transferred to a container in a dry nitrogen stream at 20 liters / minute and cooled for 15 minutes, and the carbon fiber bundle is weighed (W2) (reads up to the fourth decimal place), and the sizing adhesion amount is obtained by W1-W2. . A value obtained by converting this sizing adhesion amount into an amount with respect to 100 parts by mass of the carbon fiber bundle (rounded off to the third decimal place) was defined as a mass part of the adhering sizing agent. The measurement was performed twice, and the average value was defined as the mass part of the sizing agent.

(9)サイジング剤塗布炭素繊維の水分率測定
サイジング剤塗布炭素繊維を約2g秤量し、三菱化学アナリテック社製KF−100(容量法カールフィッシャー水分計)を用いて水分率を測定した。測定時の加熱温度は150℃で実施した。
(9) Moisture measurement of sizing agent-coated carbon fiber About 2 g of sizing agent-coated carbon fiber was weighed, and the moisture content was measured using KF-100 (capacitance method Karl Fischer moisture meter) manufactured by Mitsubishi Chemical Analytech. The heating temperature at the time of measurement was 150 ° C.

(10)溶出された脂肪族エポキシ化合物(A)の割合
サイジング剤塗布炭素繊維の試験片を0.1g秤量し、該試験片を数cmに切断した。切断した試験片を、アセトニトリル/クロロホルム混合液(体積比9/1)10mLに浸漬し、20分間超音波洗浄を行ない、サイジング剤をアセトニトリル/クロロホルム混合液に溶出した。溶出液を5mL採取し、採取した溶出液を窒素パージして溶媒を留去した。溶媒留去後の残留物にアセトニトリル/クロロホルム混合液(体積比9/1)0.2mLを加えて分析用サンプルを調整した。脂肪族エポキシ化合物(A)の分析は液体クロマトグラフィーを用いて下記条件で行なった。
・分析カラム:Chromolith Performance RP−18e(4.6×100mm)
・移動相:水/アセトニトリルを使用し、分析開始から7分で、水/アセトニトリル=60%/40%からアセトニトリル100%とした後、12分までアセトニトリル100%を保持し、その後12.1分までに水/アセトニトリル=60%/40%とし、17分まで水/アセトニトリル=60%/40%を保持した。
・流量:2.5mL/分
・カラム温度:45℃
・検出器:蒸発光散乱検出器(ELSD)
・検出器温度:60℃
(10) Ratio of eluted aliphatic epoxy compound (A) 0.1 g of a sizing agent-coated carbon fiber test piece was weighed and cut into several centimeters. The cut specimen was immersed in 10 mL of an acetonitrile / chloroform mixture (volume ratio 9/1) and subjected to ultrasonic cleaning for 20 minutes to elute the sizing agent into the acetonitrile / chloroform mixture. 5 mL of the eluate was collected, and the collected eluate was purged with nitrogen to distill off the solvent. An analytical sample was prepared by adding 0.2 mL of acetonitrile / chloroform mixture (volume ratio 9/1) to the residue after the solvent was distilled off. Analysis of the aliphatic epoxy compound (A) was performed under the following conditions using liquid chromatography.
・ Analytical column: Chromolis Performance RP-18e (4.6 × 100 mm)
-Mobile phase: Water / acetonitrile was used, and after 7 minutes from the start of analysis, water / acetonitrile = 60% / 40% to acetonitrile 100%, then 100% acetonitrile was retained for 12 minutes, and then 12.1 minutes By the time, water / acetonitrile = 60% / 40%, and water / acetonitrile = 60% / 40% was maintained until 17 minutes.
-Flow rate: 2.5 mL / min-Column temperature: 45 ° C
Detector: Evaporative light scattering detector (ELSD)
-Detector temperature: 60 ° C

(11)成形品の曲げ特性評価方法
成形材料を成形して得られた炭素繊維強化複合材料から、長さ130±1mm、幅25±0.2mmの曲げ強度試験片を切り出した。ASTM D−790(2004)に規定する試験方法に従い、3点曲げ試験冶具(圧子10mm、支点10mm)を用いて支持スパンを100mmに設定し、クロスヘッド速度5.3mm/分で曲げ強度を測定した。なお、本実施例においては、試験機として“インストロン(登録商標)”万能試験機4201型(インストロン社製)を用いた。測定数はn=5とし、平均値を曲げ強度とした。
(11) Bending characteristic evaluation method of molded product A bending strength test piece having a length of 130 ± 1 mm and a width of 25 ± 0.2 mm was cut out from a carbon fiber reinforced composite material obtained by molding a molding material. According to the test method specified in ASTM D-790 (2004), using a three-point bending test jig (indenter 10 mm, fulcrum 10 mm), the support span is set to 100 mm, and the bending strength is measured at a crosshead speed of 5.3 mm / min. did. In this example, “Instron (registered trademark)” universal testing machine 4201 type (manufactured by Instron) was used as a testing machine. The number of measurements was n = 5, and the average value was the bending strength.

(12)成形品の水吸収時の曲げ強度の低下率
熱可塑性樹脂としてポリアミドを用いて得た成形品について、水中に試験片を浸漬して試験片に対して水を2.5%吸水させた時の曲げ特性評価を実施した。その結果、(10)で得た曲げ強度に対し、低下率が60%以下を好ましい範囲として○、60%より大きいときを低下率が大きいとして×とした。
(12) Decreasing rate of bending strength at the time of water absorption of the molded article About a molded article obtained by using polyamide as a thermoplastic resin, the test piece is immersed in water to absorb 2.5% of water with respect to the test piece. The bending characteristics were evaluated. As a result, with respect to the bending strength obtained in (10), the drop rate was 60% or less as a preferable range, and when it was greater than 60%, the drop rate was high, and x.

(13)炭素繊維の表面粗さ(Ra)
炭素繊維の表面粗さ(Ra)は、原子間力顕微鏡(AFM)により測定した。炭素繊維を長さ数mm程度にカットしたものを用意し、銀ペーストを用いて基板(シリコンウエハ)上に固定し、原子間力顕微鏡(AFM)によって各単繊維の中央部において、3次元表面形状の像を観測した。原子間力顕微鏡としてはDigital Instuments社製 NanoScope IIIaにおいてDimension 3000ステージシステムを使用し、以下の観測条件で観測した。
・走査モード:タッピングモード
・探針:シリコンカンチレバー
・走査範囲:0.6μm×0.6μm
・走査速度:0.3Hz
・ピクセル数:512×512
・測定環境:室温、大気中
(13) Carbon fiber surface roughness (Ra)
The surface roughness (Ra) of the carbon fiber was measured with an atomic force microscope (AFM). Prepare a carbon fiber cut to several millimeters in length, fix it on a substrate (silicon wafer) using silver paste, and use a three-dimensional surface at the center of each single fiber with an atomic force microscope (AFM). An image of the shape was observed. As an atomic force microscope, a Dimension 3000 stage system was used in NanoScope IIIa manufactured by Digital Instruments and observed under the following observation conditions.
・ Scanning mode: Tapping mode ・ Probe: Silicon cantilever ・ Scanning range: 0.6μm × 0.6μm
・ Scanning speed: 0.3Hz
-Number of pixels: 512 × 512
・ Measurement environment: Room temperature, in air

各実施例および各比較例で用いた材料と成分は、下記のとおりである。
・(A)成分:A−1〜A−2
A−1:“デナコール(登録商標)”EX−611(ナガセケムテックス(株)製)
ソルビトールポリグリシジルエーテル
エポキシ当量:167g/eq.、
A−2:“デナコール(登録商標)”EX−521(ナガセケムテックス(株)製)
ポリグリセリンポリグリシジルエーテル
エポキシ当量:183g/eq.、125℃での表面張力37mJ/m
The materials and components used in each example and each comparative example are as follows.
-(A) component: A-1 to A-2
A-1: “Denacol (registered trademark)” EX-611 (manufactured by Nagase ChemteX Corporation)
Sorbitol polyglycidyl ether Epoxy equivalent: 167 g / eq. ,
A-2: “Denacol (registered trademark)” EX-521 (manufactured by Nagase ChemteX Corporation)
Polyglycerin polyglycidyl ether Epoxy equivalent: 183 g / eq. , Surface tension at 125 ° C. 37 mJ / m 2

・(B1)成分:B−1〜B−4
B−1:“jER(登録商標)”152(三菱化学(株)製)
フェノールノボラックのグリシジルエーテル
エポキシ当量:175g/eq.、125℃での表面張力40mJ/m
B−2:“jER(登録商標)”828(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:189g/eq.、125℃での表面張力38mJ/m
B−3:“jER(登録商標)”1001(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:475g/eq.、125℃での表面張力38mJ/m
B−4:“jER(登録商標)”807(三菱化学(株)製)
ビスフェノールFのジグリシジルエーテル
エポキシ当量:167g/eq.、125℃での表面張力40mJ/m
-(B1) component: B-1 to B-4
B-1: “jER (registered trademark)” 152 (manufactured by Mitsubishi Chemical Corporation)
Glycidyl ether of phenol novolac Epoxy equivalent: 175 g / eq. , Surface tension at 125 ° C. 40 mJ / m 2
B-2: “jER (registered trademark)” 828 (manufactured by Mitsubishi Chemical Corporation)
Diglycidyl ether of bisphenol A Epoxy equivalent: 189 g / eq. , Surface tension at 125 ° C. 38 mJ / m 2
B-3: “jER (registered trademark)” 1001 (manufactured by Mitsubishi Chemical Corporation)
Diglycidyl ether of bisphenol A Epoxy equivalent: 475 g / eq. , Surface tension at 125 ° C. 38 mJ / m 2
B-4: “jER (registered trademark)” 807 (manufactured by Mitsubishi Chemical Corporation)
Diglycidyl ether of bisphenol F Epoxy equivalent: 167 g / eq. , Surface tension at 125 ° C. 40 mJ / m 2

・マトリックス樹脂
ポリアリーレンスルフィド(PPS)樹脂フィルム:“トレリナ(登録商標)”M2888(東レ(株)製)をフィルム状に加工(目付100g/m
ポリアミド6(PA6)樹脂フィルム:“アミラン(登録商標)”CM1001(東レ(株)製)をフィルム状に加工(目付100g/m
ビニルエステル樹脂(VE)樹脂フィルム:ビニルエステル樹脂(ダウ・ケミカル(株)製、デラケン790)100質量部、tert−ブチルパーオキシベンゾエート(日本油脂(株)製、パーブチルZ)1質量部、ステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)2質量部、酸化マグネシウム(協和化学工業(株)製、MgO#40)4質量部を混合した樹脂ペーストをポリプロピレン製の離型フィルム上に塗布(目付400g/m
ポリプロピレン(PP)樹脂フィルム(ポリオレフィン系樹脂):未変性PP樹脂ペレットと酸変性PP樹脂ペレットを混合しフィルム状に加工(目付100g/m、未変性PP樹脂ペレット:“プライムポリプロ(登録商標)”J830HV((株)プライムポリマー製))50質量部、酸変性PP樹脂ペレット:“アドマー(登録商標)”QE800(三井化学(株)製)50質量部)
-Matrix resin polyarylene sulfide (PPS) resin film: "Torelina (registered trademark)" M2888 (manufactured by Toray Industries, Inc.) processed into a film (100 g / m 2 basis weight)
Polyamide 6 (PA6) resin film: “Amilan (registered trademark)” CM1001 (manufactured by Toray Industries, Inc.) processed into a film (100 g / m 2 basis weight)
Vinyl ester resin (VE) resin film: 100 parts by mass of vinyl ester resin (Dow Chemical Co., Ltd., Delaken 790), 1 part by mass of tert-butyl peroxybenzoate (Nippon Yushi Co., Ltd., Perbutyl Z), stearin On a release film made of polypropylene, a resin paste in which 2 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., SZ-2000) and 4 parts by mass of magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd., MgO # 40) are mixed (Applicable weight is 400 g / m 2 )
Polypropylene (PP) resin film (polyolefin resin): Unmodified PP resin pellets and acid-modified PP resin pellets are mixed and processed into a film (100 g / m 2 basis weight, unmodified PP resin pellets: “Prime Polypro (registered trademark)” "J830HV (manufactured by Prime Polymer Co., Ltd.)) 50 parts by mass, acid-modified PP resin pellet:" Admer (registered trademark) "QE800 (manufactured by Mitsui Chemicals, Inc.) 50 parts by mass)

(実施例1)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
アクリロニトリル99モル%とイタコン酸1モル%からなる共重合体を乾湿式紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度5.9GPa、ストランド引張弾性率295GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/リットルの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり50クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このとき表面酸素濃度O/Cは、0.14、表面カルボキシル基濃度COOH/Cは0.004、表面水酸基濃度COH/Cは0.018であった。このときの炭素繊維表面粗さ(Ra)は2.9nmだった。その後、得られた炭素繊維を、カートリッジカッターで6mmにカットした。これを炭素繊維Aとした。
・第IIの工程:抄紙ウェブを製造する工程
直径500mmの円筒形容器に、水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を入れ、その中に、前工程でカットした炭素繊維を繊維の質量含有率が0.02%となるように投入した。5分間攪拌した後、脱水処理をおこない抄紙ウェブ(形態A)を得た。この時の目付は、67g/mであった。
Example 1
The present embodiment includes the following steps I to IV.
-Step I: Process for producing carbon fiber as a raw material A copolymer composed of 99 mol% acrylonitrile and 1 mol% itaconic acid is dry-wet spun, fired, total number of filaments 24,000, total fineness 1 , Tex, 1.8 specific gravity, strand tensile strength of 5.9 GPa, and strand tensile elastic modulus of 295 GPa were obtained. Next, the carbon fiber was subjected to an electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / liter as an electrolytic solution at an electric charge of 50 coulomb per gram of carbon fiber. The carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber as a raw material. At this time, the surface oxygen concentration O / C was 0.14, the surface carboxyl group concentration COOH / C was 0.004, and the surface hydroxyl group concentration COH / C was 0.018. The carbon fiber surface roughness (Ra) at this time was 2.9 nm. Then, the obtained carbon fiber was cut into 6 mm with a cartridge cutter. This was designated as carbon fiber A.
Step II: Process for producing a papermaking web Concentration of 0.1 mass comprising water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) in a cylindrical container having a diameter of 500 mm % Dispersion liquid was added, and the carbon fiber cut in the previous step was put therein so that the mass content of the fiber was 0.02%. After stirring for 5 minutes, dehydration was performed to obtain a papermaking web (Form A). The basis weight at this time was 67 g / m 2 .

・第III工程:抄紙ウェブにサイジング剤を付与する工程
(B1)成分として(B−2)を20質量部、(C)成分20質量部および乳化剤10質量部からなる水分散エマルジョンを調合した後、(A)成分として(A−1)を50質量部混合してサイジング液を調合した。なお、(C)成分として、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モル、セバチン酸0.5モルの縮合物、乳化剤としてポリオキシエチレン(70モル)スチレン化(5モル)クミルフェノールを用いた。なお(C)成分、乳化剤はいずれも芳香族化合物であり、(B)成分に該当することにもなる。サイジング液中の溶液を除いたサイジング剤のエポキシ当量は表1−1の通りである。次いで、前工程で得られた抄紙ウェブの上から、サイジング液を散布した。その後、余剰分のサイジング液を吸引した後、210℃×180秒で熱処理をおこなった。サイジング剤の付着量は炭素繊維100質量部に対して、0.6質量部であった。続いて、サイジング剤塗布炭素繊維のエポキシ当量、サイジング剤塗布炭素繊維の水分率、サイジング剤表面のX線光電子分光法測定を測定した。サイジング剤のエポキシ当量、サイジング剤表面の化学組成ともに期待通りであることがわかった。結果を表1−1に示す。
・第IV工程:抄紙ウェブと熱可塑性樹脂の複合化工程
前工程で得られた抄紙ウェブにPPS樹脂フィルム(樹脂目付100g/m)を上下方向から挟み、熱プレス装置にて、330℃、3.5MPaにて加熱加圧した後、60℃、3.5MPaで冷却加圧して、抄紙ウェブとPPS樹脂の複合化した成形材料を得た。さらに、成形品の厚みが3mmになるように積層、加熱加圧、冷却加圧をおこなった。得られた成形品の炭素繊維含有率は25質量%であった。成形品は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度が446MPaであり、力学特性が十分に高いことがわかった。
-Step III: Step of applying a sizing agent to the papermaking web (B1) After preparing an aqueous dispersion emulsion comprising 20 parts by weight of (B-2), 20 parts by weight of component (C) and 10 parts by weight of emulsifier A sizing solution was prepared by mixing 50 parts by mass of (A-1) as the component (A). As component (C), 2 mol of EO 2 mol adduct of bisphenol A, 1.5 mol of maleic acid and 0.5 mol of sebacic acid, polyoxyethylene (70 mol) as a emulsifier, styrenation (5 mol) Cumylphenol was used. In addition, (C) component and an emulsifier are both aromatic compounds, and will also correspond to (B) component. The epoxy equivalent of the sizing agent excluding the solution in the sizing solution is as shown in Table 1-1. Next, a sizing solution was sprayed from the papermaking web obtained in the previous step. Thereafter, after surplus sizing solution was sucked, heat treatment was performed at 210 ° C. × 180 seconds. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the carbon fiber. Subsequently, the epoxy equivalent of the sizing agent-coated carbon fiber, the moisture content of the sizing agent-coated carbon fiber, and the X-ray photoelectron spectroscopy measurement on the sizing agent surface were measured. It was found that the epoxy equivalent of the sizing agent and the chemical composition of the sizing agent surface were as expected. The results are shown in Table 1-1.
Step IV: Compounding process of papermaking web and thermoplastic resin PPS resin film (resin weight 100 g / m 2 ) is sandwiched from above and below in the papermaking web obtained in the previous process, and at 330 ° C. with a hot press machine, After heating and pressurizing at 3.5 MPa, cooling and pressurizing was performed at 60 ° C. and 3.5 MPa to obtain a molding material in which a papermaking web and a PPS resin were combined. Furthermore, lamination, heating and pressing, and cooling and pressing were performed so that the thickness of the molded product was 3 mm. The obtained molded product had a carbon fiber content of 25% by mass. The molded article was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to a characteristic evaluation test. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength was 446 MPa and the mechanical properties were sufficiently high.

(実施例2〜10)
・第I〜IIの工程:
実施例1と同様とした。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
実施例1の第IIIの工程で、(A)、(B1)成分の種類、量、(C1)、その他の成分の量を表1−1の通りに用いた以外は、実施例1と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度が437〜448MPaであり、力学特性が十分に高いことがわかった。
(Examples 2 to 10)
-Steps I to II:
Same as Example 1.
Step III: Step of applying a sizing agent to the papermaking web In Step III of Example 1, the types and amounts of components (A) and (B1), (C1), and the amounts of other components are shown in Table 1- A papermaking web provided with a sizing agent was obtained in the same manner as in Example 1 except that it was used as described in Example 1. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
Step IV: Compounding step of papermaking web and thermoplastic resin A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength was 437 to 448 MPa, and the mechanical properties were sufficiently high.

(実施例11)
・第I〜IIの工程:
実施例1と同様とした。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
実施例1の第IIIの工程と同様にしてサイジング剤を調整し、実施例1と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部であった。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度が446MPaであり、力学特性が十分に高いことがわかった。
(Example 11)
-Steps I to II:
Same as Example 1.
Step III: A step of applying a sizing agent to the papermaking web A sizing agent was prepared in the same manner as in Step III of Example 1, and a papermaking web provided with a sizing agent in the same manner as in Example 1 was obtained. It was. The adhesion amount of the sizing agent was 1.0 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
Step IV: Compounding step of papermaking web and thermoplastic resin A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength was 446 MPa and the mechanical properties were sufficiently high.

(実施例12)
・第Iの工程:原料となる炭素繊維を製造する工程
電解液として濃度0.05モル/lの硫酸水溶液を用い、電気量を炭素繊維1g当たり8クーロンで電解表面処理したこと以外は、実施例1と同様とした。このときの表面酸素濃度O/Cは、0.08、表面カルボキシル基濃度COOH/Cは0.003、表面水酸基濃度COH/Cは0.003であった。その後、得られた炭素繊維を、カートリッジカッターで6mmにカットした。これを炭素繊維Bとした。
・第IIの工程:抄紙ウェブを製造する工程
実施例1と同様とした。
・第III〜IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度は問題ないことがわかった。
(Example 12)
-Step I: Step of producing carbon fiber as raw material Implemented except that a sulfuric acid aqueous solution having a concentration of 0.05 mol / l was used as the electrolytic solution, and the electrolytic amount was subjected to electrolytic surface treatment at 8 coulomb per gram of carbon fiber. Same as Example 1. At this time, the surface oxygen concentration O / C was 0.08, the surface carboxyl group concentration COOH / C was 0.003, and the surface hydroxyl group concentration COH / C was 0.003. Then, the obtained carbon fiber was cut into 6 mm with a cartridge cutter. This was designated as carbon fiber B.
-Step II: Step of producing a papermaking web The same as in Example 1.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength is not a problem.

(実施例13)
・第Iの工程:原料となる炭素繊維を製造する工程
アクリロニトリル99モル%とイタコン酸1モル%からなる共重合体を湿式紡糸し、焼成し、総フィラメント数12,000本、総繊度447テックス、比重1.8、ストランド引張強度5.6GPa、ストランド引張弾性率300GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1mol/Lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり40クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このときの炭素繊維の表面粗さ(Ra)は23nm、表面酸素濃度O/Cは、0.13、表面カルボキシル基濃度COOH/Cは0.005、表面水酸基濃度COH/Cは0.018であった。このときの炭素繊維表面粗さ(Ra)は2.9nmだった。その後、得られた炭素繊維を、カートリッジカッターで6mmにカットした。これを炭素繊維Cとした。
・第IIの工程:抄紙ウェブを製造する工程
実施例1と同様とした。
・第III〜IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度は問題ないことがわかった。
(Example 13)
-Step I: Process for producing carbon fiber as raw material A copolymer consisting of 99 mol% acrylonitrile and 1 mol% itaconic acid is wet-spun, fired, 12,000 total filaments, and total fineness 447 tex A carbon fiber having a specific gravity of 1.8, a strand tensile strength of 5.6 GPa, and a strand tensile modulus of 300 GPa was obtained. Subsequently, the carbon fiber was subjected to an electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / L as an electrolytic solution at an electric charge of 40 coulomb per 1 g of the carbon fiber. The carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber as a raw material. At this time, the surface roughness (Ra) of the carbon fiber is 23 nm, the surface oxygen concentration O / C is 0.13, the surface carboxyl group concentration COOH / C is 0.005, and the surface hydroxyl group concentration COH / C is 0.018. there were. The carbon fiber surface roughness (Ra) at this time was 2.9 nm. Then, the obtained carbon fiber was cut into 6 mm with a cartridge cutter. This was designated as carbon fiber C.
-Step II: Step of producing a papermaking web The same as in Example 1.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength is not a problem.

(実施例14)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A)成分、(B1)成分を表1−1の通りに用い、(A)、(B1)をジメチルホルムアミドを用いて溶液にした以外は、実施例1と同様の方法でサイジング剤を塗布した炭素繊維を得た。続いて、サイジング剤のエポキシ当量、サイジング剤塗布炭素繊維の水分率、サイジング剤表面のX線光電子分光法測定を行った。サイジング剤のエポキシ当量、サイジング剤表面の化学組成ともに期待通りだった。結果を表1−1に示す。
・第III〜IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1−1にまとめた。この結果、曲げ強度は高いことがわかった。
(Example 14)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: Step of attaching sizing agent to carbon fiber (A) Component, (B1) Component was used as shown in Table 1-1, and (A) and (B1) were made into a solution using dimethylformamide. The carbon fiber which apply | coated the sizing agent by the method similar to Example 1 was obtained except that. Subsequently, the epoxy equivalent of the sizing agent, the moisture content of the sizing agent-coated carbon fiber, and the X-ray photoelectron spectroscopy measurement of the sizing agent surface were performed. Both the epoxy equivalent of the sizing agent and the chemical composition of the sizing agent surface were as expected. The results are shown in Table 1-1.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. The results are summarized in Table 1-1. As a result, it was found that the bending strength was high.

(比較例1)
・第I〜IIの工程:
実施例1と同様とした。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
(A)成分を用いず(B1)成分の種類、量、その他の成分の量を表1−2の通りに用いた以外は、実施例1と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。続いて、サイジング剤表面のX線光電子分光法測定を行ったところ、表1−2に示す通り本発明の範囲から外れていた。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表1−2にまとめた。この結果、曲げ強度が415MPaであり、力学特性が不十分であることがわかった。
(Comparative Example 1)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web (A) Without using the component (B1) Examples except that the type and amount of the component and the amounts of other components were used as shown in Table 1-2 A papermaking web to which a sizing agent was applied was obtained in the same manner as in 1. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, when X-ray photoelectron spectroscopy measurement was performed on the surface of the sizing agent, it was outside the scope of the present invention as shown in Table 1-2.
Step IV: Compounding step of papermaking web and thermoplastic resin A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 1-2. As a result, it was found that the bending strength was 415 MPa and the mechanical properties were insufficient.

(比較例2)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
(B1)成分を用いず(A)成分の種類、量を表1−2の通りに用いた以外は、実施例1と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。続いて、サイジング剤表面のX線光電子分光法測定を行ったところ、表1−2に示す通り本発明の範囲から外れていた。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表1−2に示す通りで力学特性が若干低いことがわかった。
(Comparative Example 2)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web (B1) The same method as in Example 1 except that the component (A) is not used and the type and amount of the component (A) are used as shown in Table 1-2. Thus, a papermaking web provided with a sizing agent was obtained. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, when X-ray photoelectron spectroscopy measurement was performed on the surface of the sizing agent, it was outside the scope of the present invention as shown in Table 1-2.
Step IV: Compounding step of papermaking web and thermoplastic resin A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 1-2 and the mechanical properties were slightly low.

(比較例3、4)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
(A)、(B1)成分の種類、量、(C1)、その他の成分の量を表1−2の通りに用いた以外は、実施例1と同様の方法でサイジング剤が付与された抄紙ウェブを得た。続いて、サイジング剤表面のX線光電子分光法測定を行ったところ、表1−2に示す通り本発明の範囲から外れていた。
・第III〜IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表1−2に示す通りで力学特性が不十分であることがわかった。
(Comparative Examples 3 and 4)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web (A), (B1) Kinds and amounts of components, (C1), except that the amounts of other components were used as shown in Table 1-2. A papermaking web provided with a sizing agent was obtained in the same manner as in Example 1. Subsequently, when X-ray photoelectron spectroscopy measurement was performed on the surface of the sizing agent, it was outside the scope of the present invention as shown in Table 1-2.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 1-2 and the mechanical properties were insufficient.

(比較例5)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
(A)成分として(A−2)の水溶液を調整し、浸漬法により抄紙ウェブに散布し、余剰分を吸引した後、210℃の温度で75秒間熱処理をして、サイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、最終的に得るサイジング剤塗布炭素繊維(サイジング剤塗布抄紙ウェブ)に対して0.30質量%となるように調整した。続いて、(B1)成分として(B−2)を20質量部、(C)成分20質量部および乳化剤10質量部からなる水分散エマルジョンを調合した。なお、(C)成分として、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モル、セバチン酸0.5モルの縮合物、乳化剤としてポリオキシエチレン(70モル)スチレン化(5モル)クミルフェノールを用いた。なお(C)成分、乳化剤はいずれも芳香族化合物であり、(B)成分に該当することにもなる。このサイジング剤を浸漬法により(A)成分を塗布した抄紙ウェブに散布し、余剰分を吸引した後、210℃の温度で75秒間熱処理をして、サイジング剤を塗布した抄紙ウェブを得た。サイジング剤の付着量は、最終的に得るサイジング剤塗布炭素繊維(サイジング剤塗布抄紙ウェブ)に対して0.30質量部となるように調整した。サイジング剤表面のX線光電子分光法測定を測定した。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.90より大きく、本発明の範囲から外れていた。
・第III〜IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表1−2に示す通りで力学特性が低いことがわかった。
(Comparative Example 5)
-Steps I to II:
Same as Example 1.
-Step III: A step of applying a sizing agent to the papermaking web (A) The aqueous solution of (A-2) is prepared as a component, sprayed on the papermaking web by a dipping method, and the excess is sucked, and then 210 ° C Heat treatment was performed at temperature for 75 seconds to obtain a papermaking web to which a sizing agent was applied. The adhesion amount of the sizing agent was adjusted to 0.30% by mass with respect to the finally obtained sizing agent-coated carbon fiber (sizing agent-coated papermaking web). Subsequently, an aqueous dispersion emulsion comprising 20 parts by mass of (B-2), 20 parts by mass of (C) component, and 10 parts by mass of an emulsifier was prepared as the component (B1). As component (C), 2 mol of EO 2 mol adduct of bisphenol A, 1.5 mol of maleic acid and 0.5 mol of sebacic acid, polyoxyethylene (70 mol) as a emulsifier, styrenation (5 mol) Cumylphenol was used. In addition, (C) component and an emulsifier are both aromatic compounds, and will also correspond to (B) component. This sizing agent was sprayed on the papermaking web coated with the component (A) by the dipping method, and after surplus was sucked, heat treatment was performed at a temperature of 210 ° C. for 75 seconds to obtain a papermaking web coated with the sizing agent. The adhesion amount of the sizing agent was adjusted to 0.30 parts by mass with respect to the finally obtained sizing agent-coated carbon fiber (sizing agent-coated papermaking web). X-ray photoelectron spectroscopy measurements on the sizing agent surface were measured. Component of binding energy (284.6 eV) attributed to (a) CHx, C—C, C = C of C 1s inner shell spectrum measured by X-ray photoelectron spectroscopy on the sizing agent surface at a photoelectron escape angle of 15 ° The ratio (a) / (b) of the height (cps) of the component (b) and the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O is greater than 0.90. Was out of range.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 1. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 1-2 and the mechanical properties were low.

Figure 2014145036
Figure 2014145036

Figure 2014145036
Figure 2014145036

(実施例15)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:抄紙ウェブを製造する工程
直径500mmの円筒形容器に、水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を入れ、その中に、前工程でカットした炭素繊維を繊維の質量含有率が0.02質量%となるように投入した。5分間攪拌した後、脱水処理をおこない抄紙ウェブを得た。この時の目付は、103g/mであった。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
実施例1と同様とした。
・第IV工程:抄紙ウェブと熱可塑性樹脂の複合化工程
前工程で得られた抄紙ウェブにPP樹脂フィルム(樹脂目付100g/m)を上下方向から挟み、熱プレス装置にて、240℃、3.5MPaにて加熱加圧した後、60℃、3.5MPaで冷却加圧して、抄紙ウェブとPP樹脂の複合化した成形材料を得た。さらに、成形品の厚みが3mmになるように積層、加熱加圧、冷却加圧をおこなった。得られた成形品の炭素繊維含有率は34質量%であった。成形品は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が314MPaであり、力学特性が十分に高いことがわかった。
(Example 15)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
Step II: Process for producing a papermaking web Concentration of 0.1 mass consisting of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) in a cylindrical container having a diameter of 500 mm % Dispersion liquid was added, and the carbon fiber cut in the previous step was put therein so that the mass content of the fiber was 0.02 mass%. After stirring for 5 minutes, dehydration was performed to obtain a papermaking web. The basis weight at this time was 103 g / m 2 .
Step III: Step of applying a sizing agent to the papermaking web Same as Example 1.
Step IV: Compounding process of papermaking web and thermoplastic resin A PP resin film (resin weight 100 g / m 2 ) is sandwiched from above and below in the papermaking web obtained in the previous process, and heated at 240 ° C. with a hot press machine. After heating and pressurizing at 3.5 MPa, cooling and pressurizing were performed at 60 ° C. and 3.5 MPa to obtain a molding material in which the papermaking web and PP resin were combined. Furthermore, lamination, heating and pressing, and cooling and pressing were performed so that the thickness of the molded product was 3 mm. The obtained molded article had a carbon fiber content of 34% by mass. The molded article was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to a characteristic evaluation test. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 2. As a result, it was found that the bending strength was 314 MPa and the mechanical properties were sufficiently high.

(実施例16〜20)
・第I〜IIの工程:
実施例1と同様とした。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
(A)、(B1)成分の種類を表2の通りに用いた以外は、実施例15と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例15と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が306〜318MPaであり、力学特性が十分に高いことがわかった。
(Examples 16 to 20)
-Steps I to II:
Same as Example 1.
-Step III: Steps (A) and (B1) for applying a sizing agent to a papermaking web. Got the web. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for property evaluation was molded in the same manner as in Example 15. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 2. As a result, it was found that the bending strength was 306 to 318 MPa, and the mechanical properties were sufficiently high.

(比較例6)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
比較例1と同様とした。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例15と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表2に示す通りで力学特性が不十分であることがわかった。
(Comparative Example 6)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for property evaluation was molded in the same manner as in Example 15. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 2 and the mechanical properties were insufficient.

(比較例7)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
比較例2と同様とした。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例15と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表2に示す通りで力学特性が若干低いことがわかった。
(Comparative Example 7)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for property evaluation was molded in the same manner as in Example 15. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 2 and the mechanical properties were slightly low.

Figure 2014145036
Figure 2014145036

(実施例21)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:抄紙ウェブを製造する工程
直径500mmの円筒形容器に、水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を入れ、その中に、前工程でカットした炭素繊維を繊維の質量含有率が0.02質量%となるように投入した。5分間攪拌した後、脱水処理をおこない抄紙ウェブを得た。この時の目付は、82g/mであった。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
実施例1と同様とした。
・第IV工程:抄紙ウェブと熱可塑性樹脂の複合化工程
前工程で得られた抄紙ウェブにPA6樹脂フィルム(樹脂目付100g/m)を上下方向から挟み、熱プレス装置にて、300℃、3.5MPaにて加熱加圧した後、60℃、3.5MPaで冷却加圧して、抄紙ウェブとPA6樹脂の複合化した成形材料を得た。さらに、成形品の厚みが3mmになるように積層、加熱加圧、冷却加圧をおこなった。得られた成形品の炭素繊維含有率は29質量%であった。成形品は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表3にまとめた。この結果、曲げ強度が440MPaであり、力学特性が十分に高いことがわかった。また、水分吸収時の曲げ強度の低下率の小さいことがわかった。
(Example 21)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
Step II: Process for producing a papermaking web Concentration of 0.1 mass consisting of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) in a cylindrical container having a diameter of 500 mm % Dispersion liquid was added, and the carbon fiber cut in the previous step was put therein so that the mass content of the fiber was 0.02 mass%. After stirring for 5 minutes, dehydration was performed to obtain a papermaking web. The basis weight at this time was 82 g / m 2 .
Step III: Step of applying a sizing agent to the papermaking web Same as Example 1.
- Part IV: scissors papermaking web and thermoplastic resin composite step previous step resulting paper web PA6 resin film (resin basis weight 100 g / m 2) from the vertical direction, by a heat press apparatus, 300 ° C., After heating and pressurizing at 3.5 MPa, cooling and pressurizing were performed at 60 ° C. and 3.5 MPa to obtain a molding material in which the papermaking web and PA6 resin were combined. Furthermore, lamination, heating and pressing, and cooling and pressing were performed so that the thickness of the molded product was 3 mm. The carbon fiber content of the obtained molded product was 29% by mass. The molded article was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to a characteristic evaluation test. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 3. As a result, it was found that the bending strength was 440 MPa and the mechanical properties were sufficiently high. Moreover, it turned out that the fall rate of the bending strength at the time of moisture absorption is small.

(実施例22〜26)
・第I〜IIの工程:
実施例1と同様とした。
・第III工程:抄紙ウェブにサイジング剤を付与する工程
(A)、(B1)成分の種類を表3の通りに用いた以外は、実施例21と同様の方法でサイジング剤が付与された抄紙ウェブを得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例21と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表3にまとめた。この結果、曲げ強度が443〜446MPaであり、力学特性が十分に高いことがわかった。また、水分吸収時の曲げ強度の低下率の小さいことがわかった。
(Examples 22 to 26)
-Steps I to II:
Same as Example 1.
Step III: Steps of applying a sizing agent to a papermaking web (A), (B1) Papermaking provided with a sizing agent in the same manner as in Example 21 except that the types of components were used as shown in Table 3 Got the web. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for characteristic evaluation was molded in the same manner as in Example 21. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 3. As a result, it was found that the bending strength was 443 to 446 MPa, and the mechanical properties were sufficiently high. Moreover, it turned out that the fall rate of the bending strength at the time of moisture absorption is small.

(比較例8)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
比較例1と同様とした。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例21と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、水分吸収時の曲げ強度の低下率は小さいものの、曲げ強度が不十分であることがわかった。
(Comparative Example 8)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for characteristic evaluation was molded in the same manner as in Example 21. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that although the rate of decrease in bending strength during moisture absorption was small, the bending strength was insufficient.

(比較例9)
・第I〜IIの工程:
実施例1と同様とした。
・第IIIの工程:抄紙ウェブにサイジング剤を付与する工程
比較例2と同様とした。
・第IVの工程:抄紙ウェブと熱可塑性樹脂の複合化工程
実施例21と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度は高いものの、水分吸収時の曲げ強度の低下率が大きいことが分かった。
(Comparative Example 9)
-Steps I to II:
Same as Example 1.
-Step III: Step of applying a sizing agent to the papermaking web.
Step IV: Compounding Step of Papermaking Web and Thermoplastic Resin A test piece for characteristic evaluation was molded in the same manner as in Example 21. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that although the bending strength was high, the rate of decrease in bending strength during moisture absorption was large.

Figure 2014145036
Figure 2014145036

(実施例27)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(B1)成分として(B−2)を20質量部、(C)成分20質量部および乳化剤10質量部からなる水分散エマルジョンを調合した後、(A)成分として(A−1)を50質量部混合してサイジング液を調合した。サイジング液中の溶液を除いたサイジング剤のエポキシ当量は表4の通りである。このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤が塗布された炭素繊維を得た。サイジング剤の付着量は、サイジング剤を塗布した炭素繊維に対して0.6質量%となるように調整した。続いて、炭素繊維に塗布されたサイジング剤のエポキシ当量、サイジング剤塗布炭素繊維の水分率、サイジング剤表面のX線光電子分光法測定、溶出された脂肪族エポキシ化合物測定の結果を表4にまとめた。この結果、サイジング剤のエポキシ当量、サイジング剤表面の化学組成ともに期待通りであることが確認できた。
(Example 27)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: A step of attaching a sizing agent to carbon fiber (B1) As a component, an aqueous dispersion emulsion comprising 20 parts by mass of (B-2), 20 parts by mass of component (C) and 10 parts by mass of an emulsifier was prepared. Thereafter, 50 parts by mass of (A-1) as component (A) was mixed to prepare a sizing solution. Table 4 shows the epoxy equivalent of the sizing agent excluding the solution in the sizing solution. After applying this sizing agent to the carbon fiber surface-treated by the dipping method, heat treatment was performed at a temperature of 210 ° C. for 75 seconds to obtain a carbon fiber coated with the sizing agent. The adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the carbon fiber coated with the sizing agent. Subsequently, Table 4 summarizes the epoxy equivalent of the sizing agent applied to the carbon fiber, the moisture content of the carbon fiber coated with the sizing agent, the X-ray photoelectron spectroscopy measurement of the sizing agent surface, and the measurement of the eluted aliphatic epoxy compound. It was. As a result, it was confirmed that both the epoxy equivalent of the sizing agent and the chemical composition of the sizing agent surface were as expected.

・第IIIの工程:サイジング剤塗布炭素繊維のカット工程
第II工程で得られたサイジング剤塗布炭素繊維を、カートリッジカッターで6mmにカットした。
・第IVの工程:熱可塑性樹脂との複合化工程
PPS樹脂フィルム上に前工程でカットしたサイジング剤塗布炭素繊維(目付86g/m)をランダムに置き、その上からもう一枚のPPS樹脂フィルムを挟み、熱プレス装置にて、330℃、5.0MPaにて加熱加圧した後、60℃、5.0MPaで冷却加圧して、カットしたサイジング剤塗布炭素繊維とPPS樹脂が複合化したシート状の成形材料(形態B)を得た。さらに、成形品の厚みが3mmになるように積層、加熱加圧、冷却加圧をおこなった。得られた成形品の炭素繊維含有率は30質量%であった。成形品は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表4にまとめた。この結果、曲げ強度が276MPaであり、力学特性が十分に高いことがわかった。
-Step III: Sizing agent-coated carbon fiber cutting step The sizing agent-coated carbon fiber obtained in Step II was cut into 6 mm with a cartridge cutter.
-Step IV: Compounding process with thermoplastic resin Sizing agent-coated carbon fibers (weight per unit area 86 g / m 2 ) cut in the previous process are randomly placed on the PPS resin film, and another sheet of PPS resin is placed thereon. The film was sandwiched and heated and pressurized at 330 ° C. and 5.0 MPa with a hot press apparatus, then cooled and pressurized at 60 ° C. and 5.0 MPa, and the cut sizing agent-coated carbon fiber and PPS resin were combined. A sheet-shaped molding material (form B) was obtained. Furthermore, lamination, heating and pressing, and cooling and pressing were performed so that the thickness of the molded product was 3 mm. The obtained molded product had a carbon fiber content of 30% by mass. The molded article was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to a characteristic evaluation test. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 4. As a result, it was found that the bending strength was 276 MPa and the mechanical properties were sufficiently high.

(実施例28〜32)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例27の第IIの工程で、(A)、(B1)成分の種類を表4の通りに用いた以外は、実施例27と同様の方法でサイジング剤が塗布されたサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、炭素繊維100質量部に対していずれも0.6質量部であった。
・第IIIの工程:サイジング剤塗布炭素繊維のカット工程
実施例27と同様とした。
・第IVの工程:熱可塑性樹脂との複合化工程
実施例27と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表4にまとめた。この結果、曲げ強度が269〜283MPaであり、力学特性が十分に高いことがわかった。
(Examples 28 to 32)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
Step II: Step of attaching sizing agent to carbon fiber Example 27, except that the types of components (A) and (B1) were used as shown in Table 4 in Step II of Example 27. Sizing agent-coated carbon fibers coated with a sizing agent were obtained in the same manner. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the carbon fiber.
Step III: Sizing Agent-Coated Carbon Fiber Cutting Process Same as Example 27.
Step IV: Compounding step with thermoplastic resin A test piece for characteristic evaluation was molded in the same manner as in Example 27. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 4. As a result, it was found that the bending strength was 269 to 283 MPa, and the mechanical properties were sufficiently high.

(比較例10)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A)成分を用いず(B1)成分の種類、量、その他の成分の量を表4の通りに用いた以外は、実施例27と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。続いて、サイジング剤表面のX線光電子分光法測定を行ったところ、表4に示す通り本発明の範囲から外れていた。
・第III〜IVの工程:
実施例27と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。この結果、曲げ強度が表4に示す通りで力学特性が不十分であることがわかった。
(Comparative Example 10)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
Step II: Step of adhering sizing agent to carbon fiber (A) Example 27 except that component (B1) was not used, and the type and amount of component and the amount of other components were used as shown in Table 4. A sizing agent-coated carbon fiber was obtained in the same manner as described above. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, when X-ray photoelectron spectroscopy measurement was performed on the surface of the sizing agent, it was outside the scope of the present invention as shown in Table 4.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 27. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 4 and the mechanical properties were insufficient.

(比較例11)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(B1)成分を用いず(A)成分の種類、量を表4の通りに用いた以外は、実施例27と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。続いて、サイジング剤表面のX線光電子分光法測定を行ったところ、表4に示す通り本発明の範囲から外れていた。
・第III〜IVの工程:
実施例27と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。この結果、曲げ強度が表4に示す通りで力学特性が若干低いことがわかった。
(Comparative Example 11)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: Step of attaching sizing agent to carbon fiber (B1) Sizing in the same manner as in Example 27, except that component (A) was not used and the type and amount of component (A) were used as shown in Table 4. An agent-coated carbon fiber was obtained. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, when X-ray photoelectron spectroscopy measurement was performed on the surface of the sizing agent, it was outside the scope of the present invention as shown in Table 4.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 27. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 4 and the mechanical properties were slightly low.

Figure 2014145036
Figure 2014145036

(実施例33)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例27と同様とした。
(Example 33)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
Step II: Step of attaching a sizing agent to carbon fibers The same as in Example 27.

・第IIIの工程:サイジング剤塗布炭素繊維のカット工程
第II工程で得られたサイジング剤塗布炭素繊維を、カートリッジカッターで6mmにカットした。
・第IVの工程:熱可塑性樹脂との複合化工程
マトリックス樹脂としてビニルエステル樹脂(VE、ダウ・ケミカル(株)製、デラケン790)を100質量部、硬化剤としてtert−ブチルパーオキシベンゾエート(日本油脂(株)製、パーブチルZ)を1質量部、内部離型剤としてステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)を2質量部、増粘剤として酸化マグネシウム(協和化学工業(株)製、MgO#40)を4質量部用いて、それらを十分に混合撹拌し、樹脂ペーストを得た。樹脂ペーストをドクターブレードを用いて、ポリプロピレン製の離型フィルム上に、単位面積あたりの重量が400g/mになるように塗布した。その上から、前工程でカットされた束状のサイジング剤塗布炭素繊維を均一に落下、散布した。さらに、樹脂ペーストを単位面積あたりの重量が400g/mになるように塗布したもう一方のポリプロピレンフィルムとで樹脂ペースト側を内にして挟んだ。炭素繊維のSMCシートに対する含有量は50質量%とした。得られたシートを40℃×24時間静置することにより、樹脂ペーストを十分に増粘化させて、シート状の成形材料を(形態B)を得た。
前工程で得られたシート状の成形材料を、チャージ率(金型を上から見たときの金型面積に対するシート状の成形材料の面積の割合)を50%となるように金型にチャージし、加熱型プレス成型機により、588.4kPaの加圧下、150℃×5分間の条件により硬化せしめ、30cm×30cm×3mmの平板状の成形品を得た。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。得られた成形品の炭素繊維含有率は50質量%であった。成形品は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表5にまとめた。この結果、曲げ強度が480MPaであり、力学特性が十分に高いことがわかった。
-Step III: Sizing agent-coated carbon fiber cutting step The sizing agent-coated carbon fiber obtained in Step II was cut into 6 mm with a cartridge cutter.
Step IV: Compounding step with thermoplastic resin 100 parts by mass of vinyl ester resin (VE, manufactured by Dow Chemical Co., Ltd., Delaken 790) as matrix resin, and tert-butyl peroxybenzoate (Japan) as curing agent 1 part by mass of Perfume Z, manufactured by Yushi Co., Ltd., 2 parts by mass of zinc stearate (manufactured by Sakai Chemical Industry Co., Ltd., SZ-2000) as an internal mold release agent, and magnesium oxide (Kyowa Chemical Industry) as a thickener Using 4 parts by mass of MgO # 40 manufactured by Co., Ltd., they were sufficiently mixed and stirred to obtain a resin paste. The resin paste was applied on a polypropylene release film using a doctor blade so that the weight per unit area was 400 g / m 2 . From there, the bundled sizing agent-coated carbon fibers cut in the previous step were uniformly dropped and dispersed. Further, the resin paste was sandwiched with the other polypropylene film coated with the resin paste so that the weight per unit area was 400 g / m 2 . Content with respect to the SMC sheet of carbon fiber was 50 mass%. By leaving the obtained sheet at 40 ° C. for 24 hours, the resin paste was sufficiently thickened to obtain a sheet-shaped molding material (Form B).
Charge the sheet-shaped molding material obtained in the previous process to the mold so that the charge rate (the ratio of the area of the sheet-shaped molding material to the mold area when the mold is viewed from above) is 50%. Then, it was cured under conditions of 150 ° C. × 5 minutes under a pressure of 588.4 kPa using a heating press molding machine to obtain a plate-like molded product of 30 cm × 30 cm × 3 mm. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The obtained molded article had a carbon fiber content of 50% by mass. The molded article was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to a characteristic evaluation test. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 5. As a result, it was found that the bending strength was 480 MPa and the mechanical properties were sufficiently high.

(実施例34〜38)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例33の第IIの工程で、(A)成分と(B)成分を表5に示すように変更したこと以外は、実施例33と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.6質量部であった。
・第III、IVの工程:
実施例33と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の成形品評価方法に従い評価した。結果を表5にまとめた。この結果、曲げ強度が473〜482MPaであり、力学特性が十分に高いことがわかった。
(Examples 34 to 38)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: Step of attaching sizing agent to carbon fiber Example 33, except that component (A) and component (B) were changed as shown in Table 5 in step II of Example 33. A sizing agent-coated carbon fiber was obtained in the same manner as described above. The adhesion amount of the sizing agent was 0.6 parts by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
-Steps III and IV:
A test piece for property evaluation was molded in the same manner as in Example 33. Next, the obtained test piece for characteristic evaluation was evaluated according to the above-described molded product evaluation method. The results are summarized in Table 5. As a result, it was found that the bending strength was 473 to 482 MPa, and the mechanical properties were sufficiently high.

(比較例12)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
比較例10と同様とした。
・第III〜IVの工程:
実施例33と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。この結果、曲げ強度が表5に示す通りで力学特性が不十分であることがわかった。
(Comparative Example 12)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: Step of attaching sizing agent to carbon fiber The same as Comparative Example 10.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 33. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 5 and the mechanical properties were insufficient.

(比較例13)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
比較例11と同様とした。
・第III〜IVの工程:
実施例33と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。この結果、曲げ強度が表5に示す通りで力学特性が若干低いことがわかった。
(Comparative Example 13)
-Step I: Step of producing carbon fiber as a raw material The same as in Example 1.
-Step II: Step of attaching sizing agent to carbon fiber The same as Comparative Example 11.
-Steps III to IV:
A test piece for property evaluation was molded in the same manner as in Example 33. Next, the obtained test piece for property evaluation was evaluated according to the above-described injection molded product evaluation method. As a result, it was found that the bending strength was as shown in Table 5 and the mechanical properties were slightly low.

Figure 2014145036
Figure 2014145036

(実施例39)
実施例1で得られたサイジング剤塗布炭素繊維(サイジング剤を塗布した抄紙ウエブ)2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施した。続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥した。洗浄後に残っているサイジング剤付着量を測定したところ、表6−1の通りだった。
続いて、洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面、および洗浄により得られたサイジング剤塗布炭素繊維のサイジング剤表面の400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(I)洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)、(II)洗浄後のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)を算出した。(I)および(II)/(I)は表6−1に示す通りだった。
(Example 39)
2 g of the sizing agent-coated carbon fiber (paper-making web coated with the sizing agent) obtained in Example 1 was immersed in 50 ml of acetone and subjected to ultrasonic cleaning for 30 minutes three times. Subsequently, the substrate was immersed in 50 ml of methanol, subjected to ultrasonic cleaning for 30 minutes once and dried. When the sizing agent adhesion amount remaining after washing was measured, it was as shown in Table 6-1.
Subsequently, the sizing agent surface of the sizing agent-coated carbon fiber before washing, and the sizing agent-coated carbon fiber sizing agent surface obtained by washing were assigned to (b) CO component by X-ray photoelectron spectroscopy at 400 eV. The peak height of the binding energy of 286.1 eV and the height (cps) of the component of the binding energy of 284.6 eV attributed to (a) CHx, C-C, C = C are obtained, and (I) before washing (A) / (b) on the sizing agent surface of the sizing agent-coated carbon fiber, (II) (a) / (b) on the sizing agent surface of the sizing agent-coated carbon fiber after washing. (I) and (II) / (I) were as shown in Table 6-1.

(実施例40、41)
実施例39と同様に実施例2、実施例3で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−1に示す。
(Examples 40 and 41)
(A) CHx of the C1s inner shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after cleaning using the sizing agent-coated carbon fibers obtained in Example 2 and Example 3 as in Example 39 , C—C, the height (cps) of the component of the bond energy (284.6 eV) attributed to C═C, and (b) the high of the component of the bond energy (286.1 eV) attributed to C—O. The ratio (a) / (b) to the thickness (cps) was obtained. The results are shown in Table 6-1.

(比較例14)
実施例39と同様に比較例1で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−1に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
(Comparative Example 14)
(A) CHx, C-C of C1s inner shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after washing using the sizing agent-coated carbon fiber obtained in Comparative Example 1 as in Example 39. , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. The ratio (a) / (b) was obtained. The results are shown in Table 6-1, and it was found that (II / I) was large and the sizing agent had no gradient structure.

(比較例15)
実施例39と同様に比較例2で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−1に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
(Comparative Example 15)
(A) CHx, C-C of C1s inner-shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after cleaning using the sizing agent-coated carbon fiber obtained in Comparative Example 2 as in Example 39. , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. The ratio (a) / (b) was obtained. The results are shown in Table 6-1, and it was found that (II / I) was large and the sizing agent had no gradient structure.

(比較例16)
実施例39と同様に比較例5で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−1に示すが、(II/I)が小さいことが分かった。
(Comparative Example 16)
(A) CHx, C-C of C1s inner-shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after washing using the sizing agent-coated carbon fiber obtained in Comparative Example 5 as in Example 39. , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. The ratio (a) / (b) was obtained. The results are shown in Table 6-1, and it was found that (II / I) was small.

Figure 2014145036
Figure 2014145036

(実施例42)
実施例27で得られたサイジング剤塗布炭素繊維2gをアセトン50ml中に浸漬させて超音波洗浄30分間を3回実施した。続いてメタノール50mlに浸漬させて超音波洗浄30分を1回行い、乾燥した。洗浄後に残っているサイジング剤付着量を測定したところ、表5の通りだった。
続いて、洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面、および洗浄により得られたサイジング剤塗布炭素繊維のサイジング剤表面の400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、(I)洗浄前のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)、(II)洗浄後のサイジング剤塗布炭素繊維のサイジング剤表面の(a)/(b)を算出した。(I)および(II)/(I)は表6−2に示す通りだった。
(Example 42)
2 g of the sizing agent-coated carbon fiber obtained in Example 27 was immersed in 50 ml of acetone and subjected to ultrasonic cleaning for 30 minutes three times. Subsequently, the substrate was immersed in 50 ml of methanol, subjected to ultrasonic cleaning for 30 minutes once and dried. Table 5 shows the amount of sizing agent adhesion remaining after washing.
Subsequently, the sizing agent surface of the sizing agent-coated carbon fiber before washing, and the sizing agent-coated carbon fiber sizing agent surface obtained by washing were assigned to (b) CO component by X-ray photoelectron spectroscopy at 400 eV. The peak height of the binding energy of 286.1 eV and the height (cps) of the component of the binding energy of 284.6 eV attributed to (a) CHx, C-C, C = C are obtained, and (I) before washing (A) / (b) on the sizing agent surface of the sizing agent-coated carbon fiber, (II) (a) / (b) on the sizing agent surface of the sizing agent-coated carbon fiber after washing. (I) and (II) / (I) were as shown in Table 6-2.

(実施例43〜44)
実施例42と同様に実施例28、実施例29で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−2に示す。
(Examples 43 to 44)
(A) CHx of the C1s core spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after cleaning using the sizing agent-coated carbon fibers obtained in Example 28 and Example 29 as in Example 42 , C—C, the height (cps) of the component of the bond energy (284.6 eV) attributed to C═C, and (b) the high of the component of the bond energy (286.1 eV) attributed to C—O. The ratio (a) / (b) to the thickness (cps) was obtained. The results are shown in Table 6-2.

(比較例17)
実施例42と同様に比較例10で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表5−2に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
(Comparative Example 17)
(A) CHx, C-C of C1s inner-shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after cleaning using the sizing agent-coated carbon fiber obtained in Comparative Example 10 as in Example 42 , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. The ratio (a) / (b) was obtained. The results are shown in Table 5-2, and it was found that (II / I) was large and no grading structure was obtained in the sizing agent.

(比較例18)
実施例42と同様に比較例11で得られたサイジング剤塗布炭素繊維を用いて洗浄前後の400eVのX線を用いたX線光電子分光法によってC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)を求めた。結果を表6−2に示すが、(II/I)が大きく、サイジング剤に傾斜構造が得られていないことが分かった。
(Comparative Example 18)
(A) CHx, C-C of C1s inner shell spectrum by X-ray photoelectron spectroscopy using 400 eV X-rays before and after cleaning using the sizing agent-coated carbon fiber obtained in Comparative Example 11 as in Example 42. , The height (cps) of the component of the binding energy (284.6 eV) attributed to C = C, and (b) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O. The ratio (a) / (b) was obtained. The results are shown in Table 6-2, and it was found that (II / I) was large and no grading structure was obtained in the sizing agent.

Figure 2014145036
Figure 2014145036

(実施例45)
実施例21で得られた成形材料10gをビーカー入れて蟻酸250mlで超音波洗浄30分間を3回実施し、最後にメタノール250mlで超音波洗浄30分間を1回実施した。その後、80℃で30分乾燥して溶媒を乾燥した。洗浄により得られたサイジング剤塗布炭素繊維のサイジング剤表面の400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め(a)/(b)を求めた。洗浄後に残っているサイジング剤付着量及び(a)/(b)は表7に示す通りだった。
(Example 45)
10 g of the molding material obtained in Example 21 was placed in a beaker, and ultrasonic washing with 250 ml of formic acid was performed three times for 30 minutes, and finally ultrasonic washing with 250 ml of methanol was performed once for 30 minutes. Thereafter, the solvent was dried by drying at 80 ° C. for 30 minutes. (B) the peak height of the binding energy 286.1 eV attributed to the CO component and (a) CHx by X-ray photoelectron spectroscopy at 400 eV on the sizing agent-coated carbon fiber surface obtained by washing. The height (cps) of the component having a binding energy of 284.6 eV attributed to C-C and C = C was determined, and (a) / (b) was determined. The amount of sizing agent remaining and (a) / (b) remaining after washing were as shown in Table 7.

(実施例46)
実施例23で得られた成形材料を用いて実施例45と同様に洗浄し得られたサイジング剤塗布炭素繊維のサイジング剤表面400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め(a)/(b)を求めた。洗浄後に残っているサイジング剤付着量及び(a)/(b)は表7に示す通りだった。
(Example 46)
Sizing agent-coated carbon fiber obtained by washing in the same manner as in Example 45 using the molding material obtained in Example 23 was assigned to (b) CO component by X-ray photoelectron spectroscopy at sizing agent surface 400 eV. The peak height of the binding energy 286.1 eV and (a) the height (cps) of the component of the binding energy 284.6 eV attributed to CHx, C—C, C = C is determined (a) / (b) Asked. The amount of sizing agent remaining and (a) / (b) remaining after washing were as shown in Table 7.

(比較例19)
比較例8で得られた成形材料を用いて実施例45と同様に洗浄し得られたサイジング剤塗布炭素繊維のサイジング剤表面400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め(a)/(b)を求めた。洗浄後に残っているサイジング剤付着量及び(a)/(b)は表7に示す通りで大きい値となった。
(Comparative Example 19)
Sizing agent-coated carbon fiber obtained by washing in the same manner as in Example 45 using the molding material obtained in Comparative Example 8 was assigned to (b) CO component by X-ray photoelectron spectroscopy at a sizing agent surface of 400 eV. The peak height of the binding energy 286.1 eV and (a) the height (cps) of the component of the binding energy 284.6 eV attributed to CHx, C—C, C = C is determined (a) / (b) Asked. As shown in Table 7, the sizing agent adhesion amount and (a) / (b) remaining after washing were large values.

(比較例20)
比較例9で得られた成形材料を用いて実施例45と同様に洗浄し得られたサイジング剤塗布炭素繊維のサイジング剤表面400eVでのX線光電子分光法で(b)C−O成分に帰属される結合エネルギー286.1eVのピークの高さと(a)CHx、C−C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め(a)/(b)を求めた。洗浄後に残っているサイジング剤付着量及び(a)/(b)は表7に示す通りで小さい値となった。
(Comparative Example 20)
Sizing agent-coated carbon fiber obtained by washing in the same manner as in Example 45 using the molding material obtained in Comparative Example 9 was assigned to (b) CO component by X-ray photoelectron spectroscopy at a sizing agent surface of 400 eV. The peak height of the binding energy 286.1 eV and (a) the height (cps) of the component of the binding energy 284.6 eV attributed to CHx, C—C, C = C is determined (a) / (b) Asked. As shown in Table 7, the sizing agent adhesion amount and (a) / (b) remaining after washing were small values.

Figure 2014145036
Figure 2014145036

本発明の成形材料、成形材料の製造方法および炭素繊維強化複合材料は、軽量でありながら強度、弾性率が優れるため、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。   Since the molding material, the method for producing the molding material and the carbon fiber reinforced composite material of the present invention are lightweight and have excellent strength and elastic modulus, they are aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials, and sporting goods. It can use suitably for many fields, such as.

Claims (19)

少なくとも炭素繊維にサイジング剤が塗布されたサイジング剤塗布炭素繊維およびマトリックス樹脂を含んでなる成形材料であって、
前記サイジング剤は、脂肪族エポキシ化合物(A)および芳香族化合物(B)として芳香族エポキシ化合物(B1)を少なくとも含むものであり、かつ、前記サイジング剤塗布炭素繊維は、該サイジング剤表面をX線源としてAlKα1,2を用い、X線光電子分光法によって光電子脱出角度15°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)が0.50〜0.90であり、
前記成形材料中の炭素繊維は束状または単繊維状で実質的に2次元配向していることを特徴とする成形材料。
A molding material comprising a sizing agent-coated carbon fiber and a matrix resin in which a sizing agent is applied to at least carbon fiber,
The sizing agent contains at least the aromatic epoxy compound (B1) as the aliphatic epoxy compound (A) and the aromatic compound (B), and the sizing agent-coated carbon fiber has a surface of the sizing agent X Using AlKα 1 and 2 as the radiation source, the binding energy belonging to (a) CHx, C—C, C = C of the C 1s core spectrum measured at a photoelectron escape angle of 15 ° by X-ray photoelectron spectroscopy ( The ratio (a) / (b) between the height (cps) of the component of 284.6 eV) and the height (cps) of the component (286.1 eV) attributed to C—O is (b) 0.50-0.90,
The molding material is characterized in that the carbon fibers in the molding material are in the form of bundles or single fibers and are substantially two-dimensionally oriented.
前記サイジング剤塗布炭素繊維の水分率は、0.010〜0.030質量%であることを特徴とする請求項1に記載の成形材料。   2. The molding material according to claim 1, wherein the sizing agent-coated carbon fiber has a moisture content of 0.010 to 0.030 mass%. 前記サイジング剤中の脂肪族エポキシ化合物(A)と芳香族エポキシ化合物(B1)の質量比は、52/48〜80/20であることを特徴とする、請求項1または2に記載の成形材料。   The molding material according to claim 1 or 2, wherein a mass ratio of the aliphatic epoxy compound (A) and the aromatic epoxy compound (B1) in the sizing agent is 52/48 to 80/20. . 前記脂肪族エポキシ化合物(A)は、分子内にエポキシ基を2以上有するポリエーテル型ポリエポキシ化合物および/またはポリオール型ポリエポキシ化合物であることを特徴とする、請求項1〜3のいずれか一つに記載の成形材料。   4. The aliphatic epoxy compound (A) is a polyether type polyepoxy compound and / or a polyol type polyepoxy compound having two or more epoxy groups in a molecule. The molding material described in one. 前記脂肪族エポキシ化合物(A)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることを特徴とする、請求項4に記載の成形材料。   The aliphatic epoxy compound (A) is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1, 4-cyclohexanedimethanol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, sorbitol, and arabitol, and epi Wherein the glycidyl ether type epoxy compound obtained by reaction of Rorohidorin molding material as claimed in claim 4. 前記芳香族エポキシ化合物(B1)は、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることを特徴とする、請求項1〜5のいずれか一つに記載の成形材料。   The molding material according to any one of claims 1 to 5, wherein the aromatic epoxy compound (B1) is a bisphenol A type epoxy compound or a bisphenol F type epoxy compound. 前記サイジング剤塗布炭素繊維は、該サイジング剤塗布炭素繊維を、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)との比率(a)/(b)より求められる(I)および(II)の値が、(III)の関係を満たすものであることを特徴とする、請求項1〜6のいずれか一つに記載の成形材料。
(I)超音波処理前の前記サイジング剤塗布炭素繊維の表面の(a)/(b)の値
(II)前記サイジング剤塗布炭素繊維をアセトン溶媒中で超音波処理することで、サイジング剤付着量を0.09〜0.20質量%まで洗浄したサイジング剤塗布炭素繊維の表面の(a)/(b)の値
(III)0.50≦(I)≦0.90かつ0.60<(II)/(I)<1.0
The sizing agent-coated carbon fiber is obtained by measuring the sizing agent-coated carbon fiber with a C1s inner-shell spectrum of (a) CHx, C- The height (cps) of the component of the bond energy (284.6 eV) attributed to C, C = C, and the height (cps) of the component of the bond energy (286.1 eV) attributed to (B) C—O. The ratio of (I) and (II) calculated | required from ratio (a) / (b) and (III) satisfy | fills the relationship of (III), It is any one of Claims 1-6 characterized by the above-mentioned. The molding material described in one.
(I) Value of (a) / (b) on the surface of the sizing agent-coated carbon fiber before sonication (II) Sizing agent adhesion by sonicating the sizing agent-coated carbon fiber in an acetone solvent (A) / (b) value (III) 0.50 ≦ (I) ≦ 0.90 and 0.60 <on the surface of the sizing agent-coated carbon fiber washed to 0.09 to 0.20% by mass (II) / (I) <1.0
前記成形材料を、該成形材料を構成する前記マトリックス樹脂を溶解する溶媒中で超音波処理することで、前記サイジング剤塗布炭素繊維表面のサイジング剤付着量を0.09〜0.20質量%まで洗浄された該サイジング剤塗布炭素繊維の表面は、400eVのX線を用いたX線光電子分光法によって光電子脱出角度55°で測定されるC1s内殻スペクトルの(a)CHx、C−C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と、(b)C−Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.30〜0.70となるものであることを特徴とする、請求項1〜7のいずれか一つに記載の成形材料。   The molding material is sonicated in a solvent that dissolves the matrix resin constituting the molding material, so that the amount of sizing agent applied to the surface of the sizing agent-coated carbon fiber is 0.09 to 0.20% by mass. The surface of the washed carbon fiber coated with the sizing agent is (a) CHx, C—C, C of the C1s inner shell spectrum measured at a photoelectron escape angle of 55 ° by X-ray photoelectron spectroscopy using 400 eV X-rays. = The ratio of the height (cps) of the component of the binding energy (284.6 eV) attributed to C and the height (cps) of the component (b) the binding energy (286.1 eV) attributed to C—O The molding material according to any one of claims 1 to 7, wherein (a) / (b) is 0.30 to 0.70. 前記脂肪族エポキシ化合物(A)の付着量は、0.2〜2.0質量%であることを特徴とする、請求項1〜8のいずれか一つに記載の成形材料。   The molding material according to claim 1, wherein an adhesion amount of the aliphatic epoxy compound (A) is 0.2 to 2.0% by mass. 前記炭素繊維の化学修飾X線光電子分光法により測定される表面カルボキシル基濃度COOH/Cは0.003〜0.015、表面水酸基濃度COH/Cは0.001〜0.050であることを特徴とする、請求項1〜9のいずれか一つに記載の成形材料。   The surface carboxyl group concentration COOH / C measured by chemical modification X-ray photoelectron spectroscopy of the carbon fiber is 0.003 to 0.015, and the surface hydroxyl group concentration COH / C is 0.001 to 0.050. The molding material according to any one of claims 1 to 9. 前記マトリックス樹脂は、熱可塑性樹脂であることを特徴とする請求項1〜10のいずれか一つに記載の成形材料。   The molding material according to claim 1, wherein the matrix resin is a thermoplastic resin. 前記熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリスチレン系樹脂およびポリオレフィン系樹脂から選ばれる一種以上であることを特徴とする請求項11に記載の成形材料。   The thermoplastic resin is at least one selected from polyarylene sulfide resins, polyether ether ketone resins, polyphenylene ether resins, polyoxymethylene resins, polyester resins, polycarbonate resins, polystyrene resins and polyolefin resins. The molding material according to claim 11. 前記熱可塑性樹脂は、ポリアミドであることを特徴とする請求項11に記載の成形材料。   The molding material according to claim 11, wherein the thermoplastic resin is polyamide. 前記マトリックス樹脂は、熱硬化性樹脂であることを特徴とする請求項1〜10のいずれか一つに記載の成形材料。   The molding material according to claim 1, wherein the matrix resin is a thermosetting resin. 前記熱硬化性樹脂は、ラジカル重合系樹脂であることを特徴とする請求項14に記載の成形材料。   The molding material according to claim 14, wherein the thermosetting resin is a radical polymerization resin. 前記成形材料は、ウェブ状、不織布状、フェルト状、またはマット状であることを特徴とする、請求項1〜15のいずれか一つに記載の成形材料。   The molding material according to any one of claims 1 to 15, wherein the molding material has a web shape, a nonwoven fabric shape, a felt shape, or a mat shape. 請求項1〜16のいずれか一つに記載の成形材料を製造する成形材料の製造方法であって、
炭素繊維を、ウェブ状、不織布状、フェルト状、またはマット状の生地に加工する加工工程と、
前記加工工程で得られた生地100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部付与する付与工程と、
前記付与工程でサイジング剤が付与された生地1〜80質量%に対し、マトリックス樹脂20〜99質量%を付与して、複合化する複合化工程と、
を含むことを特徴とする成形材料の製造方法。
A method for producing a molding material for producing the molding material according to any one of claims 1 to 16, comprising:
A processing step of processing carbon fiber into a web-like, non-woven, felt-like, or mat-like fabric;
For 100 parts by mass of the dough obtained in the processing step, 35 to 65% by mass of the aliphatic epoxy compound (A) and 35 to 60% by mass of the aromatic compound (B) with respect to the total amount of the sizing agent excluding the solvent; An application step of applying 0.1 to 10 parts by mass of a sizing agent containing at least
A compounding step in which 20 to 99% by mass of matrix resin is applied to 1 to 80% by mass of the sizing agent applied in the applying step,
The manufacturing method of the molding material characterized by including.
請求項1〜16のいずれか一つに記載の成形材料を製造する成形材料の製造方法であって、
炭素繊維100質量部に対して、溶媒を除いたサイジング剤全量に対して脂肪族エポキシ化合物(A)35〜65質量%と芳香族化合物(B)35〜60質量%とを少なくとも含むサイジング剤を0.1〜10質量部塗布してサイジング剤塗布炭素繊維を得る塗布工程と、
前記塗布工程で得られたサイジング剤塗布炭素繊維を1〜50mmに切断する切断工程と、
前記切断工程で切断されたサイジング剤塗布炭素繊維1〜80質量%と、マトリックス樹脂20〜99質量%とを混合し、複合化する複合化工程と、
を含むことを特徴とする成形材料の製造方法。
A method for producing a molding material for producing the molding material according to any one of claims 1 to 16, comprising:
A sizing agent containing at least 35 to 65% by mass of an aliphatic epoxy compound (A) and 35 to 60% by mass of an aromatic compound (B) with respect to 100 parts by mass of carbon fiber, based on the total amount of the sizing agent excluding the solvent An application step of applying 0.1 to 10 parts by mass to obtain a sizing agent-coated carbon fiber;
A cutting step of cutting the sizing agent-coated carbon fiber obtained in the coating step into 1 to 50 mm;
A sizing agent-coated carbon fiber 1 to 80% by mass cut in the cutting step and a matrix resin 20 to 99% by mass are mixed and combined,
The manufacturing method of the molding material characterized by including.
請求項1〜16のいずれか一つに記載の成形材料、または、請求項17または18に記載の方法で製造された成形材料を成形してなることを特徴とする、炭素繊維強化複合材料。   A carbon fiber reinforced composite material obtained by molding the molding material according to any one of claims 1 to 16, or the molding material produced by the method according to claim 17 or 18.
JP2013014681A 2012-10-18 2013-01-29 MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL Expired - Fee Related JP5516769B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013014681A JP5516769B1 (en) 2013-01-29 2013-01-29 MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL
EP13847900.1A EP2910676B1 (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
MX2015004661A MX2015004661A (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article.
KR1020157009733A KR101580437B1 (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
CN201380053979.2A CN104736759B (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, the manufacture method of carbon fiber-reinforced resin composition, moulding material, the manufacture method of moulding material and carbon fiber-reinforced resin products formed
PCT/JP2013/071274 WO2014061336A1 (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
HUE13847900A HUE036249T2 (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
US14/435,793 US10501605B2 (en) 2012-10-18 2013-08-06 Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon fiber-reinforced resin molded article
TW102134031A TWI504648B (en) 2012-10-18 2013-09-23 A carbon fiber reinforced resin composition, a method for producing a carbon fiber reinforced resin composition, a molding material, a method for producing a molding material, and a carbon fiber reinforced resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014681A JP5516769B1 (en) 2013-01-29 2013-01-29 MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL

Publications (2)

Publication Number Publication Date
JP5516769B1 JP5516769B1 (en) 2014-06-11
JP2014145036A true JP2014145036A (en) 2014-08-14

Family

ID=51031235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014681A Expired - Fee Related JP5516769B1 (en) 2012-10-18 2013-01-29 MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL

Country Status (1)

Country Link
JP (1) JP5516769B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137603A (en) * 2016-02-05 2017-08-10 東邦テナックス株式会社 Carbon fiber, manufacturing method of carbon fiber with sizing agent adhered
JP2019210586A (en) * 2018-06-01 2019-12-12 東レ株式会社 Sizing agent-coated carbon fiber bundle and manufacturing method therefor, thermoplastic resin composition, and molded body
DE102020203614B4 (en) 2019-04-01 2023-07-06 Asahi Kasei Kabushiki Kaisha sliding part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179826A (en) * 2003-12-19 2005-07-07 Toray Ind Inc Sizing coated carbon fiber and method for producing the same
JP2005213687A (en) * 2004-01-30 2005-08-11 Toray Ind Inc Method for producing carbon fiber bundle
JP2005280124A (en) * 2004-03-30 2005-10-13 Toray Ind Inc Carbon fiber-reinforced sheet-like article and carbon fiber-reinforced composite material
WO2013099707A1 (en) * 2011-12-27 2013-07-04 東レ株式会社 Carbon fiber coated with sizing agent, process for producing carbon fiber coated with sizing agent, prepreg, and carbon fiber reinforced composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179826A (en) * 2003-12-19 2005-07-07 Toray Ind Inc Sizing coated carbon fiber and method for producing the same
JP2005213687A (en) * 2004-01-30 2005-08-11 Toray Ind Inc Method for producing carbon fiber bundle
JP2005280124A (en) * 2004-03-30 2005-10-13 Toray Ind Inc Carbon fiber-reinforced sheet-like article and carbon fiber-reinforced composite material
WO2013099707A1 (en) * 2011-12-27 2013-07-04 東レ株式会社 Carbon fiber coated with sizing agent, process for producing carbon fiber coated with sizing agent, prepreg, and carbon fiber reinforced composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137603A (en) * 2016-02-05 2017-08-10 東邦テナックス株式会社 Carbon fiber, manufacturing method of carbon fiber with sizing agent adhered
JP2019210586A (en) * 2018-06-01 2019-12-12 東レ株式会社 Sizing agent-coated carbon fiber bundle and manufacturing method therefor, thermoplastic resin composition, and molded body
JP7363091B2 (en) 2018-06-01 2023-10-18 東レ株式会社 Sizing agent-coated carbon fiber bundle and its manufacturing method, thermoplastic resin composition, molded article
DE102020203614B4 (en) 2019-04-01 2023-07-06 Asahi Kasei Kabushiki Kaisha sliding part

Also Published As

Publication number Publication date
JP5516769B1 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2014061336A1 (en) Carbon fiber-reinforced resin composition, method for manufacturing carbon fiber-reinforced resin composition, molding material, method for manufacturing molding material, and carbon-fiber reinforced resin molded article
JP5516771B1 (en) Prepreg, prepreg manufacturing method, and carbon fiber reinforced composite material
TWI591233B (en) Method for producing carbon fiber coating sizing agent, carbon fiber coating sizing agent, method for producing carbon fiber reinforced composite material and carbon fiber reinforced composite material
JP5516828B1 (en) Prepreg and carbon fiber reinforced composites
KR101528115B1 (en) Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
JP5477312B2 (en) Sizing agent-coated carbon fiber bundle and method for producing the same
TWI598380B (en) Carbon fiber bundle coated with sizing agent, manufacturing method thereof, prepreg and carbon fiber reinforced composite material
JP6056517B2 (en) Sizing agent-coated carbon fiber, method for producing sizing agent-coated carbon fiber, prepreg, and carbon fiber-reinforced thermoplastic resin composition
JP6115461B2 (en) Carbon fiber coated with sizing agent and method for producing the same, carbon fiber reinforced thermoplastic resin composition
JP5516770B1 (en) MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL
JP5516769B1 (en) MOLDING MATERIAL, MOLDING MATERIAL MANUFACTURING METHOD, AND CARBON FIBER REINFORCED COMPOSITE MATERIAL
JP6394085B2 (en) Carbon fiber coated with sizing agent and production method thereof, prepreg and carbon fiber reinforced composite material
JP5454668B1 (en) Carbon fiber reinforced thermoplastic resin composition and molded article
JP6048235B2 (en) Sizing agent-coated carbon fiber and method for producing sizing agent-coated carbon fiber
JP4924768B2 (en) Method for producing carbon fiber coated with sizing agent
JP5967333B1 (en) Sizing agent coated carbon fiber, method for producing sizing agent coated carbon fiber, carbon fiber reinforced composite material, and method for producing carbon fiber reinforced composite material
JP5831148B2 (en) Carbon fiber coated with sizing agent
JP4924769B1 (en) Method for producing carbon fiber coated with sizing agent
JP5899690B2 (en) Carbon fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5516769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees