JP2014144407A - Drainage treatment apparatus and method for operating the same - Google Patents

Drainage treatment apparatus and method for operating the same Download PDF

Info

Publication number
JP2014144407A
JP2014144407A JP2013013668A JP2013013668A JP2014144407A JP 2014144407 A JP2014144407 A JP 2014144407A JP 2013013668 A JP2013013668 A JP 2013013668A JP 2013013668 A JP2013013668 A JP 2013013668A JP 2014144407 A JP2014144407 A JP 2014144407A
Authority
JP
Japan
Prior art keywords
tank
solid
liquid
precipitate
anaerobic fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013668A
Other languages
Japanese (ja)
Other versions
JP6071587B2 (en
Inventor
Jun Tsubota
潤 坪田
Yuji Nakanishi
裕士 中西
Kenji Ishikura
健志 石倉
Tomomasa Motonaga
朝将 本永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013013668A priority Critical patent/JP6071587B2/en
Publication of JP2014144407A publication Critical patent/JP2014144407A/en
Application granted granted Critical
Publication of JP6071587B2 publication Critical patent/JP6071587B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drainage treatment apparatus capable of efficiently producing biogas from the wastewater in wet refuse pulverization treatment in a simple way.SOLUTION: A solid-liquid separation tank 2 is provided to receive the wastewater in wet refuse pulverization treatment for settling separation. A liquid phase anaerobic fermentation part 5 is provided to produce biogas from organic materials contained in the liquid phase, and a sediment anaerobic fermentation tank 3 is provided to produce biogas from sediment. An advection part 26 is disposed to advect the sediment from the solid-liquid separation tank 2 to the sediment anaerobic fermentation tank 3. A choking part 26a is disposed to block the advection part 26 with sediment for prevention of backflow. A sediment advection mechanism is disposed to advect the sediment to the sediment anaerobic fermentation tank 3 through the choking part 26a and to return the excess liquid phase to the solid-liquid separation tank 2 through the choking part 26a. A biogas discharging passage 32 is disposed to discharge the produced biogas outside.

Description

本発明は、生ごみ粉砕処理廃液を浄化する排水処理装置およびその運転方法に関する。   The present invention relates to a waste water treatment apparatus for purifying garbage pulverization waste liquid and an operation method thereof.

近年、各家庭や集合住宅において、ゴミの減容化等を目的として、生ごみディスポーザが普及する傾向にあり、ディスポーザにより粉砕処理された生ゴミを処理可能とする排水処理装置が設置される傾向にある。   In recent years, garbage disposers tend to be widely used in households and apartment houses for the purpose of reducing the volume of garbage, etc., and there is a tendency to install wastewater treatment equipment that can treat garbage that has been crushed by the disposer. It is in.

このような排水処理装置の形態としては、単に、生ごみ粉砕処理廃液を嫌気処理により可溶化し、可溶化した液相を好気処理することにより浄水とする構成が一般的であり、現実的に可溶化しきらない生ごみは、固液分離され、コンポスト化、飼料化され、さらに余剰の固形成分は焼却処分等される。   As a form of such a wastewater treatment apparatus, a configuration in which the waste pulverization waste liquid is simply solubilized by anaerobic treatment, and purified water is obtained by aerobic treatment of the solubilized liquid phase is realistic. Garbage that cannot be completely solubilized is separated into solid and liquid, composted, converted into feed, and excess solid components are incinerated.

しかし、このような処理形態では、コンポスト化、飼料化された生ごみは、再利用されるが、焼却処分等される部分については、エネルギーの有効利用が図られているとは言い難く、また、好気処理であるために、大量の希釈水を必要とすることから、あまり効率的な処理方法とはいえない。さらに、コンポスト化、飼料化されたエネルギーについても再利用用途に限界があり、一般的な用途で利用可能なバイオガス化する技術が望まれている。   However, in this type of treatment, composted and feedd garbage is reused, but it is difficult to say that energy is effectively used for parts that are incinerated. Since it is an aerobic treatment, a large amount of dilution water is required, so it cannot be said that it is a very efficient treatment method. Furthermore, there is a limit to the reuse of the composted and feed energy, and a technology for biogas conversion that can be used for general purposes is desired.

生ごみ粉砕処理廃液をバイオガス化する技術としては特許文献1に記載のように、生ごみを粉砕処理した排液を可溶化し、可溶化成分について嫌気発酵を行うことによりメタンガスを回収する排水処理装置が考えられている。   As described in Patent Document 1, as a technology for converting the waste pulverization waste liquid into biogas, the wastewater obtained by pulverizing the waste is solubilized and anaerobic fermentation is performed on the solubilized components to recover methane gas. A processing device is considered.

しかし、これらの排水処理装置は、生ごみ粉砕処理廃液は充分可溶化しないと嫌気発酵に供することができないことから、可溶化に時間を要し、大きな可溶化槽や嫌気発酵槽を要する。さらに、嫌気発酵槽において、メタン細菌は増殖が遅いことが知られており、嫌気発酵後の処理済の液を取り出すに際して、メタン細菌の流出を抑制する必要がある。そのため、各槽間を常時連通状態に維持することはできず、各槽を個別の水処理容器から構成することが好ましかった。また、各槽間で処理水を移送させるには、動力として大掛かりなポンプを必要とする。その結果、上記排水処理装置としては大掛かりな装置構成を必要とすることになっていた。   However, these wastewater treatment apparatuses require time for solubilization and a large solubilization tank or anaerobic fermentation tank because the waste pulverization waste liquid cannot be subjected to anaerobic fermentation unless it is sufficiently solubilized. Furthermore, it is known that methane bacteria grow slowly in an anaerobic fermenter, and it is necessary to suppress the outflow of methane bacteria when the treated liquid after anaerobic fermentation is taken out. Therefore, it was not possible to always maintain a continuous state between the tanks, and it was preferable to configure each tank from individual water treatment containers. Moreover, in order to transfer treated water between each tank, a large-scale pump is required as power. As a result, the wastewater treatment apparatus requires a large-scale apparatus configuration.

特開2002−119937号公報JP 2002-119937 A

そこで、上述の排水処理装置を小型化簡素化するに際しては、嫌気発酵槽に対する生ごみ粉砕処理廃液の移送を簡素化することが必要になる。   Therefore, when the above-described wastewater treatment apparatus is downsized and simplified, it is necessary to simplify the transfer of the waste pulverization treatment waste liquid to the anaerobic fermentation tank.

嫌気発酵槽に対する生ごみ粉砕処理廃液の移送を効率化するには、生ごみ粉砕処理廃液の連続移流が可能な構成を実現することが望ましい。また、嫌気発酵槽においては、固形成分の処理効率を向上させるには、可溶化していない固形成分であっても嫌気発酵可能な高濃度のメタン細菌を保持可能な嫌気発酵槽を構成すること、および、嫌気発酵槽に保持されるメタン細菌が、連続的な処理を通じて、維持されることが必要になる。   In order to improve the efficiency of transferring the waste pulverization treatment waste liquid to the anaerobic fermentation tank, it is desirable to realize a configuration capable of continuous advection of the waste pulverization treatment waste liquid. Moreover, in an anaerobic fermenter, in order to improve the processing efficiency of a solid component, the anaerobic fermenter which can hold | maintain the high concentration methane bacteria which can be anaerobically fermented even if it is a solid component which is not solubilized is comprised. And the methane bacteria retained in the anaerobic fermenter need to be maintained through continuous processing.

したがって、本発明は上記実状に鑑み、簡素で効率よく生ごみ粉砕処理廃液のバイオガス化が行える排水処理装置を提供することを目的とする。   Therefore, in view of the above situation, an object of the present invention is to provide a wastewater treatment apparatus capable of biogasification of garbage pulverization wastewater simply and efficiently.

〔構成1〕
上記目的を達成するための本発明の排水処理装置の特徴構成は、
生ごみ粉砕処理廃液を受け入れる受け入れ部を設けるとともに、前記生ごみ粉砕処理廃液を沈殿分離する固液分離槽を備え、
前記固液分離槽で固液分離された液相に含まれる有機物をバイオガス化する液相嫌気発酵部を設けるとともに、
前記固液分離槽にて沈殿分離された沈殿物を受け入れてバイオガス化する沈殿物嫌気発酵槽を備え、
前記固液分離槽から前記沈殿物嫌気発酵槽に沈殿物を移流させる移流部を設けてなり、
前記移流部に、前記固液分離槽と前記沈殿物嫌気発酵槽との間を前記沈殿物により閉塞して、固形成分の前記沈殿物嫌気発酵槽から前記固液分離槽への逆流を防止可能にする絞部を設けるとともに、
前記沈殿物を前記絞部を介して前記沈殿物嫌気発酵槽に移流させ、沈殿物嫌気発酵槽の余剰の液相を前記絞部を介して前記固液分離槽に返送可能にする沈殿物移流機構を前記沈殿物嫌気発酵槽に設け、
前記液相嫌気発酵部および沈殿物嫌気発酵槽には、生成したバイオガスを外部に取り出すバイオガス取出路を設けた点にある。
[Configuration 1]
The characteristic configuration of the wastewater treatment apparatus of the present invention for achieving the above object is as follows:
Provided with a receiving portion for receiving the waste pulverization waste liquid, and a solid-liquid separation tank for separating and separating the waste pulverization waste liquid,
While providing a liquid phase anaerobic fermentation section for biogasification of organic matter contained in the liquid phase solid-liquid separated in the solid-liquid separation tank,
A precipitate anaerobic fermenter that accepts the precipitate separated in the solid-liquid separation tank and converts it to biogas,
Provided with an advection section for advancing sediment from the solid-liquid separation tank to the sediment anaerobic fermentation tank,
It is possible to prevent the reverse flow of the solid component from the precipitate anaerobic fermentation tank to the solid-liquid separation tank by closing the space between the solid-liquid separation tank and the precipitate anaerobic fermentation tank at the transfer section. While providing a throttle part to
The precipitate is transferred to the precipitate anaerobic fermenter via the constriction, and the excess liquid phase of the precipitate anaerobic fermenter can be returned to the solid-liquid separation tank via the constriction. A mechanism is provided in the precipitate anaerobic fermenter,
The liquid phase anaerobic fermentation section and the precipitate anaerobic fermentation tank are provided with a biogas extraction path for taking out the generated biogas to the outside.

〔作用効果1〕
上記構成によると、排水処理装置は、生ごみ粉砕処理廃液を受け入れ、その生ごみ粉砕処理廃液を前記固液分離槽にて固液分離し、前記固液分離した沈殿物を沈殿物嫌気発酵槽に移流させてバイオガス化処理できるとともに、菌体濃度を高濃度に維持でき、バイオガス化処理を行って浄化された生ごみ粉砕処理廃液を排水できる。また、固液分離された液相についても、嫌気発酵され、資化された有機物がバイオガス化して生ごみに含まれる有機成分を、より一層効率よくエネルギーとして回収できるようになった。
[Operation effect 1]
According to the above configuration, the waste water treatment apparatus accepts the garbage pulverization treatment waste liquid, and separates the garbage pulverization treatment waste liquid into the solid-liquid separation tank, and the solid-liquid separated precipitate is a precipitate anaerobic fermentation tank. The biogasification treatment can be carried out by transferring the wastewater, and the bacterial cell concentration can be maintained at a high concentration, and the waste pulverization waste liquid purified by the biogasification treatment can be drained. In addition, the liquid phase that has been subjected to solid-liquid separation has been anaerobically fermented, and the assimilated organic matter has been converted to biogas so that the organic components contained in the garbage can be recovered more efficiently as energy.

具体的には、生ごみ粉砕処理廃液は固液分離槽で固液分離され、上澄液と沈殿物に分かれる。沈殿物は、沈殿して移流部における絞部に達する。絞部では、前記固液分離槽と前記沈殿物嫌気発酵槽との間を前記沈殿物により閉塞して、固形成分の前記沈殿物嫌気発酵槽から前記固液分離槽への逆流を防止可能にする沈殿物移流機構を設けるから、前記沈殿物は、前記固液分離槽から沈殿物嫌気発酵槽へ一方通行で移流する。一方固液分離槽における上澄液を含む液相は、液相嫌気発酵部において嫌気発酵されて、バイオガスを生成する。また、前記沈殿物嫌気発酵槽の微生物からなる汚泥は、沈殿物嫌気発酵槽内で保持され、外部に流出することなく保持される。すなわち、余剰の液相の移流量に応じて、前記沈殿物嫌気発酵槽から前記固液分離槽へ液相の返流が生じるが、前記沈殿物がフィルタ効果を発揮し、前記沈殿物嫌気発酵槽からの返流に含まれる嫌気微生物は前記沈殿物内に留まる。これにより前記沈殿物嫌気発酵槽内の嫌気微生物濃度を高濃度に維持できる。そして、前記沈殿物嫌気発酵槽では、固液分離槽の沈殿物が流入するが、前記沈殿物嫌気発酵槽の内部の固形成分が固液分離槽に返送されることがなく、前記沈殿物嫌気発酵槽内の微生物が沈殿物嫌気発酵槽外に流出して減少することが抑制され、良好な嫌気発酵が維持でき、嫌気発酵により減容した固形成分量に見合う沈殿物が順次補給される運転状態を維持できる。
したがって、簡単な構成の沈殿物移流機構を採用するだけで、前記沈殿物嫌気発酵槽では沈殿物を嫌気発酵により連続的にガス化減容化し、バイオガスを回収できる。
Specifically, the waste pulverization waste liquid is solid-liquid separated in a solid-liquid separation tank and separated into a supernatant and a precipitate. The sediment settles and reaches the constriction in the advection section. In the throttling part, the space between the solid-liquid separation tank and the precipitate anaerobic fermentation tank is blocked by the precipitate, so that backflow of solid components from the precipitate anaerobic fermentation tank to the solid-liquid separation tank can be prevented. Since the sediment advancing mechanism is provided, the sediment is transferred from the solid-liquid separation tank to the sediment anaerobic fermentation tank in one way. On the other hand, the liquid phase containing the supernatant in the solid-liquid separation tank is anaerobically fermented in the liquid phase anaerobic fermentation unit to produce biogas. Moreover, the sludge which consists of the microorganisms of the said precipitate anaerobic fermenter is hold | maintained within a precipitate anaerobic fermenter, and is hold | maintained without flowing out outside. That is, depending on the flow rate of the excess liquid phase, the liquid phase returns from the precipitate anaerobic fermentation tank to the solid-liquid separation tank, but the precipitate exhibits a filter effect and the precipitate anaerobic fermentation. Anaerobic microorganisms contained in the return flow from the tank remain in the precipitate. Thereby, the anaerobic microorganism density | concentration in the said precipitate anaerobic fermenter can be maintained at a high density | concentration. And, in the precipitate anaerobic fermentation tank, the precipitate in the solid-liquid separation tank flows, but the solid components inside the precipitate anaerobic fermentation tank are not returned to the solid-liquid separation tank, and the precipitate anaerobic tank Operation in which microorganisms in the fermenter are prevented from flowing out of the sediment anaerobic fermenter and reduced, good anaerobic fermentation can be maintained, and sediment corresponding to the amount of solid components reduced by anaerobic fermentation is sequentially replenished The state can be maintained.
Therefore, the deposit anaerobic fermentation tank can be continuously gasified and reduced by anaerobic fermentation and biogas can be recovered simply by adopting a sediment advection mechanism with a simple configuration.

これにより、小型で効率よく生ごみ粉砕処理廃液を固液分離した液相および沈殿物を、ともに効率よくバイオガス化できる排水処理装置を提供することができた。   Thereby, it was possible to provide a wastewater treatment apparatus that can efficiently convert the liquid phase and the precipitate obtained by solid-liquid separation of the waste pulverization waste liquid into a biogas efficiently.

前記沈殿物嫌気発酵槽で生成したバイオガスは、バイオガス取出路から取り出され、例えばガスエンジン、ボイラ等の燃料や、各種化学物質の合成原料として供給できる。   The biogas produced in the precipitate anaerobic fermenter is taken out from the biogas take-out path and can be supplied as a fuel for gas engines, boilers, etc., or as a raw material for synthesis of various chemical substances.

〔構成2〕
また、前記液相嫌気発酵部が、前記固液分離槽内部で液相の滞留する領域に、嫌気性微生物を育成するための担体を設けて構成されてもよい。
[Configuration 2]
In addition, the liquid phase anaerobic fermentation unit may be configured by providing a carrier for growing anaerobic microorganisms in a region where the liquid phase stays inside the solid-liquid separation tank.

〔作用効果2〕
前記液相嫌気発酵部は、生ごみ粉砕処理廃液を固液分離した液相に含まれる有機成分を分解してバイオガス化するから、その液相に生育する嫌気性微生物を十分量保持した上で、液相との接触の効率化を図ることにより、バイオガス化の効率を向上できるものと考えられる。そこで、前記固液分離槽内部で液相の滞留する領域に、嫌気性微生物を育成するための担体を設けてあれば、担体に微生物を保持した状態で担体と液相との接触効率を高くできるので極めて高いバイオガス化効率を発揮させることができるようになった。液相嫌気発酵部は、前記沈殿物嫌気発酵槽で嫌気分解されてより低分子化した有機物をさらに分解するので、沈殿物を2段階でより完全に分解処理する効果も発揮させられる。液相嫌気発酵部で用いる担体は、球状もしくは筒上の樹脂を複数用いる流動担体でもよいし、柱状もしくは板状の樹脂を用いる固定担体でもよい。
[Operation effect 2]
The liquid-phase anaerobic fermentation unit decomposes organic components contained in the liquid phase obtained by solid-liquid separation of the waste pulverization waste liquid into biogas, and thus holds a sufficient amount of anaerobic microorganisms growing in the liquid phase. Therefore, it is considered that the efficiency of biogasification can be improved by improving the efficiency of contact with the liquid phase. Therefore, if a carrier for growing anaerobic microorganisms is provided in the region where the liquid phase stays inside the solid-liquid separation tank, the contact efficiency between the carrier and the liquid phase is increased while the microorganisms are retained on the carrier. As a result, extremely high biogasification efficiency can be exhibited. Since the liquid phase anaerobic fermentation unit further decomposes the organic substance which has been anaerobically decomposed in the precipitate anaerobic fermenter to lower the molecular weight, the effect of completely decomposing the precipitate in two stages can be exhibited. The carrier used in the liquid phase anaerobic fermentation unit may be a fluid carrier using a plurality of spherical or cylindrical resins, or a fixed carrier using a columnar or plate-like resin.

したがって、生ごみ粉砕処理廃液をより完全にバイオガス化し、エネルギーとして回収できるようになった。   Therefore, the waste pulverization waste liquid can be converted into biogas more completely and recovered as energy.

〔構成3〕
また、前記液相嫌気発酵部が、前記固液分離槽内部から移流した液相を受け入れる水処理槽を備えるとともに、前記水処理槽内に嫌気性微生物を育成するための担体を設けて構成してもよい。
[Configuration 3]
In addition, the liquid phase anaerobic fermentation section includes a water treatment tank that receives the liquid phase transferred from the solid-liquid separation tank, and is provided with a carrier for growing anaerobic microorganisms in the water treatment tank. May be.

〔作用効果3〕
先の構成に記載の通り、担体に保持した微生物と液相との接触を図ることにより、高いバイオガス化効率を発揮させることができる。しかし、固液分離槽内部の液相の領域に担体を配置して保持すれば、省スペースで配置できる利点はあるが、場合によっては、十分量の担体が収容できない、固液分離された沈殿物が担体に付着することによって、長期にわたって高いバイオガス化効率を維持することが困難になる、等の不都合が生じる恐れがある。このような場合には、前記固液分離槽内部から移流した液相を受け入れる水処理槽を備えるとともに、前記水処理槽内に嫌気性微生物を育成するための担体を設けることによって、前記固液分離層とは別の十分大きな水処理空間で生ごみ粉砕処理廃液のバイオガス化が図れ、生ごみ粉砕処理廃液の性状に応じて高負荷の処理を行えることになる。
[Operation effect 3]
As described in the above configuration, high biogasification efficiency can be exhibited by bringing the microorganisms held on the carrier into contact with the liquid phase. However, if the carrier is arranged and held in the liquid phase region inside the solid-liquid separation tank, there is an advantage that it can be arranged in a space-saving manner, but in some cases, a solid-liquid separated precipitate that cannot accommodate a sufficient amount of carrier. If an object adheres to the carrier, it may be difficult to maintain high biogasification efficiency over a long period of time. In such a case, the solid-liquid separation tank is provided with a water treatment tank that receives the liquid phase transferred from inside the solid-liquid separation tank, and a carrier for growing anaerobic microorganisms is provided in the water treatment tank. Biogasification of the waste grinding treatment waste liquid can be achieved in a sufficiently large water treatment space separate from the separation layer, and a high load treatment can be performed according to the properties of the waste grinding treatment waste liquid.

したがって、生ごみ粉砕処理廃液の性状が極めて高濃度であるなど、負荷の高い場合は特に、長期にわたって高いバイオガス化効率を維持できて好ましい。   Therefore, particularly when the load is high, such as when the waste pulverization waste liquid has a very high concentration, it is preferable because high biogasification efficiency can be maintained over a long period of time.

〔構成4〕
前記絞部は、前記固液分離槽下部に設けたスリット状出口を備え、前記固液分離槽における沈殿物が、前記スリット状出口を閉塞して堆積する堆積層を形成可能に構成する。
[Configuration 4]
The constriction section includes a slit-shaped outlet provided in the lower part of the solid-liquid separation tank, and is configured such that a deposit in the solid-liquid separation tank can be deposited by closing the slit-shaped outlet.

〔作用効果4〕
上記構成によると、前記固液分離槽下部に沈殿した沈殿物前記スリット状出口において下すぼまりに集合するから、前記スリット状出口で堰きとめられて堆積する。すると、前記スリット状出口に堆積した沈殿物は、前記沈殿物や、前記沈殿物嫌気発酵槽内の微生物などの固形成分に関しては、これらを前記沈殿物嫌気発酵槽から前記固液分離槽に逆流させるのを防止するフィルタとして機能することになる。
[Operation effect 4]
According to the above configuration, the sediment that has settled in the lower part of the solid-liquid separation tank collects in a lower concavity at the slit-shaped outlet, and is therefore dammed and deposited at the slit-shaped outlet. Then, the deposit deposited at the slit-shaped outlet flows back from the precipitate anaerobic fermentation tank to the solid-liquid separation tank with respect to the precipitate and solid components such as microorganisms in the precipitate anaerobic fermentation tank. It will function as a filter that prevents this.

すると、前記スリット状出口を絞部として前記沈殿物を堰きとめる簡単な構成により、前記沈殿物は、前記沈殿物嫌気発酵槽に徐々に流入しつつ、前記沈殿物嫌気発酵槽からの固形成分の逆流を防止できる。これにより、前記沈殿物嫌気発酵槽における沈殿物量を好適に維持するとともに、沈殿物嫌気発酵槽内の微生物を槽内に確実に保持でき、バイオガスの発生を良好に維持できる。   Then, with the simple configuration of damming the precipitate using the slit-shaped outlet as a throttle, the precipitate gradually flows into the precipitate anaerobic fermentation tank, while the solid components from the precipitate anaerobic fermentation tank Backflow can be prevented. Thereby, while maintaining the amount of sediment in the said sediment anaerobic fermentation tank suitably, the microorganisms in a sediment anaerobic fermentation tank can be reliably hold | maintained in a tank, and generation | occurrence | production of biogas can be maintained favorable.

〔構成5〕
また、前記沈殿物嫌気発酵槽に嫌気ガスを散気する散気装置を設け、前記散気装置に間欠的に嫌気ガスを供給するガス供給装置を設け、前記スリット状出口の下方から上昇する気液混相流を形成可能に配置して、前記沈殿物移流機構を形成してあってもよい。
[Configuration 5]
In addition, an air diffuser that diffuses anaerobic gas is provided in the precipitate anaerobic fermenter, a gas supply device that intermittently supplies anaerobic gas to the air diffuser is provided, and air that rises from below the slit-shaped outlet is provided. The precipitate advection mechanism may be formed by arranging so as to form a liquid mixed phase flow.

〔作用効果5〕
上記構成によると、前記散気装置により前記嫌気ガスを前記沈殿物嫌気発酵槽内に散気することによって、前記スリット状出口の下方から上昇する気液混相流を形成できる。前記気液混相流が、前記スリット状出口の近傍を上昇すると、前記混相流の流れによるイジェクタ効果が生じ、前記スリット状出口に堰きとめられていた沈殿物を、前記沈殿物嫌気発酵槽側に吸い出し、前記固液分離槽から前記沈殿物嫌気発酵槽に移流させる沈殿物移流機構として機能することになる。また、このとき、前記散気装置に供給されるのは嫌気ガスであるため、前記沈殿物嫌気発酵槽の嫌気発酵条件は良好に維持できる。このような嫌気ガスとしては、例えば、前記沈殿物嫌気発酵槽で生成したバイオガスを利用できる。
[Operation effect 5]
According to the said structure, the gas-liquid mixed phase flow which rises from the downward direction of the said slit-shaped exit can be formed by aeration of the anaerobic gas in the said precipitate anaerobic fermenter by the said aeration apparatus. When the gas-liquid mixed phase flow rises in the vicinity of the slit-shaped outlet, an ejector effect due to the flow of the mixed-phase flow occurs, and the sediment that has been dammed to the slit-shaped outlet is moved to the precipitate anaerobic fermentation tank side. It functions as a sediment advancing mechanism that sucks out and advancing from the solid-liquid separation tank to the precipitate anaerobic fermentation tank. Moreover, since it is anaerobic gas supplied to the said diffuser at this time, the anaerobic fermentation conditions of the said precipitate anaerobic fermenter can be maintained favorable. As such an anaerobic gas, the biogas produced | generated in the said precipitate anaerobic fermenter can be utilized, for example.

そのため、簡単な構成で沈殿物移流機構を構成することができるとともに、前記散気装置から間欠的に散気する散気量、散気の時期を調整するだけの簡単な制御で、前記固液分離槽から前記沈殿物嫌気発酵槽に移流する沈殿物量を制御できる。   Therefore, the sediment advection mechanism can be configured with a simple configuration, and the solid-liquid can be simply controlled by adjusting the amount of air diffused from the air diffuser and the timing of the air diffused. The amount of sediment transferred from the separation tank to the precipitate anaerobic fermentation tank can be controlled.

〔構成6〕
また、前記受け入れ部で受け入れた生ごみ粉砕処理廃液を可溶化する可溶化槽を備え、前記可溶化槽から前記固液分離槽に可溶化した生ごみ粉砕処理廃液を移流させる移流部を設けてあってもよい。
[Configuration 6]
In addition, a solubilization tank for solubilizing the waste pulverization treatment waste liquid received by the receiving unit is provided, and a convection section for transferring the solubilized garbage pulverization treatment waste liquid from the solubilization tank to the solid-liquid separation tank is provided. There may be.

〔作用効果6〕
上記構成によると、固液分離部で固液分離される生ごみ粉砕処理廃液は、受け入れ部で受け入れられた後、一旦可溶化槽にて貯留されて可溶化した状態で前記固液分離槽に流入する。すると、前記固液分離槽で固液分離され、前記沈殿物嫌気発酵槽に移流される沈殿物量が、前記可溶化槽における生ごみ粉砕処理廃液の可溶化度合いに応じて調整されるから前記固液分離槽から前記沈殿物嫌気発酵槽に移流する沈殿物量を適切に設定して、前記沈殿物嫌気発酵槽における円滑な嫌気発酵を妨げることなく排水処理を持続できる。
[Operation effect 6]
According to the above configuration, the waste pulverization waste liquid separated by solid-liquid separation in the solid-liquid separation unit is received in the receiving unit, and then stored in the solubilization tank and solubilized in the solid-liquid separation tank. Inflow. Then, the amount of the precipitate separated and solid-liquid separated in the solid-liquid separation tank and transferred to the precipitate anaerobic fermentation tank is adjusted according to the solubilization degree of the waste grinding treatment waste liquid in the solubilization tank. By appropriately setting the amount of precipitate transferred from the liquid separation tank to the precipitate anaerobic fermentation tank, the wastewater treatment can be continued without hindering smooth anaerobic fermentation in the precipitate anaerobic fermentation tank.

〔構成7〕
また、前記固液分離槽で固液分離された液相の移流を受け、好気処理する好気処理槽を備えてもよい。
[Configuration 7]
Moreover, you may provide the aerobic processing tank which receives the advection of the liquid phase isolate | separated by the said solid-liquid separation tank, and aerobically processes.

〔作用効果7〕
先述の構成によると、前記固液分離槽を経た生ごみ粉砕処理廃液の液相部分は、主に嫌気処理をされていない廃液であるから、比較的BODの高い状態であることが予想される。しかし、さらに好気処理を行うことによってBODを低下させ、自然環境に放流することのできる水質にまで浄化することが可能になり、好気処理槽を備えて排水をさらに好気処理して放流可能な構成とすることで家庭用浄化槽等としても利用できる構成とできるので好ましい。
[Operation effect 7]
According to the above-described configuration, the liquid phase portion of the waste crushing waste liquid that has passed through the solid-liquid separation tank is mainly a waste liquid that has not been subjected to anaerobic treatment, and thus is expected to have a relatively high BOD. . However, it is possible to reduce the BOD by further aerobic treatment and to purify the water quality so that it can be discharged into the natural environment. Since it can be set as the structure which can be utilized also as a household septic tank etc. by setting it as a possible structure, it is preferable.

また、好気処理槽で発生した汚泥を、前記固液分離槽に返送する返送部を設けてあれば、前記汚泥はさらに前記沈殿物嫌気発酵槽に移流され、沈殿物嫌気発酵槽で分解できるため、排水処理装置全体として、引き抜き汚泥量を大幅に削減できる。   In addition, if a return unit is provided for returning the sludge generated in the aerobic treatment tank to the solid-liquid separation tank, the sludge is further transferred to the precipitate anaerobic fermentation tank and can be decomposed in the precipitate anaerobic fermentation tank. Therefore, the amount of extracted sludge can be greatly reduced as the whole waste water treatment apparatus.

〔構成8〕
また、散気装置にガス供給するガス供給装置を備えて沈殿物移流機構を設けた場合、前記沈殿物嫌気発酵槽における沈殿物のバイオガス化に伴って減少する減少量に応じて前記ガス供給装置によるガス供給を行う排水処理装置の運転方法を行うことができる。
[Configuration 8]
Further, in the case where a sediment advection mechanism is provided with a gas supply device that supplies gas to the aeration device, the gas supply is performed according to the amount of decrease that is reduced with the biogasification of the precipitate in the precipitate anaerobic fermentation tank. The operation method of the waste water treatment apparatus which supplies the gas by an apparatus can be performed.

〔作用効果8〕
上記方法によると、前記沈殿物嫌気発酵槽ではバイオガス化処理するに適した量の沈殿物を前記沈殿物嫌気発酵槽内に収容し、嫌気発酵によりバイオガス化できるので、効率よくバイオガス化をすすめることができるとともに、前記絞部に堰きとめられて堆積する沈殿物の量を適切に維持し、沈殿物移流機構による沈殿物の移流を円滑に維持できる。
[Operation effect 8]
According to the above method, in the precipitate anaerobic fermenter, an amount of precipitate suitable for biogasification treatment is accommodated in the precipitate anaerobic fermenter and can be converted into biogas by anaerobic fermentation. In addition, the amount of the sediment deposited by the squeezing portion is appropriately maintained, and the sediment advection by the sediment advancing mechanism can be smoothly maintained.

したがって、小型で効率よく生ごみ粉砕処理廃液のバイオガス化が行える排水処理装置を提供できるようになった。これにより、ごみの減容、再生エネルギーの有効利用、炭酸ガス発生量削減に寄与できるようになった。   Therefore, it has become possible to provide a wastewater treatment apparatus that is small and can efficiently convert the waste pulverization waste liquid into biogas. This has made it possible to contribute to volume reduction of waste, effective use of renewable energy, and reduction of carbon dioxide generation.

本発明の排水処理装置の横断平面図である。It is a cross-sectional top view of the waste water treatment equipment of the present invention. 図1におけるII−II線縦断正面図である。It is the II-II line vertical front view in FIG. 図1におけるIII−III線縦断正面図III-III line longitudinal front view in FIG. 図1におけるIV−IV線縦断側面図IV-IV line longitudinal side view in FIG. 図1におけるV−V線縦断側面図VV line vertical side view in FIG. 図1におけるVI−VI線縦断側面図VI-VI line vertical side view in FIG. 本発明の排水処理装置における沈殿物嫌気発酵槽におけるバイオガス発生量を示す図The figure which shows the biogas generation amount in the sediment anaerobic fermentation tank in the waste water treatment equipment of this invention 比較例の排水処理装置におけるバイオガス発生量を示す図The figure which shows the biogas generation amount in the wastewater treatment equipment of the comparative example 本発明の排水処理装置における液相嫌気発酵槽におけるバイオガス発生量を示す図The figure which shows the biogas generation amount in the liquid phase anaerobic fermentation tank in the waste water treatment equipment of this invention 本発明の別実施の形態による排水処理装置の横断平面図Cross-sectional plan view of a wastewater treatment apparatus according to another embodiment of the present invention 図10におけるXI−XI線縦断正面図XI-XI line longitudinal front view in FIG. 本発明の別実施の形態による排水処理装置の要部縦断側面図The principal part vertical side view of the waste water treatment equipment by another embodiment of the present invention

以下に、本発明の排水処理装置を説明する。なお、以下に好適な実施の形態を記すが、これら実施の形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the waste water treatment apparatus of this invention is demonstrated. Preferred embodiments are described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. However, the present invention is not limited to the following description.

〔排水処理装置〕
本願の排水処理装置は、図1〜図6に示すように、排水処理装置本体Aの内部を仕切壁W12、W13,W23,W25により仕切って、貯留槽1、固液分離槽2、沈殿物嫌気発酵槽3、液相嫌気発酵槽5を形成して、生ごみ粉砕処理廃液を受け入れる受け入れ部11と、各槽間を処理液が移流する移流部14、26(図5参照)、52,53を形成してある。
また、固液分離槽2や沈殿物嫌気発酵槽3、液相嫌気発酵槽5から発生したバイオガスを回収するバイオガス取出路32(図3参照)を設けてある。これにより、生ごみ粉砕処理廃液は、沈殿分離されたのち沈殿物は沈殿物発酵槽で嫌気発酵され、液相は、液相嫌気発酵部としての液相嫌気発酵槽内部空間にて嫌気発酵し、バイオガス化されたのち、清浄な排水として排水部24から排水処理装置本体A外へ排出される構成となっている。
[Wastewater treatment equipment]
As shown in FIGS. 1 to 6, the wastewater treatment apparatus of the present application partitions the interior of the wastewater treatment apparatus main body A by partition walls W12, W13, W23, W25 to store the storage tank 1, the solid-liquid separation tank 2, and the sediment. An anaerobic fermenter 3 and a liquid phase anaerobic fermenter 5 are formed, and a receiving part 11 for receiving the waste pulverization waste liquid, and advection parts 14 and 26 (see FIG. 5) for transferring the processing liquid between the tanks, 52, 53 is formed.
Moreover, the biogas extraction path 32 (refer FIG. 3) which collect | recovers the biogas generated from the solid-liquid separation tank 2, the sediment anaerobic fermentation tank 3, and the liquid phase anaerobic fermentation tank 5 is provided. As a result, the waste grinding waste liquid is precipitated and separated, then the precipitate is anaerobically fermented in the sediment fermenter, and the liquid phase is anaerobically fermented in the liquid-phase anaerobic fermenter internal space as the liquid-phase anaerobic fermentation section. After being converted into biogas, the waste water is discharged from the drainage unit 24 to the outside of the wastewater treatment apparatus main body A as clean wastewater.

具体的には、図1に示すように、排水処理装置本体Aの内部を仕切壁W12により長さ方向に2つに仕切り、一方の空間を貯留槽1とし、他方の空間を、仕切壁W23,W25によりさらに幅方向に3つに仕切り、中央の空間を固液分離槽2に形成するとともに、残部を沈殿物嫌気発酵槽3と、液相嫌気発酵槽5として形成してある。ここで、沈殿物嫌気発酵槽3上部は、この沈殿物嫌気発酵槽3で発生したガスが、バイオガス取出路32より取出される構成となっており、液相がこの槽から他の槽に流出しない構成となっている。   Specifically, as shown in FIG. 1, the interior of the waste water treatment apparatus main body A is partitioned into two in the length direction by a partition wall W12, one space is used as a storage tank 1, and the other space is partitioned by a partition wall W23. , W25 are further divided into three in the width direction, the central space is formed in the solid-liquid separation tank 2, and the remainder is formed as a precipitate anaerobic fermentation tank 3 and a liquid-phase anaerobic fermentation tank 5. Here, the upper part of the precipitate anaerobic fermentation tank 3 is configured such that the gas generated in the precipitate anaerobic fermentation tank 3 is taken out from the biogas extraction path 32, and the liquid phase is transferred from this tank to another tank. It does not leak.

〔貯留槽〕
図1〜図6に示すように、前記貯留槽1は、前記排水処理装置本体Aの内部において生ゴミ粉砕処理排液を液面近傍において受け入れる受け入れ部11を備え、内部に生ゴミ粉砕処理排液を貯留可能な貯留空間12を形成している。また、前記貯留空間12内部には、撹拌ポンプP1により嫌気ガスを供給する散気管13を設け、貯留槽1の下部より曝気撹拌することにより、受け入れた生ゴミ粉砕処理排液を貯留しつつ、より可溶化し、流動化を図る可溶化槽として機能するように構成してある。
[Reservoir]
As shown in FIG. 1 to FIG. 6, the storage tank 1 includes a receiving portion 11 that receives the waste grind processing waste liquid in the vicinity of the liquid surface inside the waste water treatment apparatus main body A, and has a garbage shatter treatment discharge inside. A storage space 12 capable of storing the liquid is formed. In addition, an aeration pipe 13 for supplying anaerobic gas by the agitation pump P1 is provided inside the storage space 12, and aerated and agitated from the lower part of the storage tank 1, thereby storing the received garbage pulverization treatment waste liquid, It is configured so as to function as a solubilization tank for further solubilization and fluidization.

前記貯留槽1と前記固液分離槽2との間を仕切る仕切壁W12の上端部には、生ゴミ粉砕処理排液の可溶化した可溶化液が、オーバーフローによって固液分離槽2に移流する移流部14を設けてある(図2、図4参照)。また、前記貯留槽1と前記沈殿物嫌気発酵槽3との間を仕切る仕切壁W13は、排水処理装置本体Aの上面に気密に接続されている(図3、図4参照)。   At the upper end of the partition wall W12 that partitions between the storage tank 1 and the solid-liquid separation tank 2, the solubilized solubilized liquid of the waste pulverization treatment waste liquid is transferred to the solid-liquid separation tank 2 by overflow. The advection part 14 is provided (refer FIG. 2, FIG. 4). Moreover, the partition wall W13 which partitions between the said storage tank 1 and the said sediment anaerobic fermentation tank 3 is airtightly connected to the upper surface of the waste water treatment apparatus main body A (refer FIG. 3, FIG. 4).

〔固液分離槽〕
図1、図2、図5に示すように、固液分離槽2は、前記排水処理装置本体Aの内部において、前記移流部14より受け入れる可溶化液を下方に案内する案内壁部21を備え、案内壁部21により下方に案内された可溶化液から固形成分を沈殿分離可能にする沈殿分離空間22を形成してある。また、前記沈殿分離空間22の内部には、上部(図中では案内壁部21の下端部よりやや上方位置)に撹拌ポンプP4により嫌気ガスを供給する散気管23を設け、前記沈殿分離空間22の内部における可溶化液の上澄液を撹拌してさらに浄化する構成としてある(図1、図2参照)。
[Solid-liquid separation tank]
As shown in FIGS. 1, 2, and 5, the solid-liquid separation tank 2 includes a guide wall portion 21 that guides the solubilized liquid received from the advection portion 14 downward in the waste water treatment apparatus main body A. A precipitation separation space 22 is formed that allows the solid component to be separated from the solubilized liquid guided downward by the guide wall 21. In addition, an aeration pipe 23 for supplying anaerobic gas by an agitation pump P4 is provided in the upper part of the precipitation separation space 22 (slightly above the lower end of the guide wall 21 in the drawing). The solubilized supernatant in the interior of the container is stirred to further purify it (see FIGS. 1 and 2).

また、固液分離層と液相嫌気発酵槽5との間には、生ごみ粉砕処理廃液を固液分離した液相を、前記液相嫌気発酵槽5に移流させる移流部としての移流管52を設けるとともに、液相嫌気発酵槽5にて嫌気発酵処理された液相を流入する移流部として機能するガスリフターからなる移送管53(図6参照)を配設してある。   Further, between the solid-liquid separation layer and the liquid-phase anaerobic fermentation tank 5, a transfer pipe 52 as a transfer section for transferring the liquid phase obtained by solid-liquid separation of the waste pulverization waste liquid to the liquid-phase anaerobic fermentation tank 5. And a transfer pipe 53 (see FIG. 6) composed of a gas lifter functioning as a convection section into which the liquid phase subjected to the anaerobic fermentation treatment in the liquid-phase anaerobic fermentation tank 5 flows.

前記固液分離槽2における受け入れ部11の反対側には処理済の排水を排水処理装置本体A外へ排出する排水部24を設けるとともに、排水処理装置本体Aの内壁部において前記排水部24の近傍に分離壁部25を設け、排出される処理済の排水に固形成分が混入するのを抑制し、固形成分を含まない清浄な上澄液が排出される構成としてある(図2参照)。   A drainage portion 24 for discharging the treated wastewater to the outside of the wastewater treatment device main body A is provided on the opposite side of the receiving portion 11 in the solid-liquid separation tank 2, and the drainage portion 24 of the drainage treatment device main body A has an inner wall portion. A separation wall portion 25 is provided in the vicinity to suppress the mixing of solid components into the discharged wastewater to be discharged, and a clean supernatant liquid that does not contain solid components is discharged (see FIG. 2).

図2、図5に示すように、前記固液分離槽2の下部には、前記固液分離槽2において固形成分の沈殿分離された沈殿物を前記沈殿物嫌気発酵槽3に可溶化液とともに移流させるとともに、前記沈殿物嫌気発酵槽3で嫌気処理された処理済の排水(余剰の液相)を前記固液分離槽に返送可能にする移流部26を設けてある。   As shown in FIG. 2 and FIG. 5, in the lower part of the solid-liquid separation tank 2, the precipitate separated from the solid component in the solid-liquid separation tank 2 is combined with the solubilized liquid in the precipitate anaerobic fermentation tank 3. A convection section 26 is provided that allows the effluent (excess liquid phase) that has been anaerobically treated in the precipitate anaerobic fermentation tank 3 to be returned to the solid-liquid separation tank.

前記移流部26は、前記固液分離槽2下部に設けた絞部としてのスリット状出口26aを備えた傾斜壁部26bから構成される。前記傾斜壁部は、前記仕切壁W23の下部を下側ほど固液分離槽下部側に近づくとともに、排水処理装置本体A内壁面との間に下すぼまりのスリット状出口26aを形成するように傾斜させて構成してある。これにより、スリット状出口26aを介して、上記沈殿物と可溶化液、処理済みの排水の移流を抑制され、前記固液分離槽における沈殿物が、前記スリット状出口26aを閉塞して堆積する堆積層26cを形成可能に構成してある(図5参照)。   The advection part 26 is composed of an inclined wall part 26b provided with a slit-like outlet 26a as a throttle part provided at the lower part of the solid-liquid separation tank 2. The inclined wall portion is closer to the lower part of the solid-liquid separation tank as the lower part of the partition wall W23 is lowered, and a slanted outlet 26a is formed between the inner wall surface of the waste water treatment apparatus A. Inclined. As a result, the advancing of the precipitate, the solubilized liquid, and the treated waste water is suppressed via the slit-shaped outlet 26a, and the sediment in the solid-liquid separation tank closes and deposits the slit-shaped outlet 26a. The deposited layer 26c can be formed (see FIG. 5).

なお、上記構成において、スリット状出口26aの幅は10−30mm程度、好ましくは15mm程度とする。   In the above configuration, the width of the slit-shaped outlet 26a is about 10-30 mm, preferably about 15 mm.

なお、前記固液分離槽2と沈殿物嫌気発酵槽3とを仕切る仕切壁W23は排水処理装置本体Aの上面に気密に接続されている(図2、図5参照)。   In addition, the partition wall W23 which partitions the said solid-liquid separation tank 2 and the sediment anaerobic fermentation tank 3 is airtightly connected to the upper surface of the waste water treatment apparatus main body A (refer FIG. 2, FIG. 5).

〔沈殿物嫌気発酵槽〕
図1、図3、図5に示すように、沈殿物嫌気発酵槽3は、前記排水処理装置本体Aの内部において、前記移流部26より受け入れられる沈殿物をメタン細菌による嫌気発酵により生物分解する嫌気発酵空間31を形成してある。前記嫌気発酵空間31の上方空間は、前記沈殿物を含む液相と仕切壁W13,W23および排水処理装置本体Aの内壁で囲まれた気密空間を形成し、前記嫌気発酵空間31で生成したバイオガスを収集するバイオガス収集空間を構成する。
[Precipitate anaerobic fermentation tank]
As shown in FIGS. 1, 3, and 5, the sediment anaerobic fermentation tank 3 biodegrades the sediment received from the advection section 26 by anaerobic fermentation by methane bacteria in the waste water treatment apparatus main body A. An anaerobic fermentation space 31 is formed. The upper space of the anaerobic fermentation space 31 forms an airtight space surrounded by the liquid phase containing the precipitate, the partition walls W13 and W23, and the inner wall of the waste water treatment apparatus main body A, and the biogenerated in the anaerobic fermentation space 31 A biogas collection space for collecting gas is formed.

前記メタンガス収集空間には、収集されたバイオガスを外部に取り出すバイオガス取出路32を設けてある。前記バイオガス取出路32にはバイオガスタンクTが設けられ、回収されたバイオガスを一時貯留するとともに、必要に応じて外部に供給可能に構成してある。   In the methane gas collection space, a biogas extraction path 32 for taking out the collected biogas to the outside is provided. The biogas extraction path 32 is provided with a biogas tank T, which temporarily stores the collected biogas and can supply it to the outside as needed.

前記嫌気発酵空間31には、嫌気ガスを散気する散気装置33を設け、前記散気装置33に間欠的に嫌気ガスを供給するガス供給装置としての散気ポンプP3を設け、前記スリット状出口26aの下方から上昇する気液混相流を形成可能に配置して、前記固液分離槽2から前記移流部26を介して前記沈殿物嫌気発酵槽3に沈殿物を移流させる沈殿物移流機構を形成してある。本例では、嫌気ガスとして、前記沈殿物嫌気発酵槽3で発生したバイオガスが用いられる。   The anaerobic fermentation space 31 is provided with an aeration device 33 that diffuses anaerobic gas, an aeration pump P3 as a gas supply device that intermittently supplies the anaerobic gas to the aeration device 33, and the slit shape. A sediment advancing mechanism that arranges the gas-liquid mixed phase flow that rises from below the outlet 26 a so as to form, and transfers the precipitate from the solid-liquid separation tank 2 to the precipitate anaerobic fermentation tank 3 via the transfer section 26. Is formed. In this example, biogas generated in the precipitate anaerobic fermentation tank 3 is used as the anaerobic gas.

前記沈殿物移流機構は、前記スリット状出口26aのやや下方から、前記散気装置33により大量の気泡を一時に供給することにより、前記気泡の上昇流によるイジェクタ効果で、前記固液分離槽2のスリット状出口26aに堆積した沈殿物を沈殿物嫌気発酵槽3側に吸い込み、前記沈殿物を移流させる効果を発揮する。このとき、前記スリット状出口26aに堆積した堆積層26cの沈殿物は、全部同時に移流してしまうのではなく、常時前記スリット状出口26aには沈殿物の堆積層26cが維持されるように流動する。そのため、沈殿物が前記固液分離槽2から前記移流部26を介して前記沈殿物嫌気発酵槽3に移流しても、即座に前記沈殿物嫌気発酵槽3内の液相は、前記固液分離槽2に逆流することはないものの、前記堆積層26cを通じて徐々に前記固液分離槽2に返送される。ここで、前記移流部26は、前記沈殿物嫌気発酵槽3から前記固液分離槽2に可溶化した生ごみ粉砕処理廃液を移流させる移流部としても機能している。一方、前記沈殿物嫌気発酵槽3内の固形成分は、前記堆積層26cに阻まれて固液分離槽2に移流できない。その結果、前記沈殿物嫌気発酵槽3では、固液分離槽2の沈殿物が流入するが、前記沈殿物嫌気発酵槽3の内部の固形成分が固液分離槽2に返送されることがなく、前記沈殿物嫌気発酵槽3内の微生物が沈殿物嫌気発酵槽3外に流出して減少することが抑制され、良好な嫌気発酵が維持でき、嫌気発酵により減容した固形成分量に見合う沈殿物が順次補給される運転状態を維持できる。したがって、前記沈殿物嫌気発酵槽3では沈殿物を嫌気発酵により連続的にガス化減容化し、バイオガスを回収できるとともに、浄化された液相が固液分離槽2に返送され、さらに、前記固液分離槽2から外部に放流される構成となる。   The sediment advection mechanism is configured to supply a large amount of bubbles at a time from the slightly lower side of the slit-like outlet 26a by the air diffuser 33, thereby ejecting the solid-liquid separation tank 2 by the ejector effect caused by the upward flow of the bubbles. The sediment deposited on the slit-shaped outlet 26a is sucked into the sediment anaerobic fermenter 3 side, and the deposit is transferred. At this time, the deposit in the deposited layer 26c deposited on the slit-shaped outlet 26a does not all flow at the same time, but always flows so that the deposited layer 26c of sediment is maintained in the slit-shaped outlet 26a. To do. Therefore, even if the precipitate is transferred from the solid-liquid separation tank 2 to the precipitate anaerobic fermentation tank 3 via the transfer section 26, the liquid phase in the precipitate anaerobic fermentation tank 3 is immediately Although it does not flow back to the separation tank 2, it is gradually returned to the solid-liquid separation tank 2 through the deposited layer 26c. Here, the advection part 26 also functions as a advection part for advancing the waste grinding waste liquid solubilized in the solid-liquid separation tank 2 from the sediment anaerobic fermentation tank 3. On the other hand, the solid components in the sediment anaerobic fermentation tank 3 cannot be transferred to the solid-liquid separation tank 2 due to the accumulation layer 26c. As a result, in the precipitate anaerobic fermentation tank 3, the precipitate in the solid-liquid separation tank 2 flows in, but the solid components inside the precipitate anaerobic fermentation tank 3 are not returned to the solid-liquid separation tank 2. , The microorganisms in the sediment anaerobic fermentation tank 3 are prevented from flowing out of the sediment anaerobic fermentation tank 3 and reduced, and a favorable anaerobic fermentation can be maintained. It is possible to maintain an operation state in which things are replenished sequentially. Therefore, in the precipitate anaerobic fermentation tank 3, the precipitate can be continuously gasified and reduced by anaerobic fermentation to recover biogas, and the purified liquid phase is returned to the solid-liquid separation tank 2, It becomes the structure discharged | emitted from the solid-liquid separation tank 2 outside.

なお、上記構成の場合、散気装置33による散気は、収集されたバイオガスの一部を前記バイオガスタンクTから散気ポンプP3にて供給するので、前記沈殿物嫌気発酵槽3の内部は、嫌気状態に維持される。さらに、1日に2回程度、70L/min程度の大量散気を20秒程度の散気を行えば、前記沈殿物嫌気発酵槽3の処理能力に応じた沈殿物の移流を継続でき、大容量のポンプ等を用いることなく効率よく生ごみ粉砕処理物由来の沈殿物を移送できる。   In addition, in the case of the said structure, since the aeration by the aeration apparatus 33 supplies a part of collected biogas with the aeration pump P3 from the said biogas tank T, the inside of the said precipitate anaerobic fermentation tank 3 is the inside. , Maintained in an anaerobic state. Furthermore, if a large amount of aeration of about 70 L / min is performed for about 20 seconds about twice a day, the advection of the precipitate according to the processing capacity of the precipitate anaerobic fermentation tank 3 can be continued. It is possible to efficiently transfer the precipitate derived from the pulverized food waste without using a capacity pump or the like.

〔液相嫌気発酵槽〕
図1、図6に示すように、液相嫌気発酵槽5は、排水処理装置本体Aの内部空間に区画形成されており、前記固液分離槽2で固液分離された液相を前記固液分離層上部に設けた前記流入管52より水処理空間51に受け入れる。
前記液相嫌気発酵槽5には、分離壁部54を設けて、内部に水処理空間51と揚水空間56とを形成してあり、前記水処理空間には、液相を嫌気発酵処理する嫌気性微生物を育成するための担体55aを多数収容して嫌気ろ床55を設けてあるとともに、前記水処理空間51上部より受け入れた液相が下方に移流するにしたがって、液相に含まれる有機物が前記担体55aと接触することにより嫌気発酵されてバイオガス化する構成としてある。下方に移流して嫌気発酵された液相は、分離壁部54の下部から揚水空間56に移流する。移送管53の縦管53a下部には、ガスリフター用ポンプP2よりバイオガスが供給され、そのガスリフター作用により、前記揚水空間56に移流した液相は、固液分離槽2に返送される構成となっている。
[Liquid phase anaerobic fermentation tank]
As shown in FIGS. 1 and 6, the liquid phase anaerobic fermentation tank 5 is defined in the internal space of the waste water treatment apparatus main body A, and the liquid phase separated in the solid-liquid separation tank 2 is separated from the solid phase. It is received in the water treatment space 51 from the inflow pipe 52 provided in the upper part of the liquid separation layer.
The liquid phase anaerobic fermenter 5 is provided with a separation wall portion 54, and a water treatment space 51 and a pumping space 56 are formed therein. In the water treatment space, the anaerobic fermentation treatment is performed on the liquid phase. The anaerobic filter bed 55 is provided with a large number of carriers 55a for growing sexual microorganisms, and the organic matter contained in the liquid phase is transferred as the liquid phase received from the upper part of the water treatment space 51 is moved downward. By contacting with the carrier 55a, it is configured to be anaerobically fermented and biogasified. The liquid phase that has flowed downward and anaerobically fermented flows from the lower portion of the separation wall portion 54 to the pumping space 56. Biogas is supplied to the lower part of the vertical pipe 53a of the transfer pipe 53 from the gas lifter pump P2, and the liquid phase transferred to the pumping space 56 is returned to the solid-liquid separation tank 2 by the gas lifter action. It has become.

なお、固液分離槽、沈殿物嫌気発酵槽、液相嫌気発酵槽は、いずれも上部空間が気密に形成され、互いに連通しており、その上部空間に滞留するバイオガスをバイオガス取出路32を通じて取り出し容易に形成されている   Note that the solid-liquid separation tank, the sediment anaerobic fermentation tank, and the liquid-phase anaerobic fermentation tank each have an upper space formed in an airtight manner and communicate with each other, and the biogas staying in the upper space is supplied to the biogas extraction path 32. Is easily formed through

〔水処理性能〕
上記排水処理装置における沈殿物嫌気発酵槽3において、固形成分量、バイオガス発生量を調べたところ、図7のようになった。図7より、上記構成の排水処理装置においては、バイオガスが安定的に発生しており、かつ、沈殿物嫌気発酵槽3内の固形成分量(TS)も安定に減少していることが読み取れる。また、沈殿物嫌気発酵槽3における沈殿物のバイオガス化率は約45%であった。
[Water treatment performance]
In the sediment anaerobic fermentation tank 3 in the wastewater treatment apparatus, the amount of solid components and the amount of biogas generated were examined, and the result was as shown in FIG. From FIG. 7, it can be seen that in the wastewater treatment apparatus having the above configuration, biogas is stably generated, and the solid component amount (TS) in the sediment anaerobic fermentation tank 3 is also stably reduced. . Moreover, the biogasification rate of the precipitate in the precipitate anaerobic fermentation tank 3 was about 45%.

これに対して、上記固液分離槽2における絞部としてのスリット状出口26aを設けない構成とした場合(固液分離槽2と沈殿物嫌気発酵槽3とが絞部としてのスリット状出口26aを介さずに連通している場合)の排水処理装置(比較例)における沈殿物嫌気発酵槽3の固形成分量、バイオガス発生量を調べたところ、図8のようになった。図8より、メタン細菌を充填した運転初期はバイオガスが発生するが、固形成分の槽外への流出が激しく、初期の固形成分量は、約50日後にほぼ0まで低下している。これにより、沈殿物嫌気発酵槽3では、メタン細菌を補充したとしても(図中70日、170日、220日)、メタン細菌が槽外に流出してバイオガスが発生せず、メタン細菌は、ほとんどバイオガスの発生に寄与できないことがわかった。   On the other hand, when it is set as the structure which does not provide the slit-shaped exit 26a as a throttle part in the said solid-liquid separation tank 2 (the solid-liquid separation tank 2 and the sediment anaerobic fermentation tank 3 are the slit-shaped exit 26a as a throttle part. When the amount of solid components and the amount of biogas generated in the sediment anaerobic fermenter 3 in the wastewater treatment device (comparative example) in the case of communication without being interposed are examined, the result is as shown in FIG. From FIG. 8, biogas is generated in the initial stage of operation in which methane bacteria are charged, but the outflow of solid components to the outside of the tank is severe, and the initial amount of solid components decreases to almost 0 after about 50 days. Thereby, even if the methane bacteria are replenished in the sediment anaerobic fermentation tank 3 (70 days, 170 days, and 220 days in the figure), the methane bacteria flow out of the tank and no biogas is generated. It was found that it can hardly contribute to the generation of biogas.

投入負荷10〜20kgCODcr/m3/d、滞留時間1日の条件で液相嫌気発酵槽5のCOD負荷とtCOD分解率とを、経時変化を調べたところ、図9(a)のようになり、負荷の変動にもよらず、分解率が80%〜90%を維持しており、液相においても安定して高いバイオガス化が行われていることが分かった。
また、液相嫌気発酵槽5における非沈降性SSおよびsCOD(溶解性COD)の量について経時変化を調べたところ、図9(b)のようになった、すなわち、液相に含まれる有機物が効率よく嫌気発酵を受け、浄化されていることがわかる。
さらに、COD投入量とバイオガス発生量との関係を調べたところ図9(c)のようになっており、液相のバイオガス化率は、75%と極めて高い値になっていることが分かった。
したがって、本発明の排水処理装置の生ごみ粉砕処理廃液に対するバイオガス化率は、
(45+(100−45)*0.75=)86%におよび、きわめて高い処理効率を発揮していることが明らかになった。
When the COD load and the tCOD decomposition rate of the liquid phase anaerobic fermenter 5 were examined over time under the conditions of an input load of 10 to 20 kg CODcr / m 3 / d and a residence time of 1 day, it was as shown in FIG. It was found that the decomposition rate was maintained at 80% to 90% regardless of the fluctuation of the load, and high biogasification was stably performed even in the liquid phase.
Moreover, when the time-dependent change was investigated about the quantity of non-sedimentation SS and sCOD (soluble COD) in the liquid phase anaerobic fermentation tank 5, it became like FIG.9 (b), ie, the organic substance contained in a liquid phase It can be seen that it has undergone anaerobic fermentation efficiently and has been purified.
Furthermore, when the relationship between the COD input amount and the biogas generation amount was examined, it was as shown in FIG. 9C, and the liquid phase biogasification rate was as high as 75%. I understood.
Therefore, the biogasification rate for the waste grinding treatment waste liquid of the wastewater treatment apparatus of the present invention is:
It was revealed that the processing efficiency was extremely high at (45+ (100−45) * 0.75 =) 86%.

〔別実施の形態〕
上記実施の形態では、浄化済みの上澄液は、固液分離槽2から直接排水処理装置外へ流出させられる構成としたが、図10、図11に示すように排水処理装置内部にさらに、好気処理槽4を形成しておき、固液分離槽2からオーバーフローする排水を好気処理槽4に移流させ、さらに好気処理するとともに、自然界に放流可能な水質レベルにまで浄化し、排水可能な家庭用浄化槽等として用いることができる。
[Another embodiment]
In the above embodiment, the purified supernatant is configured to flow directly out of the waste water treatment apparatus from the solid-liquid separation tank 2, but as shown in FIGS. 10 and 11, further inside the waste water treatment apparatus, An aerobic treatment tank 4 is formed, and the waste water overflowing from the solid-liquid separation tank 2 is transferred to the aerobic treatment tank 4 for further aerobic treatment and purified to a water quality level that can be discharged into the natural world. It can be used as a possible domestic septic tank.

具体的には、図10、図11に示す構成においては、上記実施の形態における排水処理装置内部に固液分離槽2および沈殿物嫌気発酵槽3に隣接して前記貯留槽1の反対側に好気処理槽4を形成してある。そして、前記固液分離槽2と、前記好気処理槽4との間の仕切壁W24に上澄液がオーバーフローする移流部28を設けるとともに(ここで、前記移流部28は、前記固液分離槽2で固液分離された液相を外部に排水する排水部24として機能している。)、前記好気処理槽4に移流した上澄液をさらに浄化して排出する排水部41を設けて構成してある。   Specifically, in the configuration shown in FIG. 10 and FIG. 11, the solid-liquid separation tank 2 and the sediment anaerobic fermentation tank 3 are adjacent to the inside of the waste water treatment apparatus in the above embodiment, on the opposite side of the storage tank 1. An aerobic treatment tank 4 is formed. And while providing the advection part 28 in which a supernatant liquid overflows in the partition wall W24 between the said solid-liquid separation tank 2 and the aerobic processing tank 4, the said advection part 28 is said solid-liquid separation. It functions as a drainage section 24 that drains the liquid phase separated into solid and liquid in the tank 2 to the outside.) A drainage section 41 that further purifies and discharges the supernatant transferred to the aerobic treatment tank 4 is provided. Configured.

また、図10、図11の構成においては、液相嫌気発酵槽5は、排水処理装置本体Aとは別体の容器として構成してあり、内部構造は先の実施の形態と同様に構成することで、同様に液相を嫌気発酵してバイオガスの生成を行うことができる。   Moreover, in the structure of FIG. 10, FIG. 11, the liquid phase anaerobic fermenter 5 is comprised as a container separate from the waste water treatment apparatus main body A, and an internal structure is comprised similarly to previous embodiment. Thus, the liquid phase can be similarly anaerobically fermented to produce biogas.

また、前記好気処理槽4には、スポンジ状の担体42を多数収容する。また、前記エアポンプP5よりエア供給して散気する散気管43を内装し、前記散気管43からの給気により、その担体42に、好気処理槽4内の液を好気処理する好気性菌を生育させるとともに、前記担体42が流動床を形成する循環流を槽内に形成可能に構成してある。
また、前記排水部41近傍に分離壁部44を設け、排出される処理済の排水に固形成分が混入するのを抑制し、固形成分を含まない清浄な上澄液が排出される構成としてあるとともに、前記好気処理槽4下部に沈殿した沈殿汚泥を、前記貯留槽1に返送するための返送管45を設けてある。これにより、前記好気処理槽4では、前記固液分離槽2からの排水をさらに好気処理して浄化するとともに、前記好気処理槽4で発生した沈殿汚泥を上流側の貯留槽1に返送して再度沈殿物嫌気発酵槽3にて処理可能に構成してある。なお、前記返送管45は、縦管45aに供給される揚水用ガスにより管内の水位を横管接続高さまで上昇させ、横管接続高さに達した被処理水を上流側に返送する構成としてあり、揚水用のガスとしては、上流側の貯留槽1、固液分離槽2、沈殿物嫌気発酵槽3が好気性に偏るのを防止する目的で、嫌気ガスを用いる。嫌気ガスは、前記バイオガスタンクTより各散気管13,23,33に嫌気ガスとしてバイオガスを供給する管路を分岐して、ガスリフター用ポンプP2より返送管45の縦管部分の下部に供給可能に構成してある(図11参照)。
The aerobic treatment tank 4 contains a large number of sponge-like carriers 42. Also, an aeration tube 43 that diffuses air by supplying air from the air pump P5 is provided, and aerobic treatment is performed on the carrier 42 by aerobic treatment of the liquid in the aerobic treatment tank 4 by supplying air from the aeration tube 43. While the bacterium is grown, the carrier 42 is configured to be able to form a circulating flow forming a fluidized bed in the tank.
In addition, a separation wall 44 is provided in the vicinity of the drainage portion 41 to suppress mixing of solid components into the discharged wastewater to be discharged, and a clean supernatant liquid that does not contain solid components is discharged. At the same time, a return pipe 45 for returning the precipitated sludge precipitated in the lower part of the aerobic treatment tank 4 to the storage tank 1 is provided. Thus, in the aerobic treatment tank 4, the waste water from the solid-liquid separation tank 2 is further aerobically treated and purified, and the precipitated sludge generated in the aerobic treatment tank 4 is transferred to the upstream storage tank 1. It returns, and it is comprised so that processing in the sediment anaerobic fermenter 3 is possible again. The return pipe 45 has a configuration in which the water level in the pipe is raised to the horizontal pipe connection height by the pumping gas supplied to the vertical pipe 45a, and the treated water that has reached the horizontal pipe connection height is returned to the upstream side. Yes, an anaerobic gas is used as a pumping gas for the purpose of preventing the upstream storage tank 1, the solid-liquid separation tank 2, and the sediment anaerobic fermentation tank 3 from being aerobic. Anaerobic gas branches from the biogas tank T to the diffuser pipes 13, 23, and 33 for supplying biogas as anaerobic gas, and is supplied to the lower part of the vertical pipe portion of the return pipe 45 from the gas lifter pump P2. It is possible to configure (see FIG. 11).

このような構成により、BOD1300mg/L、SS1343mg/L程度の生ごみ粉砕処理廃液を、さらに浄化してBOD300mg/L未満、SS300mg/L以下の清浄な排水として外部に放流可能な構成とできる。   With such a configuration, it is possible to further purify the waste crushing waste liquid of about BOD 1300 mg / L and SS 1343 mg / L and discharge it to the outside as clean waste water of less than BOD 300 mg / L and SS 300 mg / L or less.

先の実施の形態の構成において、受け入れ部11から受け入れた生ごみ粉砕処理廃液は、貯留槽1で可溶化して固液分離槽2に移流するように設けたが、直接固液分離槽2に受け入れることもでき、生ごみ粉砕処理廃液の性状、負荷等に応じて適宜構成を変更でき、例えば、BODの高い排水を大量に受けることが想定される排水処理装置では、貯留槽1を大きく設定し、充分な可溶化を図ることが望ましい。   In the configuration of the previous embodiment, the waste grinding waste liquid received from the receiving unit 11 is solubilized in the storage tank 1 and transferred to the solid-liquid separation tank 2. The wastewater treatment apparatus can be appropriately changed according to the properties, load, etc. of the waste pulverization treatment waste liquid. For example, in a wastewater treatment apparatus that is expected to receive a large amount of wastewater with high BOD, the storage tank 1 is enlarged. It is desirable to set and achieve sufficient solubilization.

なお、上記実施の形態においては、液相嫌気発酵部は、前記固液分離槽2とは別の水処理槽としての液相嫌気発酵槽5に形成したが、前記固液分離槽2内部に設けてもよい。   In addition, in the said embodiment, although the liquid phase anaerobic fermentation part was formed in the liquid phase anaerobic fermentation tank 5 as a water treatment tank different from the said solid-liquid separation tank 2, inside the said solid-liquid separation tank 2 It may be provided.

すなわち、図12に示すように、前記固液分離槽2には、前記固液分離槽2内部で液相の滞留する沈殿分離空間22に、嫌気性微生物を育成するための担体55aを設けて構成してある。そして、前記液相は前記担体55aに付着して生育する嫌気性微生物によって、バイオガス化されたのち、清浄な排水として排水部24から排水処理装置本体A外へ排出される構成となっている。   That is, as shown in FIG. 12, the solid-liquid separation tank 2 is provided with a carrier 55a for growing anaerobic microorganisms in the precipitation separation space 22 where the liquid phase stays inside the solid-liquid separation tank 2. It is configured. The liquid phase is biogasified by anaerobic microorganisms that adhere to and grow on the carrier 55a, and is then discharged from the drainage unit 24 to the outside of the wastewater treatment apparatus main body A as clean wastewater. .

また、上述の例では液相嫌気発酵槽5で処理された液相が固液分離槽2に移送される形態としてあったが、液相を嫌気処理するための滞留時間が十分確保でき、排水可能な性状にまで液相が浄化されるのであれば、液相嫌気発酵槽5から固液分離槽2に液相を移送することなく、直接外部に排水、あるいは、好気処理槽に移送することもできる。   In the above example, the liquid phase treated in the liquid-phase anaerobic fermentation tank 5 was transferred to the solid-liquid separation tank 2, but a sufficient residence time for anaerobic treatment of the liquid phase can be secured. If the liquid phase is purified to a possible property, the liquid phase is transferred directly to the outside or transferred to the aerobic treatment tank without transferring the liquid phase from the liquid phase anaerobic fermentation tank 5 to the solid-liquid separation tank 2. You can also.

また、上記実施の形態において、ガスリフター用ポンプP2や嫌気ろ床55に用いる担体55a、後記処理槽に用いる担体42などの各構成要素については、種々公知のものを適宜採用することができる。   Further, in the above-described embodiment, various well-known components can be appropriately employed as the respective components such as the carrier 55a used for the gas lifter pump P2 and the anaerobic filter bed 55 and the carrier 42 used in the treatment tank described later.

本発明の排水処理装置は、生ごみを効率よく分解処理可能な家庭用浄化槽等として利用できる。   The waste water treatment apparatus of the present invention can be used as a household septic tank or the like that can efficiently decompose garbage.

A :排水処理装置本体
1 :貯留槽
11 :受け入れ部
12 :貯留空間
13 :散気管
14 :移流部
2 :固液分離槽
21 :案内壁部
22 :沈殿分離空間
23 :散気管
24 :排水部
25 :分離壁部
26 :移流部
26a :スリット状出口(絞部)
26b :傾斜壁部
26c :堆積層
28 :移流部
3 :沈殿物嫌気発酵槽
31 :嫌気発酵空間
32 :バイオガス取出路
33 :散気装置
4 :好気処理槽
41 :排水部
42 :担体
43 :散気管
44 :分離壁部
45a :縦管
45 :返送管
5 :液相嫌気発酵槽
51 :水処理空間
52 :移流管
53 :移送管
53a :縦管
54 :分離壁部
55 :嫌気ろ床
55a :担体
56 :揚水空間
P1 :撹拌ポンプ
P2 :ガスリフター用ポンプ
P3 :散気ポンプ
P4 :撹拌ポンプ
P5 :エアポンプ
T :バイオガスタンク
W12
〜W25:仕切壁
A: Waste water treatment device body 1: Storage tank 11: Receiving part 12: Storage space 13: Aeration pipe 14: Advection part 2: Solid-liquid separation tank 21: Guide wall part 22: Precipitation separation space 23: Aeration pipe 24: Drainage part 25: Separation wall part 26: Advection part 26a: Slit-shaped outlet (throttle part)
26b: Inclined wall part 26c: Sedimentation layer 28: Advection part 3: Sediment anaerobic fermentation tank 31: Anaerobic fermentation space 32: Biogas extraction path 33: Aeration device 4: Aerobic treatment tank 41: Drainage part 42: Carrier 43 : Aeration pipe 44: Separation wall 45a: Vertical pipe 45: Return pipe 5: Liquid phase anaerobic fermentation tank 51: Water treatment space 52: Advection pipe 53: Transfer pipe 53a: Vertical pipe 54: Separation wall part 55: Anaerobic filter bed 55a: Carrier 56: Pumping space P1: Stirring pump P2: Gas lifter pump P3: Aeration pump P4: Stirring pump P5: Air pump T: Biogas tank W12
~ W25: Partition wall

Claims (8)

生ごみ粉砕処理廃液を受け入れる受け入れ部を設けるとともに、前記生ごみ粉砕処理廃液を沈殿分離する固液分離槽を備え、
前記固液分離槽で固液分離された液相に含まれる有機物をバイオガス化する液相嫌気発酵部を設けるとともに、
前記固液分離槽にて沈殿分離された沈殿物を受け入れてバイオガス化する沈殿物嫌気発酵槽を備え、
前記固液分離槽から前記沈殿物嫌気発酵槽に前記沈殿物を移流させる移流部を設けてなり、
前記移流部に、前記固液分離槽と前記沈殿物嫌気発酵槽との間を前記沈殿物により閉塞して、固形成分の前記沈殿物嫌気発酵槽から前記固液分離槽への逆流を防止可能にする絞部を設けるとともに、
前記沈殿物を前記絞部を介して前記沈殿物嫌気発酵槽に移流させ、前記沈殿物嫌気発酵槽の余剰の液相を前記絞部を介して前記固液分離槽に返送可能にする沈殿物移流機構を前記沈殿物嫌気発酵槽に設け、
前記液相嫌気発酵部および前記沈殿物嫌気発酵槽には、生成したバイオガスを外部に取り出すバイオガス取出路を設けた排水処理装置。
Provided with a receiving portion for receiving the waste pulverization waste liquid, and a solid-liquid separation tank for separating and separating the waste pulverization waste liquid,
While providing a liquid phase anaerobic fermentation section for biogasification of organic matter contained in the liquid phase solid-liquid separated in the solid-liquid separation tank,
A precipitate anaerobic fermenter that accepts the precipitate separated in the solid-liquid separation tank and converts it to biogas,
A convection section for advancing the precipitate from the solid-liquid separation tank to the precipitate anaerobic fermentation tank;
It is possible to prevent the reverse flow of the solid component from the precipitate anaerobic fermentation tank to the solid-liquid separation tank by closing the space between the solid-liquid separation tank and the precipitate anaerobic fermentation tank at the transfer section. While providing a throttle part to
The precipitate is transferred to the precipitate anaerobic fermentation tank through the constriction section, and the excess liquid phase of the precipitate anaerobic fermentation tank can be returned to the solid-liquid separation tank through the constriction section. An advection mechanism is provided in the precipitate anaerobic fermenter,
A wastewater treatment apparatus in which the liquid phase anaerobic fermentation section and the precipitate anaerobic fermentation tank are provided with a biogas extraction path for taking out the generated biogas to the outside.
前記液相嫌気発酵部が、前記固液分離槽内部で液相の滞留する領域に、嫌気性微生物を育成するための担体を設けて構成されている請求項1に記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the liquid phase anaerobic fermentation unit is configured by providing a carrier for growing anaerobic microorganisms in a region where the liquid phase stays in the solid-liquid separation tank. 前記液相嫌気発酵部が、前記固液分離槽内部から移流した液相を受け入れる水処理槽を備えるとともに、前記水処理槽内に嫌気性微生物を育成するための担体を設けて構成されている請求項1に記載の排水処理装置。   The liquid phase anaerobic fermentation section includes a water treatment tank that receives the liquid phase transferred from inside the solid-liquid separation tank, and is provided with a carrier for growing anaerobic microorganisms in the water treatment tank. The wastewater treatment apparatus according to claim 1. 前記絞部は、前記固液分離槽下部に設けたスリット状出口を備え、前記固液分離槽における前記沈殿物が、前記スリット状出口を閉塞して堆積する堆積層を形成可能に構成してある請求項1〜3のいずれか一項に記載の排水処理装置。   The constriction section includes a slit-like outlet provided in the lower part of the solid-liquid separation tank, and the deposit in the solid-liquid separation tank is configured to be capable of forming a deposition layer that closes and deposits the slit-like outlet. The waste water treatment apparatus according to any one of claims 1 to 3. 前記沈殿物嫌気発酵槽に嫌気ガスを散気する散気装置を設け、前記散気装置に間欠的に嫌気ガスを供給するガス供給装置を設け、前記スリット状出口の下方から上昇する気液混相流を形成可能に配置して、前記沈殿物移流機構を形成してある請求項4に記載の排水処理装置。   A gas-liquid mixed phase rising from below the slit-like outlet is provided in the precipitate anaerobic fermenter is provided with an aeration device for aspirating anaerobic gas, a gas supply device is provided for intermittently supplying the anaerobic gas to the aeration device. The wastewater treatment apparatus according to claim 4, wherein a flow is formed so as to form the precipitate advection mechanism. 前記受け入れ部で受け入れた生ごみ粉砕処理廃液を可溶化する可溶化槽を備え、前記可溶化槽から前記固液分離槽に可溶化した生ごみ粉砕処理廃液を移流させる移流部を設けた請求項1〜5のいずれか一項に記載の排水処理装置。   A solubilization tank for solubilizing the waste pulverization treatment waste liquid received by the receiving unit is provided, and a convection section is provided for advancing the waste pulverization treatment waste liquid solubilized from the solubilization tank to the solid-liquid separation tank. The waste water treatment apparatus as described in any one of 1-5. 前記固液分離槽で固液分離された液相の移流を受け、好気処理する好気処理槽を備えた請求項1〜6のいずれか一項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 6, further comprising an aerobic treatment tank that receives advection of a liquid phase separated in a solid-liquid separation tank and performs an aerobic treatment. 請求項5に記載の排水処理装置の運転方法であって、
前記沈殿物嫌気発酵槽における前記沈殿物のバイオガス化に伴って減少する減少量に応じて前記ガス供給装置によるガス供給を行う排水処理装置の運転方法。
An operation method of the waste water treatment apparatus according to claim 5,
A method of operating a wastewater treatment apparatus that performs gas supply by the gas supply apparatus in accordance with a decrease amount that decreases with the biogasification of the precipitate in the precipitate anaerobic fermentation tank.
JP2013013668A 2013-01-28 2013-01-28 Waste water treatment apparatus and operation method thereof Expired - Fee Related JP6071587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013668A JP6071587B2 (en) 2013-01-28 2013-01-28 Waste water treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013668A JP6071587B2 (en) 2013-01-28 2013-01-28 Waste water treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2014144407A true JP2014144407A (en) 2014-08-14
JP6071587B2 JP6071587B2 (en) 2017-02-01

Family

ID=51425128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013668A Expired - Fee Related JP6071587B2 (en) 2013-01-28 2013-01-28 Waste water treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP6071587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182534A (en) * 2015-03-25 2016-10-20 東京瓦斯株式会社 Wastewater treatment apparatus and wastewater treatment method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345196A (en) * 1992-06-12 1993-12-27 Matsushita Electric Ind Co Ltd Method for treating high concentration organic waste water and waste water treatment apparatus
JPH10290990A (en) * 1997-04-22 1998-11-04 Matsushita Electric Works Ltd Combined septic tank
JP2000237776A (en) * 1999-02-16 2000-09-05 Kopurosu:Kk Septic tank for combined sewage containing garbage
JP2000271594A (en) * 1999-03-25 2000-10-03 Hitachi Chem Co Ltd Garbage treatment apparatus
JP2003181481A (en) * 2001-12-20 2003-07-02 Hitachi Housetec Co Ltd Septic tank returning liquid treated in aerobic treating tank
JP2003320395A (en) * 2002-05-01 2003-11-11 Babcock Hitachi Kk Treatment method for organic waste, apparatus therefor and destuction/solubilization apparatus
JP2004237210A (en) * 2003-02-06 2004-08-26 Misuzu Kogyo Kk Methane fermentation method and methane fermentation apparatus raw waste
JP2005131555A (en) * 2003-10-30 2005-05-26 Energy Support Corp Garbage treatment system
JP2008012491A (en) * 2006-07-10 2008-01-24 Hitachi Housetec Co Ltd Aerobic digestion tank and sewage cleaning tank equipped with the same
JP2008119562A (en) * 2006-11-08 2008-05-29 Fuji Clean Kogyo Kk Water treating device and water treatment method
JP2008302279A (en) * 2007-06-06 2008-12-18 Fuji Clean Kogyo Kk Water treatment apparatus
JP2009072719A (en) * 2007-09-21 2009-04-09 Sanki Eng Co Ltd Methane gas producing system for producing methane gas from organic waste such as garbage
JP2009202095A (en) * 2008-02-27 2009-09-10 Osaka Gas Co Ltd Disposer wastewater treatment method and apparatus
JP2012206053A (en) * 2011-03-30 2012-10-25 Kubota Corp Wastewater treatment method and wastewater treatment system
JP2013027851A (en) * 2011-07-29 2013-02-07 Osaka Gas Co Ltd Wastewater treatment device and method for operation thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345196A (en) * 1992-06-12 1993-12-27 Matsushita Electric Ind Co Ltd Method for treating high concentration organic waste water and waste water treatment apparatus
JPH10290990A (en) * 1997-04-22 1998-11-04 Matsushita Electric Works Ltd Combined septic tank
JP2000237776A (en) * 1999-02-16 2000-09-05 Kopurosu:Kk Septic tank for combined sewage containing garbage
JP2000271594A (en) * 1999-03-25 2000-10-03 Hitachi Chem Co Ltd Garbage treatment apparatus
JP2003181481A (en) * 2001-12-20 2003-07-02 Hitachi Housetec Co Ltd Septic tank returning liquid treated in aerobic treating tank
JP2003320395A (en) * 2002-05-01 2003-11-11 Babcock Hitachi Kk Treatment method for organic waste, apparatus therefor and destuction/solubilization apparatus
JP2004237210A (en) * 2003-02-06 2004-08-26 Misuzu Kogyo Kk Methane fermentation method and methane fermentation apparatus raw waste
JP2005131555A (en) * 2003-10-30 2005-05-26 Energy Support Corp Garbage treatment system
JP2008012491A (en) * 2006-07-10 2008-01-24 Hitachi Housetec Co Ltd Aerobic digestion tank and sewage cleaning tank equipped with the same
JP2008119562A (en) * 2006-11-08 2008-05-29 Fuji Clean Kogyo Kk Water treating device and water treatment method
JP2008302279A (en) * 2007-06-06 2008-12-18 Fuji Clean Kogyo Kk Water treatment apparatus
JP2009072719A (en) * 2007-09-21 2009-04-09 Sanki Eng Co Ltd Methane gas producing system for producing methane gas from organic waste such as garbage
JP2009202095A (en) * 2008-02-27 2009-09-10 Osaka Gas Co Ltd Disposer wastewater treatment method and apparatus
JP2012206053A (en) * 2011-03-30 2012-10-25 Kubota Corp Wastewater treatment method and wastewater treatment system
JP2013027851A (en) * 2011-07-29 2013-02-07 Osaka Gas Co Ltd Wastewater treatment device and method for operation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182534A (en) * 2015-03-25 2016-10-20 東京瓦斯株式会社 Wastewater treatment apparatus and wastewater treatment method

Also Published As

Publication number Publication date
JP6071587B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5868059B2 (en) Waste water treatment apparatus and operation method thereof
JP4801256B2 (en) Surge anoxic mixed continuous batch reaction system
JP5813377B2 (en) Wastewater treatment equipment
JP4017657B1 (en) Treatment method of wastewater containing organic matter
CN107857362A (en) A kind of integrated apparatus and method of residents country life sewage disposal
CN108017240A (en) A kind of new village sanitary sewage photocatalysis integrated processing system
KR100871651B1 (en) An apparatus for treating waste-water containing concentrated organic materials
CN102557324A (en) Method for treating garbage leachate
JP6071587B2 (en) Waste water treatment apparatus and operation method thereof
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
CN203820591U (en) Integrated sewage treatment equipment
CN207845440U (en) Production waste water mixes purification system with sanitary wastewater
JP2006326386A (en) Organic sludge water treatment method
KR101070725B1 (en) Diposer Waste and Wastewater Treatment System
AU2003221763A1 (en) Aerobic wastewater management system, apparatus, and method
JP6522935B2 (en) Waste water treatment apparatus and method of manufacturing the same
KR20150066055A (en) System for Anaerobic Digestion of High Concentration Organic Wastes
Prăjanu et al. Studies related to the biological treatment of wastewater within the wastewater treatment plant of Iași City
CN208594093U (en) Villages and small towns decentralized type sewage treatment reactor
RU2220918C1 (en) Installation for fine biological purification of sewage
JP4468771B2 (en) Organic wastewater treatment equipment
JP2017170283A (en) Wastewater treatment apparatus
KR102131735B1 (en) Compact type aeration tank for sewage treatment and sewage treatment system comprising the same
JP5323570B2 (en) Methane fermentation equipment
CN111777181A (en) Multifunctional composite biofilm reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees