JP2014143814A - Non-contact charging device and charging method - Google Patents

Non-contact charging device and charging method Download PDF

Info

Publication number
JP2014143814A
JP2014143814A JP2013010192A JP2013010192A JP2014143814A JP 2014143814 A JP2014143814 A JP 2014143814A JP 2013010192 A JP2013010192 A JP 2013010192A JP 2013010192 A JP2013010192 A JP 2013010192A JP 2014143814 A JP2014143814 A JP 2014143814A
Authority
JP
Japan
Prior art keywords
current
charging
inverter
input
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013010192A
Other languages
Japanese (ja)
Inventor
Tomio Yasuda
富夫 保田
Hiroyuki Kishi
洋之 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Original Assignee
Technova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc filed Critical Technova Inc
Priority to JP2013010192A priority Critical patent/JP2014143814A/en
Publication of JP2014143814A publication Critical patent/JP2014143814A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact charging device capable of easily implementing constant current charging on a power storage element.SOLUTION: At the side of a primary-side coil 13 of a non-contact feeding transformer, there are provided a DC power source 10, an inverter 12 for generating a high frequency AC from a DC and supplying it to the primary-side coil 13 and a primary-side series capacitor Cs1 connected in series between the primary-side coil and the inverter. At the side of a secondary-side coil 14 of the non-contact feeding transformer, there are provided a double current rectifier circuit 15 in which an AC is rectified and supplied to a power storage element 17, and a secondary-side series resonance capacitor Cs2 connected in series between the secondary-side coil and the double current rectifier circuit. When a primary side is driven by a constant voltage, a secondary-side current to be supplied to the power storage element 17 becomes a constant current. A terminal voltage of the power storage element 17 can be known from the inverter input DC. Only by monitoring a primary-side circuit and adjusting a state of the primary side, constant current charging of the power storage element 17 can be controlled.

Description

本発明は、電気二重層キャパシタやリチウムイオン電池等の内部抵抗が小さく大電流充電可能な蓄電素子に対して非接触で定電流充電を行う非接触充電装置と、その充電方法に関する。   The present invention relates to a non-contact charging device that performs constant-current charging in a non-contact manner with respect to a storage element that has a small internal resistance and that can be charged with a large current, such as an electric double layer capacitor and a lithium ion battery, and a charging method thereof.

電動フォークリフトや無人電動搬送車のような産業用電動車両では、その駆動源に従来から鉛蓄電池が広く使われてきたが、近年、鉛蓄電池から、短時間充電が可能な電気二重層キャパシタやリチウムイオン電池への転換が進みつつある。
電気二重層キャパシタやリチウムイオン電池は、内部抵抗が小さいため、数百Aに及ぶ大電流充電(短時間充電)が可能である。
In industrial electric vehicles such as electric forklifts and unmanned electric vehicles, lead storage batteries have been widely used as a drive source. However, in recent years, electric double layer capacitors and lithium batteries that can be charged for a short time from lead storage batteries have been used. The switch to ion batteries is progressing.
Since the electric double layer capacitor and the lithium ion battery have a small internal resistance, they can be charged with a large current of several hundred A (short-time charging).

こうした内部抵抗が小さい蓄電素子の充電は、定電流で充電して充電最高電圧に達したら充電を停止する“定電流充電方式”や、定電流充電で充電最高電圧に達した後、定電圧で充電する“定電流定電圧充電方式”、あるいは、下記特許文献1に記載されているように、定電流充電で充電最高電圧に達した後、電流値を小さくして定電流充電を繰り返す“多段定電流充電方式”等によって行われる。
また、充電電源と蓄電素子間の接点を自動的に接触接続する方法があるが、数百Aの充電では接点の摩耗や接点火花が発生するため、接点を持たない非接触給電による充電(非接触充電)が求められている。
Charging of electricity storage devices with low internal resistance is possible by charging with a constant current and stopping charging when the maximum charging voltage is reached, or by charging at a constant voltage after reaching the maximum charging voltage with constant current charging. “Constant current constant voltage charging method” for charging, or as described in Patent Document 1 below, after reaching the maximum charging voltage by constant current charging, the current value is reduced and constant current charging is repeated. The constant current charging method is used.
In addition, there is a method of automatically contact-connecting the contact between the charging power source and the power storage element, but contact charging or contact sparking occurs in charging of several hundreds of A, so charging by non-contact power feeding without contact (non-contacting) Contact charging) is required.

図9は、下記特許文献2に記載された非接触充電装置の概略を示している。この装置は、非接触給電トランスの一次側コイル(送電コイル)102の側に、商用電源の交流から直流を生成するAC/DC電源100と、AC/DC電源100が出力する直流から高周波交流を生成して一次側コイル102に供給するインバータ101と、一次側コイル102とインバータ101との間に直列接続された一次側直列コンデンサCsとを備えており、また、非接触給電トランスの二次側コイル(受電コイル)103の側に、二次側コイル103で受電された交流を整流する整流回路104と、二次側コイル103と整流回路104との間に並列接続された二次側並列共振コンデンサCpと、整流回路104で整流された直流を、電流値や電圧値を変換した後に蓄電素子106に供給する充電回路105とを備えている。
なお、二次側並列共振コンデンサCpの容量値は、二次側回路が並列共振回路を構成するように設定され、また、一次側直列コンデンサCsの容量値は、一次側電源力率が1となるように設定される。
FIG. 9 shows an outline of the non-contact charging device described in Patent Document 2 below. In this apparatus, an AC / DC power source 100 that generates direct current from an alternating current of a commercial power source and a high-frequency alternating current from the direct current that the AC / DC power source 100 outputs are provided on the primary coil (power transmission coil) 102 side of the contactless power supply transformer. An inverter 101 that is generated and supplied to the primary coil 102, and a primary series capacitor Cs connected in series between the primary coil 102 and the inverter 101, and a secondary side of the non-contact power supply transformer On the coil (receiving coil) 103 side, a rectifier circuit 104 that rectifies the alternating current received by the secondary coil 103, and a secondary parallel resonance connected in parallel between the secondary coil 103 and the rectifier circuit 104. A capacitor Cp and a charging circuit 105 that supplies the direct current rectified by the rectifier circuit 104 to the storage element 106 after converting a current value or a voltage value are provided.
The capacitance value of the secondary side parallel resonance capacitor Cp is set so that the secondary side circuit constitutes a parallel resonance circuit, and the capacitance value of the primary side series capacitor Cs has a primary power source power factor of 1. Is set to be

特開2003−87991号公報JP 2003-87991 A 特開2012−182887号公報JP 2012-182887 A

しかし、図9に記載された非接触充電装置では、二次側の整流回路104の後段に充電回路105を設けて、蓄電素子108への供給電流を定電流に設定する等の処理を行わせることが必要である。
また、充電電流が数百Aに及ぶ場合、充電回路105は、大容量半導体素子で構成しなければならず、半導体素子の通電損失やスイッチングノイズが増大する、などの問題が生じる。
However, in the non-contact charging apparatus illustrated in FIG. 9, the charging circuit 105 is provided after the secondary side rectifier circuit 104 to perform processing such as setting the supply current to the power storage element 108 to a constant current. It is necessary.
When the charging current reaches several hundreds A, the charging circuit 105 must be composed of a large-capacity semiconductor element, which causes problems such as increased conduction loss and switching noise of the semiconductor element.

本発明は、こうした事情を考慮して創案したものであり、蓄電素子に対する定電流充電が簡単に実施できる非接触充電装置を提供し、また、その充電方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-contact charging device that can easily carry out constant-current charging of a storage element, and to provide a charging method thereof.

本発明は、蓄電素子に定電流を供給して蓄電素子の充電を行う非接触充電装置であって、非接触給電トランスの一次側コイルの側に、直流を出力する直流電源と、直流電源から入力される直流から高周波交流を生成して一次側コイルに供給するインバータと、一次側コイルとインバータとの間に直列に接続された一次側直列コンデンサと、を備え、非接触給電トランスの二次側コイルの側に、二次側コイルで受電された交流を整流して蓄電素子に供給する倍電流整流回路と、二次側コイルと倍電流整流回路との間に直列に接続された二次側直列共振コンデンサと、を備え、さらに、直流電源からインバータに入力されるインバータ入力直流電圧が定電圧となるように制御する充電制御部を備えることを特徴とする。
この非接触充電装置では、一次側に一次側直列コンデンサを配置し、二次側に二次側直列共振コンデンサを配置しているため、一次側を定電圧駆動すると、蓄電素子に供給される二次側電流が定電流となる。二次側電流の定電流の電流値は、インバータ入力直流電圧で制御することができる。また、二次側整流回路を倍電流整流回路で構成しているため、ダイオードによる通電損失が削減できる。
The present invention is a non-contact charging device that charges a power storage element by supplying a constant current to the power storage element, and includes a direct current power source that outputs direct current to a primary coil side of the non-contact power supply transformer, and a direct current power source. An inverter that generates a high-frequency alternating current from an input direct current and supplies the high-frequency alternating current to a primary coil; and a primary-side series capacitor connected in series between the primary-side coil and the inverter; A double current rectifier circuit that rectifies the alternating current received by the secondary coil and supplies it to the storage element on the side coil side, and a secondary connected in series between the secondary coil and the double current rectifier circuit And a charge control unit that controls the inverter input DC voltage input from the DC power source to the inverter to be a constant voltage.
In this non-contact charging device, the primary side series capacitor is arranged on the primary side and the secondary side series resonant capacitor is arranged on the secondary side. Therefore, when the primary side is driven at a constant voltage, The secondary current becomes a constant current. The constant current value of the secondary current can be controlled by the inverter input DC voltage. In addition, since the secondary side rectifier circuit is constituted by a double current rectifier circuit, current loss due to the diode can be reduced.

また、本発明の非接触充電装置では、蓄電素子の端子電圧は、インバータ入力直流電流を監視することで検知可能であるから、充電制御部では、直流電源からインバータに入力されるインバータ入力直流電流を監視し、インバータ入力直流電流の大きさに基づいて蓄電素子への充電の開始及び停止を制御する。   In the non-contact charging device of the present invention, since the terminal voltage of the storage element can be detected by monitoring the inverter input DC current, the charging control unit uses the inverter input DC current input from the DC power source to the inverter. , And the start and stop of charging of the storage element are controlled based on the magnitude of the inverter input DC current.

また、本発明の非接触充電装置は、リチウム二次電池や電気二重層キャパシタの定電流充電が可能である。   Moreover, the non-contact charging device of the present invention is capable of constant current charging of a lithium secondary battery or an electric double layer capacitor.

また、本発明は、非接触給電トランスの一次側コイルの側に、直流を出力する直流電源と、直流電源から入力される直流から高周波交流を生成して一次側コイルに供給するインバータと、一次側コイルとインバータとの間に直列に接続された一次側直列コンデンサと、を備え、非接触給電トランスの二次側コイルの側に、二次側コイルで受電された交流を整流して蓄電素子に供給する倍電流整流回路と、二次側コイルと倍電流整流回路との間に直列に接続された二次側直列共振コンデンサと、を備える非接触充電装置を用いて蓄電素子への充電を行う充電方法であって、直流電源からインバータに入力されるインバータ入力直流電流を監視して、インバータ入力直流電流が、蓄電素子の端子電圧の動作電圧範囲下限値に相当するインバータ入力電流IDCmin以上であるとき、充電を開始する充電開始ステップと、蓄電素子への充電中、直流電源からインバータに入力されるインバータ入力直流電圧を定電圧に維持する定電圧駆動ステップと、インバータ入力直流電流を監視して、インバータ入力直流電流が、蓄電素子の端子電圧の動作電圧範囲上限値に相当するインバータ入力電流IDCmaxに達したときに充電を停止する充電停止ステップと、を備えることを特徴とする。
この充電方法では、蓄電素子の定電流充電の開始及び停止を、一次側回路を監視し、一次側回路を制御することで実行できる。
The present invention also provides a DC power source that outputs direct current on the primary coil side of the non-contact power supply transformer, an inverter that generates high-frequency alternating current from direct current input from the DC power source and supplies the high-frequency alternating current to the primary coil, A primary side series capacitor connected in series between the side coil and the inverter, and rectifies the alternating current received by the secondary side coil on the secondary side coil side of the non-contact power supply transformer, Charging the storage element using a non-contact charging device comprising: a double current rectifier circuit supplied to the secondary side; and a secondary side series resonant capacitor connected in series between the secondary side coil and the double current rectifier circuit. The charging method is to monitor the inverter input DC current input from the DC power source to the inverter, and the inverter input DC current corresponds to the lower limit of the operating voltage range of the storage device terminal voltage. When it is current I DCmin above, the charging start step of starting the charging, charging of the power storage element, a constant voltage driving step of maintaining the inverter input DC voltage input from the DC power source to the inverter in the constant voltage, inverter input A charge stop step of monitoring the DC current and stopping the charging when the inverter input DC current reaches the inverter input current IDCmax corresponding to the upper limit value of the operating voltage range of the terminal voltage of the storage element. Features.
In this charging method, the start and stop of constant current charging of the storage element can be executed by monitoring the primary side circuit and controlling the primary side circuit.

また、本発明の充電方法では、充電停止ステップの後に、さらに、直流電源からインバータに入力するインバータ入力直流電圧を低減する入力電圧低減ステップと、インバータ入力直流電圧を入力電圧低減ステップで設定した低減電圧に維持して蓄電素子への充電を行う低減定電圧駆動ステップと、インバータ入力直流電流を監視して、インバータ入力直流電流がインバータ入力電流IDCmaxに再び達したときに充電を停止する充電停止ステップと、を加えても良い。
このように、一次側回路を監視し、一次側回路を制御することで、多段定電流充電方式が実行できる。
In the charging method of the present invention, after the charging stop step, an input voltage reduction step for reducing the inverter input DC voltage input from the DC power source to the inverter, and a reduction in which the inverter input DC voltage is set in the input voltage reduction step. Reduced constant voltage drive step to charge the storage element while maintaining the voltage, and charge stop to monitor the inverter input DC current and stop charging when the inverter input DC current reaches the inverter input current IDCmax again Steps may be added.
Thus, the multi-stage constant current charging method can be executed by monitoring the primary side circuit and controlling the primary side circuit.

本発明の非接触充電装置では、二次側の倍電流整流回路の出力を蓄電素子に直接供給して蓄電素子の定電流充電を行うことが可能であり、整流回路と蓄電素子との間に充電回路を設ける必要がない。そのため、充電回路を持つ場合に比べて、半導体素子数を減らすことができ、通電損失やスイッチングノイズを抑制できる。また、整流回路を倍電流整流回路で構成したことも半導体素子数の低減に寄与している。
また、一次側回路を監視し、一次側回路の状態を調節するだけで、蓄電素子の定電流充電が制御できるため、充電方法が簡単である。
In the non-contact charging device of the present invention, the output of the secondary current rectifier circuit can be directly supplied to the storage element to perform constant current charging of the storage element, and between the rectifier circuit and the storage element. There is no need to provide a charging circuit. As a result, the number of semiconductor elements can be reduced as compared with the case where a charging circuit is provided, and current loss and switching noise can be suppressed. Further, the fact that the rectifier circuit is constituted by a double current rectifier circuit also contributes to the reduction of the number of semiconductor elements.
In addition, since the constant current charging of the power storage element can be controlled simply by monitoring the primary side circuit and adjusting the state of the primary side circuit, the charging method is simple.

本発明の実施形態に係る非接触充電装置を示す図The figure which shows the non-contact charging device which concerns on embodiment of this invention 図1の非接触充電装置の一次側コイル及び二次側コイルを示す図The figure which shows the primary side coil and secondary side coil of the non-contact charging device of FIG. 図1の非接触充電装置の等価回路を示す図The figure which shows the equivalent circuit of the non-contact charging device of FIG. 図1の非接触充電装置のインバータ入力直流電圧と充電電流の関係を示す図The figure which shows the relationship between the inverter input DC voltage and charging current of the non-contact charging device of FIG. 図1の非接触充電装置での充電手順を示す図The figure which shows the charge procedure in the non-contact charging device of FIG. 図5の充電手順における充電制御動作図Charge control operation diagram in the charging procedure of FIG. 図1の非接触充電装置での多段定電流充電における充電手順を示す図The figure which shows the charge procedure in the multistage constant current charge in the non-contact charging device of FIG. 図7の充電手順における充電制御動作図Charge control operation diagram in the charging procedure of FIG. 従来の非接触充電装置を示す図The figure which shows the conventional non-contact charging device

図1は、本発明の実施形態に係る非接触充電装置を示している。この装置は、非接触給電トランスの一次側コイル13の側に、商用電源の交流から直流を生成するAC/DC電源10と、AC/DC電源10で生成された直流を平滑化する平滑コンデンサ11と、AC/DC電源10から入力される直流から高周波交流を生成して一次側コイル13に供給するインバータ12と、一次側コイル13とインバータ12との間に直列接続された一次側直列コンデンサCs1とを備えており、また、非接触給電トランスの二次側コイル14の側に、二次側コイル14で受電された交流を整流して蓄電素子17に供給する倍電流整流回路15と、倍電流整流回路15で生成された直流を平滑化する平滑コンデンサ16と、二次側コイル14と倍電流整流回路15との間に直列に接続された二次側直列共振コンデンサCs2とを備え、さらに、AC/DC電源10からインバータ12に入力されるインバータ入力直流電流やインバータ入力直流電圧を監視して蓄電素子17への充電を制御する充電制御部20を備えている。   FIG. 1 shows a contactless charging apparatus according to an embodiment of the present invention. In this apparatus, an AC / DC power supply 10 that generates direct current from an alternating current of a commercial power supply and a smoothing capacitor 11 that smoothes the direct current generated by the AC / DC power supply 10 are provided on the primary coil 13 side of the contactless power supply transformer. An inverter 12 that generates high-frequency alternating current from direct current input from the AC / DC power supply 10 and supplies the high-frequency alternating current to the primary coil 13, and a primary series capacitor Cs1 connected in series between the primary coil 13 and the inverter 12. And a double current rectifier circuit 15 that rectifies the alternating current received by the secondary coil 14 and supplies it to the storage element 17 on the secondary coil 14 side of the non-contact power supply transformer, A smoothing capacitor 16 for smoothing the direct current generated by the current rectifier circuit 15, and a secondary side series resonant capacitor connected in series between the secondary side coil 14 and the double current rectifier circuit 15. And a s2, further includes a charge control unit 20 for controlling the charging of the to storage element 17 monitors the inverter input DC current and the inverter input DC voltage input from the AC / DC power supply 10 to the inverter 12.

非接触給電トランスの一次側コイル13及び二次側コイル14には、図2(a)に示すように、磁性体コア131の周りに電線132を巻回した「両側巻コイル」や、図2(b)に示すように、円形磁性体133の片側に渦巻状の電線134を配置した「片側巻コイル」が使用される。   As shown in FIG. 2A, the primary coil 13 and the secondary coil 14 of the non-contact power supply transformer include a “both-side wound coil” in which an electric wire 132 is wound around a magnetic core 131, and FIG. As shown in (b), a “one-side coil” in which a spiral electric wire 134 is arranged on one side of a circular magnetic body 133 is used.

倍電流整流回路15は、4個のダイオードを備える全波整流回路の2個分のダイオードをリアクトル151、152で置き換えたものに相当し、二次側コイル14から入力される交流電圧が正極の時にのみ電力を出力して、負極のときには入力を遮断する半波整流回路と、逆に、二次側コイル14から入力される交流電圧が負極の時にのみ電力を出力して、正極のときには入力を遮断する半波整流回路との二組から成る。そのため、2個のダイオード153、154が同時に導通することは無く、通電するダイオードは、常に1個である。   The double current rectifier circuit 15 corresponds to a full-wave rectifier circuit including four diodes in which two diodes are replaced by reactors 151 and 152, and the AC voltage input from the secondary coil 14 is positive. A half-wave rectifier circuit that outputs power only when it is negative and shuts off the input when it is negative. Conversely, it outputs power only when the AC voltage input from the secondary side coil 14 is negative, and it is input when it is positive. It consists of two sets with a half-wave rectifier circuit that shuts off. Therefore, the two diodes 153 and 154 do not conduct at the same time, and the number of diodes that are energized is always one.

図3は、この非接触充電装置の一次側直列コンデンサCs1、二次側直列共振コンデンサCs2、一次側コイル13及び二次側コイル14を含む回路部分の等価回路を示している。ここで、鉄損を示すr'0と巻線抵抗r'1、r2は、対応するリアクタンスx'0、x'1 、x2に比べて十分小さいため、無視することができる。
一次側直列コンデンサCs1の値は、非接触給電トランスの一次側コイル13と共振するように(数1)により設定する。
ここで、ω0=2πf (f:電源周波数)、x'0:二次換算励磁リアクタンス、x'1:二次換算一次漏洩リアクタンス、である。
FIG. 3 shows an equivalent circuit of a circuit portion including the primary side series capacitor Cs1, the secondary side series resonance capacitor Cs2, the primary side coil 13, and the secondary side coil 14 of the contactless charging apparatus. Here, r ′ 0 indicating the iron loss and winding resistances r ′ 1 and r 2 are sufficiently smaller than the corresponding reactances x ′ 0 , x ′ 1 , and x 2 and can be ignored.
The value of the primary side series capacitor Cs1 is set by (Equation 1) so as to resonate with the primary side coil 13 of the non-contact power supply transformer.
Here, ω 0 = 2πf (f: power supply frequency), x ′ 0 : secondary conversion excitation reactance, x ′ 1 : secondary conversion primary leakage reactance.

また、二次側直列共振コンデンサCs2の値は、非接触給電トランスの二次側コイル14と共振するように(数2)により設定する。
ここで、x2:二次漏洩リアクタンス、である。
Further, the value of the secondary side series resonance capacitor Cs2 is set by (Equation 2) so as to resonate with the secondary side coil 14 of the non-contact power supply transformer.
Where x 2 is the secondary leakage reactance.

このとき、一次側と二次側の電圧・電流の関係は(数3)(数4)で表される。
(数3)は、一次側を定電圧で駆動すれば、二次側は定電流になることを示している。
At this time, the relationship between the voltage and current of the primary side and the secondary side is expressed by (Equation 3) and (Equation 4).
(Equation 3) indicates that if the primary side is driven with a constant voltage, the secondary side becomes a constant current.

図4は、この非接触充電装置のAC/DC電源10からインバータ12に入力するインバータ入力直流電圧VDCと蓄電素子17の充電電流ILとの関係を示している。従って、一次側を定電圧で駆動すれば、蓄電素子17の定電流充電が可能になる。また、一次側の定電圧の値を変えることで、蓄電素子17に供給される定電流の値を変えることができる。
また、(数4)の関係が存在するため、インバータ12に入力するインバータ入力直流電流IINを監視すれば、蓄電素子17の端子電圧VLを知ることができる。
Figure 4 shows the relationship between the charging current I L of the inverter input DC voltage V DC and the power storage device 17 to enter from the AC / DC power supply 10 of the non-contact charging device to the inverter 12. Therefore, if the primary side is driven with a constant voltage, the electric storage element 17 can be charged with a constant current. Further, the value of the constant current supplied to the power storage element 17 can be changed by changing the value of the constant voltage on the primary side.
Further, since the relationship of (Equation 4) exists, the terminal voltage V L of the power storage element 17 can be known by monitoring the inverter input DC current I IN input to the inverter 12.

充電制御部20は、AC/DC電源10からインバータ12に入力するインバータ入力直流電流IDCやインバータ入力直流電圧VDCを監視しながら、蓄電素子17の定電流充電を制御する。
図5は、充電制御部20の制御手順を示している。図6の充電制御動作図を参照しながら、制御手順を説明する。
充電制御部20は、インバータ入力直流電流IDCを監視し、インバータ入力直流電流IDCが、蓄電素子17の端子電圧の動作電圧範囲下限値VLminに相当するインバータ入力電流IDCmin以上であれば(ステップ1においてYes)、インバータ入力直流電圧を定電圧VDCに維持して一次側を駆動する(ステップ2)。このとき、図6に示すように、蓄電素子17は定電流ILで充電される。
蓄電素子17の定電流ILによる充電は、インバータ入力直流電流IDCが、蓄電素子17の端子電圧の動作電圧範囲上限値VLmaxに相当するインバータ入力電流IDCmaxに達するまで継続し、IDCがIDCmaxに達した場合(ステップ3でYes)、充電を終了する(ステップ4)。
The charge control unit 20, while monitoring the AC / DC inverter input DC current input from the power supply 10 to the inverter 12 I DC and the inverter input DC voltage V DC, controls the constant current charging of the power storage element 17.
FIG. 5 shows a control procedure of the charging control unit 20. The control procedure will be described with reference to the charge control operation diagram of FIG.
The charge control unit 20 monitors the inverter input DC current I DC, the inverter input DC current I DC is equal to or corresponding to the inverter input current I DCmin above the operating voltage range lower limit value V Lmin of the terminal voltage of the storage element 17 (Yes in Step 1), the inverter input DC voltage is maintained at the constant voltage V DC to drive the primary side (Step 2). At this time, as shown in FIG. 6, the electric storage element 17 is charged with a constant current I L.
Charging of the storage element 17 with the constant current I L is continued until the inverter input DC current I DC reaches the inverter input current I DCmax corresponding to the operating voltage range upper limit value V Lmax of the terminal voltage of the storage element 17, and I DC If I DCmax has been reached (Yes in step 3), charging is terminated (step 4).

また、図7は、多段定電流充電を行う場合の制御手順を示し、その充電制御動作図を図8に示している。
なお、多段定電流充電は、蓄電素子の内部抵抗による影響を小さくして、より満充電に近い状態まで充電する方法である。定電流充電時に検出される蓄電素子の端子電圧には、蓄電素子の内部抵抗で生じる電圧上昇分が含まれるため、内部抵抗による電圧上昇分が小さくなるように、電流値を下げて定電流充電を繰り返す。
FIG. 7 shows a control procedure when performing multi-stage constant current charging, and FIG. 8 shows a charging control operation diagram.
Note that the multistage constant current charging is a method in which the influence of the internal resistance of the power storage element is reduced and charging is performed to a state closer to full charge. Since the terminal voltage of the storage element detected during constant current charging includes the voltage increase caused by the internal resistance of the storage element, the current value is reduced so that the voltage increase due to the internal resistance is reduced. repeat.

図7において、ステップ1からステップ3までの手順は、図5の場合と同じである。
ステップ3において、インバータ入力直流電流IDCが、蓄電素子17の端子電圧の動作電圧範囲上限値VLmaxに相当するインバータ入力電流IDCmaxに達すると、充電制御部20は、インバータ入力直流電圧VDCを、例えばVDC/2に減らし(ステップ5)、インバータ入力直流電圧を定電圧VDC/2に維持して一次側を駆動する(ステップ6)。このとき、図8に示すように、蓄電素子17は、定電圧VDC/2に対応する定電流ILで充電される。蓄電素子17の端子電圧VLは、充電電流の低下により、蓄電素子17の内部抵抗による電圧上昇分が減少して一時的に下がるが、定電流充電の継続により徐々に上昇する。
充電制御部20は、インバータ入力直流電流IDCが、蓄電素子17の端子電圧の動作電圧範囲上限値VLmaxに相当するインバータ入力電流IDCmaxに再び達すると(ステップ7でYes)、多段定電流充電の多段回数(繰り返す回数)nが1のときは、充電を終了する(ステップ9)。
また、nが2以上の場合は、ステップ5に戻り、インバータ入力直流電圧VDC/2を更に半減してステップ6、7の手順を所定回数繰り返した後、充電を終了する(ステップ9)。
In FIG. 7, the procedure from Step 1 to Step 3 is the same as that in FIG.
In Step 3, the inverter input DC current I DC reaches the inverter input current I DCmax corresponding to the operating voltage range upper limit value V Lmax of the terminal voltage of the storage element 17, charging control unit 20, the inverter input DC voltage V DC Is reduced to, for example, V DC / 2 (step 5), the inverter input DC voltage is maintained at a constant voltage V DC / 2, and the primary side is driven (step 6). At this time, as shown in FIG. 8, the storage element 17 is charged with a constant current I L corresponding to the constant voltage V DC / 2. The terminal voltage V L of the storage element 17 decreases temporarily due to a decrease in charging current due to a decrease in charging current, but gradually increases as constant current charging continues.
The charge control unit 20, (Yes in step 7) the inverter input DC current I DC is, the inverter input current I DCmax reached again and which corresponds to the operating voltage range upper limit value V Lmax of the terminal voltage of the storage element 17, a multi-stage constant current If the number of times of charging (number of repetitions) n is 1, charging is terminated (step 9).
On the other hand, if n is 2 or more, the process returns to step 5, the inverter input DC voltage V DC / 2 is further reduced by half, and the procedure of steps 6 and 7 is repeated a predetermined number of times, and then the charging is terminated (step 9).

このように、この非接触充電装置では、一次側回路を監視し、一次側回路の状態を調節するだけで、蓄電素子の定電流充電が制御できる。そのため、充電制御が簡単である。
また、この非接触充電装置では、二次側の倍電流整流回路の出力を蓄電素子に直接供給して蓄電素子の定電流充電を行うことが可能であり、充電回路を別段設ける必要がない。そのため、充電回路が不要なことや、二次側の整流回路を倍電流整流回路で構成していることにより、この装置では、使用する半導体素子の数を大幅に減らすことができ、半導体素子の通電損失やスイッチングノイズが抑制できる。
Thus, in this non-contact charging device, constant current charging of the storage element can be controlled only by monitoring the primary side circuit and adjusting the state of the primary side circuit. Therefore, charge control is simple.
Further, in this non-contact charging device, the output of the secondary side double current rectifier circuit can be directly supplied to the storage element to perform constant current charging of the storage element, and there is no need to provide a separate charging circuit. For this reason, since the charging circuit is unnecessary and the secondary side rectifier circuit is configured by a double current rectifier circuit, this apparatus can greatly reduce the number of semiconductor elements to be used. Current loss and switching noise can be suppressed.

本発明の非接触充電装置は、リチウム二次電池や電気二重層キャパシタなどの内部抵抗の小さい蓄電素子の充電に適しているが、その他の蓄電素子の定電流充電にも使用することは可能である。
また、ここでは、多段定電流充電を行う場合に、各段で蓄電素子に供給する定電流が半分に低減するように、インバータ入力直流電圧を1/2に減らしているが、その低減率や多段回数は任意に設定することができる。
The non-contact charging device of the present invention is suitable for charging a storage element having a low internal resistance, such as a lithium secondary battery or an electric double layer capacitor, but can also be used for constant current charging of other storage elements. is there.
In addition, here, when performing multi-stage constant current charging, the inverter input DC voltage is reduced by half so that the constant current supplied to the storage element at each stage is reduced by half. The number of multistages can be set arbitrarily.

本発明の非接触充電装置は、産業用電動車両を始めとする各種の移動体などに配置された蓄電素子の定電流充電に広く利用することができる。   The non-contact charging device of the present invention can be widely used for constant current charging of power storage elements arranged in various moving bodies including industrial electric vehicles.

10 AC/DC電源
11 平滑コンデンサ
12 インバータ
13 一次側コイル
14 二次側コイル
15 倍電流整流回路
16 平滑コンデンサ
17 蓄電素子
20 充電制御部
100 AC/DC電源
101 インバータ
102 一次側コイル(送電コイル)
103 二次側コイル(受電コイル)
104 整流回路
105 充電回路
106 蓄電素子
131 磁性体コア
132 巻回電線
133 円形磁性体
134 渦巻状電線
Cs 一次側直列コンデンサ
Cp 二次側並列共振コンデンサ
Cs1 一次側直列コンデンサ
Cs2 二次側直列共振コンデンサ
DESCRIPTION OF SYMBOLS 10 AC / DC power supply 11 Smoothing capacitor 12 Inverter 13 Primary side coil 14 Secondary side coil 15 Double current rectifier circuit 16 Smoothing capacitor 17 Storage element 20 Charge control part 100 AC / DC power supply 101 Inverter 102 Primary side coil (power transmission coil)
103 Secondary coil (receiving coil)
DESCRIPTION OF SYMBOLS 104 Rectifier circuit 105 Charging circuit 106 Power storage element 131 Magnetic body core 132 Winding electric wire 133 Circular magnetic body 134 Spiral electric wire Cs Primary side series capacitor Cp Secondary side parallel resonance capacitor Cs1 Primary side series capacitor Cs2 Secondary side series resonance capacitor

Claims (5)

蓄電素子に定電流を供給して該蓄電素子の充電を行う非接触充電装置であって、
非接触給電トランスの一次側コイルの側に、
直流を出力する直流電源と、
前記直流電源から入力される直流から高周波交流を生成して前記一次側コイルに供給するインバータと、
前記一次側コイルと前記インバータとの間に直列に接続された一次側直列コンデンサと、
を備え、前記非接触給電トランスの二次側コイルの側に、
前記二次側コイルで受電された交流を整流して前記蓄電素子に供給する倍電流整流回路と、
前記二次側コイルと前記倍電流整流回路との間に直列に接続された二次側直列共振コンデンサと、
を備え、さらに、前記直流電源から前記インバータに入力されるインバータ入力直流電圧が定電圧となるように制御する充電制御部を備えることを特徴とする非接触充電装置。
A non-contact charging device for charging a storage element by supplying a constant current to the storage element,
On the primary coil side of the contactless power transformer,
DC power supply that outputs DC,
An inverter that generates high-frequency alternating current from direct current input from the direct-current power supply and supplies the high-frequency alternating current to the primary coil;
A primary series capacitor connected in series between the primary coil and the inverter;
On the secondary coil side of the non-contact power supply transformer,
A double current rectifier circuit that rectifies alternating current received by the secondary coil and supplies the alternating current to the power storage element;
A secondary side series resonant capacitor connected in series between the secondary side coil and the double current rectifier circuit;
And a charge control unit that controls the inverter input DC voltage input to the inverter from the DC power source to be a constant voltage.
請求項1に記載の非接触充電装置であって、前記充電制御部が、前記直流電源から前記インバータに入力されるインバータ入力直流電流を監視し、前記インバータ入力直流電流の大きさに基づいて前記蓄電素子への充電の開始及び停止を制御することを特徴とする非接触充電装置。   2. The contactless charging apparatus according to claim 1, wherein the charging control unit monitors an inverter input DC current input to the inverter from the DC power source, and based on the magnitude of the inverter input DC current. A non-contact charging device that controls start and stop of charging of a power storage element. 請求項1または2に記載の非接触充電装置であって、前記蓄電素子が、リチウム二次電池または電気二重層キャパシタであることを特徴とする非接触充電装置。   3. The contactless charging apparatus according to claim 1, wherein the power storage element is a lithium secondary battery or an electric double layer capacitor. 4. 非接触給電トランスの一次側コイルの側に、直流を出力する直流電源と、前記直流電源から入力される直流から高周波交流を生成して前記一次側コイルに供給するインバータと、前記一次側コイルと前記インバータとの間に直列に接続された一次側直列コンデンサと、を備え、前記非接触給電トランスの二次側コイルの側に、前記二次側コイルで受電された交流を整流して蓄電素子に供給する倍電流整流回路と、前記二次側コイルと前記倍電流整流回路との間に直列に接続された二次側直列共振コンデンサと、を備える非接触充電装置を用いて前記蓄電素子への充電を行う充電方法であって、
前記直流電源から前記インバータに入力されるインバータ入力直流電流を監視して、前記インバータ入力直流電流が、前記蓄電素子の端子電圧の動作電圧範囲下限値に相当するインバータ入力電流IDCmin以上であるとき、充電を開始する充電開始ステップと、
前記蓄電素子への充電中、前記直流電源から前記インバータに入力されるインバータ入力直流電圧を定電圧に維持する定電圧駆動ステップと、
前記インバータ入力直流電流を監視して、前記インバータ入力直流電流が、前記蓄電素子の端子電圧の動作電圧範囲上限値に相当するインバータ入力電流IDCmaxに達したときに充電を停止する充電停止ステップと、
を備えることを特徴とする充電方法。
A direct current power source that outputs direct current to the primary side coil side of the non-contact power supply transformer; an inverter that generates high-frequency alternating current from direct current input from the direct current power source and supplies the high frequency alternating current; and the primary side coil; A primary side series capacitor connected in series with the inverter, and a storage element that rectifies the alternating current received by the secondary side coil on the secondary side coil side of the non-contact power supply transformer To the storage element using a non-contact charging device comprising: a double current rectifier circuit to be supplied to the secondary side; and a secondary side series resonant capacitor connected in series between the secondary side coil and the double current rectifier circuit. A charging method for charging
When the inverter input DC current input to the inverter from the DC power source is monitored and the inverter input DC current is equal to or higher than the inverter input current IDCmin corresponding to the operating voltage range lower limit value of the terminal voltage of the storage element A charging start step for starting charging;
A constant voltage driving step of maintaining an inverter input DC voltage input to the inverter from the DC power supply at a constant voltage during charging of the storage element;
A charge stop step of monitoring the inverter input DC current and stopping charging when the inverter input DC current reaches an inverter input current I DCmax corresponding to an upper limit value of an operating voltage range of the terminal voltage of the storage element; ,
A charging method comprising:
請求項4に記載の充電方法であって、前記充電停止ステップの後に、さらに、
前記直流電源から前記インバータに入力するインバータ入力直流電圧を低減する入力電圧低減ステップと、
前記インバータ入力直流電圧を前記入力電圧低減ステップで設定した低減電圧に維持して前記蓄電素子への充電を行う低減定電圧駆動ステップと、
前記インバータ入力直流電流を監視して、前記インバータ入力直流電流が前記インバータ入力電流IDCmaxに再び達したときに充電を停止する充電停止ステップと、
を備えることを特徴とする充電方法。
5. The charging method according to claim 4, further comprising: after the charging stop step,
An input voltage reduction step of reducing an inverter input DC voltage input to the inverter from the DC power supply;
A reduced constant voltage driving step for charging the storage element while maintaining the inverter input DC voltage at the reduced voltage set in the input voltage reduction step;
A charge stop step of monitoring the inverter input DC current and stopping charging when the inverter input DC current reaches the inverter input current I DCmax again;
A charging method comprising:
JP2013010192A 2013-01-23 2013-01-23 Non-contact charging device and charging method Pending JP2014143814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010192A JP2014143814A (en) 2013-01-23 2013-01-23 Non-contact charging device and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010192A JP2014143814A (en) 2013-01-23 2013-01-23 Non-contact charging device and charging method

Publications (1)

Publication Number Publication Date
JP2014143814A true JP2014143814A (en) 2014-08-07

Family

ID=51424652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010192A Pending JP2014143814A (en) 2013-01-23 2013-01-23 Non-contact charging device and charging method

Country Status (1)

Country Link
JP (1) JP2014143814A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059110A (en) * 2016-07-27 2016-10-26 东南大学 Constant current-constant voltage wireless charging system and charging method thereof
JP2017143699A (en) * 2016-02-12 2017-08-17 株式会社ダイヘン Non-contact power transmission system and power transmission device
JP2017195675A (en) * 2016-04-19 2017-10-26 株式会社ダイヘン Non-contact power transmission system and power reception device
KR20170120566A (en) * 2015-01-19 2017-10-31 바르질라 노르웨이 아에스 An apparatus and a method for wireless transmission of power between dc voltage sources
WO2018056343A1 (en) * 2016-09-21 2018-03-29 日本電産株式会社 Power reception device, control method, and non-contact power supply system
CN111890960A (en) * 2020-07-28 2020-11-06 国家电网有限公司 Wireless charging system of distribution network inspection equipment
WO2021005924A1 (en) * 2019-07-05 2021-01-14 パナソニックIpマネジメント株式会社 Backup power system
CN112260416A (en) * 2020-10-29 2021-01-22 中国科学院电工研究所 Constant-current constant-voltage induction type wireless charging system based on variable primary parameters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209786A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charging/discharging device for electric power storing means and manufacture of electric power storing means using the same
JP2006217731A (en) * 2005-02-03 2006-08-17 Tokyo Univ Of Science Non-contact power supply system
JP2008125198A (en) * 2006-11-09 2008-05-29 Ishida Co Ltd Non-contact feeder system
JP2012085378A (en) * 2010-10-07 2012-04-26 Hitachi Computer Peripherals Co Ltd Resonant charging apparatus and vehicle using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209786A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charging/discharging device for electric power storing means and manufacture of electric power storing means using the same
JP2006217731A (en) * 2005-02-03 2006-08-17 Tokyo Univ Of Science Non-contact power supply system
JP2008125198A (en) * 2006-11-09 2008-05-29 Ishida Co Ltd Non-contact feeder system
JP2012085378A (en) * 2010-10-07 2012-04-26 Hitachi Computer Peripherals Co Ltd Resonant charging apparatus and vehicle using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中野博民,樋口祐三、平地克也: "倍電流整流回路", 電気学会論文誌 産業応用部門誌(D), vol. 第116巻、第10号, JPN6016027297, 20 September 1996 (1996-09-20), JP, pages 1081 - 1082, ISSN: 0003360548 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120566A (en) * 2015-01-19 2017-10-31 바르질라 노르웨이 아에스 An apparatus and a method for wireless transmission of power between dc voltage sources
KR102110846B1 (en) * 2015-01-19 2020-05-15 바르질라 노르웨이 아에스 An apparatus and a method for wireless transmission of power between dc voltage sources
JP2017143699A (en) * 2016-02-12 2017-08-17 株式会社ダイヘン Non-contact power transmission system and power transmission device
JP2017195675A (en) * 2016-04-19 2017-10-26 株式会社ダイヘン Non-contact power transmission system and power reception device
CN106059110A (en) * 2016-07-27 2016-10-26 东南大学 Constant current-constant voltage wireless charging system and charging method thereof
WO2018056343A1 (en) * 2016-09-21 2018-03-29 日本電産株式会社 Power reception device, control method, and non-contact power supply system
CN114025996A (en) * 2019-07-05 2022-02-08 松下知识产权经营株式会社 Standby power supply system
WO2021005924A1 (en) * 2019-07-05 2021-01-14 パナソニックIpマネジメント株式会社 Backup power system
JP7462135B2 (en) 2019-07-05 2024-04-05 パナソニックIpマネジメント株式会社 Backup Power System
US11962183B2 (en) 2019-07-05 2024-04-16 Panasonic Intellectual Property Management Co., Ltd. Backup power system
CN111890960A (en) * 2020-07-28 2020-11-06 国家电网有限公司 Wireless charging system of distribution network inspection equipment
CN111890960B (en) * 2020-07-28 2022-10-28 国家电网有限公司 Wireless charging system of distribution network inspection equipment
CN112260416A (en) * 2020-10-29 2021-01-22 中国科学院电工研究所 Constant-current constant-voltage induction type wireless charging system based on variable primary parameters

Similar Documents

Publication Publication Date Title
JP2014143814A (en) Non-contact charging device and charging method
JP6497614B2 (en) Power transmission device and wireless power transmission system
US10333398B2 (en) Charging apparatus
JP6269939B2 (en) Non-contact power supply system, non-contact power supply method, and secondary battery charging method
JP6111139B2 (en) Bi-directional contactless power feeder
WO2013125672A1 (en) Power-supply device and control method therefor
JP5419857B2 (en) Secondary power receiving circuit of non-contact power supply equipment
US9981565B2 (en) Impedance control device and vehicular non-contact power receiving device
US8933662B2 (en) Charging apparatus for lead storage battery
JP6037022B2 (en) Power transmission device, wireless power transmission system, and power transmission discrimination method
Lovison et al. Secondary-side-only simultaneous power and efficiency control for two converters in wireless power transfer system
JP2011147278A (en) Lead-battery charger
CN103503272A (en) Power supply device, inverter device, power tool
CN102097849B (en) Electric energy recovery unit of inductor for electromobile with direct current (DC) machine
JP2017060328A (en) Non-contact power reception device and power transmission system
JP6111625B2 (en) Wireless power transmission equipment
US20220190647A1 (en) Power transmitting device and wireless power transmission system
JP2013158168A (en) Resonant converter
CN110149052B (en) Resonant circuit topology structure for battery charging
WO2016006066A1 (en) Contactless power supply device
TWI553993B (en) Non-contact power supply equipment secondary side of the receiving circuit
US9106088B2 (en) Non-contact power transmission apparatus
WO2014080671A1 (en) Contactless power transmission system and power reception device
Jagtap et al. Partial Development of SMPS based Battery Charging System for Electric Vehicle.
Cimen et al. Development of a modular inductive power transfer system with a reactive power correction for EV application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131