JP2014140937A - Abrasive and polishing method - Google Patents

Abrasive and polishing method Download PDF

Info

Publication number
JP2014140937A
JP2014140937A JP2013011559A JP2013011559A JP2014140937A JP 2014140937 A JP2014140937 A JP 2014140937A JP 2013011559 A JP2013011559 A JP 2013011559A JP 2013011559 A JP2013011559 A JP 2013011559A JP 2014140937 A JP2014140937 A JP 2014140937A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
content
metal salt
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013011559A
Other languages
Japanese (ja)
Inventor
Yoshitaka Saito
喜隆 齋藤
Takeshi Yanagihara
武 楊原
Miyuki Yamada
美幸 山田
Yasuhiro Tani
泰弘 谷
Junji Murata
順二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRYSTAL KOGAKU KK
Ritsumeikan Trust
Admatechs Co Ltd
Crystal Optics Inc
Original Assignee
CRYSTAL KOGAKU KK
Ritsumeikan Trust
Admatechs Co Ltd
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRYSTAL KOGAKU KK, Ritsumeikan Trust, Admatechs Co Ltd, Crystal Optics Inc filed Critical CRYSTAL KOGAKU KK
Priority to JP2013011559A priority Critical patent/JP2014140937A/en
Publication of JP2014140937A publication Critical patent/JP2014140937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive which does not use an abrasive grain including a rare earth element like a cerium oxide abrasive grain and secures polishing performance (polishing rate and surface roughness) which is equivalent to a case where the cerium oxide abrasive grain is used.SOLUTION: The abrasive includes: an abrasive grain of which main constituent is zirconium oxide (ZrO); and a polishing assistant composed of metallic salt. A content percentage of the assistant (Ma/Mg) that is a mass ratio of the polishing assistant content (Ma) to the abrasive grain content (Mg), is preferably 0.1-2. Polishing performance is improved by the presence of a suitable amount of the metallic salt in the abrasive grain. A reason for this is that ionic concentration in the slurry is raised by the salting-out effect of the metallic salt, charge balance on the surface of the abrasive grain is lost, so that particles are loosely aggregated with each other, and the abrasive grain consisting of zirconium oxide is easily retained in the abrasive pad.

Description

本発明は、ガラス(特に光学ガラス)等の精密部品の研磨に適した研磨材および研磨方法に関する。   The present invention relates to an abrasive and a polishing method suitable for polishing precision parts such as glass (particularly optical glass).

光学用レンズ、プラズマまたは液晶のディスプレイパネル用ガラス、液晶TV用カラーフィルター用ガラス、LSI用フォトマスク用ガラス等の精密部品は、平坦性や表面粗さなどの要求が厳しく、高精度な表面研磨を経て製造される。   Precision parts such as optical lenses, glass for plasma or liquid crystal display panels, glass for color filters for liquid crystal TVs, glass for LSI photomasks, etc. have strict requirements for flatness and surface roughness, and high precision surface polishing. It is manufactured through.

このような表面研磨には、二酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等からなる砥粒の他、化学機械研磨作用を発揮するといわれる酸化セリウムからなる砥粒(微粒子)が用いられている。酸化セリウムからなる砥粒を表面研磨に用いると、良好な表面粗さのみならず高い研磨レートも得られ、研磨性の向上を図れる。   For such surface polishing, abrasive grains (fine particles) made of cerium oxide, which is said to exhibit a chemical mechanical polishing action, are used in addition to abrasive grains made of silicon dioxide, aluminum oxide, zirconium oxide and the like. When abrasive grains made of cerium oxide are used for surface polishing, not only good surface roughness but also a high polishing rate can be obtained, and the polishing performance can be improved.

もっとも最近では、希土類元素などの希少元素の使用量を低減することが求められており、希土類元素を含まない新たな研磨材や研磨方法が盛んに研究されている。これに関連した記載が例えば下記の特許文献1にある。   Most recently, it has been required to reduce the amount of rare elements such as rare earth elements, and new abrasives and polishing methods that do not contain rare earth elements have been actively studied. There is a description related to this in Patent Document 1 below.

特開2012−74736号公報JP 2012-74736 A

特許文献1は、半導体ウェハー等の基材に適した研磨材として、セリアまたはジルコニア等の砥材(0.01〜1質量%)とハロゲン化物塩(0.05〜5mM)と水からなる化学−機械研磨組成物を提案している。   Patent Document 1 discloses a chemical composition comprising an abrasive (0.01 to 1% by mass) such as ceria or zirconia, a halide salt (0.05 to 5 mM), and water as an abrasive suitable for a substrate such as a semiconductor wafer. -A mechanical polishing composition is proposed.

特許文献1では、そのハロゲン化物塩が研磨に及ぼす作用または影響が明確にされておらず、そのハロゲン化物塩の添加により研磨性に実質的な影響があった砥材はセリアまたはアルミナだけである。逆にいうと、砥材がジルコニアの場合、特許文献1ではハロゲン化物塩(具体的にはヨウ化カリウム:KI)が有効に作用していない。   In Patent Document 1, the action or influence of the halide salt on polishing is not clarified, and ceria or alumina is the only abrasive that has a substantial influence on the polishability by the addition of the halide salt. . Conversely, when the abrasive is zirconia, in Patent Document 1, a halide salt (specifically, potassium iodide: KI) does not act effectively.

この理由として、ジルコニアからなる砥材に対して、ハロゲン化物塩の添加量が過少であることが考えられる。実際に特許文献1に記載された実施例([0027])を観ると、ジルコニアが1質量%に対してKIが0.5mM程度(具体的な記載がないため[0031]の記載を参照)である。仮に研磨組成物1Lあたり(KI量の特定に必要な全体量に関する具体的な記載もないため、一般的な全体量で仮定した。)で考えると、そのKIのジルコニアに対する割合は0.0083となり、非常に少量であることがわかる。   The reason for this may be that the amount of halide salt added is too small with respect to the abrasive made of zirconia. When the example ([0027]) described in Patent Document 1 is actually observed, KI is about 0.5 mM with respect to 1% by mass of zirconia (see the description of [0031] because there is no specific description). It is. If considered in terms of 1 L of polishing composition (since there is no specific description of the total amount necessary for specifying the KI amount, a general total amount is assumed), the ratio of KI to zirconia is 0.0083. It turns out that it is a very small amount.

本発明はこのような事情に鑑みて為されたものであり、酸化ジルコニウムを主成分とする砥粒を用いつつ、酸化セリウムからなる砥粒を用いた場合と同等な優れた研磨性を低コストで得られる研磨材および研磨方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and while using abrasive grains mainly composed of zirconium oxide, excellent polishing performance equivalent to that obtained when abrasive grains made of cerium oxide are used at low cost. It aims at providing the abrasive | polishing material and polishing method which are obtained by this.

本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、酸化ジルコニウムからなる砥粒と金属塩を適切に分散させた研磨スラリーを用いると、酸化セリウムからなる砥粒を用いるまでもなく、それを用いた場合と同等な表面粗さおよび研磨レートが得られて、研磨性が大幅に向上し得ることが新たにわかった。この発見を発展させることにより、以降に述べる一連の本発明を完成するに至った。   As a result of intensive studies and trial and error to solve this problem, the present inventor used a polishing slurry in which abrasive grains made of zirconium oxide and metal salts were appropriately dispersed until the abrasive grains made of cerium oxide were used. In addition, it has been newly found that the surface roughness and polishing rate equivalent to the case of using the same can be obtained, and the polishing performance can be greatly improved. By developing this discovery, a series of the present invention described below has been completed.

《研磨材》
(1)本発明の研磨材は、酸化ジルコニウム(ZrO)を主成分とする砥粒と、金属塩からなる研磨助剤と、を含む研磨材であって、前記砥粒の含有量(Mg)に対する前記研磨助剤の含有量(Ma)の質量割合である助剤含有率(Ma/Mg)は、0.1〜2であることを特徴とする。
《Abrasive material》
(1) The abrasive of the present invention is an abrasive comprising an abrasive mainly composed of zirconium oxide (ZrO 2 ) and a polishing aid comprising a metal salt, and the content of the abrasive (Mg ) The auxiliary agent content (Ma / Mg), which is a mass ratio of the content (Ma) of the polishing auxiliary to), is 0.1 to 2.

(2)本発明の研磨材により、希少な酸化セリウム等からなる砥粒を用いることなく、良好な研磨性を確保することが可能となる。 (2) With the abrasive of the present invention, it is possible to ensure good polishing properties without using abrasive grains made of rare cerium oxide or the like.

ところで、本発明の研磨材が優れた研磨性を発現するメカニズムは必ずしも定かではないが、現状では次のように考えられる。酸化ジルコニウムからなる砥粒を含むスラリー中に金属塩を添加することで、塩析効果によりスラリー中のイオン濃度が上がり、砥粒表面の電荷バランスが崩れる。その結果、粒子同士がゆるく凝集した為、酸化ジルコニウムからなる砥粒が研磨パッド上で滞留し易くなり、研磨レートが向上したと考えられる。   By the way, the mechanism by which the abrasive of the present invention exhibits excellent abrasiveness is not necessarily clear, but at present, it is considered as follows. By adding a metal salt to a slurry containing abrasive grains made of zirconium oxide, the ion concentration in the slurry increases due to the salting out effect, and the charge balance on the abrasive grain surface is lost. As a result, since the particles loosely aggregated, the abrasive grains made of zirconium oxide are likely to stay on the polishing pad, and the polishing rate is considered to be improved.

また、本発明に係る金属塩が還元性を発現し得ることにより、例えば、砥粒を構成する酸化ジルコニウム中の酸素が還元されて、酸素欠陥状態または酸素欠乏状態となった砥粒が研磨性を向上させるとも考えられる。   Further, since the metal salt according to the present invention can exhibit reducibility, for example, oxygen in zirconium oxide constituting the abrasive grains is reduced, and the abrasive grains in an oxygen deficient state or an oxygen deficient state are abradable. It is thought that it improves.

このように本発明の研磨材は、単なる機械研磨のみならず化学研磨も生じ、いわゆる化学研磨作用を発現させ得るとも考えられるが、そのメカニズムについては鋭意研究中であり、現状、その詳細が明らかな訳ではない。いずれにしても、酸化ジルコニウムからなる砥粒を用いて研磨を行う場合に、適量の金属塩が研磨性を向上させることは確かである。   As described above, the polishing material of the present invention may cause not only mechanical polishing but also chemical polishing, and may develop a so-called chemical polishing action. However, the mechanism is under intensive study, and the details are clear at present. Not a reason. In any case, when polishing is performed using abrasive grains made of zirconium oxide, it is certain that an appropriate amount of metal salt improves the polishing properties.

《研磨方法》
本発明は、上述した研磨材としてのみならず、それを用いた研磨方法としても把握できる。すなわち本発明は、酸化ジルコニウムを主成分とする砥粒を分散媒に分散させた研磨スラリーを調製する調製工程と、該研磨スラリーを用いて被研磨材を研磨する研磨工程と、を備える研磨方法であって、前記研磨スラリーは、さらに、金属塩からなる研磨助剤を含み、前記砥粒の含有量(Mg)に対する該研磨助剤の含有量(Ma)の質量割合である助剤含有率(Ma/Mg)が0.1〜2であることを特徴とする研磨方法でもよい。
<Polishing method>
The present invention can be grasped not only as the above-described abrasive but also as a polishing method using the same. That is, the present invention provides a polishing method comprising: a preparation step of preparing a polishing slurry in which abrasive grains mainly composed of zirconium oxide are dispersed in a dispersion medium; and a polishing step of polishing a material to be polished using the polishing slurry. The polishing slurry further includes a polishing aid made of a metal salt, and the auxiliary agent content is a mass ratio of the content (Ma) of the polishing aid to the content (Mg) of the abrasive grains. A polishing method characterized in that (Ma / Mg) is 0.1 to 2.

《その他》
(1)前述した助剤含有率は、0.1〜2、0.12〜1.8、0.15〜1.7、0.2〜1.5さらには0.3〜1.2であると好ましい。助剤含有率が過小では、金属塩からなる研磨助剤による研磨性の向上効果が乏しい。一方、本発明の場合、助剤含有率の上限値は必ずしも必須ではなく、助剤含有率が大きくても研磨性(特に研磨レート)の向上を図れ得る。但し、助剤含有率が過大では不経済であるため、本発明では上記のような助剤含有率の上限値を便宜的に設けた。
<Others>
(1) The aforementioned auxiliary agent content is 0.1 to 2, 0.12 to 1.8, 0.15 to 1.7, 0.2 to 1.5, or 0.3 to 1.2. Preferably there is. When the content of the auxiliary agent is too small, the polishing effect of the polishing auxiliary made of a metal salt is poor. On the other hand, in the case of the present invention, the upper limit value of the auxiliary agent content is not necessarily essential, and even if the auxiliary agent content is large, the polishing property (particularly the polishing rate) can be improved. However, since it is uneconomical if the auxiliary content is excessive, the upper limit of the auxiliary content as described above is provided for convenience in the present invention.

(2)本発明に係る砥粒は、酸化ジルコニウムからなるが、それ以外の元素や化合物(特に酸化物)を含有していてもよい。例えば、Zrと特性が似ているハフニウム(Hf)が含まれていてもよい。その他、本発明に係る砥粒は、適宜、分離または除去困難な不純物や特性改善に有効な改質元素を含み得る。これらの含有量は問わないが、砥粒全体を100質量%としたときに、ZrOが50質量%以上、70質量%以上、80質量%以上さらには90質量%以上であればよい。このようにZrOが50質量%以上含まれる砥粒を本明細書では「ZrOを主成分とする砥粒」という。 (2) The abrasive grains according to the present invention are composed of zirconium oxide, but may contain other elements and compounds (particularly oxides). For example, hafnium (Hf) having characteristics similar to Zr may be included. In addition, the abrasive according to the present invention may appropriately contain impurities that are difficult to separate or remove and modified elements that are effective for improving characteristics. Although no limitation on the content thereof, the whole grains is taken as 100 mass%, ZrO 2 is 50 mass% or more, 70 wt% or more, 80 mass% or more and even more may be at least 90 mass%. Thus the herein abrasive ZrO 2 is contained more than 50 wt% of "abrasive grains mainly composed of ZrO 2."

(3)本発明の研磨材はその状態や形態を問わない。例えば、水等の分散媒に分散させる以前の粉末状態でも、砥粒等が分散媒に分散した研磨組成物(研磨スラリー)でもよい。つまり本発明の研磨材は、砥粒の粉末と金属塩の粉末を混合した混合粉末でも、砥粒と金属塩が分散媒中に分散した研磨スラリーでもよい。また本発明では、金属塩の状態も問わない。つまり、金属塩は結晶化した固形状でもよいし、分散媒に溶解して電離した状態でもよい。両場合を含めて本明細書では金属塩という。 (3) The state and form of the abrasive of the present invention are not limited. For example, a powder composition before being dispersed in a dispersion medium such as water or a polishing composition (abrasive slurry) in which abrasive grains are dispersed in a dispersion medium may be used. That is, the abrasive of the present invention may be a mixed powder obtained by mixing abrasive powder and metal salt powder, or a polishing slurry in which abrasive grains and metal salt are dispersed in a dispersion medium. In the present invention, the state of the metal salt is not limited. That is, the metal salt may be a crystallized solid or may be dissolved in a dispersion medium and ionized. In this specification, including both cases, it is referred to as a metal salt.

(4)本発明に係る金属塩を水に溶解させたときのpHは問わない。一例として本発明に係る金属塩は、水に溶解させたときにpHが3〜10さらには4〜9の水溶液となると好ましい。 (4) There is no limitation on the pH when the metal salt according to the present invention is dissolved in water. As an example, the metal salt according to the present invention is preferably an aqueous solution having a pH of 3 to 10, more preferably 4 to 9, when dissolved in water.

(5)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した具体的な数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような数値範囲を任意に新設し得る。 (5) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. Any numerical value included in the specific numerical values or numerical ranges described in the present specification can be arbitrarily set as a new lower limit value or upper limit value such as “ab”.

発明の実施形態を挙げて本発明をより詳しく説明する。上述した本発明の構成に、本明細書中から選択した一つまたは二つ以上の構成を任意に付加し得る。本明細書で説明する内容は、本発明に係る研磨材および研磨方法に適宜適用される。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. One or more configurations selected from the present specification can be arbitrarily added to the configuration of the present invention described above. The contents described in this specification are appropriately applied to the abrasive and the polishing method according to the present invention. Which embodiment is the best depends on the target, required performance, and the like.

《研磨材》
(1)砥粒
本発明に係る砥粒は、前述した通り、酸化ジルコニウム(ZrO)を主成分とすれば足り、改質元素や不可避不純物等を含み得る。また、本発明に係る砥粒は、ZrO以外の組成からなる別種の砥粒を含む混合砥粒でもよい。
《Abrasive material》
(1) Abrasive Grains As described above, the abrasive grains according to the present invention need only contain zirconium oxide (ZrO 2 ) as a main component, and may contain modifying elements, inevitable impurities, and the like. The abrasive grains according to the present invention may be mixed abrasive grains including other kinds of abrasive grains having a composition other than ZrO 2 .

砥粒の形状、サイズ、製法等も問わないが、例えば、平均粒径が0.1〜3μm、0.3〜2μmさらには0.5〜1μmであると好ましい。平均粒径が過小では研磨レートが小さく、平均粒径が過大では研磨面の表面粗さが大きくなる。なお、この平均粒径は「体積平均粒径」であり、測定対象であるサンプル(砥粒粉末)について、各粒子の直径(粒径:d)にそれぞれの粒子の体積占有率(重み:v/V)をかけて求めた総和(Σd・v/V)である(Vはサンプル全体の体積)。具体的には、レーザー回折散乱式粒度分布計(堀場製作所製LA750)を用いてJIS Z8825−1に準じて測定された粒径である。 The shape, size, production method and the like of the abrasive grains are not limited, but for example, the average particle diameter is preferably 0.1 to 3 μm, 0.3 to 2 μm, and more preferably 0.5 to 1 μm. If the average particle size is too small, the polishing rate is small, and if the average particle size is too large, the surface roughness of the polished surface increases. Incidentally, the average particle diameter is "volume average particle diameter", for samples (abrasive powder) to be measured, for each particle diameter (particle diameter: d i) the volume occupancy of the respective particles (weight: v i / V 0 ) is the total sum (Σd i · v i / V 0 ) (V 0 is the volume of the entire sample). Specifically, the particle size is measured according to JIS Z8825-1 using a laser diffraction / scattering particle size distribution meter (LA750 manufactured by Horiba, Ltd.).

(2)研磨助剤
本発明に係る研磨助剤は、金属塩を含むものであれば足る。このような金属塩として、アルカリ金属塩、塩化物または硫酸塩等がある。具体的には、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、塩化リチウム、塩化マグネシウム、塩化亜鉛、塩化マンガン、塩化コバルト、塩化ニッケル、塩化鉄、硫酸鉄等である。特に金属塩は、ナトリウム、カリウム若しくは鉄の塩酸塩または硫酸塩であり、さらにはその塩酸塩および/または硫酸塩のみからなると好ましい。
(2) Polishing aid The polishing aid according to the present invention is sufficient if it contains a metal salt. Such metal salts include alkali metal salts, chlorides or sulfates. Specific examples include sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, lithium chloride, magnesium chloride, zinc chloride, manganese chloride, cobalt chloride, nickel chloride, iron chloride, and iron sulfate. In particular, the metal salt is sodium, potassium or iron hydrochloride or sulfate, and it is preferable that the metal salt further consists only of the hydrochloride and / or sulfate.

《研磨方法》
研磨スラリーの調製に用いる分散媒の種類は問わないが、通常はイオン交換水などが用いられる。また、その分散媒の割合も問わないが、例えば、研磨スラリー全体を100質量%としたときに分散媒が80〜99質量%さらには90〜98質量%とすればよい。分散媒が過多では研磨レートの向上が望めず、分散媒が過小では砥粒が過多となり不経済であり却って研磨性の低下を招来し得る。
<Polishing method>
The type of the dispersion medium used for the preparation of the polishing slurry is not limited, but usually ion exchange water or the like is used. Further, the ratio of the dispersion medium is not limited. For example, when the entire polishing slurry is 100% by mass, the dispersion medium may be 80 to 99% by mass, and further 90 to 98% by mass. If the amount of the dispersion medium is excessive, an improvement in the polishing rate cannot be expected. If the amount of the dispersion medium is too small, the abrasive grains are excessive, which is uneconomical.

研磨スラリーを調製する調製工程では、砥粒と研磨助剤の混合粉末を分散媒に分散させても良いし、研磨助剤を添加した分散媒に砥粒を分散させても良いし、砥粒を分散させた分散媒に研磨助剤を添加してもよい。   In the preparation step of preparing the polishing slurry, the mixed powder of the abrasive grains and the polishing aid may be dispersed in the dispersion medium, or the abrasive grains may be dispersed in the dispersion medium to which the polishing aid is added. A polishing aid may be added to the dispersion medium in which is dispersed.

《研磨対象》
本発明の研磨材による研磨対象(被研磨材)は問わないが、例えば、各種のガラス、半導体基板、金属基板などである。特に、高精度の研磨が要求される光学用レンズ、プラズマまたは液晶のディスプレイパネル用ガラス、液晶TV用カラーフィルター用ガラス、LSI用フォトマスク用ガラス等の精密ガラスの研磨に本発明の研磨材は好適である。
<Polishing target>
The object to be polished (the material to be polished) by the abrasive of the present invention is not limited, and examples thereof include various glasses, semiconductor substrates, metal substrates, and the like. In particular, the polishing material of the present invention is used for polishing precision glass such as optical lenses, plasma or liquid crystal display panel glass, liquid crystal TV color filter glass, LSI photomask glass, etc. that require high precision polishing. Is preferred.

《試料の製造》
(1)砥粒
砥粒として、酸化ジルコニウム粉末 (株式会社アドマテックス製ZC3000)を用意した。この粉末の平均粒径は0.8μmであった。また、市販の酸化セリウム粉末(昭和電工株式会社製SHOROX A−10/平均粒径1μm)も用意した(試料C5参照)。なお、各平均粒径は、レーザー回折散乱式粒度分布計により求めたものである。
<Production of sample>
(1) Abrasive grains Zirconium oxide powder (ZC3000 manufactured by Admatechs Co., Ltd.) was prepared as abrasive grains. The average particle size of this powder was 0.8 μm. In addition, a commercially available cerium oxide powder (SHOROX A-10 manufactured by Showa Denko KK / average particle size 1 μm) was also prepared (see Sample C5). In addition, each average particle diameter is calculated | required with the laser diffraction scattering type particle size distribution analyzer.

(2)研磨助剤
研磨助剤として、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化リチウム、塩化亜鉛、塩化鉄(II)、硫酸鉄(II)、塩化マグネシウム、塩化アンモニウムおよびリン酸ナトリウムの粉末(市販の試薬)を用意した。
(2) Polishing aids As polishing aids, powders of sodium chloride, potassium chloride, sodium sulfate, lithium chloride, zinc chloride, iron (II) chloride, iron (II) sulfate, magnesium chloride, ammonium chloride and sodium phosphate ( A commercially available reagent) was prepared.

(3)調製工程
上述した各砥粒および各研磨助剤とイオン交換水(分散媒)とを表1に示す割合で混合し、ホモミキサーで撹拌して、各種の研磨スラリーを調製した。但し、試料C5および試料C6は砥粒と分散媒のみとした。
(3) Preparation Step Each abrasive grain and each polishing aid described above and ion-exchanged water (dispersion medium) were mixed at a ratio shown in Table 1, and stirred with a homomixer to prepare various polishing slurries. However, Sample C5 and Sample C6 were only abrasive grains and a dispersion medium.

《研磨工程》
表1に示した各研磨スラリーを用いて、被研磨材であるソーダガラス(直径50mm、厚み2mm)を研磨した。なお、研磨前に、ソーダガラスの表面を予めサンドペーパー(#400)ですりガラス状に粗らしておいた。
《Polishing process》
Using each polishing slurry shown in Table 1, soda glass (diameter 50 mm, thickness 2 mm) as a material to be polished was polished. In addition, the surface of the soda glass was previously roughened into a glass shape with sandpaper (# 400) before polishing.

研磨には、片面研磨装置(株式会社エム・エー・ティ社製、BC−15)を用いた。この際、各研磨スラリーを25cc/minの割合で、ウレタン樹脂製の研磨パッド(九重電気株式会社製、KSP66A)上に滴下させつつ研磨した。   For polishing, a single-side polishing apparatus (manufactured by MTT Co., Ltd., BC-15) was used. At this time, each polishing slurry was polished while being dropped on a polishing pad made of urethane resin (KSP66A, manufactured by Kuju Electric Co., Ltd.) at a rate of 25 cc / min.

研磨スラリーを内包した研磨パッドと被研磨材であるソーダガラスとの面圧は約200g/cm、ソーダガラス上を摺動する研磨パッドの回転数は60r.p.m.とした。この研磨を30分間行った。 The surface pressure between the polishing pad containing the polishing slurry and the soda glass as the material to be polished was about 200 g / cm 2 , and the rotation speed of the polishing pad sliding on the soda glass was 60 rpm. This polishing was performed for 30 minutes.

《測定》
(1)研磨レート
被研磨材(ソーダガラス)の質量を、研磨前および研磨後に測定した。研磨前後の質量変化をソーダガラスの断面積で除して、被研磨材の厚みの減少量に換算して研磨レート(μm/min)を求めた。この結果を表1に併せて示した。
<Measurement>
(1) Polishing rate The mass of the material to be polished (soda glass) was measured before and after polishing. The change in mass before and after polishing was divided by the cross-sectional area of soda glass, and the polishing rate (μm / min) was determined in terms of the reduction in the thickness of the material to be polished. The results are also shown in Table 1.

(2)表面粗さ
研磨後のソーダガラスの表面を、非接触表面形状測定機(キャノン株式会社製NewView7200)により測定し、0.70mm×0.53mmの範囲の算術平均粗さRa(JIS)を求めた。この結果を表1に併せて示した。ちなみに研磨前のソーダガラスの表面粗さRaは約0.1〜0.2μm程度であった。
(2) Surface roughness The surface of soda glass after polishing was measured with a non-contact surface shape measuring instrument (NewView 7200, manufactured by Canon Inc.), and arithmetic average roughness Ra in the range of 0.70 mm x 0.53 mm (JIS) Asked. The results are also shown in Table 1. Incidentally, the surface roughness Ra of the soda glass before polishing was about 0.1 to 0.2 μm.

《評価》
表1に示した結果から次のことがわかる。試料1〜11と試料C4とを比較すると明らかなように、金属塩(研磨助剤)を添加(配合)した研磨スラリーを用いることにより、研磨レートが大幅に向上することがわかる。つまり、酸化ジルコニウムの砥粒と金属塩からなる研磨助剤とを組み合わせた研磨材は、酸化セリウムの砥粒からなる研磨材の代替となり得ることが確認できた。
<Evaluation>
From the results shown in Table 1, the following can be understood. As is clear when Samples 1 to 11 and Sample C4 are compared, it is understood that the polishing rate is greatly improved by using a polishing slurry to which a metal salt (polishing aid) is added (blended). In other words, it was confirmed that an abrasive combined with a zirconium oxide abrasive and a polishing aid made of a metal salt could be an alternative to an abrasive made of cerium oxide abrasive.

また、試料1〜11と試料C2〜C3とを比較すると明らかなように、研磨助剤は金属元素の塩酸塩、硫酸塩でなければ効果がなく、それ以外の塩(特にアンモニウム塩、リン酸塩)を用いた場合の研磨レートは試料C4(研磨材が酸化ジルコニウムのみからなる場合)より低下することがわかった。   Further, as apparent from comparison between Samples 1 to 11 and Samples C2 to C3, the polishing aid is effective only if it is a metal element hydrochloride or sulfate, and other salts (especially ammonium salts and phosphoric acid). It was found that the polishing rate in the case of using (salt) was lower than that of sample C4 (in the case where the abrasive was composed only of zirconium oxide).

さらに、試料1〜4と試料C1を比較すると明らかなように、砥粒(酸化ジルコニウム)に対して研磨助剤(例えば、塩化ナトリウム)が過少(助剤含有率が0.1未満)では、研磨レートが向上しないことがわかった。また試料1〜4同士を比較するとわかるように、助剤含有率の増加により研磨レートは向上するが、助剤含有率が0.4以上になると研磨レートはあまり増加せず飽和状態になることもわかった。   Further, as apparent from comparison between Samples 1 to 4 and Sample C1, the polishing aid (for example, sodium chloride) is too small (auxiliary content is less than 0.1) with respect to the abrasive grains (zirconium oxide). It was found that the polishing rate was not improved. In addition, as can be seen by comparing samples 1 to 4, the polishing rate is improved by increasing the auxiliary agent content, but when the auxiliary agent content is 0.4 or more, the polishing rate does not increase so much and becomes saturated. I understand.

このように研磨スラリー中に含まれる適量の金属塩が研磨性の向上に効果的に作用していることがわかる。この理由として、金属塩の塩析効果によりスラリー中のイオン濃度が上がり、砥粒表面の電荷バランスが崩れて、粒子同士がゆるく凝集したために酸化ジルコニウムからなる砥粒が研磨パッド中で滞留し易くなったことが一因である考えられる。また金属塩の還元性により、砥粒と被研磨材の間にメカノケミカル反応等を生じて、研磨性が向上したことも一因とも考えられる。   Thus, it can be seen that an appropriate amount of metal salt contained in the polishing slurry effectively acts to improve the polishing properties. The reason for this is that the ion concentration in the slurry increases due to the salting out effect of the metal salt, the charge balance of the abrasive grain surface is disrupted, and the grains are loosely aggregated, so that the abrasive grains made of zirconium oxide tend to stay in the polishing pad. This is thought to be part of the reason. In addition, it is considered that the reduction of the metal salt causes a mechanochemical reaction between the abrasive grains and the material to be polished to improve the polishing performance.

いずれにしも、試料No.1〜11のような本発明に係る研磨材(研磨スラリー)を用いることにより、希少な希土類元素からなる砥粒(酸化セリウム粒子)を使用するまでもなく、良好で効率的な研磨を行えることが明らかとなった。   In any case, sample no. By using the abrasive (polishing slurry) according to the present invention as in 1 to 11, good and efficient polishing can be performed without using abrasive grains (cerium oxide particles) made of rare rare earth elements. Became clear.

Figure 2014140937
Figure 2014140937

Claims (8)

酸化ジルコニウム(ZrO)を主成分とする砥粒と、
金属塩からなる研磨助剤と、
を含む研磨材であって、
前記砥粒の含有量(Mg)に対する前記研磨助剤の含有量(Ma)の質量割合である助剤含有率(Ma/Mg)は、0.1〜2であることを特徴とする研磨材。
Abrasive grains mainly composed of zirconium oxide (ZrO 2 );
A polishing aid comprising a metal salt;
An abrasive containing
An abrasive content, which is a mass ratio of the content (Ma) of the polishing aid to the content (Mg) of the abrasive grains, is 0.1 to 2. .
前記金属塩は、金属元素の塩酸塩、硫酸塩、硝酸塩、蓚酸塩またはそれらの一種以上を混合した混合塩のいずれかであることを特徴とする請求項1に記載の研磨材。   2. The abrasive according to claim 1, wherein the metal salt is any one of a metal element hydrochloride, sulfate, nitrate, oxalate, or a mixed salt obtained by mixing one or more thereof. 前記金属塩は、ナトリウム、カリウム若しくは鉄の塩酸塩または硫酸塩である請求項2に記載の研磨材。   The abrasive according to claim 2, wherein the metal salt is a hydrochloride or sulfate of sodium, potassium or iron. 前記砥粒は、平均粒径が0.1〜5μmである請求項1〜3のいずれかに記載の研磨材。   The abrasive according to any one of claims 1 to 3, wherein the abrasive has an average particle size of 0.1 to 5 µm. 前記砥粒の粉末と前記金属塩の粉末とを混合した混合粉末からなる請求項1〜4のいずれかに記載の研磨材。   The abrasive according to any one of claims 1 to 4, comprising a mixed powder obtained by mixing the abrasive powder and the metal salt powder. 前記砥粒と前記金属塩が分散媒中に分散している研磨スラリーからなる請求項1〜4のいずれかに記載の研磨材。   The abrasive according to claim 1, comprising an abrasive slurry in which the abrasive grains and the metal salt are dispersed in a dispersion medium. 前記研磨スラリーは、pHが3〜10である請求項6に記載の研磨材。   The abrasive according to claim 6, wherein the polishing slurry has a pH of 3 to 10. 酸化ジルコニウム(ZrO)を主成分とする砥粒を分散媒に分散させた研磨スラリーを調製する調製工程と、
該研磨スラリーを用いて被研磨材を研磨する研磨工程と、
を備える研磨方法であって、
前記研磨スラリーは、さらに、金属塩からなる研磨助剤を含み、前記砥粒の含有量(Mg)に対する該研磨助剤の含有量(Ma)の質量割合である助剤含有率(Ma/Mg)が0.1〜2であることを特徴とする研磨方法。
A preparation step of preparing a polishing slurry in which abrasive grains mainly composed of zirconium oxide (ZrO 2 ) are dispersed in a dispersion medium;
A polishing step of polishing a material to be polished using the polishing slurry;
A polishing method comprising:
The polishing slurry further includes a polishing aid made of a metal salt, and an auxiliary agent content (Ma / Mg) which is a mass ratio of the content (Ma) of the polishing auxiliary to the content (Mg) of the abrasive grains. Is a polishing method characterized by 0.1-2.
JP2013011559A 2013-01-24 2013-01-24 Abrasive and polishing method Pending JP2014140937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013011559A JP2014140937A (en) 2013-01-24 2013-01-24 Abrasive and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013011559A JP2014140937A (en) 2013-01-24 2013-01-24 Abrasive and polishing method

Publications (1)

Publication Number Publication Date
JP2014140937A true JP2014140937A (en) 2014-08-07

Family

ID=51422704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013011559A Pending JP2014140937A (en) 2013-01-24 2013-01-24 Abrasive and polishing method

Country Status (1)

Country Link
JP (1) JP2014140937A (en)

Similar Documents

Publication Publication Date Title
KR101355345B1 (en) Polishing composition
WO2013191139A1 (en) Polishing composition and substrate fabrication method using same
TW201629183A (en) Composition for polishing
JP2006249129A (en) Method for producing polishing agent and polishing agent
JP6646051B2 (en) Cobalt polishing accelerator
JP2012011526A (en) Abrasive and manufacturing method thereof
Matovu et al. Fundamental investigation of chemical mechanical polishing of GaAs in silica dispersions: material removal and arsenic trihydride formation pathways
TWI433903B (en) Polishing composition for nickel phosphorous memory disks
Stewart et al. Anion Effects on Cu–benzotriazole Film Formation: Implications for CMP
WO2017183290A1 (en) Polishing material for synthetic quarts glass substrate and method for polishing synthetic quarts glass substrate
JP2013111725A (en) Abrasive and method of manufacturing the same
KR20140034235A (en) Abrasive and polishing composition
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
Zhang et al. Study on chemical mechanical polishing performances of sapphire wafer (0001) using silica-based slurry
WO2016181600A1 (en) Polishing agent for synthetic quartz glass substrate, and method for polishing synthetic quartz glass substrate
Seo et al. Perspective—recent advances and thoughts on Ceria particle applications in chemical mechanical planarization
JP2007021703A (en) Polishing composition
JPWO2005090511A1 (en) Polishing composition and polishing method
JP5819036B2 (en) Cerium-based abrasive slurry
JP2014024960A (en) Polishing composition, method for polishing oxide material, and method for producing oxide material substrate
JP2014140937A (en) Abrasive and polishing method
US20140001153A1 (en) Polishing slurry and polishing method thereof
WO2016060113A1 (en) Polishing liquid composition for sapphire plate
JP5396047B2 (en) Abrasive slurry for glass
JP2014140936A (en) Abrasive and polishing method