JP2014139214A - Mesenchymal stem cells and uses therefor - Google Patents

Mesenchymal stem cells and uses therefor Download PDF

Info

Publication number
JP2014139214A
JP2014139214A JP2014057139A JP2014057139A JP2014139214A JP 2014139214 A JP2014139214 A JP 2014139214A JP 2014057139 A JP2014057139 A JP 2014057139A JP 2014057139 A JP2014057139 A JP 2014057139A JP 2014139214 A JP2014139214 A JP 2014139214A
Authority
JP
Japan
Prior art keywords
mesenchymal stem
cells
stem cells
animal
pharmaceutical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014057139A
Other languages
Japanese (ja)
Inventor
Pittenger Mark
ピッテンガー,マーク
Aggarwal Sudeepta
アガーウォル,サディープタ
Varney Timothy
バーニー,ティモシー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesoblast International SARL
Original Assignee
Mesoblast International SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/541,853 external-priority patent/US20080213227A1/en
Application filed by Mesoblast International SARL filed Critical Mesoblast International SARL
Publication of JP2014139214A publication Critical patent/JP2014139214A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Pain & Pain Management (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide methods of: treating autoimmune diseases, allergic responses, cancer and inflammatory diseases; and promoting wound healing, repairing epithelial damage and promoting angiogenesis in an organ or tissue.SOLUTION: Mesenchymal stem cells are administered in an effective amount to increase secretion of anti-inflammatory cytokines such as Interleukin-4 (IL-4) and Interleukin-10 (IL-10).

Description

本発明は間葉系幹細胞に関する。さらに詳しくは、本発明は、種々の組織や臓器における血管形成の促進、自己免疫疾患の治療、アレルギー応答の治療、癌の治療、炎症性疾患と障害の治療、創傷治癒の促進、炎症の治療、及び上皮傷害の修復を含む間葉系幹細胞の新規用途に関する。   The present invention relates to mesenchymal stem cells. More particularly, the present invention relates to the promotion of angiogenesis in various tissues and organs, the treatment of autoimmune diseases, the treatment of allergic responses, the treatment of cancer, the treatment of inflammatory diseases and disorders, the promotion of wound healing, the treatment of inflammation And a novel use of mesenchymal stem cells including repair of epithelial injury.

本発明は、海軍省により契約第N66001−02−C−8068号で政府の援助で行われた。政府は本発明において一定の権利を有する。   This invention was made with government support under Contract No. N66001-02-C-8068 by the Navy. The government has certain rights in the invention.

本出願は、2004年3月22日に出願された仮特許出願第60/555,118号(その内容は参照することによりその全体が本明細書に組み込まれる)に基づく優先権を請求する2005年3月15日出願の特許出願第11/080,298号の一部継続出願である。   This application claims priority based on provisional patent application No. 60 / 555,118, filed Mar. 22, 2004, the contents of which are hereby incorporated by reference in their entirety. 2005 This is a continuation-in-part application of Patent Application No. 11 / 080,298, filed on March 15, 2000.

間葉系幹細胞(MSC)は、骨芽細胞、筋細胞、軟骨細胞、及び脂肪細胞を含む系統に容易に分化できる多能性幹細胞である(Pittenger, et al., Science, Vol. 284, pg. 143 (1999); Haynesworth, et al., Bone, Vol. 13, pg. 69 (1992); Prockop, Science, Vol. 276, pg. 71 (1997))。インビトロの試験により、MSCが筋肉(Wakitani, et al., Muscle Nerve, Vol. 18,, pg. 1417 (1995))、神経様前駆体(Woodbury, et al., J. Neurosci. Res., Vol. 69, pg. 908 (2002); Sanchez-Ramos, et al., Exp. Neurol., Vol. 171 , pg. 109 (2001))、心筋細胞(Toma, et al., Circulation, Vol. 105, pg. 93 (2002); Fakuda, Artif. Organs, Vol. 25, pg. 187 (2001))、及びおそらくは他のタイプの細胞に分化する能力が証明されている。さらにMSCは、造血幹細胞や胚幹細胞の拡張のための有効なフィーダー層となることが証明されている(Eaves, et al., Ann. N.Y. Acad. Sci., Vol. 938, pg. 63 (2001); Wagers, et al., Gene Therapy, Vol. 9, pg. 606 (2002))。種々の動物モデルを用いた最近の研究は、MSCが、傷害された骨、軟骨、半月板、又は心筋組織の修復又は再生において有用であることを証明している(DeKok, et al., Clin. Oral Implants Res., Vol. 14, pg. 481 (2003)); Wu, et al., Transplantation, Vol. 75, pg. 679 (2003); Noel, et al., Curr. Opin. Investig. Drugs, Vol. 3, pg. 1000 (2002); Ballas, et al., J. Cell. Biochem. Suppl., Vol. 38, pg. 20 (2002); Mackenzie, et al., Blood Cells Mol. Dis., Vol. 27 (2002))。何人かの研究者は、骨形成不全症(Pereira, et al., Proc. Nat. Acad. Sci., Vol. 95, pg. 1142 (1998))、パーキンソン病(Schwartz, et al., Hum. Gene Ther., Vol. 10, pg. 2539 (1999))、脊髄損傷(Chopp, et al., Neuroreport, Vol. 11 , pg. 3001 (2000); Wu, et al., J. Neurosci. Res., Vol. 72, pg. 393 (2003))、及び心臓疾患(Tomita, et al., Circulation, Vol. 100, pg. 247 (1999). Shake, et al., Ann. Thorac. Surg., Vol. 73, pg. 1919 (2002))を含む動物疾患モデルにおける移植について、MSCを使用して有望な結果を得ている。重要なことに、有望な結果はまた、骨形成不全症(Horwitz, et al., Blood, Vol. 97, pg. 1227 (2001); Horowitz, et al. Proc. Nat. Acad. Sci., Vol. 99, pg. 8932 (2002))と異種骨髄移植(Frassoni, et al., Int. Society for Cell Therapy, SA006 (要約) (2002); Koc, et al., J. Clin. Oncol., Vol. 18, pg. 307 (2000))の移植の向上の臨床治験でも報告されている。 Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be easily differentiated into lineages including osteoblasts, muscle cells, chondrocytes, and adipocytes (Pittenger, et al., Science , Vol. 284, pg). 143 (1999); Haynesworth, et al., Bone , Vol. 13, pg. 69 (1992); Prockop, Science , Vol. 276, pg. 71 (1997)). In vitro studies have shown that MSCs are muscle (Wakitani, et al., Muscle Nerve , Vol. 18 ,, pg. 1417 (1995)), neuronal precursors (Woodbury, et al., J. Neurosci. Res. , Vol . 69, pg. 908 (2002); Sanchez-Ramos, et al., Exp. Neurol. , Vol. 171, pg. 109 (2001)), cardiomyocytes (Toma, et al., Circulation , Vol. 105, pg. 93 (2002); Fakuda, Artif. Organs , Vol. 25, pg. 187 (2001)), and possibly other types of cells have been demonstrated. Furthermore, MSC has been proven to be an effective feeder layer for expansion of hematopoietic stem cells and embryonic stem cells (Eaves, et al., Ann. NY Acad. Sci., Vol. 938, pg. 63 (2001). ); Wagers, et al., Gene Therapy , Vol. 9, pg. 606 (2002)). Recent studies using various animal models have demonstrated that MSCs are useful in the repair or regeneration of injured bone, cartilage, meniscus, or myocardial tissue (DeKok, et al., Clin Oral Implants Res. , Vol. 14, pg. 481 (2003)); Wu, et al., Transplantation , Vol. 75, pg. 679 (2003); Noel, et al., Curr. Opin. Investig. Drugs , Vol. 3, pg. 1000 (2002); Ballas, et al., J. Cell. Biochem. Suppl. , Vol. 38, pg. 20 (2002); Mackenzie, et al., Blood Cells Mol. Dis. , Vol. 27 (2002)). Some researchers have found osteogenesis imperfecta (Pereira, et al., Proc. Nat. Acad. Sci. , Vol. 95, pg. 1142 (1998)), Parkinson's disease (Schwartz, et al., Hum. Gene Ther. , Vol. 10, pg. 2539 (1999)), spinal cord injury (Chopp, et al., Neuroreport , Vol. 11, pg. 3001 (2000); Wu, et al., J. Neurosci. Res. , Vol. 72, pg. 393 (2003)), and heart disease (Tomita, et al., Circulation , Vol. 100, pg. 247 (1999). Shake, et al., Ann. Thorac. Surg. , Vol . 73, pg. 1919 (2002)), with promising results using MSC for transplantation in animal disease models. Importantly, promising results are also found in osteogenesis imperfecta (Horwitz, et al., Blood , Vol. 97, pg. 1227 (2001); Horowitz, et al. Proc. Nat. Acad. Sci., Vol . 99, pg. 8932 (2002)) and xenogeneic bone marrow transplantation (Frassoni, et al., Int. Society for Cell Therapy , SA006 (summary) (2002); Koc, et al., J. Clin. Oncol. , Vol . 18, pg. 307 (2000)) have also been reported in clinical trials of improved transplantation.

MSCは、その表面に主要組織適合遺伝子複合体(MHC)クラスI抗原を発現するが、MHCクラスII(Le Blanc, et al., Exp. Hematol., Vol. 31 , pg. 890 (2003); Potian, et al., J. Immunol., Vol. 171 , pg. 3426 (2003))やB7もCD40同時刺激分子(Majumdar, et al., J. Biomed. Sci., Vol. 10, pg. 228 (2003))も発現せず、これらの細胞が免疫原性表現型(Tse, et al., Transplantation, Vol. 75, pg. 389 (2003))を有することを示唆している。MSCはまたMHC非依存性にT細胞増殖応答を阻害する(Bartholomew, et al., Exp. Hematol., Vol. 30, pg. 42 (2002); Devine, et al., Cancer J., Vol. 7, pg. 576 (2001); DiNicola, et al., Blood, Vol. 99, pg. 3838 (2002))。MSCのこれらの免疫学的性質は移植を向上させ、移植後の同種異系細胞を認識し拒絶する受容者の免疫系の能力を制限しているかも知れない。局所的刺激下で適切なタイプの細胞に分化する能力とともに、免疫応答を調節し造血を支持する因子のMSCによる産生は、これらを細胞移植研究のための好ましい幹細胞にしている(Majumdar, et al., Hematother. Stem Cell Res., Vol. 9, pg. 841 (2000); Haynesworth, et al., J. Cell. Physiol., Vol. 166, pg. 585 (1996))。 MSCs express major histocompatibility complex (MHC) class I antigens on their surface, but MHC class II (Le Blanc, et al., Exp. Hematol. , Vol. 31, pg. 890 (2003); Potian, et al., J. Immunol. , Vol. 171, pg. 3426 (2003)) and B7 are also CD40 costimulatory molecules (Majumdar, et al., J. Biomed. Sci. , Vol. 10, pg. 228). (2003)) does not express, suggesting that these cells have an immunogenic phenotype (Tse, et al., Transplantation , Vol. 75, pg. 389 (2003)). MSCs also inhibit the T cell proliferative response in an MHC-independent manner (Bartholomew, et al., Exp. Hematol. , Vol. 30, pg. 42 (2002); Devine, et al., Cancer J. , Vol. 7, pg. 576 (2001); DiNicola, et al., Blood , Vol. 99, pg. 3838 (2002)). These immunological properties of MSCs may improve transplantation and limit the ability of the recipient's immune system to recognize and reject allogeneic cells after transplantation. The ability of MSCs to modulate the immune response and support hematopoiesis, together with the ability to differentiate into appropriate types of cells under local stimulation, makes them preferred stem cells for cell transplantation studies (Majumdar, et al , Hematother. Stem Cell Res. , Vol. 9, pg. 841 (2000); Haynesworth, et al., J. Cell. Physiol. , Vol. 166, pg. 585 (1996)).

本出願人は、樹状細胞(DC1とDC2)、エフェクターT細胞(Th1とTh2)、及びNK細胞を含む、間葉系幹細胞と単離された免疫細胞集団との相互作用を調べた。かかる相互作用に基づいて本出願人は、間葉系幹細胞が、免疫応答プロセスのいくつかの工程を制御する種々の因子の産生を制御することを発見した。すなわち間葉系幹細胞は、免疫系が関与する症状や障害、炎症が関与する疾患、症状、及び障害、上皮傷害、又はアレルギー応答の治療に使用できるかも知れない。かかる疾患、症状、及び障害には、特に限定されないが、自己免疫疾患、アレルギー、関節炎、炎症を起こした創傷、円形脱毛症(禿)、歯周病(歯肉炎と歯周炎を含む)、及び免疫応答が関与する他の疾患、症状、又は障害がある。   Applicants examined the interaction between mesenchymal stem cells and isolated immune cell populations, including dendritic cells (DC1 and DC2), effector T cells (Th1 and Th2), and NK cells. Based on such interactions, Applicants have discovered that mesenchymal stem cells control the production of various factors that control several steps of the immune response process. That is, mesenchymal stem cells may be used to treat conditions and disorders involving the immune system, diseases, conditions and disorders involving inflammation, epithelial injury, or allergic responses. Such diseases, symptoms and disorders include, but are not limited to, autoimmune diseases, allergies, arthritis, inflamed wounds, alopecia areata (禿), periodontal diseases (including gingivitis and periodontitis), And other diseases, symptoms, or disorders that involve an immune response.

さらに間葉系幹細胞は、血管内皮増殖因子、又はVEGF(これは新しい血管の形成を刺激することにより血管形成を促進する)を発現し分泌する。間葉系幹細胞はまた末梢血単核細胞(PBMC)を刺激してVEGFを産生させる。   Furthermore, mesenchymal stem cells express and secrete vascular endothelial growth factor, or VEGF, which promotes angiogenesis by stimulating the formation of new blood vessels. Mesenchymal stem cells also stimulate peripheral blood mononuclear cells (PBMC) to produce VEGF.

さらに間葉系幹細胞は樹状細胞がインターフェロン−ベータ(IFN−β)を産生するのを刺激して、これが腫瘍抑制とウイルス感染に対する免疫を促進する。   In addition, mesenchymal stem cells stimulate dendritic cells to produce interferon-beta (IFN-β), which promotes tumor suppression and immunity against viral infection.

本発明のある態様において、動物の自己免疫疾患と移植片対宿主病よりなる群から選択される疾患を治療する方法が提供される。この方法は、動物の疾患を治療するために有効な量の間葉系幹細胞を動物に投与することを含む。   In one aspect of the invention, a method of treating a disease selected from the group consisting of an animal autoimmune disease and graft-versus-host disease is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to treat the animal's disease.

本発明のこの態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が自己免疫疾患と移植片対宿主病を抑制する少なくとも1つの機構は、制御T細胞(Treg細胞)及び/又は樹状細胞(DC)からのインターロイキン−10(IL−10)の放出を引き起こすことによると考えられる。 While the scope of this aspect of the present invention is not limited to any theory, at least one mechanism by which mesenchymal stem cells suppress autoimmune disease and graft-versus-host disease may be regulatory T cells (T reg cells) and / or This is believed to be due to the release of interleukin-10 (IL-10) from dendritic cells (DC).

本発明で治療される自己免疫疾患には、特に限定されないが、多発性硬化症、1型糖尿病、慢性関節リウマチ、ブドウ膜炎、自己免疫甲状腺疾患、炎症性腸疾患、強皮症、グレーブス病、ループス、クローン病、自己免疫リンパ増殖性疾患(ALPS)、脱髄疾患、自己免疫脳脊髄炎、自己免疫胃炎(AIG)、及び自己免疫糸球体疾患がある。また上記したように、移植片対宿主病も治療される。しかし本発明の範囲は、本明細書に記載の特定の疾患の治療に限定されないことを理解されたい。   The autoimmune disease treated in the present invention is not particularly limited, but includes multiple sclerosis, type 1 diabetes, rheumatoid arthritis, uveitis, autoimmune thyroid disease, inflammatory bowel disease, scleroderma, Graves' disease , Lupus, Crohn's disease, autoimmune lymphoproliferative disease (ALPS), demyelinating disease, autoimmune encephalomyelitis, autoimmune gastritis (AIG), and autoimmune glomerulopathy. As described above, graft-versus-host disease is also treated. However, it is to be understood that the scope of the invention is not limited to the treatment of the specific diseases described herein.

ある実施態様において、間葉系幹細胞が投与される動物は哺乳動物である。哺乳動物は、ヒト及び非ヒト霊長類を含む霊長類である。   In certain embodiments, the animal to which mesenchymal stem cells are administered is a mammal. Mammals are primates, including human and non-human primates.

一般に間葉系幹細胞(MSC)療法は、以下の順序に基づく:MSC含有組織の採取、MSCの単離と拡張、動物へのMSCの投与(生化学的又は遺伝的操作有り又は無し)。   In general, mesenchymal stem cell (MSC) therapy is based on the following order: collection of MSC-containing tissue, isolation and expansion of MSC, administration of MSC to animals (with or without biochemical or genetic manipulation).

投与される間葉系幹細胞は均一組成物であるか、又はMSCで濃縮された混合細胞集団でもよい。均一間葉系幹細胞組成物は接着性骨髄細胞又は骨膜細胞を培養することにより得られ、間葉系幹細胞組成物は接着性骨髄細胞又は骨膜細胞を培養することにより得られ、間葉系幹細胞は、ユニークなモノクローナル抗体を用いて同定される特異的細胞表面マーカーにより同定される。間葉系幹細胞で濃縮された細胞集団を得る方法は、例えば米国特許第5,486,359号明細書に記載されている。間葉系幹細胞の別の供給源には、特に限定されないが、血液、皮膚、臍帯血、筋肉、脂肪、骨、及び軟骨膜がある。   The mesenchymal stem cells to be administered can be a homogeneous composition or a mixed cell population enriched with MSCs. A uniform mesenchymal stem cell composition is obtained by culturing adherent bone marrow cells or periosteal cells, a mesenchymal stem cell composition is obtained by culturing adherent bone marrow cells or periosteal cells, Identified by specific cell surface markers identified using unique monoclonal antibodies. A method for obtaining a cell population enriched with mesenchymal stem cells is described, for example, in US Pat. No. 5,486,359. Other sources of mesenchymal stem cells include but are not limited to blood, skin, umbilical cord blood, muscle, fat, bone, and perichondrium.

間葉系幹細胞は種々の方法で投与される。間葉系幹細胞は、例えば静脈内、動脈内、又は腹腔内投与により全身的に投与してもよい。   Mesenchymal stem cells are administered in various ways. Mesenchymal stem cells may be administered systemically, for example, by intravenous, intraarterial, or intraperitoneal administration.

間葉系幹細胞は、自己、同種異系、又は異種を含む範囲の供給源由来でもよい。   Mesenchymal stem cells may be derived from a range of sources including autologous, allogeneic, or xenogeneic.

間葉系幹細胞は、動物の自己免疫疾患又は移植片対宿主病を治療するために有効な量で投与される。間葉系幹細胞は約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の量は、患者の年齢、体重、性、治療される自己免疫疾患、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to treat an animal autoimmune disease or graft-versus-host disease. Mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The amount of mesenchymal stem cells administered depends on a variety of factors including the age, weight, sex, autoimmune disease being treated, and its extent and severity.

間葉系幹細胞は薬学的に許容される担体とともに投与してもよい。例えば間葉系幹細胞は、注射又は局所的投与のための薬学的に許容される液体媒体又はゲル中で細胞懸濁液として投与してもよい。   Mesenchymal stem cells may be administered with a pharmaceutically acceptable carrier. For example, mesenchymal stem cells may be administered as a cell suspension in a pharmaceutically acceptable liquid medium or gel for injection or topical administration.

本発明の別の態様において、動物の炎症応答を治療する方法が提供される。この方法は、動物の炎症応答を治療するために有効な量の間葉系幹細胞を動物に投与することを含む。   In another aspect of the invention, a method of treating an inflammatory response in an animal is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to treat the animal's inflammatory response.

本発明のこの態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、制御T細胞(Treg細胞)へのT細胞成熟を促進し、こうして炎症応答が抑制されると考えられる。また、間葉系幹細胞がTヘルパー1細胞(Th1細胞)を阻害し、それによって、乾癬に関連するもののようなある炎症反応のインターフェロン−γ(IFN−γ)の発現を低下させると考えられる。 Although the scope of this aspect of the invention is not limited to any theory, it is believed that mesenchymal stem cells promote T cell maturation into regulatory T cells (T reg cells), thus suppressing the inflammatory response. It is also believed that mesenchymal stem cells inhibit T helper 1 cells (Th1 cells), thereby reducing the expression of interferon-γ (IFN-γ) in certain inflammatory responses such as those associated with psoriasis.

ある実施態様において治療される炎症応答は、乾癬に関連するものである。   In certain embodiments, the inflammatory response to be treated is associated with psoriasis.

別の実施態様において間葉系幹細胞は、脳中の小神経膠細胞及び/又は星状細胞に接触して炎症を低下させるように動物に投与され、こうして間葉系幹細胞は、アルツハイマー病、パーキンソン病、卒中、又は脳細胞損傷のような疾患もしくは障害において活性化グリア細胞により引き起こされる神経変性を制限する。   In another embodiment, the mesenchymal stem cells are administered to the animal in contact with the microglia and / or astrocytes in the brain to reduce inflammation, thus the mesenchymal stem cells are treated with Alzheimer's disease, Parkinson Limits neurodegeneration caused by activated glial cells in diseases or disorders such as disease, stroke, or brain cell damage.

さらに別の実施態様において間葉系幹細胞は、皮膚の表皮中のケラチン細胞及びランゲルハンス細胞に間葉系幹細胞が接触して、乾癬、慢性皮膚炎、及び接触皮膚炎で起きるような炎症を低下させるように動物に投与される。本発明はいかなる理論にも限定されないが、間葉系幹細胞が表皮中のケラチン細胞及びランゲルハンス細胞に接触して、表皮中のT細胞受容体やランゲルハンス細胞の発現を変化させ、こうして腫瘍壊死因子−アルファ(TNF−α)の発現を低下させ、制御T細胞(Treg細胞)集団を上昇させると考えられる。 In yet another embodiment, the mesenchymal stem cells reduce inflammation, such as that caused by psoriasis, chronic dermatitis, and contact dermatitis, when the mesenchymal stem cells contact keratinocytes and Langerhans cells in the epidermis of the skin. Is administered to animals. Although the present invention is not limited to any theory, mesenchymal stem cells come into contact with keratinocytes and Langerhans cells in the epidermis to change the expression of T cell receptors and Langerhans cells in the epidermis, and thus tumor necrosis factor- It is thought to decrease the expression of alpha (TNF-α) and increase the population of regulatory T cells (T reg cells).

さらなる実施態様において間葉系幹細胞は、特に限定されないが骨関節炎や慢性関節リウマチ、及びウェブサイトwww.arthritis.org/conditions/diseasesに記載されている他の関節炎疾患を含む関節炎や関節炎様症状で起こるような、骨の炎症を低下させるのに使用される。本発明のこの実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、滑液中の記憶T細胞によるインターロイキン−17分泌を阻害すると考えられる。 In a further embodiment, the mesenchymal stem cell is an arthritis or arthritis-like condition including but not limited to osteoarthritis and rheumatoid arthritis, and other arthritic diseases described on the website www.arthritis.org/conditions/diseases. Used to reduce bone inflammation, as occurs. Although the scope of this embodiment of the invention is not limited to any theory, it is believed that mesenchymal stem cells inhibit interleukin-17 secretion by memory T cells in synovial fluid.

別の実施態様において間葉系幹細胞は、炎症性腸疾患や慢性肝炎におけるそれぞれ消化管及び肝臓中の炎症を抑えるために使用される。本発明のこの実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、インターロイキン−10(IL−10)の分泌増加と制御T細胞(Treg細胞)の生成を促進すると考えられる。 In another embodiment, mesenchymal stem cells are used to reduce inflammation in the gastrointestinal tract and liver in inflammatory bowel disease and chronic hepatitis, respectively. Although the scope of this embodiment of the invention is not limited to any theory, it is believed that mesenchymal stem cells promote increased secretion of interleukin-10 (IL-10) and the generation of regulatory T cells (T reg cells). It is done.

別の実施態様において間葉系幹細胞は、敗血症及び火傷、手術、及び移植を含む外傷のような病理症状において好中球とマクロファージの過度の活性化を阻害するために使用される。本発明のこの実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、IL−10のような抑制性サイトカインの分泌を促進し、マクロファージ遊走阻止因子を阻害すると考えられる。   In another embodiment, mesenchymal stem cells are used to inhibit excessive activation of neutrophils and macrophages in pathological conditions such as sepsis and burns, surgery, and trauma including transplantation. While the scope of this embodiment of the invention is not limited to any theory, it is believed that mesenchymal stem cells promote secretion of suppressive cytokines such as IL-10 and inhibit macrophage migration inhibitory factor.

別の実施態様において間葉系幹細胞は、角膜、水晶体、色素上皮細胞、及び網膜を含む眼、脳、脊髄、妊娠子宮と胎盤、卵巣、睾丸、副腎皮質、肝臓、及び毛包のような免疫学的特権部位の炎症を制御するために使用される。この実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、IL−10のような抑制性サイトカインの分泌とTreg細胞の生成を促進すると考えられる。 In another embodiment, the mesenchymal stem cells are immune, such as the eye, brain, spinal cord, pregnancy uterus and placenta, ovary, testis, adrenal cortex, liver, and hair follicle, including cornea, lens, pigment epithelial cells, and retina. Used to control inflammation of psychiatric privileged sites. Although the scope of this embodiment is not limited to any theory, it is believed that mesenchymal stem cells promote secretion of inhibitory cytokines such as IL-10 and generation of T reg cells.

別の実施態様において間葉系幹細胞は、透析及び/又は糸球体腎炎の最終段階腎疾患(ESRD)に関連する組織傷害を治療するために使用される。本発明のこの実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が腎修復を促進すると考えられる。間葉系幹細胞はまた、血管内皮増殖因子(すなわちVEGF)を発現し分泌し、これが新しい血管形成を刺激し、傷害された腎組織の修復を助けると考えられる。   In another embodiment, mesenchymal stem cells are used to treat tissue injury associated with dialysis and / or end stage renal disease (ESRD) of glomerulonephritis. Although the scope of this embodiment of the invention is not limited to any theory, it is believed that mesenchymal stem cells promote renal repair. Mesenchymal stem cells also express and secrete vascular endothelial growth factor (ie, VEGF), which is thought to stimulate new blood vessel formation and help repair damaged kidney tissue.

さらなる実施態様において間葉系幹細胞は、インフルエンザ、C型肝炎、単純ヘルペスウイルス、ワクシニアウイルス感染症、エプスタインバーウイルスのようなウイルス感染症を抑制するために使用される。この実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞がインターフェロン−ベータ(IFN−β)の分泌を促進すると考えられる。   In further embodiments, mesenchymal stem cells are used to control viral infections such as influenza, hepatitis C, herpes simplex virus, vaccinia virus infection, Epstein Barr virus. Although the scope of this embodiment is not limited to any theory, it is believed that mesenchymal stem cells promote the secretion of interferon-beta (IFN-β).

さらに別の実施態様において間葉系幹細胞は、リーシュマニア (Leishmania)感染症やヘリコバクター(Helicobacter)感染症のような寄生虫感染症を制御するために使用される。この実施態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞がTヘルパー2(Th2)細胞による応答を仲介し、こうしてβ細胞による免疫グロブリンE(IgE)の産生増加を促進すると考えられる。 Mesenchymal stem cells In yet another embodiment is used to control parasitic infections such as leishmaniasis (Leishmania) infection or Helicobacter (Helicobacter) infections. Although the scope of this embodiment is not limited to any theory, it is believed that mesenchymal stem cells mediate the response by T helper 2 (Th2) cells and thus promote increased production of immunoglobulin E (IgE) by β cells. .

しかし、本発明のこの態様は、特定の炎症応答の治療に限定されないことを理解されたい。   However, it should be understood that this aspect of the invention is not limited to the treatment of specific inflammatory responses.

間葉系幹細胞は、上記したようにヒト及び非ヒト霊長類を含む哺乳動物に投与される。   Mesenchymal stem cells are administered to mammals including human and non-human primates as described above.

間葉系幹細胞はまた、上記したように全身的に投与される。あるいは骨関節炎又は慢性関節リウマチの場合、間葉系幹細胞は関節炎関節に直接投与される。   Mesenchymal stem cells are also administered systemically as described above. Alternatively, in the case of osteoarthritis or rheumatoid arthritis, mesenchymal stem cells are administered directly to the arthritic joint.

間葉系幹細胞は、動物の炎症応答を治療するために有効な量で投与される。間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、治療される炎症応答、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to treat the inflammatory response of the animal. Mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered depends on a variety of factors including the age, weight, sex, inflammatory response to be treated, and its extent and severity.

上記したように、間葉系幹細胞は薬学的に許容される担体とともに投与される。   As described above, mesenchymal stem cells are administered with a pharmaceutically acceptable carrier.

本発明の別の態様において、動物の炎症を治療し、及び/又は上皮傷害を修復する方法が提供される。この方法は、動物の炎症及び/又は上皮傷害を治療するために有効な量の間葉系幹細胞を動物に投与することを含む。   In another aspect of the invention, a method of treating animal inflammation and / or repairing epithelial injury is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to treat the animal's inflammation and / or epithelial injury.

本発明のこの態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が、T細胞による炎症促進性サイトカインであるTNF−αとインターフェロン−γの分泌の低下と、T細胞による抗炎症性サイトカインであるインターロイキン−10(IL−10)とインターロイキン−4(IL−4)の分泌の上昇とを引き起こすと考えられている。また間葉系幹細胞は、ナチュラルキラー(NK)細胞によるインターフェロン−γ分泌の低下を引き起こすと考えられる。   Although the scope of this aspect of the present invention is not limited to any theory, mesenchymal stem cells have reduced secretion of pro-inflammatory cytokines TNF-α and interferon-γ by T cells and anti-inflammatory properties by T cells. It is thought to cause an increase in secretion of cytokines interleukin-10 (IL-10) and interleukin-4 (IL-4). In addition, mesenchymal stem cells are thought to cause a decrease in interferon-γ secretion by natural killer (NK) cells.

本発明のこの態様で治療される炎症及び/又は上皮傷害は、自己免疫疾患、移植臓器の拒絶、火傷、切傷、裂傷、皮膚潰瘍形成と糖尿病性潰瘍形成を含む潰瘍形成を含むがこれらに限定されない、種々の疾患と障害により引き起こされる炎症及び/又は上皮傷害がある。   Inflammation and / or epithelial injury treated in this aspect of the invention includes, but is not limited to, autoimmune diseases, transplant rejection, burns, cuts, lacerations, skin ulceration and diabetic ulceration. There is inflammation and / or epithelial damage caused by various diseases and disorders that are not.

ある実施態様において間葉系幹細胞は、慢性関節リウマチ、クローン病、1型糖尿病、多発性硬化症、強皮症、グレーブス病、ループス、炎症性腸疾患、自己免疫胃炎(AIG)、及び自己免疫糸球体疾患を含むがこれらに限定されない、自己免疫疾患により生じる上皮傷害を修復するために、動物に投与される。間葉系幹細胞はまた、移植片対宿主病(GVHD)により生じる上皮傷害を修復する。   In certain embodiments, the mesenchymal stem cells are rheumatoid arthritis, Crohn's disease, type 1 diabetes, multiple sclerosis, scleroderma, Graves' disease, lupus, inflammatory bowel disease, autoimmune gastritis (AIG), and autoimmunity. Administered to animals to repair epithelial damage caused by autoimmune diseases, including but not limited to glomerular diseases. Mesenchymal stem cells also repair epithelial damage caused by graft-versus-host disease (GVHD).

本発明のこの態様は、移植片対宿主病により生じる上皮傷害の修復、及びさらに詳しくは、皮膚及び/又は消化管系に影響を与えるグレードIIIとIVの移植片対宿主病を含む重症の移植片対宿主病により生じる上皮傷害の修復に適用される。本出願人は特に、重症の移植片対宿主病、特にグレードIIIとIVの消化管移植片対宿主病に罹った患者に間葉系幹細胞が投与されると、間葉系幹細胞の投与により患者の皮膚及び/又は潰瘍形成した小腸上皮組織を修復させることを発見した。   This aspect of the invention relates to the repair of epithelial damage caused by graft-versus-host disease, and more particularly severe transplants including grade III and IV graft-versus-host diseases that affect the skin and / or gastrointestinal system. Applies to repair of epithelial damage caused by unilateral host disease. Applicants are particularly interested in the administration of mesenchymal stem cells when they are administered to patients suffering from severe graft-versus-host disease, especially grade III and IV gastrointestinal graft-versus-host disease. Of the skin and / or ulcerated small intestine epithelium.

別の実施態様において間葉系幹細胞は、移植臓器又は組織の拒絶により引き起こされる、腎臓、心臓、及び肺を含むがこれらに限定されない移植臓器又は組織に対する上皮傷害を修復するために動物に投与される。   In another embodiment, mesenchymal stem cells are administered to an animal to repair epithelial damage to the transplanted organ or tissue, including but not limited to kidney, heart, and lung, caused by rejection of the transplanted organ or tissue. The

さらに別の実施態様において間葉系幹細胞は、火傷、切傷、裂傷、皮膚潰瘍形成と糖尿病性潰瘍形成を含む潰瘍形成により引き起こされる上皮傷害を修復するために動物に投与される。   In yet another embodiment, mesenchymal stem cells are administered to an animal to repair epithelial damage caused by ulceration, including burns, cuts, lacerations, skin ulceration and diabetic ulceration.

間葉系幹細胞は、上記したようにヒト及び非ヒト霊長類を含む哺乳動物に投与される。   Mesenchymal stem cells are administered to mammals including human and non-human primates as described above.

間葉系幹細胞はまた、上記したように全身的に投与される。   Mesenchymal stem cells are also administered systemically as described above.

間葉系幹細胞は、動物の上皮傷害を修復するために有効な量で投与される。間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、修復される上皮傷害のタイプ、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to repair the epithelial injury of the animal. Mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered will depend on a variety of factors including the age, weight, sex, type of epithelial injury being repaired, and its extent and severity.

本発明の別の態様において、動物の癌を治療する方法が提供される。この方法は、動物の癌を治療するために有効な量の間葉系幹細胞を動物に投与することを含む。   In another aspect of the invention, a method of treating animal cancer is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to treat the animal's cancer.

本発明のこの態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が樹状細胞と相互作用してIFN−βを分泌させ、これが次に腫瘍サプレッサーとして作用すると考えられる。治療される癌には、特に限定されないが、肝細胞癌、子宮頚癌、膵臓癌、前立腺癌、線維肉腫、髄芽細胞腫、及び星状細胞腫がある。しかし本発明の範囲は特定の種類の癌に限定されないことを理解されたい。   While the scope of this aspect of the invention is not limited to any theory, it is believed that mesenchymal stem cells interact with dendritic cells to secrete IFN-β, which in turn acts as a tumor suppressor. Cancers to be treated include but are not limited to hepatocellular carcinoma, cervical cancer, pancreatic cancer, prostate cancer, fibrosarcoma, medulloblastoma, and astrocytoma. However, it should be understood that the scope of the present invention is not limited to a particular type of cancer.

動物は上記したようにヒト及び非ヒト霊長類を含む哺乳動物である。   The animals are mammals including humans and non-human primates as described above.

間葉系幹細胞は、動物の癌を治療するために有効な量で投与される。一般に間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、治療される癌のタイプ、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to treat animal cancer. Generally, mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered will depend on a variety of factors including the age, weight, sex, type of cancer being treated, and its extent and severity.

上記したように、間葉系幹細胞は薬学的に許容される担体とともに投与され、全身的に投与される。あるいは間葉系幹細胞は、治療される癌に直接投与される。   As described above, mesenchymal stem cells are administered with a pharmaceutically acceptable carrier and administered systemically. Alternatively, mesenchymal stem cells are administered directly to the cancer being treated.

本発明の別の態様において、動物のアレルギー疾患又は障害を治療する方法が提供される。この方法は、動物のアレルギー疾患又は障害を治療するために有効な量の間葉系幹細胞を動物に投与することを含む。   In another aspect of the invention, a method of treating an animal allergic disease or disorder is provided. The method comprises administering to the animal an amount of mesenchymal stem cells effective to treat the animal's allergic disease or disorder.

本発明のこの態様の範囲はいかなる理論にも限定されないが、間葉系幹細胞が急性アレルギー応答後に投与されると、肥満細胞活性化と脱顆粒の阻害を提供すると考えられる。また間葉系幹細胞は好塩基球活性化をダウンレギュレートし、サイトカイン、例えばTNF−α、ケモカイン、例えばインターロイキン−8、単球化学誘引性タンパク質(すなわちMCP−1)、脂質メディエーター、例えばロイコトリエンを阻害し、主要なメディエーター、例えばヒスタミン、ヘパリン、コンドロイチン硫酸、及びカテプシンを阻害すると考えられる。   While the scope of this aspect of the invention is not limited to any theory, it is believed that when mesenchymal stem cells are administered after an acute allergic response, they provide mast cell activation and inhibition of degranulation. Mesenchymal stem cells also down-regulate basophil activation, cytokines such as TNF-α, chemokines such as interleukin-8, monocyte chemoattractant protein (ie MCP-1), lipid mediators such as leukotrienes It is thought to inhibit major mediators such as histamine, heparin, chondroitin sulfate, and cathepsin.

治療されるアレルギー疾患又は障害には、特に限定されないが、喘息、アレルギー性鼻炎、アトピー性皮膚炎、及び接触皮膚炎がある。しかし、本発明の範囲は、特定のアレルギー疾患又は障害に限定されないことを理解されたい。   Allergic diseases or disorders to be treated include but are not limited to asthma, allergic rhinitis, atopic dermatitis, and contact dermatitis. However, it should be understood that the scope of the present invention is not limited to a particular allergic disease or disorder.

間葉系幹細胞は、動物のアレルギー疾患又は障害を治療するために有効な量で投与される。動物は哺乳動物でもよい。哺乳動物は、ヒト及び非ヒト霊長類を含む霊長類でもよい。一般に間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、治療されるアレルギー疾患又は障害、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to treat an animal allergic disease or disorder. The animal may be a mammal. The mammal may be a primate, including human and non-human primates. Generally, mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered will depend on a variety of factors including the age, weight, sex, allergic disease or disorder being treated, and its extent and severity.

上記したように、間葉系幹細胞は薬学的に許容される担体とともに投与される。間葉系幹細胞は、例えば静脈内又は動脈内投与のように全身的に投与される。   As described above, mesenchymal stem cells are administered with a pharmaceutically acceptable carrier. Mesenchymal stem cells are administered systemically, for example intravenously or intraarterially.

本発明のさらなる態様において、動物の創傷治癒を促進する方法が提供される。この方法は、動物の創傷治癒を促進するために有効な量の間葉系幹細胞を動物に投与することを含む。   In a further aspect of the invention, a method is provided for promoting wound healing in an animal. The method includes administering to the animal an amount of mesenchymal stem cells effective to promote wound healing in the animal.

本発明の範囲はいかなる理論にも限定されないが、上記したように間葉系幹細胞は、Treg細胞と樹状細胞にインターロイキン−1−10(IL−10)を放出させる。IL−10は、創傷の炎症を制限又は抑制し、こうして創傷治癒を促進する。 Although the scope of the present invention is not limited to any theory, as described above, mesenchymal stem cells cause T reg cells and dendritic cells to release interleukin-1-10 (IL-10). IL-10 limits or inhibits wound inflammation and thus promotes wound healing.

さらに間葉系幹細胞は、他のタイプの細胞により分泌因子を誘導することにより、創傷治癒と骨折治癒とを促進する。例えば間葉系幹細胞は、末梢血単核細胞(PBMC)による血管内皮増殖因子(VEGF)のプロスタグランジンE(PGE2)介在放出、ならびに成長ホルモン、インスリン、インスリン様増殖因子1(IGF−1)インスリン様増殖因子結合タンパク質−3(IGFBP−3)、及びエンドテリン−1のPGE2介在放出を誘導する。 In addition, mesenchymal stem cells promote wound healing and fracture healing by inducing secretory factors by other types of cells. For example, mesenchymal stem cells are prostaglandin E 2 (PGE 2 ) -mediated release of vascular endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC), as well as growth hormone, insulin, insulin-like growth factor 1 (IGF− 1) Induces PGE 2 -mediated release of insulin-like growth factor binding protein-3 (IGFBP-3) and endothelin-1.

治癒される創傷には、特に限定されないが、切傷、裂傷、火傷、及び皮膚潰瘍形成から生じるものがある。   Healing wounds include, but are not limited to, those resulting from cuts, lacerations, burns, and skin ulceration.

間葉系幹細胞は、動物の創傷治癒を促進するために有効な量で動物に投与される。動物は哺乳動物でもよく、哺乳動物はヒト及び非ヒト霊長類を含む霊長類でもよい。一般に間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、治療される創傷、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered to the animal in an amount effective to promote animal wound healing. The animal may be a mammal, and the mammal may be a primate, including human and non-human primates. Generally, mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered depends on a variety of factors including the patient's age, weight, sex, the wound being treated, and its extent and severity.

上記したように、間葉系幹細胞は薬学的に許容される担体とともに投与される。間葉系幹細胞は、上記したように全身的に投与される。あるいは間葉系幹細胞は、間葉系幹細胞を含有する包帯又はリザーバー上の液体で、創傷に直接投与される。   As described above, mesenchymal stem cells are administered with a pharmaceutically acceptable carrier. Mesenchymal stem cells are administered systemically as described above. Alternatively, mesenchymal stem cells are administered directly to the wound with a liquid on a bandage or reservoir containing mesenchymal stem cells.

本発明のさらに別の態様において、動物の繊維症を治療または予防する方法が提供される。この方法は、動物の繊維症を治療または予防するために有効な量の間葉系幹細胞を動物に投与することを含む。   In yet another aspect of the invention, a method for treating or preventing fibrosis in an animal is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to treat or prevent fibrosis in the animal.

間葉系幹細胞は、肝硬変、最終段階腎疾患に関連する腎臓の繊維症、および肺の繊維症を含むがこれらに限定されない動物の任意の種類の繊維症、成人型呼吸窮迫症候群(ARDS)および慢性閉塞性肺疾患(COPD)を含むがこれらに限定されない肺の繊維症を治療または予防するために動物に投与される。本発明の範囲は特定の種類の繊維症に限定されないことを理解されたい。   Mesenchymal stem cells can be any type of fibrosis in animals, including but not limited to cirrhosis, renal fibrosis associated with end stage renal disease, and pulmonary fibrosis, adult respiratory distress syndrome (ARDS) and Administered to animals to treat or prevent pulmonary fibrosis, including but not limited to chronic obstructive pulmonary disease (COPD). It should be understood that the scope of the present invention is not limited to a particular type of fibrosis.

間葉系幹細胞は、動物の繊維症を治療または予防するために有効な量で動物に投与される。動物は哺乳動物でもよく、哺乳動物はヒト及び非ヒト霊長類を含む霊長類でもよい。一般に間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の正確な用量は、患者の年齢、体重、性、治療または予防される繊維症の程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered to the animal in an amount effective to treat or prevent fibrosis in the animal. The animal may be a mammal, and the mammal may be a primate, including human and non-human primates. Generally, mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The exact dose of mesenchymal stem cells administered will depend on a variety of factors including the age, weight, sex, and extent and severity of fibrosis to be treated or prevented.

間葉系幹細胞は、上記したように薬学的に許容される担体とともに投与される。間葉系幹細胞は上記したように全身的に投与される。   Mesenchymal stem cells are administered with a pharmaceutically acceptable carrier as described above. Mesenchymal stem cells are administered systemically as described above.

本発明の別の目的は、動物の組織又は臓器の血管形成であって、該組織又は臓器は血管形成が必要である、血管形成を促進することである。   Another object of the present invention is to promote angiogenesis of an animal tissue or organ, where the tissue or organ requires angiogenesis.

本発明のさらなる態様において、動物の臓器又は組織の血管形成を促進する方法が提供される。この方法は、動物の臓器又は組織の血管形成を促進するために有効な量の間葉系幹細胞を動物に投与することを含む。   In a further aspect of the invention, a method for promoting angiogenesis in an animal organ or tissue is provided. The method includes administering to the animal an amount of mesenchymal stem cells effective to promote angiogenesis of the organ or tissue of the animal.

血管形成は、既存の微小血管床からの新しい血管の形成である。   Angiogenesis is the formation of new blood vessels from an existing microvascular bed.

血管形成の誘導は、冠動脈及び末梢動脈不全症を治療するために使用され、冠動脈疾患、虚血性心疾患、及び末梢血動脈疾患の治療のための非侵襲的及び治療的アプローチでもよい。血管形成は心臓以外の組織や臓器の疾患と障害の治療、ならびに心臓以外の臓器の成長及び/又は維持において役割を果たす。血管形成は、内部及び外部創傷ならびに皮膚潰瘍の治療において役割を果たす。血管形成はまた、胚の着床、胎盤成長、ならびに胚血管の成長において役割を果たす。血管形成はまた、軟骨再吸収と骨形成との連結に必須であり、正しい成長板の形態形成に必須である。   Induction of angiogenesis is used to treat coronary and peripheral arterial insufficiency and may be a non-invasive and therapeutic approach for the treatment of coronary artery disease, ischemic heart disease, and peripheral blood artery disease. Angiogenesis plays a role in the treatment of diseases and disorders of tissues and organs other than the heart, and in the growth and / or maintenance of organs other than the heart. Angiogenesis plays a role in the treatment of internal and external wounds and skin ulcers. Angiogenesis also plays a role in embryo implantation, placental growth, and embryonic vessel growth. Angiogenesis is also essential for the connection between cartilage resorption and bone formation and is essential for correct growth plate morphogenesis.

さらに血管形成は、充分な栄養物質と気体輸送を提供するために必要な高密度の血管ネットワークが必要な高代謝臓器、例えば肝臓の構築と維持の成功に必要である。   In addition, angiogenesis is necessary for the successful construction and maintenance of highly metabolic organs, such as the liver, that require the dense vascular network necessary to provide sufficient nutrient and gas transport.

間葉系幹細胞は、種々の方法により血管形成の必要な組織又は臓器に投与することができる。間葉系幹細胞は、例えば静脈内、動脈内、又は腹腔内投与により全身的に投与されるか、又は間葉系幹細胞は、例えば血管形成の必要な組織又は臓器への直接投与により、血管形成の必要な組織又は臓器に直接投与される。   Mesenchymal stem cells can be administered to tissues or organs in need of angiogenesis by various methods. Mesenchymal stem cells are administered systemically, for example, by intravenous, intraarterial, or intraperitoneal administration, or mesenchymal stem cells, for example, by direct administration to a tissue or organ in need of angiogenesis. Administered directly to the necessary tissue or organ.

間葉系幹細胞は、自己、同種異系、又は異種を含む範囲の供給源由来でもよい。   Mesenchymal stem cells may be derived from a range of sources including autologous, allogeneic, or xenogeneic.

本発明の範囲はいかなる理論にも限定されないが、間葉系幹細胞は動物に投与されると、末梢血単核細胞(PBMC)を刺激して血管内皮増殖因子(すなわちVEGF)を産生させ、これが新しい血管の形成を刺激すると考えられる。   While the scope of the present invention is not limited to any theory, mesenchymal stem cells, when administered to animals, stimulate peripheral blood mononuclear cells (PBMC) to produce vascular endothelial growth factor (ie, VEGF), which It is thought to stimulate the formation of new blood vessels.

ある実施態様において動物は哺乳動物である。哺乳動物は、ヒト及び非ヒト霊長類を含む霊長類でもよい。   In certain embodiments, the animal is a mammal. The mammal may be a primate, including human and non-human primates.

本発明の間葉系幹細胞は、血管形成を介して緩和、治療、又は予防できる疾患もしくは障害の治療、緩和、又は予防に使用される。例えば間葉系幹細胞は、四肢(すなわち腕、脚、手、及び足)、ならびに首又は種々の臓器中の閉塞動脈を治療するために動物に投与される。例えば間葉系幹細胞は、脳の需要を満たす閉塞動脈を治療、従って卒中を治療又は予防するために使用される。また間葉系幹細胞は、胚及び生後角膜の血管を治療するために使用され、かつ糸球体構造形成を提供するために使用される。別の実施態様において間葉系幹細胞は、内部及び外部の創傷の治療、ならびに糖尿病や鎌状赤血球貧血のような疾患により引き起こされる皮膚潰瘍を含むがこれらに限定されない足、手、脚、又は腕の皮膚潰瘍の治療に使用される。   The mesenchymal stem cells of the present invention are used for the treatment, alleviation or prevention of diseases or disorders that can be alleviated, treated or prevented through angiogenesis. For example, mesenchymal stem cells are administered to animals to treat the extremities (ie arms, legs, hands, and feet), and the occluded arteries in the neck or various organs. For example, mesenchymal stem cells are used to treat occluded arteries that meet the needs of the brain, and thus treat or prevent stroke. Mesenchymal stem cells are also used to treat embryonic and postnatal corneal blood vessels and provide glomerular structure formation. In another embodiment, the mesenchymal stem cell is a foot, hand, leg, or arm that includes, but is not limited to, treatment of internal and external wounds, and skin ulcers caused by diseases such as diabetes and sickle cell anemia. Used to treat skin ulcers.

さらに血管形成は胚の着床と胎盤形成に関与するため、間葉系幹細胞は胚の着床を促進し流産を防ぐために使用される。   Furthermore, since angiogenesis is involved in embryo implantation and placenta formation, mesenchymal stem cells are used to promote embryo implantation and prevent miscarriage.

さらに間葉系幹細胞は、胎内の動物の血管の成長を促進するために、ヒトを含む胎内の動物に投与される。   In addition, mesenchymal stem cells are administered to animals in the womb, including humans, to promote blood vessel growth in the animals in the womb.

別の実施態様において間葉系幹細胞は、軟骨再吸収と骨形成を促進し、正しい成長板の形態形成を促進するために、生後又は生前の動物に投与される。   In another embodiment, mesenchymal stem cells are administered to postnatal or prenatal animals to promote cartilage resorption and bone formation and promote correct growth plate morphogenesis.

間葉系幹細胞は、動物の血管形成を促進するために有効な量で投与される。間葉系幹細胞は、約1×105細胞/kg〜約1×107細胞/kgの量で投与される。別の実施態様において間葉系幹細胞は、約1×106細胞/kg〜約5×106細胞/kgの量で投与される。投与される間葉系幹細胞の量は、患者の年齢、体重、性、治療、緩和、又は予防される疾患もしくは障害、及びその程度と重症度を含む種々の要因に依存する。 Mesenchymal stem cells are administered in an amount effective to promote angiogenesis in the animal. Mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg. Mesenchymal stem cells In another embodiment is administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg. The amount of mesenchymal stem cells administered depends on a variety of factors including the age, weight, sex, treatment, alleviation or prevention of the disease or disorder of the patient and its extent and severity.

間葉系幹細胞は薬学的に許容される担体とともに投与してもよい。例えば間葉系幹細胞は、注射用のための薬学的に許容される液体媒体中で細胞懸濁液として投与してもよい。注射は、局所的、すなわち血管形成の必要な組織又は臓器に直接、又は全身性でもよい。   Mesenchymal stem cells may be administered with a pharmaceutically acceptable carrier. For example, mesenchymal stem cells may be administered as a cell suspension in a pharmaceutically acceptable liquid medium for injection. Injection may be local, ie directly into the tissue or organ in need of angiogenesis, or systemic.

間葉系幹細胞は、治療薬をコードする1つ又はそれ以上のポリヌクレオチドを用いて遺伝子操作してもよい。ポリヌクレオチドは、適切な発現ビヒクルを介して間葉系幹細胞に提供される。間葉系幹細胞を遺伝子操作するために使用される発現ビヒクルには、特に限定されないが、レトロウイルスベクター、アデノウイルスベクター、及びアデノ関連ウイルスベクターがある。   Mesenchymal stem cells may be genetically engineered with one or more polynucleotides encoding a therapeutic agent. The polynucleotide is provided to mesenchymal stem cells via an appropriate expression vehicle. Expression vehicles used to genetically manipulate mesenchymal stem cells include, but are not limited to, retroviral vectors, adenoviral vectors, and adeno-associated viral vectors.

治療薬をコードする適切なポリヌクレオチドの選択は、治療される疾患もしくは障害、及びその程度と重症度を含む種々の要因に依存する。治療薬をコードするポリヌクレオチド及び適切な発現ビヒクルは、さらに米国特許第6,355,239号明細書に記載されている。   The selection of an appropriate polynucleotide encoding a therapeutic agent depends on a variety of factors including the disease or disorder being treated and its extent and severity. Polynucleotides encoding therapeutic agents and suitable expression vehicles are further described in US Pat. No. 6,355,239.

間葉系幹細胞は上記治療で使用される時には、増殖因子、サイトカイン、抗炎症剤のような薬剤を含むがこれらに限定されない当業者に公知の他の治療薬、と間葉系幹細胞以外の細胞、例えば樹状細胞とを組合せて使用されるか、あるいは細胞のための可溶性担体、例えばヒアルロン酸、又は適宜固体マトリックス、例えば、コラーゲン、ゼラチン、又は他の生体適合性ポリマーと組合せて投与される。   Mesenchymal stem cells, when used in the above treatment, include other therapeutic agents known to those skilled in the art, including but not limited to agents such as growth factors, cytokines, anti-inflammatory agents, and cells other than mesenchymal stem cells Used in combination with, for example, dendritic cells, or administered in combination with a soluble carrier for the cells, such as hyaluronic acid, or a suitable solid matrix such as collagen, gelatin, or other biocompatible polymers .

本明細書に記載の方法は、多くの方法でかつ当該分野で公知の種々の修飾及び置換を用いて行われる。細胞タイプ間の作用又は相互作用のモードについて提唱されている理論は、決して本発明を限定するものではなく、本発明の方法をよりよく理解できるように提供されていることを理解されたい。   The methods described herein are performed in many ways and with various modifications and substitutions known in the art. It should be understood that the theory proposed for the mode of action or interaction between cell types is in no way limiting on the present invention and is provided so that the method of the present invention can be better understood.

本発明を図面により説明する。   The present invention will be described with reference to the drawings.

図1。MSCは樹状細胞機能を調節する。(A)HLA−DRとCD11cに対する抗体を使用する成熟単球DC1細胞のフローサイトメトリー解析と、HLA−DRとCD123(IL−3受容体)に対する抗体を使用する形質球様DC2細胞のフローサイトメトリー解析。(破線):アイソタイプ対照;(実線):FITC/PE結合抗体。(B)MSCは、活性化DC1とDC2からの、それぞれTNF−α分泌(第1y軸)を阻害し、IL−10分泌(第2y軸)を上昇させる。(C)成熟DC1細胞で培養したMSCは、MSCもしくはDC単独と比較して、T細胞によるIFN−γ分泌(第1y軸)を阻害しIL−4レベル(第2y軸)を上昇させる。MSCの存在下での炎症促進性IFN−γの産生低下と抗炎症性IL−4の産生増加は、T細胞集団の抗炎症性表現型への移動を示した。   FIG. MSCs regulate dendritic cell function. (A) Flow cytometric analysis of mature monocyte DC1 cells using antibodies against HLA-DR and CD11c, and plasmacytoid DC2 cell flow sites using antibodies against HLA-DR and CD123 (IL-3 receptor) Metric analysis. (Dashed line): isotype control; (solid line): FITC / PE-conjugated antibody. (B) MSC inhibits TNF-α secretion (first y-axis) from activated DC1 and DC2, respectively, and increases IL-10 secretion (second y-axis). (C) MSCs cultured in mature DC1 cells inhibit IFN-γ secretion (first y-axis) by T cells and increase IL-4 levels (second y-axis) compared to MSC or DC alone. Decreased production of pro-inflammatory IFN-γ and increased production of anti-inflammatory IL-4 in the presence of MSC indicated a shift of the T cell population to an anti-inflammatory phenotype.

図2。MSCは炎症促進性エフェクターT細胞機能を阻害する。(A)FITC結合CD4(x軸)抗体とPE結合CD25(y軸)抗体を用いる、MSC+PBMC培養物(MSC+PBMC)中のPBMC又は非接着性画分を染色することによるTReg細胞数(%)のフローサイトメトリー解析。ゲートはバックグランドとしてのアイソタイプ対照抗体に基づく。グラフは5つの独立した実験の典型である。(B)細胞培養上清中で、MSCの存在下で生成したTH1細胞は低レベルのIFN−γ(第1y軸)を分泌し、MSCの存在下で生成したTH2細胞は増加量のIL−4(第2y軸)を分泌した。(C)MSCは、24ウェルプレート中で0、24、又は48時間培養した精製NK細胞からのIFN−γ分泌を阻害する。示したデータは1つの実験の平均±SDサイトカイン分泌であり、3つの独立した実験の典型である。 FIG. MSCs inhibit pro-inflammatory effector T cell function. (A) Number of T Reg cells by staining PBMC or non-adherent fraction in MSC + PBMC cultures (MSC + PBMC) using FITC-conjugated CD4 (x-axis) and PE-conjugated CD25 (y-axis) antibodies (%) Flow cytometric analysis. The gate is based on the isotype control antibody as background. The graph is representative of 5 independent experiments. (B) In cell culture supernatant, T H 1 cells generated in the presence of MSC secrete low levels of IFN-γ (first y axis), and T H 2 cells generated in the presence of MSC increase. An amount of IL-4 (second y-axis) was secreted. (C) MSC inhibits IFN-γ secretion from purified NK cells cultured in 24-well plates for 0, 24, or 48 hours. Data shown is the mean ± SD cytokine secretion of one experiment and is representative of three independent experiments.

図3。MSCはTreg細胞集団の数とGITR発現を上昇させる。(A)CD4+CD25+reg細胞集団を、PBMC又はMSC+PBMC(MSC対PBMC比は1:10)培養物(さらなる刺激無しで3日間培養した)から2工程磁性単離法を使用して単離した。これらの細胞に放射線照射し(さらなる増殖を阻止するため)、混合リンパ球反応(MLR)において刺激細胞として使用し、ここで応答細胞は植物性血球凝集素(PHA)(2.5mg/ml)の存在下の同種異系PBMC(刺激細胞対応答細胞比は1:100)であった。細胞を48時間培養し、次に3Hチミジンを加え、24時間後、取り込まれた放射活性を計測した。結果は、MSCの存在下で生成したTreg集団(レーン3)は、MSCの非存在下で生成したTreg細胞(レーン2)と機能的に同等であることを示した。(B)PBMCをMSCの非存在下(上のプロット)又は存在下(下のプロット)で3日間培養(MSC対PBMC比は1:10)し、次に非接着画分を採取し、FITC標識GITRとPE標識CD4で免疫染色した。結果は、MSCの存在下で培養した細胞でGITR発現の2倍以上の上昇を示す。 FIG. MSC increases the number of T reg cell populations and GITR expression. (A) CD4 + CD25 + T reg cell populations were isolated from PBMC or MSC + PBMC (MSC to PBMC ratio 1:10) cultures (cultured for 3 days without further stimulation) using a two-step magnetic isolation method. Released. These cells are irradiated (to prevent further proliferation) and used as stimulator cells in a mixed lymphocyte reaction (MLR), where the responder cells are plant hemagglutinin (PHA) (2.5 mg / ml) Allogeneic PBMC in the presence of (stimulating cell to responding cell ratio 1: 100). The cells were cultured for 48 hours, then 3 H thymidine was added and 24 hours later, the incorporated radioactivity was counted. The results showed that the T reg population generated in the presence of MSC (lane 3) is functionally equivalent to the T reg cells generated in the absence of MSC (lane 2). (B) PBMCs were cultured for 3 days in the absence (upper plot) or presence (lower plot) of MSC (MSC to PBMC ratio 1:10), then the non-adherent fraction was collected and FITC Immunostaining was performed with labeled GITR and PE-labeled CD4. The results show more than a 2-fold increase in GITR expression in cells cultured in the presence of MSC.

図4。MSCはPGE2を産生し、PGE2を阻止するとMSC性免疫調節作用が逆転する。(A)種々の濃度のPGE2ブロッカーであるNS−398又はインドメタシン(Indometh.)の存在下又は非存在下で培養したMSCから得られた培養上清中のPGE2分泌(平均±SD)。インヒビター濃度はμMであり、示したデータは24時間培養後に得られた値である。(B)リアルタイムRT−PCRを使用したMSCとPBMC中のCOX−1とCOX−2発現。MSCはPBMCと比較して有意に高レベルのCOX−2を発現し、MSCをPBMCの存在下で培養すると、MSC中のCOX−2発現の3倍を超える上昇があった。1〜3つの独立した実験からの典型的データを示す。MSC+PBMC培養物をトランスウェルチャンバープレート中で準備し、ここでMSCは下のチャンバーに蒔き、PBMCは上のチャンバーに蒔いた。(C)PGE2ブロッカーであるインドメタシン(Ind.)又はNS−398の存在は、対照と比較して、活性化DC(白バー)からのTNF−α分泌と、TH1細胞(斜線バー)からのIFN−γ分泌を上昇させる。データは、MSCとPGE2インヒビターの非存在下で生成した培養物からの%変化として計算した。(D)MSC−PBMC同時培養物(1:10)中のPGE2ブロッカーであるインドメタシン(Indo)又はNS−398の存在は、PHA処理PBMCに対するMSC性抗増殖作用を逆転させる。示したデータは1つの実験からであり、3つの独立した実験の典型である。 FIG. The MSC of PGE 2 produced, MSC immunomodulatory effects when blocking PGE 2 is reversed. (A) PGE 2 secretion (mean ± SD) in culture supernatants obtained from MSCs cultured in the presence or absence of various concentrations of PGE 2 blockers NS-398 or indomethacin (Indometh.). The inhibitor concentration is μM, and the data shown are values obtained after 24 hours of culture. (B) COX-1 and COX-2 expression in MSC and PBMC using real-time RT-PCR. MSCs expressed significantly higher levels of COX-2 compared to PBMC, and when MSCs were cultured in the presence of PBMC, there was a more than 3-fold increase in COX-2 expression in MSCs. Representative data from 1-3 independent experiments are shown. MSC + PBMC cultures were prepared in transwell chamber plates, where MSCs were seeded in the lower chamber and PBMCs were seeded in the upper chamber. (C) Presence of indomethacin (Ind.) Or NS-398, PGE 2 blockers, indicates TNF-α secretion from activated DCs (white bars) and T H 1 cells (hatched bars) compared to controls. Increases IFN-γ secretion from Data were calculated as% change from cultures produced in the absence of MSC and PGE 2 inhibitor. (D) The presence of PGE 2 blockers indomethacin (Indo) or NS-398 in MSC-PBMC co-culture (1:10) reverses the MSC antiproliferative effect on PHA-treated PBMC. The data shown is from one experiment and is representative of three independent experiments.

図5。構成性MSCサイトカイン分泌は同種異系PBMCの存在下で上昇する。すでに性状解析したヒトMSCを使用して、PBMCの存在下(斜線)又は非存在下(白い棒)(MSC対PBMC比は1:10)で24時間培養したMSCの培養上清中のサイトカインIL−6とVEGF、脂質メディエーターPGE2、及びマトリックス金属プロテアーゼ1(pro−MMP−1)のレベルを分析した。MSCはIL−6、VEGF、及びPGE2を構成性に産生し、これらの因子のレベルはPBMCとの同時培養で上昇し、従ってMSCが炎症性状況で免疫機能の調節において役割を果たすことを示唆する。 FIG. Constitutive MSC cytokine secretion is elevated in the presence of allogeneic PBMC. Cytokine IL in the culture supernatant of MSC cultured for 24 hours in the presence (diagonal line) or absence (white bar) (MSC to PBMC ratio 1:10) using human MSCs already characterized -6 and VEGF, were analyzed the levels of lipid mediators PGE 2, and matrix metalloproteinase 1 (pro-MMP-1) . The MSC IL-6, VEGF, and produce PGE 2 constitutively, elevated levels of these factors in the co-culture with PBMC, therefore the MSC to play a role in the regulation of immune function in inflammatory conditions Suggest.

図6。MSCは分裂促進剤誘導性のT細胞増殖を用量依存的に阻害する。増加する数の同種異系PBMCを、PHA(2.5mg/ml)の存在下又は非存在下で96ウェルプレートに蒔いた一定数のMSC(2,000細胞/ウェル)とインキュベートし、3Hチミジン取り込みを測定した(1分当たりのカウント、cpm)。MSCの存在下でPHA処理PBMCの増殖の用量依存性阻害があった。3つの独立した実験の1つからの典型的結果を示す。同様の結果が、LeBlanc, et al., Scand J. Immunol., Vol. 57, pg. 11 (2003)により報告された。 FIG. MSCs inhibit mitogen-induced T cell proliferation in a dose-dependent manner. Increasing numbers of allogeneic PBMCs were incubated with a fixed number of MSCs (2,000 cells / well) seeded in 96-well plates in the presence or absence of PHA (2.5 mg / ml), and 3 H Thymidine incorporation was measured (counts per minute, cpm). There was a dose-dependent inhibition of proliferation of PHA-treated PBMC in the presence of MSC. A typical result from one of three independent experiments is shown. Similar results were reported by LeBlanc, et al., Scand J. Immunol. , Vol. 57, pg. 11 (2003).

図7。提唱されているMSC作用機構の模式図
MSCは、先天的(DC経路2〜4;及びNK経路6)免疫系と適応(T経路1と5、及びB経路7)免疫系の両方からの細胞に影響を与えることにより免疫調節作用を仲介する。浸入病原体に応答して未成熟DCは、侵入可能部位に移動し、成熟し、未処理のT細胞を刺激して(抗原特異的及び同時刺激シグナルにより)、防御性エフェクターT細胞(細胞性TH1又は体液性TH2免疫)になる能力を獲得する。MSC−DC相互作用中に、MSCは直接の細胞−細胞接触により又は分泌された因子により、細胞性応答(経路2)を開始するDCの能力を制限することにより、又は体液性応答(経路4)を開始する能力を促進することにより、免疫応答の結果を変化させる。また成熟エフェクターT細胞が存在する時、MSCはこれらと相互作用してTH1(経路1)応答のバランスをTH2応答(経路5)に向けて、おそらくIgE産生B細胞活性(経路7)の上昇(これは、GvHDと自己免疫疾患症状の抑制に好ましい結果である)に向ける。MSCはTReg集団(経路3)の生成を増加させる能力により、寛容表現型となり、局所的微小環境におけるバイスタンダー(bystander)炎症を緩和することにより受容体宿主を助ける。点線(----)は提唱された機構である。
FIG. Schematic diagram of proposed MSC mechanism of action MSCs are cells from both the innate (DC pathway 2-4; and NK pathway 6) immune system and the adaptive (T pathway 1 and 5, and B pathway 7) immune system. Mediates immunomodulatory effects by affecting In response to invading pathogens, immature DCs migrate to invading sites, mature, stimulate untreated T cells (by antigen-specific and costimulatory signals), and protective effector T cells (cellular T acquire the ability to become H 1 or humoral T H 2 immune). During MSC-DC interactions, MSCs either by direct cell-cell contact or by secreted factors limit the ability of DCs to initiate a cellular response (path 2) or a humoral response (path 4 By altering the outcome of the immune response. Also, when mature effector T cells are present, MSCs interact with them to shift the balance of the T H 1 (path 1) response towards the TH 2 response (path 5), possibly of IgE-producing B cell activity (path 7). Toward an increase, which is a favorable outcome for the suppression of GvHD and autoimmune disease symptoms. MSCs become a tolerant phenotype by virtue of their ability to increase the generation of the T Reg population (path 3) and help the recipient host by alleviating bystander inflammation in the local microenvironment. The dotted line (----) is the proposed mechanism.

本発明を以下の実施例で説明する;しかし本発明の範囲は決してこれらにより限定されるものではない。   The invention is illustrated by the following examples; however, the scope of the invention is in no way limited by these.

実施例1Example 1

材料と方法 Materials and methods

ヒトMSCの培養
ヒトMSCを、Pittenger et al., Science, Vol. 284, pg. 143 (1999)に記載されたように培養した。すなわち、Poietics Technologies, Div of Cambrex Biosciencesによるインフォームドコンセントの後、匿名のドナーの腸骨稜から骨髄試料を採取した。1%抗生物質−抗真菌剤溶液(Invitrogen, Carlsbad, California)と10%牛胎児血清(FBS, JRH BioSciences, Lenexa, Kansas)を含有する完全ダルベッコー改変イーグル培地−低グルコース(Life Technologies, Carlsbad, California)中でMSCを培養した。MSCは接着性単層として増殖し、トリプシン/EDTAを用いて剥がした(0.05%トリプシンで37℃で3分)。使用したすべてのMSCは多分化性についてすでに性状解析され、間葉性系統(軟骨細胞性、脂肪細胞生成性、及び骨形成性)に分化する能力を保持した(Pittenger, et al., Science, Vol. 284, pg. 143 (1999))。
Culture of human MSCs Human MSCs were cultured as described in Pittenger et al., Science , Vol. 284, pg. 143 (1999). That is, bone marrow samples were collected from the iliac crests of anonymous donors after informed consent by Poietics Technologies, Div of Cambrex Biosciences. Complete Dulbecco's Modified Eagle Medium-Low Glucose (Life Technologies, Carlsbad, California) containing 1% antibiotic-antifungal solution (Invitrogen, Carlsbad, California) and 10% fetal bovine serum (FBS, JRH BioSciences, Lenexa, Kansas) MSCs were cultured in MSCs grew as adherent monolayers and were stripped using trypsin / EDTA (0.05% trypsin at 37 ° C. for 3 minutes). All MSCs used were already characterized for pluripotency and retained the ability to differentiate into mesenchymal lineages (chondrogenic, adipogenic, and osteogenic) (Pittenger, et al., Science , Vol. 284, pg. 143 (1999)).

樹状細胞の単離
末梢血単核細胞(PBMC)は、Poietics Technologies, Div of Cambrex Biosciences (Walkersville, MD)から得た。単球系統(CD1c+)の樹状細胞(DC)の前駆体を、Dzionek, et. al., J. Immunol., Vol. 165, pg. 6037 (2000)に従う2工程磁性分離法を使用して、PBMCから陽性選択した。すなわち、CD1c発現B細胞を磁性ビーズを使用してCD19+細胞を磁性的に枯渇させ、次にB細胞枯渇画分をビオチン標識CD1c(BDCA1+)と抗ビオチン抗体とで標識し、製造業者(Miltenyi Biotech, Auburn, California)の説明書に従って磁性カラムを使用して、非標識細胞画分からこれらを分離した。陽性標識した抗体コーティング細胞(BDCA2+)(Miltenyi Biotech, Auburn, California)の免疫−磁性分類により、PBMCから形質細胞様系統のDCの前駆体を単離した。
Dendritic cell isolation Peripheral blood mononuclear cells (PBMC) were obtained from Poietics Technologies, Div of Cambrex Biosciences (Walkersville, MD). Monocyte lineage (CD1c + ) dendritic cell (DC) precursors were analyzed using a two-step magnetic separation method according to Dzionek, et. Al., J. Immunol. , Vol. 165, pg. 6037 (2000). And positively selected from PBMC. That is, CD1c-expressing B cells were magnetically depleted of CD19 + cells using magnetic beads, and then the B cell depleted fraction was labeled with biotin-labeled CD1c (BDCA1 + ) and anti-biotin antibody, and the manufacturer ( These were separated from the unlabeled cell fraction using a magnetic column according to the instructions of Miltenyi Biotech, Auburn, California). Plasma cell-like lineage DC precursors were isolated from PBMC by immuno-magnetic classification of positively labeled antibody-coated cells (BDCA2 + ) (Miltenyi Biotech, Auburn, California).

MSC−DC培養
ほとんどの実験でヒトMSCとDCを同じ数で種々の時間培養し、細胞培養物上清を採取し、さらに評価するまで−80℃で保存した。選択された実験で、MSCを成熟DC1もしくはDC2細胞(1:1 MSC:DC比)と3日間培養し、次に一緒にした培養物(MSCとDC)に放射線照射してさらなる増殖を止めた。次に抗体で精製した未処理の同種異系T細胞(CD4+、CD45RA+)を放射線照射MSC/DCに加え、さらに6日間培養した。次に培養物から非接着性細胞画分(精製T細胞)を採取し、2回洗浄し、PHAでさらに24時間再刺激し、次に細胞培養上清を採取し、分離されたIFN−γとIL−4についてELISAにより分析した。
MSC-DC cultures In most experiments, human MSCs and DCs were cultured in the same number for various times and cell culture supernatants were collected and stored at -80 ° C until further evaluation. In selected experiments, MSCs were cultured with mature DC1 or DC2 cells (1: 1 MSC: DC ratio) for 3 days and then combined cultures (MSC and DC) were irradiated to stop further growth. . Next, untreated allogeneic T cells (CD4 + , CD45RA + ) purified with antibodies were added to the irradiated MSC / DC and cultured for an additional 6 days. The non-adherent cell fraction (purified T cells) is then collected from the culture, washed twice, restimulated with PHA for another 24 hours, and then the cell culture supernatant is collected and the isolated IFN-γ And IL-4 were analyzed by ELISA.

NK細胞の単離
ビオチン結合モノクローナル抗体のカクテル(抗−CD3、−CD14、−CD19、−CD36、及び抗IgE抗体)を1次試薬とし、マイクロビーズに結合した抗ビオチンモノクローナル抗体を2次標識試薬として、磁性標識した非NK細胞を枯渇させることにより、NK細胞の精製集団が得られた。磁性標識した非NK細胞は、磁界中でMACS(Miltenyi Biotech, Auburn, California)カラム中に保持され、NK細胞は通過し、採取された。
Isolation of NK cells Biotin-conjugated monoclonal antibody cocktail (anti-CD3, -CD14, -CD19, -CD36, and anti-IgE antibody) as a primary reagent, and anti-biotin monoclonal antibody bound to microbeads as a secondary labeling reagent As a result, a purified population of NK cells was obtained by depleting magnetically labeled non-NK cells. Magnetically labeled non-NK cells were retained in a MACS (Miltenyi Biotech, Auburn, California) column in a magnetic field, and NK cells passed through and collected.

Reg細胞集団の単離
2工程単離法を使用してTReg細胞集団を単離した。まずビオチン標識抗体のカクテルと抗ビオチンマイクロビーズを用いて、非CD4+ T細胞を間接に磁性標識した。次に標識した細胞をMACSカラム(Miltenyi Biotech, Auburn, California)で分離して枯渇させた。次にCD4+CD25+細胞をCD25マイクロビーズで直接標識し、あらかじめ濃縮したCD4+ T細胞画分から陽性選択により単離した。磁性標識したCD4+CD25+細胞はカラムに保持され、磁界からカラムを取り出した後溶出した。
It was isolated T Reg cell populations by using the isolated two-step method for isolating T Reg cell population. First, non-CD4 + T cells were indirectly magnetically labeled using a cocktail of biotin-labeled antibodies and anti-biotin microbeads. The labeled cells were then separated and depleted with a MACS column (Miltenyi Biotech, Auburn, California). CD4 + CD25 + cells were then directly labeled with CD25 microbeads and isolated from pre-enriched CD4 + T cell fractions by positive selection. Magnetically labeled CD4 + CD25 + cells were retained on the column and eluted after removal of the column from the magnetic field.

MSCの存在下で生成されたCD4+CD25+集団の増加が自然界で抑制性であるかどうかを調べるために、CD4+CD25+reg細胞集団を、2工程磁性単離法を使用してPBMC又はMSC+PBMC(MSC対PBMC比は1:10)培養物(さらなる刺激無しで3日間培養した)から単離した。これらの細胞に放射線照射してさらなる増殖を阻止し、混合リンパ球反応(MLR)で刺激細胞として使用し、ここで応答細胞はPHA(2.5μg/ml)の存在下で同種異系PBMC(刺激細胞対応答細胞の比は1:100)であった。48時間培養を行い。次に3Hチミジンを加えた。24時間後に取り込まれた放射活性を計測した。 To investigate whether the increase in the CD4 + CD25 + population generated in the presence of MSC is naturally inhibitory, the CD4 + CD25 + T reg cell population was analyzed using PBMC using a two-step magnetic isolation method. Alternatively, isolated from MSC + PBMC (MSC to PBMC ratio is 1:10) culture (cultured for 3 days without further stimulation). These cells are irradiated to prevent further growth and used as stimulator cells in a mixed lymphocyte reaction (MLR), where responder cells are allogeneic PBMCs (2.5 μg / ml) in the presence of PHA (2.5 μg / ml). The ratio of stimulator cells to responder cells was 1: 100). Incubate for 48 hours. 3 H thymidine was then added. The radioactivity incorporated after 24 hours was measured.

MSCの非存在下又は存在下でPBMCを培養(MSC対PBMC比は1:10)し、次に非接着性画分を採取し、FITC標識グルココルチコイド誘導性TNF受容体(すなわちGITR)、及びPE標識CD4で免疫染色した。   PBMCs are cultured in the absence or presence of MSC (MSC to PBMC ratio is 1:10), then the non-adhesive fraction is collected, FITC-labeled glucocorticoid-induced TNF receptor (ie GITR), and Immunostained with PE-labeled CD4.

H1/TH2細胞の作製
2×106細胞/mlで37℃で45分、末梢血単核細胞(PBMC)をプレートに蒔き、単球を除去した。非接着性画分をプレート結合抗CD3(5μg/ml)と抗CD28(1μg/ml)抗体の存在下で、TH1(IL−2(4ng/ml)+IL−12(5ng/ml)+抗IL−4(1μg/ml))条件又はTH2(IL−2(4ng/ml)+IL−4(4ng/ml)+抗IFN−γ(1μg/ml))条件で3日間、MSCの存在下又は非存在下でインキュベートした。細胞を洗浄し、次にPHA(2.5μg/ml)でさらに24もしくは48時間再刺激し、次に培養上清中のIFN−γとIL−4のレベルをELISA(R&D Systems, Minneapolis, Minnesota)により測定した。
Preparation of T H 1 / T H 2 cells Peripheral blood mononuclear cells (PBMC) were plated on plates at 2 × 10 6 cells / ml at 37 ° C. for 45 minutes to remove monocytes. Non-adhesive fractions were treated with T H 1 (IL-2 (4 ng / ml) + IL-12 (5 ng / ml) + Anti-IL-4 (1 μg / ml)) conditions or T H 2 (IL-2 (4 ng / ml) + IL-4 (4 ng / ml) + anti-IFN-γ (1 μg / ml)) conditions for 3 days Incubated in the presence or absence. Cells were washed and then restimulated with PHA (2.5 μg / ml) for an additional 24 or 48 hours, and then the levels of IFN-γ and IL-4 in the culture supernatant were determined by ELISA (R & D Systems, Minneapolis, Minnesota ).

MSCの培養上清中のVEGF、PGE2、及びpro−MMP−1のレベルの分析
すでに性状解析されたヒトMSCを使用して、インターロイキン−6(IL−6)、VEGF、脂質メディエータープロスタグランジンE2(PGE2)、及びマトリックス金属プロテアーゼ1(pro−MMP−1)のレベルを、PBMCの存在下又は非存在下(MSC対PBMC比は1:10)で24時間培養したMSCの培養上清で分析した。
Analysis of levels of VEGF, PGE 2 and pro-MMP-1 in MSC culture supernatant Using human MSCs already characterized, interleukin-6 (IL-6), VEGF, lipid mediator prostagland Cultivation of MSCs cultured for 24 hours in the presence or absence of PBMC (MSC to PBMC ratio 1:10) with levels of gin E 2 (PGE 2 ) and matrix metalloproteinase 1 (pro-MMP-1) The supernatant was analyzed.

PBMCの増殖
フィコール−ハイパーク(Lymphoprep, Oslo, Norway)上でleukopack(Cambrex, Walkersville, Maryland)を遠心分離して、精製PBMCを調製した。分離した細胞をMSC(PBMC添加の3〜4時間前にプレートに蒔いて沈降させた)の存在下又は非存在下で、分裂促進剤PHA(Sigma Chemicals, St. Louis, Missouri)の存在下で48時間培養した(三重測定)。選択された実験で、PBMCをPGE2インヒビターであるインドメタシン(Sigma Chemicals, St. Louis, Missouri)又はNS−938(Cayman Chemicals, Ann Arbor, Michigan)を含有する培地に再懸濁した。(3H)チミジンを加え(200μlの培養物に20μl)、さらに24時間培養後自動ハーベスターを使用して細胞を採取した。MSC又はPGE2ブロッカーの作用を、PHAの存在下での対照応答(100%)のパーセントとして計算した。
Purified PBMCs were prepared by centrifuging leukopack (Cambrex, Walkersville, Maryland) on PBMC growth Ficoll-Hypaque (Lymphoprep, Oslo, Norway). Dissociated cells in the presence or absence of MSC (precipitated on plates 3-4 hours prior to PBMC addition) in the presence of mitogen PHA (Sigma Chemicals, St. Louis, Missouri) Cultured for 48 hours (triple measurement). In selected experiments, PBMC were resuspended in media containing PGE 2 inhibitors indomethacin (Sigma Chemicals, St. Louis, Missouri) or NS-938 (Cayman Chemicals, Ann Arbor, Michigan). ( 3 H) thymidine was added (20 μl in a 200 μl culture), and the cells were harvested using an automatic harvester after further incubation for 24 hours. The effect of MSC or PGE 2 blocker was calculated as a percentage of the control response (100%) in the presence of PHA.

定量的RT−PCR
市販のキット(Qiagen, Valencia, California)を使用して製造業者の説明書に従って、細胞ペレットから総RNAを調製した。混入しているゲノムDNAをDNAフリーキット(Ambion, Austin, Texas)を使用して除去した。QuantiTect SYBR Green RT-PCR キット(Qiagen, Valencia, California)を使用して、0.5μM濃度のプライマーを用いて、MJ Research Opticon検出系(South San Francisco, California)で定量的RT−PCRを行った。異なる条件で培養した細胞中の発現レベルの相対的変化を、β−アクチンを内部対照として使用してCt値(交差点)の差により計算した。COX−1及びCOX−2特異的プライマーの配列は以下の通りであった:COX−1:5'-CCG GAT GCC AGT CAG GAT GAT G-3' (フォワード)、5'-CTA GAC AGC CAG ATG CTG ACA G-3' (リバース);COX-2:5'-ATC TAC CCT CCT CAA GTC CC-3'(フォワード)、 5'-TAC CAG AAG GGC AGG ATA CAG-3' (リバース)。
Quantitative RT-PCR
Total RNA was prepared from cell pellets using a commercial kit (Qiagen, Valencia, California) according to the manufacturer's instructions. Contaminating genomic DNA was removed using a DNA free kit (Ambion, Austin, Texas). Quantitative RT-PCR was performed in the MJ Research Opticon detection system (South San Francisco, California) using the QuantiTect SYBR Green RT-PCR kit (Qiagen, Valencia, California) with primers at 0.5 μM concentration. . The relative change in expression level in cells cultured at different conditions was calculated by the difference in Ct values (crossing points) using β-actin as an internal control. The sequences of the COX-1 and COX-2 specific primers were as follows: COX-1: 5′-CCG GAT GCC AGT CAG GAT GAT G-3 ′ (forward), 5′-CTA GAC AGC CAG ATG CTG ACA G-3 '(reverse); COX-2: 5'-ATC TAC CCT CCT CAA GTC CC-3' (forward), 5'-TAC CAG AAG GGC AGG ATA CAG-3 '(reverse).

増加する数の同種異系PBMCを、96ウェルプレート上に蒔いた一定数のMSC(2,000細胞/ウェル)と、PHA(2.5μg/ml)の存在下で72時間インキュベートし、3Hチミジンの取り込み(1分当たりのカウント、cpm)を測定した。PBMCとMSCは、MSC:PBMCが1:1、1:3、1:10、1:30、及び1:81の比で培養した。 Increasing numbers of allogeneic PBMCs were incubated with a constant number of MSCs (2,000 cells / well) seeded on 96-well plates in the presence of PHA (2.5 μg / ml) for 72 hours, and 3 H Thymidine incorporation (counts per minute, cpm) was measured. PBMC and MSC were cultured in ratios of 1: 1, 1: 3, 1:10, 1:30, and 1:81 of MSC: PBMC.

結果 本試験では、ヒトMSCと、樹状細胞(DC1とDC2)、エフェクターT細胞(TH1とTH2)及びNK細胞を含む単離した免疫細胞集団との相互作用を調べた。MSCと各免疫細胞タイプとの相互作用は特定の結果を有し、MSCが免疫応答プロセスのいくつかの工程を調節することを示唆した。MSC免疫調節作用を調節し、これの原因かも知れない分泌因子の産生を評価し、プロスタグランジン合成が示唆された。 Results In this study, the interaction of human MSCs with isolated immune cell populations including dendritic cells (DC1 and DC2), effector T cells (T H 1 and T H 2) and NK cells was examined. The interaction of MSCs with each immune cell type had specific results, suggesting that MSCs regulate several steps of the immune response process. Prostaglandin synthesis was suggested by modulating the MSC immunomodulatory action and evaluating the production of secreted factors that may be responsible for this.

それぞれBDCA1+とBDCA2+細胞の免疫磁性分類により、骨髄性(DC1)と形質細胞性(DC2)前駆樹状細胞を単離し、DC1細胞についてはGM−CSFとIL−4(それぞれ1×103IU/mlと1×103IU/ml)と、DC2細胞についてはIL−3(10ng/ml)とインキュベートして成熟させた。フローサイトメトリーを使用すると、DC1細胞はHLA−DR+であり、一方DC2細胞はHLA−DR+とCD123+であった(図1A)。炎症性物質である細菌リポ多糖(LPS、1ng/ml)の存在下で、DC1細胞は中レベルのTNF−αを産生したが、MSCが存在する時(調べた比率1:1と1:10)は、TNF−α分泌の>50%低下があった(図1B)。一方DC2細胞はLPSの存在下でIL−10を産生し、そのレベルは、MSC:DC2同時培養(1:1)で2倍以上上昇した(図1B)。従ってMSCは培養物中の活性化DCのサイトカインプロフィールをより寛容原性表現型に修飾した。さらに活性化DCはMSCと培養するとIFN−γを低下させ、かつ未処理のCD4+T細胞により分泌されるIL−4レベルを上昇(図1C)させることができ、炎症促進性から抗炎症性T細胞表現型へのMSC性シフトを示唆した。 By immunomagnetic classification of BDCA1 + and BDCA2 + cells, respectively, myeloid (DC1) and plasmacytotic (DC2) precursor dendritic cells were isolated, and for DC1 cells, GM-CSF and IL-4 (1 × 10 3 each) IU / ml and 1 × 10 3 IU / ml) and DC2 cells were matured by incubation with IL-3 (10 ng / ml). Using flow cytometry, DC1 cells were HLA-DR + while DC2 cells were HLA-DR + and CD123 + (FIG. 1A). In the presence of the inflammatory agent bacterial lipopolysaccharide (LPS, 1 ng / ml), DC1 cells produced moderate levels of TNF-α, but when MSC was present (ratio 1: 1 and 1:10 examined). ) Had a> 50% reduction in TNF-α secretion (FIG. 1B). On the other hand, DC2 cells produced IL-10 in the presence of LPS, and the level increased more than 2-fold in MSC: DC2 co-culture (1: 1) (FIG. 1B). MSC thus modified the cytokine profile of activated DCs in culture to a more tolerogenic phenotype. Furthermore, activated DCs can reduce IFN-γ and increase IL-4 levels secreted by untreated CD4 + T cells when cultured with MSC (FIG. 1C), from pro-inflammatory to anti-inflammatory. Suggested MSC sex shift to T cell phenotype.

上昇したIL−10分泌は制御細胞の生成において役割を果たす(Kingsley, et al., J. Immunol., Vol. 168, pg. 1080 (2002))ため、T制御細胞(TReg)は、PBMCとMSCの同時培養でフローサイトメトリーにより定量した。PBMCとMSCを3〜5日間培養すると、抗CD4と抗CD25抗体を用いてPBMCを染色して測定したTReg細胞数が増加し(図2A)、これはMSC誘導性の寛容原性応答をさらに支持した。MSCの存在下で生成するCD4+CD25+Reg細胞集団は、グルココルチコイド誘導性のTNF受容体(GITR)(TReg細胞集団上で発現される細胞表面受容体)のレベル上昇を示し、自然界では同種異系T細胞増殖を抑制したため抑制性であった(図3A、3 B)。次にT細胞分化に影響を与えるその直接能力についてMSCを調べた。抗体で選択した精製T細胞(CD4+ Th細胞)を使用して、IFN−γ産生TH1細胞とIL−4産生TH2細胞を、MSCの存在下又は非存在下で作製した。分化中にMSCが存在する時に、TH1細胞によるIFN−γ分泌が低下し、TH2細胞によるIL−4分泌が上昇した(図2B)。T細胞がエフェクターTH1又はTH2型(データは示していない)に分化(3日目)した後にMSCを培養物に加えると、IFN−γとIL−4レベルに有意な変化はなかった。これらの実験は、MSCがエフェクターT細胞分化に直接影響を与え、T細胞サイトカイン分泌を体液性表現型に変化させることを示唆する。 Since elevated IL-10 secretion plays a role in the generation of regulatory cells (Kingsley, et al., J. Immunol. , Vol. 168, pg. 1080 (2002)), T regulatory cells (T Reg ) are PBMCs. And quantified by flow cytometry in co-culture with MSC. When PBMC and MSC were cultured for 3-5 days, the number of T Reg cells measured by staining PBMC with anti-CD4 and anti-CD25 antibodies increased (FIG. 2A), indicating an MSC-induced tolerogenic response. Further support. The CD4 + CD25 + T Reg cell population generated in the presence of MSCs exhibits elevated levels of glucocorticoid-induced TNF receptor (GITR) (a cell surface receptor expressed on the T Reg cell population) In FIG. 3A and 3B, the allogeneic T cell proliferation was suppressed. MSCs were then examined for their direct ability to affect T cell differentiation. Using purified T cells selected with antibodies (CD4 + Th cells), IFN-γ producing T H 1 cells and IL-4 producing T H 2 cells were generated in the presence or absence of MSC. When MSCs were present during differentiation, IFN-γ secretion by T H 1 cells decreased and IL-4 secretion by T H 2 cells increased (FIG. 2B). There was no significant change in IFN-γ and IL-4 levels when MSCs were added to cultures after T cells differentiated into effector T H 1 or T H type 2 (data not shown) (day 3) It was. These experiments suggest that MSCs directly affect effector T cell differentiation and change T cell cytokine secretion to a humoral phenotype.

同様に、MSCを精製NK細胞(CD3−、CD14−、CD19−、CD36−)と1:1の比率で異なる時間(0〜48時間)培養すると、培養上清中でIFN−γ分泌が低下(図2C)し、従ってMSCがNK細胞機能も調節できることを示唆する。   Similarly, when MSCs are cultured with purified NK cells (CD3-, CD14-, CD19-, CD36-) at different ratios (0 to 48 hours), IFN-γ secretion decreases in the culture supernatant. (FIG. 2C), thus suggesting that MSCs can also regulate NK cell function.

以前の研究は、MSCが可溶性因子によりT細胞機能を修飾することを示している(LeBlanc, et al., Exp. Hematol., Vol. 31 , pg. 890 (2003); Tse, et al., Transplantation, Vol. 75, pg. 389 (2003))。MSCは、IL−6、プロスタグランジンE2、VEGF、及びpro−MMP−1を含むいくつかの因子を構成的に分泌し、それぞれのレベルがPBMCとの培養により上昇することが観察された(図5)。DCによるTNF−αの阻害とIL−10産生の上昇を引き起こすMSC由来因子を調べるために、プロスタグランジンE2の役割の可能性を調べた(これは活性化DCによるTNF−α産生を阻害することが証明されているため)(Vassiliou, et al., Cell. Immunol., Vol. 223, pg. 120 (2003))。MSC培養物(0.5×106細胞/mlの24時間培養物)からの調整培地は約1000pg/mlのPGE2を含有した(図4A)。培養上清中にPGE2分泌の公知のインデューサー、例えば、TNF−α、IFN−γ、又はIL−1βの検出可能な存在は無く(データは示していない)、MSCによるPGE2の構成性分泌を示している。hMSCによるPGE2分泌は、PGE2産生の公知のインヒビター[NS−398(5μM)及びインドメタシン(4μM)]の存在下で60〜90%阻害された(図4A)。構成的活性なシクロオキシゲナーゼ酵素1(COX−1)と誘導性シクロオキシゲナーゼ酵素2(COX−2)の酵素活性の結果としてPGE2分泌の放出が起きるため(Harris, et al., Trends Immunol., Vol. 23, pg. 144 (2002))、トランスウェル培養系を使用してMSCとPBMC中のCOX−1とCOX−2のmRNA発現を分析した。MSCは、PBMCと比較して有意に高レベルのCOX−2を発現し、その発現レベル上昇は、MSCとPBMC(MSCとPBMCの比は1:10)と24時間同時培養すると>3倍であった(図4B)。COX−1レベルにわずかな変化が見られ、MSC−PBMC同時培養でのPGE2分泌の上昇(図5)はCOX−2のアップレギュレーションにより仲介されることを示唆している。DCとT細胞に対するMSCの免疫調節作用がPGE2により仲介されるかどうかを調べるために、PGE2インヒビターであるNS−398又はインドメタシンの存在下でMSCを活性化樹状細胞(DC1)又はTH1細胞と培養した。NS−398又はインドメタシンの存在は、それぞれDC1によるTNF−α分泌と、TH1細胞によるIFN−γ分泌を上昇させ(図4C)、免疫細胞タイプへのMSCの作用は分泌されたPGE2により仲介されることを示唆した。最近の研究は、種々の刺激により誘導されるT細胞増殖をMSCが阻害することを証明している(DeNicola, et al., Blood, Vol. 99, pg. 3838 (2002); LeBlanc, et al., Scand. J. Immunol., Vol. 57, pg. 11 (2003))。MSCは分裂促進剤誘導性のT細胞増殖を用量依存性に阻害(図6)し、PGE2インヒビターであるNS−398(5μM)又はインドメタシン(4μM)が存在すると、インヒビターの無い対照と比較して、培養物を含有するMSC中のPHA処理PBMCにより(3H)チミジン取り込みが>70%上昇することが観察された(図4D)。 Previous studies have shown that MSCs modify T cell function by soluble factors (LeBlanc, et al., Exp. Hematol. , Vol. 31, pg. 890 (2003); Tse, et al., Transplantation , Vol. 75, pg. 389 (2003)). MSC constitutively secreted several factors including IL-6, prostaglandin E2, VEGF, and pro-MMP-1, and each level was observed to be increased by culture with PBMC ( FIG. 5). To investigate MSC-derived factors that cause inhibition of TNF-α by DC and increased production of IL-10, the possible role of prostaglandin E2 was examined (which inhibits TNF-α production by activated DC (Vassiliou, et al., Cell. Immunol. , Vol. 223, pg. 120 (2003)). Conditioned media from MSC cultures (0.5 × 10 6 cells / ml 24-hour culture) contained approximately 1000 pg / ml PGE 2 (FIG. 4A). There is no detectable presence of known inducers of PGE 2 secretion in the culture supernatant, eg, TNF-α, IFN-γ, or IL-1β (data not shown) and the constitutive nature of PGE 2 by MSC Shows secretion. PGE 2 secretion by hMSC was inhibited 60-90% in the presence of known inhibitors of PGE 2 production [NS-398 (5 μM) and indomethacin (4 μM)] (FIG. 4A). Release of PGE 2 secretion occurs as a result of the enzymatic activity of constitutively active cyclooxygenase enzyme 1 (COX-1) and inducible cyclooxygenase enzyme 2 (COX-2) (Harris, et al., Trends Immunol. , Vol. 23, pg. 144 (2002)), COX-1 and COX-2 mRNA expression in MSC and PBMC was analyzed using a transwell culture system. MSCs express significantly higher levels of COX-2 compared to PBMCs, with increased expression levels> 3 fold when co-cultured with MSC and PBMC (ratio of MSC to PBMC is 1:10) for 24 hours. (FIG. 4B). A slight change was seen in COX-1 levels, suggesting that the increase in PGE 2 secretion in MSC-PBMC co-cultures (FIG. 5) is mediated by COX-2 upregulation. To immunomodulatory effects of MSC to DC and T cells To determine whether mediated by PGE 2, MSC activated dendritic cells in the presence of NS-398 or indomethacin is PGE 2 inhibitor (DC1) or T Cultured with H1 cells. The presence of NS-398 or indomethacin increased TNF-α secretion by DC1 and IFN-γ secretion by T H 1 cells, respectively (FIG. 4C), and the effect of MSC on immune cell types was due to secreted PGE 2 Suggested to be mediated. Recent studies have demonstrated that MSC inhibits T cell proliferation induced by various stimuli (DeNicola, et al., Blood , Vol. 99, pg. 3838 (2002); LeBlanc, et al , Scand. J. Immunol. , Vol. 57, pg. 11 (2003)). MSC dose-dependently inhibits mitogen-induced T cell proliferation (FIG. 6), compared to the inhibitor-free control in the presence of the PGE 2 inhibitors NS-398 (5 μM) or indomethacin (4 μM). Thus, it was observed that ( 3 H) thymidine incorporation was increased by> 70% by PHA-treated PBMC in MSCs containing cultures (FIG. 4D).

要約すると、MSCと他の免疫細胞種との相互作用のモデル(図7)が提唱される。成熟T細胞が存在すると、MSCが直接これらと相互作用し、炎症促進IFN−γ産生(経路1)を阻害し、制御性T細胞表現型(経路3)を増加させ、抗炎症性TH2細胞(経路5)を増加する。さらにMSCは、PGE2を分泌することにより、炎症促進DC1細胞を阻害(経路2)することにより、及び抗炎症性DC2細胞(経路4)又は制御性DC(経路3)を増加させることにより、DCを介するT細胞免疫応答の結果を変化させることができる。TH2免疫へのシフトは、IgE/IgG1サブタイプ抗体の生成上昇(経路7)へのB細胞活性の変化を示唆する。MSCはNK細胞からのIFN−γ分泌を阻害する能力により、NK細胞機能を修飾するようである(経路6)。このMSC:免疫細胞相互作用のモデルは、いくつかの他の実験室で行われた実験と一致する(LeBlanc, et al., Exp. Hematol., Vol. 31 , pg. 890 (2003); Tse, et al., Transplantation, Vol. 75, pg. 389 (2003); DiNicola, et al., Blood, Vol. 99, pg. 3838 (2002))。提唱された機構のさらなる研究が進行中であり、MSC投与のインビボ作用を調べるために動物試験が必要である。 In summary, a model for the interaction of MSCs with other immune cell types (FIG. 7) is proposed. In the presence of mature T cells, MSCs interact directly with them, inhibit pro-inflammatory IFN-γ production (path 1), increase the regulatory T cell phenotype (path 3), and anti-inflammatory T H 2 Increase cells (path 5). Furthermore, MSCs secrete PGE 2 , inhibit pro-inflammatory DC1 cells (path 2), and increase anti-inflammatory DC 2 cells (path 4) or regulatory DC (path 3), The outcome of a T cell immune response via DC can be altered. The shift to T H 2 immunity suggests a change in B cell activity towards increased production of IgE / IgG1 subtype antibodies (pathway 7). MSCs appear to modify NK cell function by the ability to inhibit IFN-γ secretion from NK cells (pathway 6). This model of MSC: immune cell interaction is consistent with experiments performed in several other laboratories (LeBlanc, et al., Exp. Hematol. , Vol. 31, pg. 890 (2003); Tse , et al., Transplantation , Vol. 75, pg. 389 (2003); DiNicola, et al., Blood , Vol. 99, pg. 3838 (2002)). Further studies of the proposed mechanism are ongoing and animal studies are needed to investigate the in vivo effects of MSC administration.

実施例2Example 2

重症の段階IVの消化管移植片対宿主病(GVHD)に罹っている33才の女性患者に間葉系幹細胞を投与した。この患者は他のすべてのGVHD治療に抵抗性であった。患者の結腸の内視鏡観察は、治療前に潰瘍形成と炎症の部位を示した。患者の結腸の組織検査は、治療前にGVHDが患者の腸陰窩の大部分を破壊していることを証明した。   Mesenchymal stem cells were administered to a 33 year old female patient suffering from severe stage IV gastrointestinal graft-versus-host disease (GVHD). This patient was resistant to all other GVHD treatments. Endoscopic observation of the patient's colon showed sites of ulceration and inflammation prior to treatment. A histological examination of the patient's colon demonstrated that GVHD had destroyed most of the patient's intestinal crypts prior to treatment.

患者は、体重1kg当たり3×106細胞の量でPlasma Lyte Aの50ml中で同種異系間葉系幹細胞の静脈内注入を受けた。 The patient received an intravenous infusion of allogeneic mesenchymal stem cells in 50 ml of Plasma Lyte A in an amount of 3 × 10 6 cells per kg body weight.

注入の2週間後患者を評価した。注入後2週間で、患者の結腸の内視鏡観察は、治療前に見えていた炎症部位と潰瘍形成が消失したことを示した。さらに患者の結腸の生検は、腸陰窩の有意な再生を示した。すなわち患者への間葉系幹細胞の投与により、消化管移植片対宿主病の炎症性成分の有意な低下と、新しい機能的小腸組織の再生が起きた。   Patients were evaluated 2 weeks after infusion. At 2 weeks after injection, endoscopic observation of the patient's colon showed that the inflammatory sites and ulceration that had been seen before treatment had disappeared. In addition, a biopsy of the patient's colon showed significant regeneration of the intestinal crypt. That is, administration of mesenchymal stem cells to patients resulted in a significant reduction in the inflammatory component of gastrointestinal graft versus host disease and the regeneration of new functional small intestinal tissue.

すべての特許、刊行物(公開された特許出願、寄託受け入れ番号、及びデータベース受け入れ番号を含む)は、すべての特許、刊行物(公開された特許出願、寄託受け入れ番号、及びデータベース受け入れ番号を含む)が具体的かつ個々に取り込まれているのと同じ程度に、参照することにより本明細書に組み込まれる。   All patents, publications (including published patent applications, deposit accession numbers, and database accession numbers) are all patents, publications (including published patent applications, deposit acceptance numbers, and database accession numbers) Are incorporated herein by reference to the same extent as is specifically and individually incorporated.

しかし本発明の範囲は本明細書に記載の具体例に限定されるものではないことを理解されたい。本発明は、本明細書の具体的な記載とは別に実施することができ、それでも添付の特許請求の範囲内にある。
発明の態様
[1] 心臓以外の動物の臓器又は組織中の血管形成を促進する方法であって、
該動物の心臓以外の臓器又は組織中の血管形成を促進するために有効な量の間葉系幹細胞を該動物に投与することを含む、前記方法。
[2] 前記動物が哺乳動物である、[1]記載の方法。
[3] 前記動物が霊長類である、[2]記載の方法。
[4] 前記霊長類がヒトである、[3]記載の方法。
[5] 前記間葉系幹細胞が、約1×105細胞/kg〜約1×107細胞/kgの量で投与される、[1]記載の方法。
[6] 前記間葉系幹細胞が、約1×106細胞/kg〜約5×106細胞/kgの量で投与される、[5]記載の方法。
[7] 前記間葉系幹細胞が全身的に投与される、[1]記載の方法。
[8] 前記間葉系幹細胞が静脈内に投与される、[1]記載の方法。
[9] 前記間葉系幹細胞が、前記動物の心臓以外の臓器又は組織への直接注入により投与される、[1]記載の方法。
[10] 動物の自己免疫疾患及び移植片対宿主反応からなる群より選ばれる疾患を治療する方法であって、以下のステップ:
該動物の疾患を治療するために有効な量の間葉系幹細胞を該動物に投与すること、
を含む、前記方法。
[11] 前記動物が哺乳動物である、[10]記載の方法。
[12] 前記哺乳動物がヒトである、[11]記載の方法。
[13] 前記疾患が多発性硬化症である、[10]記載の方法。
[14] 動物の炎症応答を治療するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物の炎症応答の治療方法。
[15] 前記動物が哺乳動物である、[14]記載の方法。
[16] 前記哺乳動物がヒトである、[15]記載の方法。
[17] 前記炎症応答が乾癬と関連している、[14]記載の方法。
[18] 動物の癌を治療するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物の癌の治療方法。
[19] 前記動物が哺乳動物である、[18]記載の方法。
[20] 前記哺乳動物がヒトである、[19]記載の方法。
[21] 動物のアレルギー疾患又は障害を治療するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物のアレルギー疾患又は障害の治療方法。
[22] 前記動物が哺乳動物である、[21]記載の方法。
[23] 前記哺乳動物がヒトである、[22]記載の方法。
[24] 前記のアレルギー疾患又は障害が関節炎である、[14]記載の方法。
[25] 動物の創傷治癒を促進するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物の創傷治癒の促進方法。
[26] 前記動物が哺乳動物である、[25]記載の方法。
[27] 前記哺乳動物がヒトである、[26]記載の方法。
[28] 動物の繊維症を予防するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物の繊維症の予防方法。
[29] 動物の上皮傷害を修復するために有効な量の間葉系幹細胞を該動物に投与することを含む、動物の上皮傷害の修復方法。
[30] 前記動物が哺乳動物である、[29]記載の方法。
[31] 前記哺乳動物がヒトである、[30]記載の方法。
[32] 前記上皮傷害が、移植片対宿主病の結果である、[29]記載の方法。
However, it should be understood that the scope of the invention is not limited to the specific examples described herein. The present invention may be practiced otherwise than as specifically described herein, and is still within the scope of the appended claims.
Aspect [1] A method for promoting angiogenesis in an organ or tissue of an animal other than the heart,
Said method comprising administering to said animal mesenchymal stem cells in an amount effective to promote angiogenesis in an organ or tissue other than said animal's heart.
[2] The method according to [1], wherein the animal is a mammal.
[3] The method according to [2], wherein the animal is a primate.
[4] The method according to [3], wherein the primate is a human.
[5] The method of [1], wherein the mesenchymal stem cells are administered in an amount of about 1 × 10 5 cells / kg to about 1 × 10 7 cells / kg.
[6] The mesenchymal stem cells are administered in an amount of about 1 × 10 6 cells / kg to about 5 × 10 6 cells / kg, [5] The method according.
[7] The method of [1], wherein the mesenchymal stem cells are administered systemically.
[8] The method according to [1], wherein the mesenchymal stem cells are administered intravenously.
[9] The method according to [1], wherein the mesenchymal stem cells are administered by direct injection into an organ or tissue other than the heart of the animal.
[10] A method of treating a disease selected from the group consisting of an animal autoimmune disease and a graft-versus-host response, comprising the following steps:
Administering to the animal mesenchymal stem cells in an amount effective to treat the disease in the animal;
Said method.
[11] The method according to [10], wherein the animal is a mammal.
[12] The method according to [11], wherein the mammal is a human.
[13] The method according to [10], wherein the disease is multiple sclerosis.
[14] A method for treating an inflammatory response in an animal, comprising administering to the animal an amount of mesenchymal stem cells effective to treat the inflammatory response in the animal.
[15] The method according to [14], wherein the animal is a mammal.
[16] The method according to [15], wherein the mammal is a human.
[17] The method of [14], wherein the inflammatory response is associated with psoriasis.
[18] A method for treating cancer in an animal, comprising administering to the animal an amount of mesenchymal stem cells effective for treating cancer in the animal.
[19] The method according to [18], wherein the animal is a mammal.
[20] The method of [19], wherein the mammal is a human.
[21] A method for treating an allergic disease or disorder in an animal, comprising administering to the animal mesenchymal stem cells in an amount effective for treating the allergic disease or disorder in the animal.
[22] The method according to [21], wherein the animal is a mammal.
[23] The method of [22], wherein the mammal is a human.
[24] The method according to [14], wherein the allergic disease or disorder is arthritis.
[25] A method for promoting wound healing of an animal, comprising administering to the animal mesenchymal stem cells in an amount effective for promoting wound healing of the animal.
[26] The method according to [25], wherein the animal is a mammal.
[27] The method of [26], wherein the mammal is a human.
[28] A method for preventing fibrosis in an animal, comprising administering to the animal mesenchymal stem cells in an amount effective for preventing fibrosis in the animal.
[29] A method for repairing an epithelial injury in an animal, comprising administering to the animal an amount of mesenchymal stem cells effective to repair the epithelial injury in the animal.
[30] The method according to [29], wherein the animal is a mammal.
[31] The method of [30], wherein the mammal is a human.
[32] The method of [29], wherein the epithelial injury is a result of graft-versus-host disease.

図1Aは、MSCは樹状細胞機能を調節することを示す。HLA−DRとCD11cに対する抗体を使用する成熟単球DC1細胞のフローサイトメトリー解析と、HLA−DRとCD123(IL−3受容体)に対する抗体を使用する形質球様DC2細胞のフローサイトメトリー解析。(破線):アイソタイプ対照;(実線):FITC/PE結合抗体。FIG. 1A shows that MSC regulates dendritic cell function. Flow cytometric analysis of mature monocyte DC1 cells using antibodies against HLA-DR and CD11c, and flow cytometry analysis of plasmacytoid DC2 cells using antibodies against HLA-DR and CD123 (IL-3 receptor). (Dashed line): isotype control; (solid line): FITC / PE-conjugated antibody. 図1Bは、MSCが、活性化DC1とDC2からの、それぞれTNF−α分泌(第1y軸)を阻害し、IL−10分泌(第2y軸)を上昇させる、ことを示す。FIG. 1B shows that MSCs inhibit TNF-α secretion (first y-axis) and increase IL-10 secretion (second y-axis) from activated DC1 and DC2, respectively. 図1Cは、成熟DC1細胞で培養したMSCが、MSCもしくはDC単独と比較して、T細胞によるIFN−γ分泌(第1y軸)を阻害しIL−4レベル(第2y軸)を上昇させる、ことを示す。MSCの存在下での炎症促進性IFN−γの産生低下と抗炎症性IL−4の産生増加は、T細胞集団の抗炎症性表現型への移動を示した。FIG. 1C shows that MSCs cultured in mature DC1 cells inhibit IFN-γ secretion by T cells (first y axis) and increase IL-4 levels (second y axis) compared to MSC or DC alone. It shows that. Decreased production of pro-inflammatory IFN-γ and increased production of anti-inflammatory IL-4 in the presence of MSC indicated a shift of the T cell population to an anti-inflammatory phenotype. 図2Aは、MSCは炎症促進性エフェクターT細胞機能を阻害することを示す。FITC結合CD4(x軸)抗体とPE結合CD25(y軸)抗体を用いる、MSC+PBMC培養物(MSC+PBMC)中のPBMC又は非接着性画分を染色することによるTReg細胞数(%)のフローサイトメトリー解析。ゲートはバックグランドとしてのアイソタイプ対照抗体に基づく。グラフは5つの独立した実験の典型である。FIG. 2A shows that MSCs inhibit pro-inflammatory effector T cell function. Flow site of T Reg cell number (%) by staining PBMC or non-adherent fraction in MSC + PBMC cultures (MSC + PBMC) using FITC-conjugated CD4 (x-axis) and PE-conjugated CD25 (y-axis) antibodies Metric analysis. The gate is based on the isotype control antibody as background. The graph is representative of 5 independent experiments. 図2Bは、細胞培養上清中で、MSCの存在下で生成したTH1細胞は低レベルのIFN−γ(第1y軸)を分泌し、MSCの存在下で生成したTH2細胞は増加量のIL−4(第2y軸)を分泌した、ことを示す。FIG. 2B shows that in cell culture supernatant, T H 1 cells generated in the presence of MSC secrete low levels of IFN-γ (first y axis), and T H 2 cells generated in the presence of MSC It shows that an increased amount of IL-4 (second y-axis) was secreted. 図2Cは、MSCが、24ウェルプレート中で0、24、又は48時間培養した精製NK細胞からのIFN−γ分泌を阻害する、ことを示す。示したデータは1つの実験の平均±SDサイトカイン分泌であり、3つの独立した実験の典型である。FIG. 2C shows that MSCs inhibit IFN-γ secretion from purified NK cells cultured in 24-well plates for 0, 24, or 48 hours. Data shown is the mean ± SD cytokine secretion of one experiment and is representative of three independent experiments. 図3Aは、MSCはTreg細胞集団の数とGITR発現を上昇させることを示す。CD4+CD25+reg細胞集団を、PBMC又はMSC+PBMC(MSC対PBMC比は1:10)培養物(さらなる刺激無しで3日間培養した)から2工程磁性単離法を使用して単離した。これらの細胞に放射線照射し(さらなる増殖を阻止するため)、混合リンパ球反応(MLR)において刺激細胞として使用し、ここで応答細胞は植物性血球凝集素(PHA)(2.5mg/ml)の存在下の同種異系PBMC(刺激細胞対応答細胞比は1:100)であった。細胞を48時間培養し、次に3Hチミジンを加え、24時間後、取り込まれた放射活性を計測した。結果は、MSCの存在下で生成したTreg集団(レーン3)は、MSCの非存在下で生成したTreg細胞(レーン2)と機能的に同等であることを示した。FIG. 3A shows that MSC increases the number of T reg cell populations and GITR expression. CD4 + CD25 + T reg cell populations were isolated from PBMC or MSC + PBMC (MSC to PBMC ratio 1:10) cultures (cultured for 3 days without further stimulation) using a two-step magnetic isolation method. These cells are irradiated (to prevent further proliferation) and used as stimulator cells in a mixed lymphocyte reaction (MLR), where the responder cells are plant hemagglutinin (PHA) (2.5 mg / ml) Allogeneic PBMC in the presence of (stimulating cell to responding cell ratio 1: 100). The cells were cultured for 48 hours, then 3 H thymidine was added and 24 hours later, the incorporated radioactivity was counted. The results showed that the T reg population generated in the presence of MSC (lane 3) is functionally equivalent to Treg cells generated in the absence of MSC (lane 2). 図3Bは、PBMCをMSCの非存在下(上のプロット)又は存在下(下のプロット)で3日間培養(MSC対PBMC比は1:10)し、次に非接着画分を採取し、FITC標識GITRとPE標識CD4で免疫染色した結果を示す。結果は、MSCの存在下で培養した細胞でGITR発現の2倍以上の上昇を示す。FIG. 3B shows that PBMCs were cultured for 3 days (MSC to PBMC ratio 1:10) in the absence (upper plot) or presence (lower plot) of MSC, and then the non-adherent fraction was collected, The results of immunostaining with FITC-labeled GITR and PE-labeled CD4 are shown. The results show more than a 2-fold increase in GITR expression in cells cultured in the presence of MSC. 図4Aは、MSCはPGE2を産生し、PGE2を阻止するとMSC性免疫調節作用が逆転することを示す。種々の濃度のPGE2ブロッカーであるNS−398又はインドメタシン(Indometh.)の存在下又は非存在下で培養したMSCから得られた培養上清中のPGE2分泌(平均±SD)。インヒビター濃度はμMであり、示したデータは24時間培養後に得られた値である。Figure 4A, MSC is a PGE 2 produced, indicating that the MSC immunomodulatory effects when blocking PGE 2 is reversed. PGE 2 secretion (mean ± SD) in culture supernatants obtained from MSCs cultured in the presence or absence of various concentrations of PGE 2 blockers NS-398 or indomethacin (Indometh.). The inhibitor concentration is μM, and the data shown are values obtained after 24 hours of culture. 図4Bは、リアルタイムRT−PCRを使用したMSCとPBMC中のCOX−1とCOX−2発現を示す。MSCはPBMCと比較して有意に高レベルのCOX−2を発現し、MSCをPBMCの存在下で培養すると、MSC中のCOX−2発現の3倍を超える上昇があった。1〜3つの独立した実験からの典型的データを示す。MSC+PBMC培養物をトランスウェルチャンバープレート中で準備し、ここでMSCは下のチャンバーに蒔き、PBMCは上のチャンバーに蒔いた。FIG. 4B shows COX-1 and COX-2 expression in MSC and PBMC using real-time RT-PCR. MSCs expressed significantly higher levels of COX-2 compared to PBMC, and when MSCs were cultured in the presence of PBMC, there was a more than 3-fold increase in COX-2 expression in MSCs. Representative data from 1-3 independent experiments are shown. MSC + PBMC cultures were prepared in transwell chamber plates, where MSCs were seeded in the lower chamber and PBMCs were seeded in the upper chamber. 図4Cは、(C)PGE2ブロッカーであるインドメタシン(Ind.)又はNS−398の存在は、対照と比較して、活性化DC(白バー)からのTNF−α分泌と、TH1細胞(斜線バー)からのIFN−γ分泌を上昇させることを示す。データは、MSCとPGE2インヒビターの非存在下で生成した培養物からの%変化として計算した。FIG. 4C shows that (C) the presence of PGE 2 blockers indomethacin (Ind.) Or NS-398 shows TNF-α secretion from activated DCs (white bars) and T H 1 cells compared to controls. Shows increased IFN-γ secretion from (hatched bars). Data were calculated as% change from cultures produced in the absence of MSC and PGE 2 inhibitor. 図4Dは、MSC−PBMC同時培養物(1:10)中のPGE2ブロッカーであるインドメタシン(Indo)又はNS−398の存在は、PHA処理PBMCに対するMSC性抗増殖作用を逆転させることを示す。示したデータは1つの実験からであり、3つの独立した実験の典型である。FIG. 4D shows that the presence of PGE 2 blockers indomethacin (Indo) or NS-398 in MSC-PBMC co-cultures (1:10) reverses MSC anti-proliferative effects on PHA-treated PBMC. The data shown is from one experiment and is representative of three independent experiments. 図5は、構成性MSCサイトカイン分泌は同種異系PBMCの存在下で上昇することを示す。すでに性状解析したヒトMSCを使用して、PBMCの存在下(斜線バー)又は非存在下(白バー)(MSC対PBMC比は1:10)で24時間培養したMSCの培養上清中のサイトカインIL−6とVEGF、脂質メディエーターPGE2、及びマトリックス金属プロテアーゼ1(pro−MMP−1)のレベルを分析した。MSCはIL−6、VEGF、及びPGE2を構成性に産生し、これらの因子のレベルはPBMCとの同時培養で上昇し、従ってMSCが炎症性状況で免疫機能の調節において役割を果たすことを示唆する。FIG. 5 shows that constitutive MSC cytokine secretion is elevated in the presence of allogeneic PBMC. Cytokines in the culture supernatant of MSCs cultured for 24 hours in the presence (hatched bars) or absence (white bars) (MSC to PBMC ratio 1:10) using human MSCs already characterized IL-6 and VEGF, were analyzed the levels of lipid mediators PGE 2, and matrix metalloproteinase 1 (pro-MMP-1) . The MSC IL-6, VEGF, and produce PGE 2 constitutively, elevated levels of these factors in the co-culture with PBMC, therefore the MSC to play a role in the regulation of immune function in inflammatory conditions Suggest. 図6は、MSCは分裂促進剤誘導性のT細胞増殖を用量依存的に阻害することを示す。増加する数の同種異系PBMCを、PHA(2.5mg/ml)の存在下又は非存在下で96ウェルプレートに蒔いた一定数のMSC(2,000細胞/ウェル)とインキュベートし、3Hチミジン取り込みを測定した(1分当たりのカウント、cpm)。MSCの存在下でPHA処理PBMCの増殖の用量依存性阻害があった。3つの独立した実験の1つからの典型的結果を示す。同様の結果が、LeBlanc, et al., Scand J. Immunol., Vol. 57, pg. 11 (2003)により報告された。FIG. 6 shows that MSCs inhibit mitogen-induced T cell proliferation in a dose-dependent manner. Increasing numbers of allogeneic PBMCs were incubated with a fixed number of MSCs (2,000 cells / well) seeded in 96-well plates in the presence or absence of PHA (2.5 mg / ml), and 3 H Thymidine incorporation was measured (counts per minute, cpm). There was a dose-dependent inhibition of proliferation of PHA-treated PBMC in the presence of MSC. A typical result from one of three independent experiments is shown. Similar results were reported by LeBlanc, et al., Scand J. Immunol., Vol. 57, pg. 11 (2003). 図7は、提唱されているMSC作用機構の模式図を示す。MSCは、先天的(DC経路2〜4;及びNK経路6)免疫系と適応(T経路1と5、及びB経路7)免疫系の両方からの細胞に影響を与えることにより免疫調節作用を仲介する。浸入病原体に応答して未成熟DCは、侵入可能部位に移動し、成熟し、未処理のT細胞を刺激して(抗原特異的及び同時刺激シグナルにより)、防御性エフェクターT細胞(細胞性TH1又は体液性TH2免疫)になる能力を獲得する。MSC−DC相互作用中に、MSCは直接の細胞−細胞接触により又は分泌された因子により、細胞性応答(経路2)を開始するDCの能力を制限することにより、又は体液性応答(経路4)を開始する能力を促進することにより、免疫応答の結果を変化させる。また成熟エフェクターT細胞が存在する時、MSCはこれらと相互作用してTH1(経路1)応答のバランスをTH2応答(経路5)に向けて、おそらくIgE産生B細胞活性(経路7)の上昇(これは、GvHDと自己免疫疾患症状の抑制に好ましい結果である)に向ける。MSCはTReg集団(経路3)の生成を増加させる能力により、寛容表現型となり、局所的微小環境におけるバイスタンダー(bystander)炎症を緩和することにより受容体宿主を助ける。点線は提唱された機構である。FIG. 7 shows a schematic diagram of the proposed MSC mechanism of action. MSCs exert immunomodulatory effects by affecting cells from both the innate (DC pathway 2-4; and NK pathway 6) and adaptive (T pathways 1 and 5, and B pathway 7) immune systems. Mediate. In response to invading pathogens, immature DCs migrate to invading sites, mature, stimulate untreated T cells (by antigen-specific and costimulatory signals), and protective effector T cells (cellular T acquire the ability to become H 1 or humoral T H 2 immune). During MSC-DC interactions, MSCs either by direct cell-cell contact or by secreted factors limit the ability of DCs to initiate a cellular response (path 2) or a humoral response (path 4 By altering the outcome of the immune response. Also, when mature effector T cells are present, MSCs interact with them to shift the balance of the T H 1 (path 1) response towards the TH 2 response (path 5), possibly of IgE-producing B cell activity (path 7). Toward an increase, which is a favorable outcome for the suppression of GvHD and autoimmune disease symptoms. MSCs become a tolerant phenotype by virtue of their ability to increase the generation of the T Reg population (path 3) and help the recipient host by alleviating bystander inflammation in the local microenvironment. The dotted line is the proposed mechanism.

Claims (33)

動物の腸陰窩を修復するための、有効な量の間葉系幹細胞を含む医薬組成物であって、該動物に投与され、該間葉系幹細胞は抗炎症性サイトカイン分泌の上昇を促進する、医薬組成物。   A pharmaceutical composition comprising an effective amount of mesenchymal stem cells for repairing an intestinal crypt in an animal, wherein the mesenchymal stem cell is administered to the animal and promotes an increase in anti-inflammatory cytokine secretion , Pharmaceutical composition. 前記動物が哺乳動物である、請求項1記載の医薬組成物。   The pharmaceutical composition according to claim 1, wherein the animal is a mammal. 前記哺乳動物がヒトである、請求項2記載の医薬組成物。   The pharmaceutical composition according to claim 2, wherein the mammal is a human. 前記腸陰窩が、移植片対宿主病の結果として傷害されている、請求項1記載の医薬組成物。   2. The pharmaceutical composition of claim 1, wherein the intestinal crypt is injured as a result of graft-versus-host disease. 前記傷害されている腸陰窩が、潰瘍腸上皮組織を含む、請求項4記載の医薬組成物。   The pharmaceutical composition of claim 4, wherein the injured intestinal crypt comprises ulcer intestinal epithelial tissue. 前記動物が、移植片対宿主病に罹患している、請求項1記載の医薬組成物。   The pharmaceutical composition of claim 1, wherein the animal suffers from graft-versus-host disease. 前記移植片対宿主病が、グレードIVの消化管移植片対宿主病である、請求項6記載の医薬組成物。   7. The pharmaceutical composition of claim 6, wherein the graft-versus-host disease is Grade IV gastrointestinal graft-versus-host disease. 前記間葉系幹細胞の投与が、該動物に1回のみ提供される、請求項1記載の医薬組成物。   The pharmaceutical composition according to claim 1, wherein the administration of the mesenchymal stem cells is provided to the animal only once. 前記抗炎症性サイトカインが、インターロイキン-4(IL-4)及びインターロイキン-10(IL-10)である、請求項1記載の医薬組成物。   The pharmaceutical composition according to claim 1, wherein the anti-inflammatory cytokine is interleukin-4 (IL-4) and interleukin-10 (IL-10). 前記間葉系幹細胞の投与が、該動物に単回投与として提供される、請求項7記載の医薬組成物。   8. The pharmaceutical composition according to claim 7, wherein the administration of the mesenchymal stem cells is provided to the animal as a single dose. 前記単回投与が、新しい機能的腸組織の再生をもたらす、請求項10記載の医薬組成物。   11. The pharmaceutical composition of claim 10, wherein the single administration results in regeneration of new functional intestinal tissue. 前記単回投与が、腸組織における炎症部位及び潰瘍形成を消失させる、請求項10記載の医薬組成物。   11. The pharmaceutical composition of claim 10, wherein the single administration eliminates inflammatory sites and ulceration in intestinal tissue. 腸組織における炎症部位及び潰瘍形成が、注入後十分な時間のうちに消失する、請求項12記載の医薬組成物。   The pharmaceutical composition according to claim 12, wherein the inflamed site and ulceration in the intestinal tissue disappear within a sufficient time after the injection. 注入後十分な時間が、少なくとも約2週間である、請求項13記載の医薬組成物。   14. The pharmaceutical composition of claim 13, wherein the sufficient time after infusion is at least about 2 weeks. 前記単回投与が、該動物の体重1kg当り3×10個の間葉系幹細胞を含む、請求項10記載の医薬組成物。 11. The pharmaceutical composition according to claim 10, wherein the single administration comprises 3 × 10 6 mesenchymal stem cells per kg body weight of the animal. 投与後に腸の傷害が再発しない、請求項15記載の医薬組成物。   16. The pharmaceutical composition according to claim 15, wherein the intestinal injury does not recur after administration. 動物の腸陰窩を修復するための、有効な量の間葉系幹細胞を含む医薬組成物の使用であって、該組成物は該動物に投与され、該間葉系幹細胞は抗炎症性サイトカイン分泌の上昇を促進する、使用。   Use of a pharmaceutical composition comprising an effective amount of mesenchymal stem cells for repairing an intestinal crypt in an animal, wherein the composition is administered to the animal and the mesenchymal stem cells are anti-inflammatory cytokines Use to promote increased secretion. 前記動物が哺乳動物である、請求項17記載の使用。   18. Use according to claim 17, wherein the animal is a mammal. 前記哺乳動物がヒトである、請求項17記載の使用。   18. Use according to claim 17, wherein the mammal is a human. 前記腸陰窩が、移植片対宿主病の結果として傷害されている、請求項17記載の使用。   18. Use according to claim 17, wherein the intestinal crypt is injured as a result of graft-versus-host disease. 前記傷害されている腸陰窩が、潰瘍腸上皮組織を含む、請求項20記載の使用。   21. Use according to claim 20, wherein the injured intestinal crypt comprises ulcer intestinal epithelial tissue. 前記動物が、移植片対宿主病に罹患している、請求項17記載の使用。   18. Use according to claim 17, wherein the animal suffers from graft-versus-host disease. 前記移植片対宿主病が、グレードIVの消化管移植片対宿主病である、請求項22記載の使用。   23. Use according to claim 22, wherein the graft-versus-host disease is grade IV gastrointestinal graft-versus-host disease. 前記抗炎症性サイトカインが、インターロイキン-4(IL-4)及びインターロイキン-10(IL-10)である、請求項17記載の使用。   18. Use according to claim 17, wherein the anti-inflammatory cytokines are interleukin-4 (IL-4) and interleukin-10 (IL-10). 前記間葉系幹細胞の投与が、該動物に1回のみ提供される、請求項17記載の使用。   18. Use according to claim 17, wherein the administration of the mesenchymal stem cells is provided to the animal only once. 前記間葉系幹細胞の投与が、該動物に単回投与として提供される、請求項23記載の使用。   24. Use according to claim 23, wherein the administration of the mesenchymal stem cells is provided to the animal as a single dose. 前記単回投与が、消化管移植片対宿主病の炎症性成分の低下をもたらす、請求項26記載の使用。   27. Use according to claim 26, wherein the single administration results in a reduction of the inflammatory component of gastrointestinal graft versus host disease. 前記単回投与が、新しい機能的腸組織の再生をもたらす、請求項23記載の使用。   24. Use according to claim 23, wherein the single administration results in regeneration of new functional intestinal tissue. 前記単回投与が、腸組織における炎症部位及び潰瘍形成を消失させる、請求項23記載の使用。   24. Use according to claim 23, wherein the single administration eliminates inflammatory sites and ulceration in intestinal tissue. 腸組織における炎症部位及び潰瘍形成が、注入後十分な時間のうちに消失する、請求項29記載の使用。   30. Use according to claim 29, wherein the site of inflammation and ulceration in the intestinal tissue disappears in a sufficient time after injection. 注入後十分な時間が、少なくとも約2週間である、請求項30記載の使用。   32. Use according to claim 30, wherein the sufficient time after infusion is at least about 2 weeks. 前記単回投与が、該動物の体重1kg当り3×10個の間葉系幹細胞を含む、請求項23記載の使用。 24. Use according to claim 23, wherein the single dose comprises 3 x 10 < 6 > mesenchymal stem cells per kg body weight of the animal. 投与後に上皮傷害が再発しない、請求項32記載の使用。   33. Use according to claim 32, wherein epithelial injury does not recur after administration.
JP2014057139A 2006-10-02 2014-03-19 Mesenchymal stem cells and uses therefor Withdrawn JP2014139214A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/541,853 US20080213227A1 (en) 2004-03-22 2006-10-02 Mesenchymal stem cells and uses therefor
US11/541,853 2006-10-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009530402A Division JP2010505764A (en) 2004-03-22 2007-09-26 Mesenchymal stem cells and their uses

Publications (1)

Publication Number Publication Date
JP2014139214A true JP2014139214A (en) 2014-07-31

Family

ID=49320923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057139A Withdrawn JP2014139214A (en) 2006-10-02 2014-03-19 Mesenchymal stem cells and uses therefor

Country Status (3)

Country Link
JP (1) JP2014139214A (en)
KR (9) KR20150103331A (en)
BR (1) BRPI0717150B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056109A (en) * 2014-09-05 2016-04-21 国立大学法人 東京大学 Pluripotent stem cells for treatment of diabetic skin ulcer
WO2019146131A1 (en) * 2018-01-24 2019-08-01 学校法人順天堂大学 Composition for amplifying effect of treatment with mesenchymal stem cells
WO2021210515A1 (en) * 2020-04-13 2021-10-21 国立大学法人東海国立大学機構 Agent for increasing cd25-positive regulatory t cells in kidney

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056109A (en) * 2014-09-05 2016-04-21 国立大学法人 東京大学 Pluripotent stem cells for treatment of diabetic skin ulcer
US11000552B2 (en) 2014-09-05 2021-05-11 The University Of Tokyo Pluripotent stem cell for treating diabetic skin ulcer
WO2019146131A1 (en) * 2018-01-24 2019-08-01 学校法人順天堂大学 Composition for amplifying effect of treatment with mesenchymal stem cells
JPWO2019146131A1 (en) * 2018-01-24 2021-04-22 学校法人順天堂大学 Composition for amplifying the effect of treatment with mesenchymal stem cells
JP7217533B2 (en) 2018-01-24 2023-02-03 学校法人順天堂大学 Compositions for amplifying the effect of treatment with mesenchymal stem cells
WO2021210515A1 (en) * 2020-04-13 2021-10-21 国立大学法人東海国立大学機構 Agent for increasing cd25-positive regulatory t cells in kidney

Also Published As

Publication number Publication date
KR20150103331A (en) 2015-09-09
BRPI0717150B1 (en) 2022-04-19
KR20200124766A (en) 2020-11-03
KR20240027136A (en) 2024-02-29
KR101577553B1 (en) 2015-12-14
BRPI0717150A8 (en) 2015-08-25
KR20230008250A (en) 2023-01-13
BRPI0717150A2 (en) 2013-10-15
KR20170132344A (en) 2017-12-01
KR20160092038A (en) 2016-08-03
KR20140061517A (en) 2014-05-21
KR20210138808A (en) 2021-11-19
KR20150021588A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
US10828334B1 (en) Mesenchymal stem cells and uses therefor
JP6382360B2 (en) Mesenchymal stem cells and use thereof
JP2014139214A (en) Mesenchymal stem cells and uses therefor
AU2020201636A1 (en) Mesenchymal stem cells and uses therefor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150303