JP2014138868A - Light source device for endoscope and operation method for the same, and endoscope system and operation method for the same - Google Patents

Light source device for endoscope and operation method for the same, and endoscope system and operation method for the same Download PDF

Info

Publication number
JP2014138868A
JP2014138868A JP2014029817A JP2014029817A JP2014138868A JP 2014138868 A JP2014138868 A JP 2014138868A JP 2014029817 A JP2014029817 A JP 2014029817A JP 2014029817 A JP2014029817 A JP 2014029817A JP 2014138868 A JP2014138868 A JP 2014138868A
Authority
JP
Japan
Prior art keywords
light
light source
endoscope
combined
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029817A
Other languages
Japanese (ja)
Other versions
JP5934267B2 (en
Inventor
Osamu Kuroda
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014029817A priority Critical patent/JP5934267B2/en
Publication of JP2014138868A publication Critical patent/JP2014138868A/en
Application granted granted Critical
Publication of JP5934267B2 publication Critical patent/JP5934267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device for endoscope, an endoscope system, and their operation methods in which, in a special light observation, a ratio between white illumination light and narrowband light can be kept constant, the light amount balance and color balance between them can be maintained, a high-definition special light observation image with no or little change in brightness and hue can be obtained, and, as a result, a high-definition observation image bright as a whole can be obtained in special light observation and normal observation and a high level of diagnosis becomes possible.SOLUTION: A light source device for endoscope comprises: light quantity measuring means for measuring the light quantity of multiplexed light in which white illumination light emitted from a first light source part 24 and narrowband light emitted from a second light source part 26 are multiplexed; and light quantity control means for controlling a drive part 42a of the second light source part 26 to adjust the light quantity of the narrowband light according to the measured light quantity of the multiplexed light.

Description

本発明は、内視鏡診断において、内視鏡により、特定の狭い波長帯域光を生体の粘膜組織に照射し、所望の深さの組織情報を得る特殊光観察と、可視光を照射する通常観察との両方の観察を可能にする内視鏡用光源装置及びその作動方法並びに内視鏡システム及びその作動方法に関する。   The present invention relates to special light observation for irradiating a mucous tissue of a living body with specific narrow wavelength band light to obtain tissue information of a desired depth by an endoscope, and normal irradiation for visible light. The present invention relates to an endoscope light source device that enables both observation and an operation method thereof, an endoscope system, and an operation method thereof.

従来、内視鏡診断においては、内視鏡の光源装置からの白色照明光等の可視光をライトガイドにより導光し、このライトガイドで導光された白色照明光を内視鏡挿入部の先端の照明窓から出射して検査対象部位を照明し、検査対象部位を観察する通常観察が行う内視鏡装置が用いられている。   Conventionally, in endoscopic diagnosis, visible light such as white illumination light from an endoscope light source device is guided by a light guide, and the white illumination light guided by the light guide is transmitted to an endoscope insertion unit. An endoscope apparatus is used that performs normal observation in which an inspection target region is illuminated by radiating from an illumination window at the tip and observing the inspection target region.

これに対して、近年、内視鏡診断においては、上記のような白色照明光による通常観察に加えて、白色照明光(白色光)より狭い特定の波長帯域の光(以下、狭帯域光ともいう)を体腔壁の粘膜組織等の生体組織に照射し、生体組織の所望の深さの組織情報を得る、特殊光観察を行える内視鏡装置が活用されている。   On the other hand, in recent years, in endoscopic diagnosis, in addition to normal observation with white illumination light as described above, light in a specific wavelength band narrower than white illumination light (white light) (hereinafter also referred to as narrow-band light). Endoscope devices capable of performing special light observation, which obtains tissue information at a desired depth of the living tissue by irradiating a living tissue such as mucosal tissue on the body cavity wall.

このような内視鏡装置では、例えば粘膜層あるいは粘膜下層に発生する新生血管の微細構造、病変部の強調等、通常の観察像では得られない生体情報を簡単に可視化できる。例えば、観察対象が癌病変部である場合、青色の狭帯域光を粘膜組織に照射すると組織表層の微細血管や微細構造の状態がより詳細に観察できるため、病変部をより正確に診断することができる。   Such an endoscope apparatus can easily visualize biological information that cannot be obtained by a normal observation image, such as a fine structure of a new blood vessel generated in a mucosal layer or a submucosal layer, enhancement of a lesioned part, and the like. For example, if the observation target is a cancerous lesion, irradiating the mucosal tissue with blue narrow-band light allows more detailed observation of the state of microvessels and microstructures on the surface of the tissue. Can do.

このような狭帯域光観察では、生体組織の内の組織表層の微細血管や微細構造を観察し易くするために、生体組織に照射する狭帯域光として、主として生体組織の中層及び深層組織の観察に適した赤色(R)の狭帯域光を用いずに、表層組織の観察に適した青色(B)の狭帯域光と中層組織及び表層組織の観察に適した緑色(G)の狭帯域光と2種類の狭帯域光のみを用い、B狭帯域光の照射によって撮像センサで得られる、主として表層組織の情報を含むB画像信号(B狭帯域データ)とG狭帯域光の照射によって撮像センサで得られる、主として中層組織及び表層組織の情報を含むG画像信号(G狭帯域データ)のみを用い、G画像信号(G狭帯域データ)をカラー画像のR画像データに割り付け、B画像信号をカラー画像のG画像データ及びB画像データに割り付け、3ch(チャンネル)のカラー画像データからなる疑似カラー画像を生成し、モニタ等に表示している(特許文献1参照)。   In such narrow-band light observation, in order to make it easier to observe the fine blood vessels and fine structures on the surface layer of the living tissue, as the narrow-band light irradiated to the living tissue, mainly the middle layer and deep tissue of the living tissue are observed. Without using the red (R) narrow band light suitable for the observation, the blue (B) narrow band light suitable for the observation of the surface layer structure and the green (G) narrow band light suitable for the observation of the middle layer structure and the surface layer structure. And two types of narrowband light, and obtained by the image sensor by irradiation with the B narrowband light, the image sensor mainly including information on the surface layer tissue (B narrowband data) and the G narrowband light. Using only the G image signal (G narrowband data) mainly including the information on the middle layer tissue and the surface layer tissue obtained in the above, the G image signal (G narrowband data) is allocated to the R image data of the color image, and the B image signal is G image data of color image And assigned to B image data, to generate a pseudo color image consisting of the color image data of 3ch (channels) are displayed on a monitor or the like (see Patent Document 1).

特許文献1に開示の内視鏡装置では、狭帯域光観察に用いられるB狭帯域光とG狭帯域光との2種類の狭帯域光は、通常光観察に用いられる白色光源からの白色光をカラーフィルタによって時分割で切り替えることにより、面順次に発光されている。なお、通常光観察においても、白色光源からの白色光をカラーフィルタによって時分割で切り替えてRGB光を面順次に発光させている。   In the endoscope apparatus disclosed in Patent Document 1, two types of narrowband light, B narrowband light and G narrowband light used for narrowband light observation, are white light from a white light source used for normal light observation. Are switched in a time-sharing manner by means of a color filter to emit light in a frame sequential manner. In normal light observation as well, white light from a white light source is switched in a time-sharing manner by a color filter to emit RGB light in a frame sequential manner.

なお、特殊光観察においては、上記のような狭帯域光を用いた観察の他に、体腔壁に励起光を照射し、生体組織を励起することによって発生する自家蛍光の強度の違いを利用して、癌病変部の早期発見を可能にする蛍光観察を行う内視鏡装置も活用されている。
上記のような特殊光観察を行う内視鏡装置に用いられる内視鏡用光源装置が、特許文献2に開示されている。
In special light observation, in addition to observation using narrowband light as described above, the difference in intensity of autofluorescence generated by irradiating the body cavity wall with excitation light and exciting living tissue is used. Endoscopic devices that perform fluorescence observation that enable early detection of cancerous lesions are also used.
An endoscope light source device used in an endoscope apparatus that performs special light observation as described above is disclosed in Patent Document 2.

特許文献2に開示される内視鏡用光源装置は、白色光を発する白色光源と、他方、紫外域側の短波長の光である励起光を発する励起光源としての半導体レーザとを有し、白色光源から白色光を入射させるライトガイドまでの光路は直線的に配置され、他方、励起光の光路は、白色光の光路に対して垂直に交差するように配置され、この二つの光路を光路合成素子であるダイクロイックミラーで合成する。この例では、ダイクロイックミラーは、特定の波長以上の光を透過させて特定の波長以下の光を反射させる特性を有し、これにより白色光の大部分を透過させ、励起光を反射させている。   The endoscope light source device disclosed in Patent Document 2 has a white light source that emits white light, and a semiconductor laser as an excitation light source that emits excitation light that is short-wavelength light on the ultraviolet region side, The optical path from the white light source to the light guide for entering the white light is arranged linearly, while the optical path of the excitation light is arranged so as to intersect perpendicularly to the optical path of the white light, and these two optical paths are connected to the optical path. It is synthesized by a dichroic mirror that is a synthesis element. In this example, the dichroic mirror has a characteristic of transmitting light of a specific wavelength or more and reflecting light of a specific wavelength or less, thereby transmitting most of the white light and reflecting the excitation light. .

この種の内視鏡システムの光源装置は、白色光及び励起光を、集光レンズを用いて収束光にしてライトガイドの端面に入射させている。なお、白色光源としては、キセノンランプ、水銀ランプ、メタルハライドランプ等の放電型の高輝度ランプが用いられるが、このようなランプは、初期光量が大きく、使用時間の経過に伴って発光量が減少して、場合によっては初期光量の半分程度にまで減少する。このため、特許文献2の内視鏡用光源装置の白色光源では、使用初期にはライトガイドの先端から体腔内に照射される白色光の光量が過大となり、内視鏡先端部の温度が上昇して体内での危険性が生じることを防ぐため、白色光の集光点をライトガイドの端面からずらし、取り込み効率を低くして、ライトガイドへの入射効率が最大とならないように設定しておき、使用時間の経過に伴って白色光源の発光量が減少した場合にもライトガイドから照射される白色光の光量をできるだけ一定に保つことができるように、白色光源とダイクロイックミラーとの間に、白色光の光束径を変更するためのアフォーカル光学系を構成する2枚のレンズの一方のレンズを光軸方向に移動させてライトガイドに対する白色光の収束度合いを調整する焦点調整機構を設け、白色光源の起動時等に、白色光のキャリブレーションを行って、白色光の集光点をライトガイドの端面に近づけて、取り込み効率を高めている。   A light source device of this type of endoscope system makes white light and excitation light enter into an end face of a light guide as convergent light by using a condenser lens. As the white light source, a discharge type high-intensity lamp such as a xenon lamp, a mercury lamp, or a metal halide lamp is used. However, such a lamp has a large initial light amount, and the amount of emitted light decreases as the usage time elapses. In some cases, it is reduced to about half of the initial light amount. For this reason, in the white light source of the endoscope light source device of Patent Document 2, the amount of white light irradiated into the body cavity from the distal end of the light guide becomes excessive in the initial use, and the temperature of the distal end portion of the endoscope rises. In order to prevent dangers in the body, the condensing point of white light is shifted from the end face of the light guide, the capture efficiency is lowered, and the incident efficiency to the light guide is not set to the maximum. In order to keep the amount of white light emitted from the light guide as constant as possible even when the amount of light emitted from the white light source decreases as the usage time elapses, the white light source and the dichroic mirror are A focus adjuster that adjusts the degree of convergence of white light with respect to the light guide by moving one of the two lenses constituting the afocal optical system for changing the beam diameter of white light in the optical axis direction. A white light calibration is performed at the time of starting the white light source and the white light condensing point is brought close to the end face of the light guide to improve the capturing efficiency.

特許第4009626号公報Japanese Patent No. 4009626 特開2007−252492号公報JP 2007-252492 A

ところで、特許文献1に開示の内視鏡装置でも、白色光源として、上述のようなキセノンランプ等の放電型の高輝度ランプが用いられるので、白色光源に対して、特許文献2に開示される技術を適用することにより、ライトガイドから照射される白色光の光量をできるだけ一定に保つことができる。しかしながら、特許文献1に開示の内視鏡装置では、特殊光観察に用いられる狭帯域光は、カラーフィルタによって時分割で切り替えて面順次に発光させるGB光であり、通常観察時に発光させるRGB光に比べて狭帯域であるため、光源光量が低下しており、モニタに表示される画像全体が暗くなるという問題がある。   By the way, also in the endoscope apparatus disclosed in Patent Document 1, a discharge-type high-intensity lamp such as the above-described xenon lamp is used as the white light source. Therefore, the white light source is disclosed in Patent Document 2. By applying the technique, the amount of white light emitted from the light guide can be kept as constant as possible. However, in the endoscope apparatus disclosed in Patent Document 1, narrowband light used for special light observation is GB light that is switched in a time-division manner by a color filter and is emitted in a surface sequential manner, and RGB light that is emitted during normal observation. As a result, the amount of light from the light source is reduced, and the entire image displayed on the monitor becomes dark.

また、特許文献2に開示された焦点調整機構によってレンズを移動させて白色光の集光点をライトガイドの端面に近づけて取り込み効率を高めて、ライトガイドから照射される白色光の光量をできるだけ一定に保つ方法では、白色光源のランプの経時劣化には、電極材料の蒸発等による電極摩耗や出射面の汚染等があり、経時劣化が進めば、ライトガイドに入射させる白色光の光量を一定値に戻すことができなくなり、さらに、経時劣化が進めば、白色光源のランプの寿命に近付き、ランプの交換が必要となるため、限界があるという問題があった。
さらに、特許文献2に開示の白色光と励起光とをダイクロイックミラーで合波する内視鏡用光源装置では、白色光源のランプのランプに比べ、励起光源である半導体レーザ等は経時劣化が少ないため、白色光源のランプの経時劣化が進み、ライトガイドに入射させる白色光の光量やスペクトル分布が変化し、元に戻すことができなると、白色光と励起光との光量バランスやスペクトル分布や色バランスがずれてしまい、観察画像、特に特殊光観察画像の明るさや色味が変化してしまい、診断画像として不適となる恐れがあるという問題がある。
Further, the lens is moved by the focus adjustment mechanism disclosed in Patent Document 2 to bring the condensing point of white light closer to the end face of the light guide to increase the capture efficiency, and the amount of white light emitted from the light guide can be as much as possible. In the method of keeping constant, the deterioration of the lamp of the white light source with time includes electrode wear due to evaporation of the electrode material, contamination of the emission surface, etc. If the deterioration with time progresses, the amount of white light incident on the light guide is constant. If the value cannot be restored, and the deterioration with time progresses, the lifetime of the lamp of the white light source approaches and the lamp needs to be replaced.
Furthermore, in the endoscope light source device that combines the white light and the excitation light disclosed in Patent Document 2 with a dichroic mirror, the semiconductor laser that is the excitation light source has less deterioration over time than the lamp of the white light source lamp. Therefore, when the lamp of the white light source deteriorates over time, the light quantity and spectral distribution of the white light incident on the light guide change and cannot be restored, the light quantity balance of white light and excitation light, the spectral distribution and color There is a problem that the balance is shifted and the brightness and color of the observation image, particularly the special light observation image are changed, which may be inappropriate as a diagnostic image.

そこで、本発明の目的は、白色照明光と特定波長域の狭帯域光とを用いる特殊光観察において、白色照明光と狭帯域光との比率を一定に保つことができ、白色照明光と狭帯域光との光量バランスや色バランスを保つことができ、明るさや色味の変化のない又は少ない高精度な特殊光観察画像を得ることができ、その結果、特殊光観察及び通常観察の両方の観察の際に、画像全体が明るい高精度な観察画像を得ることができ、これにより、高度な診断を可能にする内視鏡用光源装置及びその作動方法並びに内視鏡システム及びその作動方法を提供することにある。   Therefore, an object of the present invention is to maintain a constant ratio between white illumination light and narrow band light in special light observation using white illumination light and narrow band light in a specific wavelength range. The light intensity balance and color balance with the band light can be maintained, and high-precision special light observation images with little or no change in brightness and color can be obtained. As a result, both special light observation and normal observation can be obtained. In observation, an endoscope light source device and an operation method thereof, and an endoscope system and an operation method thereof that can obtain a high-accuracy observation image whose entire image is bright and thereby enable advanced diagnosis. It is to provide.

上記目的を達成するために、本発明の第1の態様の内視鏡用光源装置は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する狭帯域光光源及び該狭帯域光光源を駆動する駆動部を備える第2の光源部と、前記白色照明光と前記狭帯域光とが合波された前記合波光を集光して内視鏡のライトガイドに入射させるための集光レンズと、前記合波光の光量を計測する光量計測手段と、該光量計測手段によって計測された前記合波光の光量に応じて前記狭帯域光の光量を調整するように前記第2の光源部の駆動部を制御する光量制御手段と、を有することを特徴とする。   To achieve the above object, an endoscope light source device according to a first aspect of the present invention includes a first light source unit that emits white illumination light, and narrowband light having a narrower wavelength band than the white illumination light. A narrow-band light source that emits light, a second light source unit that includes a drive unit that drives the narrow-band light source, and collects the combined light obtained by combining the white illumination light and the narrow-band light. A condenser lens for entering the light guide of the endoscope, a light amount measuring unit for measuring the light amount of the combined light, and a light amount of the narrowband light according to the light amount of the combined light measured by the light amount measuring unit And a light amount control means for controlling the drive section of the second light source section so as to adjust the light intensity.

ここで、前記光量制御手段は、前記白色照明光と前記狭帯域光との光量比が一定となるように、前記光量計測手段によって計測された前記合波光の光量に応じて前記第2の光源部の駆動部を制御することが好ましい。
本態様の内視鏡用光源装置であって、さらに、前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタを有し、該第1シャッタは、前記合波光の光路の上流側の面に反射ミラーを備え、前記光量計測手段は、前記合波光の光路から外れた位置に配置され、前記反射ミラーによって反射された前記合波光の光量を計測することが好ましい。
Here, the light amount control unit is configured to control the second light source according to a light amount of the combined light measured by the light amount measuring unit so that a light amount ratio between the white illumination light and the narrow band light is constant. It is preferable to control the drive unit of the unit.
The endoscope light source device according to this aspect further includes a first shutter disposed in an optical path of the combined light and blocking the optical path of the combined light, and the first shutter is an optical path of the combined light. It is preferable that a reflection mirror is provided on the upstream side of the light source, and the light amount measuring means is disposed at a position off the optical path of the combined light and measures the light amount of the combined light reflected by the reflection mirror.

また、さらに、前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタと、前記光量計測手段を、前記第1シャッタより前記合波光の光路の上流側に、前記第1シャッタの閉動作に同期させて入れ、前記第1シャッタの開動作に同期させて前記合波光の光路から出す移動手段と、を有し、前記光量計測手段は、前記第1シャッタの閉動作中に前記合波光の光量を計測することが好ましい。
また、前記集光レンズは、前記合波光の光路に配置され、前記第1シャッタは、前記集光レンズと前記内視鏡の前記ライトガイドとの間に配置され、前記光量計測手段は、前記集光レンズによって集光された前記合波光の光量を計測するのが好ましい。
Further, a first shutter disposed in the optical path of the combined light and blocking the optical path of the combined light, and the light amount measuring means are arranged on the upstream side of the optical path of the combined light from the first shutter. Moving means that is inserted in synchronism with the closing operation of the shutter and exits the optical path of the combined light in synchronism with the opening operation of the first shutter, and the light quantity measuring means is in the closing operation of the first shutter It is preferable to measure the amount of the combined light.
The condensing lens is disposed in the optical path of the combined light, the first shutter is disposed between the condensing lens and the light guide of the endoscope, and the light amount measuring unit includes It is preferable to measure the amount of the combined light collected by the condenser lens.

また、さらに、前記合波光の光路に作用して前記合波光を複数の異なる所定波長域成分に分離する色フィルタを有し、前記光量計測手段は、前記色フィルタによって分離された前記合波光の前記複数の所定波長域成分毎に各所定波長成分の光量を計測することが好ましい。
また、前記色フィルタは、前記合波光を、白色照明光の赤成分、緑成分及び青成分に分離する第1フィルタ組と、前記緑成分の波長域に含まれ、これより狭い波長域の緑狭帯域成分及び前記青成分の波長域に含まれ、これより狭い波長域の青狭帯域成分に分離する第2フィルタ組とを有することが好ましい。
また、前記色フィルタは、前記第1フィルタ組を外側に、前記第2フィルタ組を内側に配置した回転フィルタであることが好ましい。
The optical filter further includes a color filter that acts on an optical path of the combined light and separates the combined light into a plurality of different predetermined wavelength band components, and the light amount measurement unit is configured to output the combined light separated by the color filter. It is preferable that the light quantity of each predetermined wavelength component is measured for each of the plurality of predetermined wavelength region components.
The color filter is included in a first filter group that separates the combined light into a red component, a green component, and a blue component of white illumination light, and a green region having a narrower wavelength region than the green component. It is preferable to have a second filter set that is included in the wavelength band of the narrow band component and the blue component and separates into the blue narrow band component of a narrower wavelength band.
Moreover, it is preferable that the said color filter is a rotation filter which has arrange | positioned the said 1st filter set on the outer side and the said 2nd filter set on the inner side.

また、前記光量計測手段は、前記内視鏡の前記ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子の撮像画像信号の転送期間中に、前記合波光の光量を計測することが好ましい。
また、前記光量計測手段は、前記内視鏡の前記ライトガイドを通して、前記色フィルタによって分離された前記合波光の前記複数の所定波長域成分毎に各所定波長成分を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子の各所定波長成分の撮像画像信号の転送期間中に、前記合波光の光量を計測することが好ましい。
In addition, the light amount measuring unit is configured to transfer a picked-up image signal of an image pickup device that picks up the return light from the photographing target obtained when the combined light is irradiated onto the photographing target through the light guide of the endoscope. In addition, it is preferable to measure the amount of the combined light.
In addition, the light amount measurement unit is configured to irradiate the imaging target with each predetermined wavelength component for each of the plurality of predetermined wavelength region components of the combined light separated by the color filter through the light guide of the endoscope. It is preferable to measure the light quantity of the combined light during the transfer period of the picked-up image signal of each predetermined wavelength component of the image pickup device that picks up the obtained return light from the photographing target.

また、前記撮像素子は、フレームトランスファー方式CCDであることが好ましい。
また、前記第2の光源が、半導体光源であることが好ましい。
また、前記第1の光源が、放電管であることが好ましい。
The image sensor is preferably a frame transfer type CCD.
The second light source is preferably a semiconductor light source.
The first light source is preferably a discharge tube.

また、上記目的を達成するために、本発明の第2の態様の内視鏡システムは、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、前記白色照明光と前記狭帯域光とが合波された前記合波光の光量を計測する光量計測手段と、を備える内視鏡用光源装置と、該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子とを備える内視鏡と、前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有し、前記光量計測手段によって計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御する光量制御手段をさらに有するか、もしくは、前記画像処理部において、前記光量計測手段によって計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正することを特徴とする。   In order to achieve the above object, an endoscope system according to a second aspect of the present invention includes a first light source unit that emits white illumination light, and narrowband light having a narrower wavelength band than the white illumination light. An endoscope light source device comprising: an emitted second light source unit; and a light amount measuring unit that measures a light amount of the combined light obtained by combining the white illumination light and the narrowband light, and the endoscope A light guide for guiding the combined light emitted from the mirror light source device to irradiate the object to be imaged, and a return from the imaged object obtained when the combined light is irradiated to the object to be imaged through the light guide An endoscope including an imaging device that captures light; and a captured image signal that is captured by the imaging device of the endoscope and that is input from the imaging device; and predetermined image processing is performed on the received captured image signal An image processing unit for applying The image processing unit further includes a light amount control unit that controls the light amount of the narrowband light emitted from the second light source unit according to the light amount of the combined light measured by the light amount measuring unit. The photographed image signal obtained by the imaging device is corrected in accordance with the light amount of the combined light measured by the light amount measuring means.

ここで、前記内視鏡用光源装置は、上記第1の態様の内視鏡用光源装置であることが好ましい。
また、前記光量制御手段は、前記光量計測手段によって計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御すると共に、前記画像処理部は、前記光量計測手段によって計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正することが好ましい。
Here, it is preferable that the endoscope light source device is the endoscope light source device according to the first aspect.
The light amount control unit controls the light amount of the narrowband light emitted from the second light source unit according to the light amount of the combined light measured by the light amount measurement unit, and the image processing unit. Preferably, the photographic image signal obtained by the imaging device is corrected according to the light amount of the combined light measured by the light amount measuring means.

また、上記目的を達成するために、本発明の第3の態様の内視鏡用光源装置の作動方法は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、を有し、前記白色照明光と前記狭帯域光とが合波された合波光の光量を制御する内視鏡用光源装置の作動方法であって、前記合波部材によって合波された前記合波光の光量を計測し、計測された前記合波光の光量に応じて前記狭帯域光の光量を制御することを特徴とする。
また、上記目的を達成するために、本発明の第4の態様の内視鏡システムの作動方法は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、を備え、前記白色照明光と前記狭帯域光とが合波された合波光を出射する内視鏡用光源装置と、該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子と、を備える内視鏡と、前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有する内視鏡システムの作動方法であって、前記内視鏡用光源装置から出射された前記合波光の光量を計測し、計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御するか、もしくは、前記画像処理部において、計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正することを特徴とする。
In order to achieve the above object, an operating method of the endoscope light source device according to the third aspect of the present invention includes a first light source unit that emits white illumination light, and a wavelength band narrower than that of the white illumination light. A second light source unit that emits the narrow-band light, and an operation method of the light source device for the endoscope that controls the light amount of the combined light obtained by combining the white illumination light and the narrow-band light. And the light quantity of the said combined light combined by the said combining member is measured, The light quantity of the said narrow-band light is controlled according to the measured light quantity of the said combined light, It is characterized by the above-mentioned.
In order to achieve the above object, an operation method of an endoscope system according to a fourth aspect of the present invention includes a first light source unit that emits white illumination light, and a narrower wavelength band narrower than the white illumination light. An endoscope light source device that emits combined light obtained by combining the white illumination light and the narrowband light, and a light source device for the endoscope. A light guide for guiding the combined light emitted from the light to irradiate the object to be imaged, and imaging a return light from the imaged object obtained when the combined light is irradiated to the object to be imaged through the light guide An image sensor that receives an image of an image captured by the image sensor of the endoscope and that is input from the image sensor and performs predetermined image processing on the received image signal An endoscope system having a processing unit In the moving method, the amount of the combined light emitted from the endoscope light source device is measured, and the narrow light emitted from the second light source unit is measured according to the measured amount of the combined light. The amount of band light is controlled, or the image processing unit corrects the captured image signal obtained by the imaging device in accordance with the measured amount of the combined light.

本発明によれば、白色照明光と特定波長域の狭帯域光とを用いる特殊光観察において、白色照明光と狭帯域光との比率を一定に保つことができ、白色照明光と狭帯域光との光量バランスや色バランスを保つことができ、明るさや色味の変化のない又は少ない高精度な特殊光観察画像を得ることができ、その結果、特殊光観察及び通常観察の両方の観察の際に、画像全体が明るい高精度な観察画像を得ることができ、これにより、高度な診断をすることができる。   According to the present invention, in the special light observation using the white illumination light and the narrow band light in the specific wavelength range, the ratio of the white illumination light and the narrow band light can be kept constant. The light balance and color balance can be maintained, and a high-precision special light observation image with little or no change in brightness and color can be obtained. As a result, both special light observation and normal observation can be obtained. In this case, it is possible to obtain a high-accuracy observation image in which the entire image is bright, thereby enabling advanced diagnosis.

本発明に係る内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。1 is a block diagram schematically showing an example of an overall configuration of an endoscope system according to the present invention. 本発明の内視鏡用光源装置の構成の一実施例を模式的に示す正面模式図である。It is a front schematic diagram which shows typically one Example of a structure of the light source device for endoscopes of this invention. 図2に示す内視鏡用光源装置に用いられる回転フィルタの構成を示す正面図である。It is a front view which shows the structure of the rotation filter used for the light source device for endoscopes shown in FIG. (a)及び(b)は、それぞれ図3に示す回転フィルタの第1のフィルタ組及び第2のフィルタ組の分光特性を示すグラフである。(A) And (b) is a graph which shows the spectral characteristics of the 1st filter group of a rotation filter shown in Drawing 3, and the 2nd filter group, respectively. 本発明の内視鏡用光源装置の作動方法の一例を示すフローチャートである。It is a flowchart which shows an example of the operating method of the light source device for endoscopes of this invention.

以下に、本発明に係る内視鏡用光源装置及びその作動方法並びに内視鏡システム及びその作動方法を、添付の図面に示す好適実施形態を参照して詳細に説明する。
図1は、本発明の内視鏡用光源装置を有し、本発明の内視鏡用光源装置の作動方法及び内視鏡システムの作動方法を実施する内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。
同図に示すように、本実施形態の内視鏡システム10は、内視鏡12と、本発明の内視鏡用光源装置14と、プロセッサ16と、入出力部18とを有する。
ここで、内視鏡用光源装置(以下、単に光源装置ともいう)14及びプロセッサ16は、内視鏡12の制御装置を構成し、内視鏡12は、光源装置14と光学的に接続され、プロセッサ16と電気的に接続される。また、プロセッサ16は、入出力部18と電気的に接続される。光源装置14とプロセッサ16とは、電気的に接続されていても良い。そして、入出力部18は、画像情報等を出力表示する表示部(モニタ)30、画像情報等を出力する記録部(図示せず)、及び通常観察モード(通常光モードともいう)や特殊光観察モード(特殊光モードともいう)などのモード設定や機能設定等の入力操作を受け付けるUI(ユーザインタフェース)として機能する入力部32を有する。
Hereinafter, an endoscope light source device and an operating method thereof, and an endoscope system and an operating method thereof according to the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
FIG. 1 shows an embodiment of the overall configuration of an endoscope system that has the endoscope light source device of the present invention and that performs the operating method of the endoscope light source device and the operating method of the endoscope system of the present invention. It is a block diagram which shows an example typically.
As shown in the figure, the endoscope system 10 of the present embodiment includes an endoscope 12, an endoscope light source device 14, a processor 16, and an input / output unit 18 of the present invention.
Here, an endoscope light source device (hereinafter also simply referred to as a light source device) 14 and a processor 16 constitute a control device for the endoscope 12, and the endoscope 12 is optically connected to the light source device 14. , Electrically connected to the processor 16. The processor 16 is electrically connected to the input / output unit 18. The light source device 14 and the processor 16 may be electrically connected. The input / output unit 18 includes a display unit (monitor) 30 that outputs and displays image information, a recording unit (not shown) that outputs image information, and a normal observation mode (also referred to as a normal light mode) or special light. The input unit 32 functions as a UI (user interface) that accepts input operations such as mode settings such as an observation mode (also referred to as a special light mode) and function settings.

内視鏡12は、その先端から照明光を出射するための光ファイバ20を含む照明光学系と、被観察領域を撮像する撮像素子(センサ)22及びスコープケーブル23を含む撮像光学系とを有する、電子内視鏡である。なお、図示しないが、内視鏡12は、被検体内に挿入される内視鏡挿入部と、内視鏡挿入部の先端の湾曲操作や観察のための操作を行う操作部と、内視鏡12を制御装置の光源装置14及びプロセッサ16に着脱自在に接続するコネクタ部を備える。さらに、図示はしないが、操作部及び内視鏡挿入部の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。   The endoscope 12 includes an illumination optical system that includes an optical fiber 20 for emitting illumination light from the distal end thereof, and an imaging optical system that includes an imaging element (sensor) 22 that images an observation region and a scope cable 23. An electronic endoscope. Although not shown, the endoscope 12 includes an endoscope insertion portion that is inserted into the subject, an operation portion that performs an operation for bending and observing the distal end of the endoscope insertion portion, and an endoscope. A connector portion is provided for detachably connecting the mirror 12 to the light source device 14 and the processor 16 of the control device. Further, although not shown, various channels such as a forceps channel for inserting a tissue collection treatment instrument and the like and a channel for air supply / water supply are provided inside the operation unit and the endoscope insertion unit.

内視鏡12の先端部分には、図1に示すように、被観察領域へ光を照射する照射口28Aが設けられ、この照射口28Aに隣接する受光部28Bに被観察領域の画像情報を取得するモノクロのCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子(センサ)22が配置されている。内視鏡12の照射口28Aには、照明光学系を構成するカバーガラスやレンズ(図示せず)が配置され、受光部28Bの撮像素子22の受光面には撮像光学系を構成する対物レンズユニット(図示せず)が配置される。なお、撮像素子22としては、CCDイメージセンサを用いるのが好ましく、CCDイメージセンサとしては、フレームトランスファ方式CCD(FT−CCD)イメージセンサを用いるのが好ましい。
内視鏡挿入部は、操作部の操作により湾曲自在にされ、内視鏡12が使用される被検体の部位等に応じて、任意の方向及び任意の角度に湾曲でき、照射口28A及び受光部28Bを、すなわち撮像素子22の観察方向を、所望の観察部位に向けることができる。
As shown in FIG. 1, the distal end portion of the endoscope 12 is provided with an irradiation port 28A for irradiating light to the observation region, and image information of the observation region is transmitted to the light receiving unit 28B adjacent to the irradiation port 28A. An imaging element (sensor) 22 such as a monochrome CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor is arranged. A cover glass or a lens (not shown) constituting the illumination optical system is disposed at the irradiation port 28A of the endoscope 12, and an objective lens constituting the imaging optical system is provided on the light receiving surface of the imaging element 22 of the light receiving unit 28B. A unit (not shown) is arranged. Note that a CCD image sensor is preferably used as the image pickup element 22, and a frame transfer type CCD (FT-CCD) image sensor is preferably used as the CCD image sensor.
The endoscope insertion section can be bent by the operation of the operation section, and can be bent in an arbitrary direction and an arbitrary angle according to the part of the subject in which the endoscope 12 is used. The portion 28B, that is, the observation direction of the image sensor 22 can be directed to a desired observation site.

次に、図1及び図2を参照して、本発明の光源装置を説明する。
なお、図2は、本発明の内視鏡用光源装置の構成の一実施例を模式的に示す正面模式図である。
本発明の光源装置14は、図2に示すように、第1の光源部24と、第2の光源部26と、第2の光源部26の光量を制御する光量制御部40と、合波部材46と、回転フィルタ47と、集光レンズ48と、ロッドインテグレータ50と、第1シャッタ52と、光量計測センサ54と、を有する。なお、本発明の光源装置14は、さらに、第2シャッタ56を有していても良い。
Next, with reference to FIG.1 and FIG.2, the light source device of this invention is demonstrated.
FIG. 2 is a schematic front view schematically showing an embodiment of the configuration of the endoscope light source device according to the present invention.
As shown in FIG. 2, the light source device 14 of the present invention includes a first light source unit 24, a second light source unit 26, a light amount control unit 40 that controls the light amount of the second light source unit 26, and multiplexing. A member 46, a rotary filter 47, a condenser lens 48, a rod integrator 50, a first shutter 52, and a light quantity measurement sensor 54 are included. The light source device 14 of the present invention may further include a second shutter 56.

第1の光源部24は、通常光モード及び特殊光モードの両方に用いられる白色照明光(以下、単に白色光ともいう)を出射するキセノン光源(第1の光源)36と、キセノン光源36から出射した白色光をほぼ平行光束にする収斂光学系であるリフレクタ(放物面鏡)34とで構成される。
なお、本実施形態においては、白色光を出射する白色光源としてキセノン光源を用いているが、本発明においては、白色光を出射する光源であれば特に限定はなく、キセノン光源の他、例えば、水銀ランプ、メタルハライドランプ等の放電型の高輝度ランプ光源等を用いることができる。但し、キセノン光源については、パーキンエルマージャパン社製の300Wのキセノンランプが好ましく用いられる。
また、リフレクタ34についても、白色光を焦点近傍に設けられるアークで平行光束にできるものであれば特に限定は無く、公知のものを用いればよい。
The first light source unit 24 includes a xenon light source (first light source) 36 that emits white illumination light (hereinafter also simply referred to as white light) used in both the normal light mode and the special light mode, and a xenon light source 36. It is composed of a reflector (parabolic mirror) 34 that is a converging optical system that converts the emitted white light into a substantially parallel light beam.
In this embodiment, a xenon light source is used as a white light source that emits white light, but in the present invention, there is no particular limitation as long as it is a light source that emits white light. A discharge-type high-intensity lamp light source such as a mercury lamp or a metal halide lamp can be used. However, for the xenon light source, a 300 W xenon lamp manufactured by PerkinElmer Japan is preferably used.
The reflector 34 is not particularly limited as long as the white light can be converted into a parallel light beam by an arc provided near the focal point, and a known one may be used.

他方、第2の光源部26は、特殊光モードに用いられる光源部であり、狭帯域光を出射するためのレーザ光源やLED光源であって、例えば、青紫色レーザ光を出射する青紫色レーザ光源(405LD)等の青色系統のレーザ光を出射する半導体レーザ光源又は青色LED光を出射する青色LED等を用いる特殊光光源42と、特殊光光源42を駆動する駆動部42aと、特殊光光源42から出射されたレーザ光やLED光(狭帯域光)の光束を平行光束にすると共に、そのサイズ(形状及び大きさ)が合波部材46を透過するキセノン光源36からの白色光の平行光束のサイズと等しくなるように整形するコリメータレンズ44と、を有する。
なお、特殊光光源42は、本発明においては、白色光より狭い波長帯域の狭帯域光を出射する光源であれば、特に限定はないが、青紫色レーザ光源(405LD)又は青色LED等の青色系統の半導体レーザ光源又はLED光源等以外のレーザ光源やLED光源を用いてもよいが、表層組織を観察する場合には、青色系統のレーザ光源やLED光源を用いるのが好ましい。
また、コリメータレンズ44についても、特殊光光源42から出射された狭帯域光の光束を平行光束とすると共に、そのサイズを、合波部材46透過するキセノン光源36から白色光の平行光束のサイズと等しくするように整形することができるものであれば、特に限定はない。
On the other hand, the second light source unit 26 is a light source unit used in the special light mode, and is a laser light source or LED light source for emitting narrow band light, for example, a blue-violet laser emitting blue-violet laser light. Special light source 42 using a semiconductor laser light source that emits blue laser light such as a light source (405LD) or a blue LED that emits blue LED light, a drive unit 42a that drives the special light source 42, and a special light source The parallel beam of white light from the xenon light source 36 whose size (shape and size) is transmitted through the multiplexing member 46 while making the beam of laser light or LED light (narrowband light) emitted from 42 into a parallel beam. And a collimator lens 44 which is shaped so as to be equal to the size of.
In the present invention, the special light source 42 is not particularly limited as long as it is a light source that emits narrowband light having a narrower wavelength band than white light, but blue light such as a blue-violet laser light source (405LD) or a blue LED is used. A laser light source or LED light source other than the system semiconductor laser light source or LED light source may be used, but when observing the surface layer structure, it is preferable to use a blue laser light source or LED light source.
The collimator lens 44 is also configured so that the narrow-band light beam emitted from the special light source 42 is a parallel beam, and the size of the collimator lens 44 is the same as the size of the parallel beam of white light from the xenon light source 36 that transmits the multiplexing member 46. If it can shape so that it may become equal, there will be no limitation in particular.

合波部材46は、通常光モードの際には、キセノン光源36から出射される白色光を透過させ、特殊光モードの際には、キセノン光源36から出射される白色光を透過させると共に、特殊光光源42から出射される狭帯域光を反射させて、白色光と狭帯域光とを合波して、合波光を生成するものである。
合波部材46は、図2に示されるように、キセノン光源36及び狭帯域光源42の下流側(光線が伝搬する方向の下流側)に配置されるが、キセノン光源36からの白色光と狭帯域光源42からの狭帯域光とが、合波部材46に直交する方向から入射するように、キセノン光源36、狭帯域光源42及び合波部材46は、配置される。
このような合波部材46としては、ダイクロイックミラーを用いることができる。
なお、本発明においては、通常モードにおいて合波部材46を透過した白色光と、特殊光モードにおいて合波部材46で合波された白色光及び狭帯域光の合波光とを区別して説明する必要がない場合には、説明を簡単にするために、合波光で代表する。
The multiplexing member 46 transmits white light emitted from the xenon light source 36 in the normal light mode, and transmits white light emitted from the xenon light source 36 in the special light mode. The narrow band light emitted from the light source 42 is reflected, and the white light and the narrow band light are combined to generate combined light.
As shown in FIG. 2, the multiplexing member 46 is disposed downstream of the xenon light source 36 and the narrow-band light source 42 (downstream in the direction in which the light beam propagates). The xenon light source 36, the narrow band light source 42, and the multiplexing member 46 are arranged so that the narrow band light from the band light source 42 enters from a direction orthogonal to the multiplexing member 46.
As such a multiplexing member 46, a dichroic mirror can be used.
In the present invention, the white light transmitted through the multiplexing member 46 in the normal mode and the white light combined by the multiplexing member 46 in the special light mode and the combined light of the narrowband light need to be described separately. In the case where there is no signal, it is represented by the combined light for the sake of simplicity.

合波部材46の下流側には、回転フィルタ47が配置される。
図3は、図1に示す回転フィルタの構成を示す図であり、図4(a)は、図3の回転フィルタの第1のフィルタ組の分光特性を示す図であり、他方、図4(b)は、図3の回転フィルタの第2のフィルタ組の分光特性を示す図である。
回転フィルタ47は、通常モードでは、キセノン光源36から出射され、合波部材46を透過した白色光を赤色(R)成分、緑色(G)成分及び青色(B)成分に分離するとともに、特殊光モードでは、キセノン光源36から出射された白色光と特殊光光源42から出射された狭帯域光との合波部材46による合波光を、G成分の波長域に含まれ、これより狭い波長域のG狭帯域成分及びB成分の波長域に含まれ、これより狭い波長域のB狭帯域成分に分離するものである。
A rotary filter 47 is disposed on the downstream side of the multiplexing member 46.
3 is a diagram showing the configuration of the rotary filter shown in FIG. 1, and FIG. 4 (a) is a diagram showing the spectral characteristics of the first filter set of the rotary filter in FIG. 3, while FIG. b) is a diagram showing the spectral characteristics of the second filter set of the rotary filter of FIG. 3.
In the normal mode, the rotary filter 47 separates the white light emitted from the xenon light source 36 and transmitted through the multiplexing member 46 into red (R), green (G), and blue (B) components, and special light. In the mode, the combined light of the white light emitted from the xenon light source 36 and the narrow band light emitted from the special light source 42 by the multiplexing member 46 is included in the wavelength range of the G component and has a narrower wavelength range. It is included in the wavelength band of the G narrow band component and the B component, and is separated into the B narrow band component of a narrower wavelength band.

回転フィルタ47は、図3に示すように、円盤状に構成され中心を回転軸とした2重構造となっている。この2重構造の外側の径部分には図4(a)に示すような色再現に適したオーバーラップした分光特性の面順次光を出力するための第1のフィルタ組を構成するR1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1が配置される。図4(a)に示すように、回転フィルタ47のR1フィルタ部47r1はR成分を分離し、G1フィルタ部47g1はG成分を分離し、B1フィルタ部47b1はB成分を分離する。他方、2重構造の内側の径部分には図4(b)に示すような所望の層組織情報が抽出可能な離散的な分光特性の2バンドの狭帯域な面順次光を出力するための第2のフィルタ組を構成するG2フィルタ部47g2、B2フィルタ部47b2、遮光フィルタ部47Cutが配置されている。図4(b)に示すように、回転フィルタ47のG2フィルタ部47g2はG狭帯域成分を分離し、B2フィルタ部47b2はB狭帯域成分を分離する。
回転フィルタ47は、図示しない制御回路により回転フィルタモータ47aの駆動制御がなされ回転する。さらに、径方向の移動が後述する通常光モードと特殊光モードとの切り替えの際に、入力部32又はプロセッサ16からの制御信号によりモード切替モータ(図示せず)によって行われる。
As shown in FIG. 3, the rotary filter 47 is formed in a disc shape and has a double structure with the center as a rotation axis. The outer diameter portion of this double structure has an R1 filter section constituting a first filter set for outputting frame sequential light having overlapping spectral characteristics suitable for color reproduction as shown in FIG. 47r1, G1 filter part 47g1, and B1 filter part 47b1 are arranged. As shown in FIG. 4A, the R1 filter unit 47r1 of the rotary filter 47 separates the R component, the G1 filter unit 47g1 separates the G component, and the B1 filter unit 47b1 separates the B component. On the other hand, in order to output two-band narrow-band surface-sequential light having discrete spectral characteristics capable of extracting desired layer texture information as shown in FIG. A G2 filter unit 47g2, a B2 filter unit 47b2, and a light shielding filter unit 47Cut that constitute the second filter group are arranged. As shown in FIG. 4B, the G2 filter unit 47g2 of the rotary filter 47 separates the G narrowband component, and the B2 filter unit 47b2 separates the B narrowband component.
The rotary filter 47 is rotated by driving control of the rotary filter motor 47a by a control circuit (not shown). Further, the radial movement is performed by a mode switching motor (not shown) according to a control signal from the input unit 32 or the processor 16 when switching between a normal light mode and a special light mode, which will be described later.

集光レンズ48は、回転フィルタ47の下流側に配置され、合波部材46を透過し、又は合波部材46で合波され、回転フィルタ47で分離された合波光の各色成分(以下、面順次光ともいう)を、後に述べるロッドインテグレータ50の一方の入射端面に集光するためのものであり、合波光の各色成分がロッドインテグレータ50の入射端面全体に入射するように、面順次光のサイズが、ロッドインテグレータ50の入射端面のサイズとなるように集光する。なお、集光レンズ48としては、集光光学系で用いられる公知の集光レンズを用いればよい。   The condensing lens 48 is disposed on the downstream side of the rotation filter 47 and passes through the combining member 46 or is combined by the combining member 46 and separated by the rotating filter 47 (hereinafter referred to as a surface). (Also referred to as sequential light) on one incident end face of the rod integrator 50, which will be described later, so that each color component of the combined light is incident on the entire incident end face of the rod integrator 50. Light is condensed so that the size is the size of the incident end face of the rod integrator 50. As the condenser lens 48, a known condenser lens used in the condenser optical system may be used.

ロッドインテグレータ50は、集光レンズ48の下流側に配置され、合波部材46で合波され、回転フィルタ47で分離され、集光レンズ48で集光された各面順次光(合波光の各色成分)を、面内光量分布を均一化した上で、内視鏡12の光ファイバ20の入射端面に入射させるためのものである。すなわち、ロッドインテグレータ50は、集光レンズ48で集光された各面順次光を、入射端面から入射させ、内部で多重反射させて、出射端面内の光量分布を均一化して、出射端面から出射させ、出射された各分離光の全光束を余すところなく、内視鏡12の光ファイバ20の入射端面に入射させる。   The rod integrator 50 is disposed on the downstream side of the condensing lens 48, combined by the combining member 46, separated by the rotary filter 47, and collected by each surface sequential light (each color of the combined light) collected by the condensing lens 48. The component is made incident on the incident end face of the optical fiber 20 of the endoscope 12 after the in-plane light quantity distribution is made uniform. That is, the rod integrator 50 causes each surface sequential light collected by the condensing lens 48 to be incident from the incident end surface, and internally reflected multiple times, to uniformize the light amount distribution in the exit end surface, and to exit from the exit end surface. Then, all the emitted light beams of the separated light beams are incident on the incident end face of the optical fiber 20 of the endoscope 12 without leaving any excess.

なお、ロッドインテグレータ50は、入射端面に入射した光を、内部で多重反射(全反射)を繰り返させることにより、出射端面を出射する光の出射端面内の光量分布を均一にするものであり、入射端面に入射した光の光線角度が保存され、入射光の各光線は、自身の入射端面への入射角度と同じ出射角度で出射するものである。
特に、本発明において、特殊光モードの時に、合波部材46で合波され、回転フィルタ47で分離され、集光レンズ48で集光された各面順次光(合波光の各色成分)がロッドインテグレータ50に入射する際には、各面順次光に含まれる狭帯域光も白色光も同じNAで入射し、ロッドインテグレータ50は、入射した各面順次光を出射端面から出射する際には、各面順次光の、出射面内の光量分布を均一にする。
なお、本発明においては、ロッドインテグレータ50には、特に限定はなく、内視鏡装置の照明光学系に一般的に用いられている公知のロッドインテグレータを用いればよい。
In addition, the rod integrator 50 makes the light incident on the incident end face repeat the multiple reflection (total reflection) inside, thereby making the light quantity distribution in the outgoing end face of the light emitted from the outgoing end face uniform. The light ray angle of the light incident on the incident end face is stored, and each light ray of the incident light is emitted at the same emission angle as the incident angle on the incident end face.
In particular, in the present invention, in the special light mode, each surface sequential light (each color component of the combined light) combined by the combining member 46, separated by the rotary filter 47, and collected by the condenser lens 48 is a rod. When entering the integrator 50, narrow-band light and white light included in each surface sequential light are incident with the same NA, and the rod integrator 50 emits each surface sequential light from the emitting end surface. The light quantity distribution in the exit surface of each surface sequential light is made uniform.
In the present invention, the rod integrator 50 is not particularly limited, and a known rod integrator generally used for an illumination optical system of an endoscope apparatus may be used.

光源装置14のキャリブレーション時に、集光レンズ48とロッドインテグレータ50との間に、第1シャッタ52が挿入されるように、第1シャッタ52が配置されている。
第1シャッタ52は、集光レンズ48で集光された各面順次光(合波光の各色成分)の光路に、モータなどの駆動手段(図示せず)によって挿入され、各分離光のロッドインテグレータ50への入射を遮断するとともに、各分離光を光量計測センサ54に入射させるものである。このため、第1シャッタ52は、その上流側(集光レンズ48側)には、各面順次光を光量計測センサ54に向かって反射させるための反射ミラー52aを備えている。なお、光量計測センサ54による各分離光の光量計測が終了すると、第1シャッタ52は、分離光の光路から退避し、撮像素子22による撮影対象の撮像を可能にする。
The first shutter 52 is disposed so that the first shutter 52 is inserted between the condenser lens 48 and the rod integrator 50 during calibration of the light source device 14.
The first shutter 52 is inserted into the optical path of each surface sequential light (each color component of the combined light) collected by the condensing lens 48 by a driving means (not shown) such as a motor, and the rod integrator for each separated light. In addition to blocking the incident light 50, each separated light is incident on the light quantity measuring sensor 54. For this reason, the first shutter 52 includes a reflection mirror 52 a for reflecting each surface sequential light toward the light quantity measurement sensor 54 on the upstream side (condenser lens 48 side). When the light amount measurement of the separated light by the light amount measurement sensor 54 is completed, the first shutter 52 is retracted from the optical path of the separated light and enables the imaging element 22 to image the imaging target.

ここで、第1シャッタ52は、例えば、集光レンズ48で集光された各面順次光(合波光の各色成分)を撮影対象に照射した際に得られる撮影対象からの戻り光を撮像素子22で撮像することによって得られた撮影対象画像の撮像画像信号を、撮影対象からの戻り光に応じて撮像素子22において光電変換が行われている撮像領域から、光電変換で生成された信号電荷を電荷の蓄積領域に転送している間、すなわち、撮像画像信号の転送期間中に、面順次光の光路に挿入され、撮像画像信号の転送期間終了後は再び面順次光の光路から退避するのが好ましい。
すなわち、光源装置14のキャリブレーションは、撮像画像信号の転送期間中に行われるのがこのましい。したがって、第1シャッタ52は、撮像素子22による撮影対象の撮像(撮像画像信号の生成期間と撮像画像信号の転送期間)に同期して駆動され、挿入・退避が行われるのが好ましい。
Here, for example, the first shutter 52 captures return light from the imaging target obtained when the imaging target is irradiated with each surface sequential light (each color component of the combined light) collected by the condenser lens 48. A signal charge generated by photoelectric conversion of a captured image signal of an image to be captured obtained by capturing at 22 from an imaging region in which photoelectric conversion is performed in the image sensor 22 in accordance with return light from the image capturing target. Is inserted into the optical path of the frame sequential light during the transfer of the captured image signal, that is, during the transfer period of the picked-up image signal, and then retreats from the optical path of the frame sequential light again after the transfer period of the picked-up image signal. Is preferred.
That is, the calibration of the light source device 14 is preferably performed during the transfer period of the captured image signal. Therefore, it is preferable that the first shutter 52 is driven in synchronization with the imaging of the imaging target by the imaging element 22 (the generation period of the captured image signal and the transfer period of the captured image signal), and insertion / retraction is performed.

光量計測センサ54は、集光レンズ48からロッドインテグレータ50に向かう分離光の光路(光軸)から外れた位置に配置され、第1シャッタ52の反射ミラー52aによって反射された各面順次光を受光してその光量を計測するものである。
光量計測センサ54としては、フォトダイオードなどのフォトセンサを用いることができるが、特に制限的ではなく、公知の光量計測センサを用いることができる。
光量計測センサ54によって計測された各面順次光の光量の計測値は、光量制御部40に送信される。
The light quantity measurement sensor 54 is disposed at a position deviated from the optical path (optical axis) of the separated light from the condenser lens 48 toward the rod integrator 50, and receives each surface sequential light reflected by the reflection mirror 52a of the first shutter 52. Then, the amount of light is measured.
A photosensor such as a photodiode can be used as the light quantity measurement sensor 54, but is not particularly limited, and a known light quantity measurement sensor can be used.
The measurement value of the light quantity of each surface sequential light measured by the light quantity measurement sensor 54 is transmitted to the light quantity control unit 40.

光量制御部40は、第2光源部26の狭帯域光源42を駆動する駆動部42aを制御して、狭帯域光源42から出射される狭帯域光の光量を制御するためのものであって、合波部材46で合波された合波光における白色光と狭帯域光との光量比を一定にするためのものである。
すなわち、光量制御部40は、光量計測センサ54によって計測された各面順次光の光量の計測値から、使用中に変化する、また、経時劣化で変化した第1光源部24のキセノン光源36の白色光の光量及び第2光源部26の狭帯域光源42の狭帯域光の光量を求め、その比率が一定となるように、狭帯域光源42の駆動部42aを制御して、狭帯域光源42から出射される狭帯域光の光量を所定の光量に調節する。
The light amount control unit 40 controls the drive unit 42a that drives the narrow band light source 42 of the second light source unit 26 to control the light amount of the narrow band light emitted from the narrow band light source 42. This is for making the light quantity ratio between the white light and the narrowband light in the combined light combined by the combining member 46 constant.
In other words, the light quantity control unit 40 changes during use from the measured value of the light quantity of each surface sequential light measured by the light quantity measurement sensor 54, and the xenon light source 36 of the first light source part 24 that has changed due to deterioration over time. The amount of white light and the amount of narrowband light of the narrowband light source 42 of the second light source unit 26 are obtained, and the narrowband light source 42 is controlled by controlling the drive unit 42a of the narrowband light source 42 so that the ratio is constant. The amount of narrowband light emitted from the light source is adjusted to a predetermined amount.

例えば、光量制御部40は、回転フィルタ47の第1フィルタ組のR1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1によって分離された白色光のRGB色成分(RGB面順次光)の光量の実測値から、キセノン光源36の白色光の光量の計測値を求め、回転フィルタ47の第2のフィルタ組のG2フィルタ部47g2、B2フィルタ部47b2によって分離された狭帯域光のGB狭帯域成分(GB面順次光)の光量の実測値から、キセノン光源36の白色光と狭帯域光源42の狭帯域光との合波光の光量の計測値を求め、求められた白色光の光量及び合波光の光量の計測値から狭帯域光の光量の計測値を求めると共に、求められたキセノン光源36の白色光の光量の計測値から、白色光と狭帯域光との光量比を一定するために必要な狭帯域光の光量の目標値を求め、狭帯域光の光量を計測値から目標値にするように、駆動部42aを制御することができる。   For example, the light amount control unit 40 determines the light amount of the RGB color components (RGB plane sequential light) of the white light separated by the R1 filter unit 47r1, the G1 filter unit 47g1, and the B1 filter unit 47b1 of the first filter set of the rotary filter 47. A measured value of the amount of white light of the xenon light source 36 is obtained from the actually measured value, and the GB narrowband component of the narrowband light separated by the G2 filter unit 47g2 and the B2 filter unit 47b2 of the second filter set of the rotary filter 47 ( The measured value of the combined light of the white light of the xenon light source 36 and the narrow-band light of the narrow-band light source 42 is obtained from the actually measured value of the light amount of the GB surface sequential light), and the obtained white light amount and combined light The measurement value of the light quantity of the narrow band light is obtained from the measurement value of the light quantity, and the light quantity ratio between the white light and the narrow band light is equalized from the obtained measurement value of the light quantity of the white light of the xenon light source 36. The target value of the light amount of narrow-band light necessary for determined, so that the target value of the amount of light from the measured values of the narrow-band light, it is possible to control the driving unit 42a.

なお、図示例では、回転フィルタ47によって色分離された各面順次光(合波光の各色成分)を第1シャッタ52で光量計測センサ54に向かって反射させ、光量計測センサ54で受光し、各分離光の光量を計測し、各面順次光の光量の実測値から、キセノン光源36の白色光及び狭帯域光源42の狭帯域光の光量の計測値を求めているが、本発明はこれに限定されず、回転フィルタ47の第1フィルタ組及び第2フィルタ部の少なくとも一方に、さらに、白色光及び合波光がそのまま透過する透明フィルタ部を設け、例えば、第2フィルタ組の遮光フィルタ部47Cutを透明フィルタ部に変更することにより、直接、白色光の光量及び合波光の光量の少なくとも一方を光量計測センサ54で実際に計測するようにしても良い。
この場合には、回転フィルタ47の回転と第1シャッタの駆動とを同期させ、撮像素子22における撮像画像信号の転送期間中に、回転フィルタ47の透明フィルタ部及び第1シャッタが白色光及び合波光の光路に挿入されるようにする必要がある。
In the illustrated example, each surface sequential light (each color component of the combined light) color-separated by the rotary filter 47 is reflected by the first shutter 52 toward the light quantity measurement sensor 54 and received by the light quantity measurement sensor 54. The light quantity of the separated light is measured, and the measured value of the light quantity of the white light of the xenon light source 36 and the light of the narrow band light of the narrow band light source 42 is obtained from the measured value of the light quantity of each surface sequential light. Without limitation, at least one of the first filter set and the second filter unit of the rotary filter 47 is further provided with a transparent filter unit that transmits white light and combined light as it is, for example, a light shielding filter unit 47Cut of the second filter set. May be directly measured by the light amount measurement sensor 54 at least one of the light amount of white light and the light amount of combined light.
In this case, the rotation of the rotary filter 47 and the driving of the first shutter are synchronized, and the transparent filter portion and the first shutter of the rotary filter 47 are in sync with white light and the combined image signal during the transfer period of the captured image signal in the image sensor 22. It must be inserted into the optical path of wave light.

なお、このように、白色光の光量及び合波光の光量の両方を光量計測センサ54で直接実際に計測する場合にも、狭帯域光の光量の計測値は、光量計測センサ54で計測された白色光及び合波光の光量の実測値から求める必要があるが、本発明はこれに限定されず、狭帯域光の光量を直接光量計測センサ54で実際に計測しても良い。
すなわち、図2に一点鎖線で示すように、第1光源部24のキセノン光源36と合波部材46との間に第2シャッタ56を設け、合波光の光量を計測する際に、第1シャッタ52及び第2シャッタ56とを同時にそれぞれ白色光の光路及び合波光の光路に挿入して、白色光を遮断し、狭帯域光のみを光量計測センサ54に導光し、合波光の光量の代わりに、狭帯域光のみ光量を直接実測するようにしても良い。
本発明の内視鏡用光源装置は、基本的に以上のように構成される。
In this way, even when both the light quantity of white light and the light quantity of the combined light are actually measured directly by the light quantity measurement sensor 54, the measurement value of the light quantity of the narrow band light is measured by the light quantity measurement sensor 54. Although it is necessary to obtain from the measured values of the light amounts of the white light and the combined light, the present invention is not limited to this, and the light amount of the narrow band light may be actually measured directly by the light amount measurement sensor 54.
That is, as indicated by a one-dot chain line in FIG. 2, the second shutter 56 is provided between the xenon light source 36 of the first light source unit 24 and the multiplexing member 46, and the first shutter is used when measuring the amount of combined light. 52 and the second shutter 56 are simultaneously inserted into the optical path of white light and the optical path of combined light, respectively, and the white light is blocked, and only the narrow band light is guided to the light quantity measuring sensor 54, and instead of the light quantity of the combined light. In addition, the light amount of only the narrow band light may be directly measured.
The endoscope light source device of the present invention is basically configured as described above.

図1及び図2に示すように、光源装置14のキセノン光源36及び狭帯域光源42から出射される白色光及び狭帯域光は、合波部材46、回転フィルタ47、集光レンズ及びロッドインテグレータ50を経て面内光量分布が均一化された各面順次光(白色光及び合波光の各色成分)とされた後、ロッドインテグレータ50からコネクタ部で接続された内視鏡12の光ファイバ20の入射端面に入射される。
光ファイバ38は、マルチモードファイバであり、一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用できる。
As shown in FIGS. 1 and 2, the white light and the narrowband light emitted from the xenon light source 36 and the narrowband light source 42 of the light source device 14 are combined into a multiplexing member 46, a rotating filter 47, a condensing lens and a rod integrator 50. After being converted into each surface sequential light (white light and combined light color components) having a uniform in-plane light quantity distribution, the incidence of the optical fiber 20 of the endoscope 12 connected by the connector portion from the rod integrator 50 is performed. Incident on the end face.
The optical fiber 38 is a multimode fiber. For example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of φ0.3 to 0.5 mm including a protective layer serving as an outer skin can be used.

こうして、光源装置14で生成された面順次光は、内視鏡12の光ファイバ38を伝播され、内視鏡12の先端部の照射口28Aから被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域からの戻り光が、受光部28Bを介して撮像素子22の受光面上に結像され、撮像素子22によって被観察領域が撮像される。
撮像後に撮像素子22から出力される撮像画像の画像信号は、スコープケーブル23を通じてプロセッサ16の画像処理システム38に入力される。
次に、こうして撮像素子22によって撮像された撮像画像の画像信号は、プロセッサ16の画像処理システム38を含む信号処理系によって画像処理され、モニタ30や記録装置(図示せず)に出力され、ユーザの観察に供される。
なお、内視鏡システム10の信号処理系は、内視鏡12の信号処理系と、光源14の信号処理系と、画像処理システム38を含むプロセッサ16の信号処理系と、を有する。
In this way, the surface sequential light generated by the light source device 14 is propagated through the optical fiber 38 of the endoscope 12 and irradiated from the irradiation port 28A at the distal end portion of the endoscope 12 toward the observation region of the subject. . Then, the return light from the observation region irradiated with the illumination light is imaged on the light receiving surface of the image sensor 22 through the light receiving unit 28B, and the image pickup device 22 images the observation region.
An image signal of a captured image output from the image sensor 22 after imaging is input to the image processing system 38 of the processor 16 through the scope cable 23.
Next, the image signal of the picked-up image picked up by the image pickup device 22 in this way is subjected to image processing by a signal processing system including the image processing system 38 of the processor 16 and output to a monitor 30 or a recording device (not shown), and the user It is used for observation.
The signal processing system of the endoscope system 10 includes a signal processing system of the endoscope 12, a signal processing system of the light source 14, and a signal processing system of the processor 16 including the image processing system 38.

内視鏡12の信号処理系は、撮像後に撮像素子22からの撮像画像の画像信号の信号処理系として、アナログ信号である撮像画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行い、サンプリングと利得制御が行われたアナログ画像信号をデジタル画像信号に変換するものである。A/D変換されたデジタル画像信号は、コネクタ部を介してプロセッサ16の画像処理システム38に入力される。
また、光源部14の信号処理系は、上述したように、光量計測センサ54による光量の計測値の処理、キセノン光源36の白色光の光量の計測値や狭帯域光源42の狭帯域光の光量の計測値等の算出、狭帯域光源42のオンオフ制御、並びに白色光及び狭帯域光の光量の計測値に応じた狭帯域光源42の光量制御を行う光量制御部40を有する。なお、光量制御部40は、キセノン光源36のオンオフ制御及び光量制御を行うものであっても良い。
The signal processing system of the endoscope 12 is a signal processing system of an image signal of a captured image from the image sensor 22 after imaging, and is correlated double sampling (CDS) or automatic gain control (AGC) to the captured image signal that is an analog signal. The analog image signal subjected to sampling and gain control is converted into a digital image signal. The A / D converted digital image signal is input to the image processing system 38 of the processor 16 via the connector unit.
Further, as described above, the signal processing system of the light source unit 14 processes the measurement value of the light quantity by the light quantity measurement sensor 54, the measurement value of the white light quantity of the xenon light source 36, and the light quantity of the narrow band light of the narrow band light source 42. A light amount control unit 40 that performs calculation of the measured value of the narrow band light source 42, on / off control of the narrow band light source 42, and light amount control of the narrow band light source 42 according to the measurement values of the light amounts of white light and narrow band light. The light quantity control unit 40 may perform on / off control and light quantity control of the xenon light source 36.

プロセッサ16の信号処理系の画像処理システム38は、内視鏡12からプロセッサ16に入力されたデジタル画像信号に、ガンマ補正、色補正処理及びノイズ除去等の前処理を行った後、通常光モードにおいて、キセノン光源36の白色光の面順次光による前処理済デジタル画像信号に適した通常観察用画像処理を施し、通常観察用画像を、モニタ30等にソフトコピー画像として表示するための表示画像信号、又は記録装置でハードコピー画像として出力するための表示画像信号に変換すると共に、キセノン光源36の白色光と狭帯域光源42の狭帯域光との合波光の面順次光による前処理済デジタル画像信号に適した特殊光観察用画像処理を施し、特殊光観察用画像を、モニタ30等にソフトコピー画像として表示するための表示画像信号、又は記録装置でハードコピー画像として出力するための表示画像信号に変換する。   The signal processing system image processing system 38 of the processor 16 performs preprocessing such as gamma correction, color correction processing, and noise removal on the digital image signal input from the endoscope 12 to the processor 16, and then performs the normal light mode. , A normal observation image process suitable for the preprocessed digital image signal by the surface sequential light of the white light of the xenon light source 36, and a display image for displaying the normal observation image as a soft copy image on the monitor 30 or the like Converted into a signal or a display image signal to be output as a hard copy image by a recording apparatus, and pre-processed digital by frame sequential light of combined light of white light of the xenon light source 36 and narrow band light of the narrow band light source 42 Display image for performing special light observation image processing suitable for the image signal and displaying the special light observation image as a soft copy image on the monitor 30 or the like No., or to convert the recording apparatus to a display image signal for outputting as a hard copy image.

上述した例では、光量計測センサ54によって計測された白色光の面順次光、及び白色光と狭帯域光との合波光の面順次光の光量の実測値に基づいて算出された白色光及び狭帯域光の光量の計測値に応じて、光量制御部40によって狭帯域光源42の光量制御を行って、狭帯域光源42にフィードバックをかけ、狭帯域光源42をフィードバック制御しているが、本発明はこれに限定されず、光量計測センサ54の計測に基づく白色光及び狭帯域光の光量の計測値に応じて、内視鏡12の撮像素子22で撮像され、内視鏡12からプロセッサ16に入力されたデジタル画像信号を、プロセッサ16の画像処理システム38において補正することにより、デジタル画像信号にフィードバックをかけるようにしても良い。
なお、画像処理システム38における光量計測センサ54の計測に基づく白色光及び狭帯域光の光量の計測値に応じたデジタル画像信号の補正処理は、白色光及び狭帯域光の光量の計測値と、一定に制御されるべき白色光と狭帯域光との光量比の目標値とから、本来あるべき狭帯域光の光量を算出し、狭帯域光の光量の計測値が算出された狭帯域光の光量の目標値となるように、白色光及び狭帯域光の光量の計測値に応じたデジタル画像信号を補正するものである。
本発明の内視鏡システムは、基本的に以上のように構成される。
In the above-described example, the white light and the narrow light calculated based on the actual measurement values of the surface sequential light of the white light measured by the light quantity measurement sensor 54 and the surface sequential light of the combined light of the white light and the narrow band light. Although the light amount control unit 40 controls the light amount of the narrow band light source 42 according to the measured value of the light amount of the band light, the narrow band light source 42 is fed back and the narrow band light source 42 is feedback controlled. Is not limited to this, and is imaged by the imaging element 22 of the endoscope 12 in accordance with the measurement values of the light amounts of the white light and the narrow band light based on the measurement by the light amount measurement sensor 54, and is sent from the endoscope 12 to the processor 16. The digital image signal may be fed back by correcting the input digital image signal in the image processing system 38 of the processor 16.
The correction processing of the digital image signal according to the measurement values of the white light and the narrow band light based on the measurement of the light quantity measurement sensor 54 in the image processing system 38 includes the measurement values of the white light and the narrow band light, From the target value of the light intensity ratio between the white light and the narrow band light that should be controlled constantly, the light quantity of the narrow band light that should be originally calculated is calculated, and the measured value of the light quantity of the narrow band light is calculated. The digital image signal corresponding to the measurement values of the light amounts of the white light and the narrow band light is corrected so as to become the target value of the light amount.
The endoscope system of the present invention is basically configured as described above.

次に、本発明の内視鏡用光源装置を有する内視鏡システムの作用について説明する。
上述の通り、光源装置14は、通常光モード及び特殊光モードの両方に用いられるキセノン(Xe)光源36と、特殊光モードにおいて青紫色レーザ光源(405LD)又は青色LEDを用いる特殊光光源42とを発光源として備えている。これら各光源36及び42からの発光は、光源制御部40により個別に制御されており、キセノン(Xe)光源36の出射光(白色光)及び特殊光光源42の出射光(狭帯域光)の光量比は、一定となるように、特殊光光源42の出射光(狭帯域光)の光量は、変更自在になっている。
Next, an operation of the endoscope system having the endoscope light source device of the present invention will be described.
As described above, the light source device 14 includes the xenon (Xe) light source 36 that is used for both the normal light mode and the special light mode, and the special light source 42 that uses a blue-violet laser light source (405LD) or a blue LED in the special light mode. As a light source. The light emission from each of the light sources 36 and 42 is individually controlled by the light source control unit 40, and the light emitted from the xenon (Xe) light source 36 (white light) and the light emitted from the special light source 42 (narrowband light). The amount of light emitted from the special light source 42 (narrow band light) can be changed so that the light amount ratio is constant.

通常光モードの場合、キセノン(Xe)光源36から出射される白色光は、レフレクタ34によって平行光となり、合波部材46を透過し、回転式フィルタ47の第1のフィルタ組のいずれかのフィルタ(R1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1)を透過し、面順次光となり、集光レンズ48に入射し、集光レンズ48において集光されて、ロッドインテグレータ50に入射する。   In the normal light mode, the white light emitted from the xenon (Xe) light source 36 becomes parallel light by the reflector 34, passes through the multiplexing member 46, and is one of the filters of the first filter group of the rotary filter 47. The light passes through (R1 filter unit 47r1, G1 filter unit 47g1, B1 filter unit 47b1), becomes surface-sequential light, enters the condenser lens 48, is condensed by the condenser lens 48, and enters the rod integrator 50.

一方、特殊光モードの場合、キセノン(Xe)光源36から出射される白色光は、レフレクタ34で平行光となり、他方、特殊光光源42から出射される狭帯域光は、コリメータレンズ44によって、白色平行光と同じサイズとなるように整形された平行光となる。
次いで、合波部材46において、白色平行光は、合波部材46を透過し、他方、同じサイズに整形された狭帯域平行光は、合波部材46によって反射されて、透過した白色平行光と合波されて合波光となる。
さらに、合波光は、回転式フィルタ47の第2のフィルタ組(G2フィルタ部47g2、B2フィルタ部47b2)のいずれかのフィルタを透過し、面順次光となり、集光レンズ48に入射し、集光レンズ48によって集光されて、ロッドインテグレータ50に入射する。
On the other hand, in the special light mode, the white light emitted from the xenon (Xe) light source 36 becomes parallel light by the reflector 34, while the narrow-band light emitted from the special light source 42 is whitened by the collimator lens 44. The parallel light is shaped to have the same size as the parallel light.
Next, in the multiplexing member 46, the white parallel light is transmitted through the multiplexing member 46, while the narrow-band parallel light shaped to the same size is reflected by the multiplexing member 46 and transmitted through the white parallel light. Combined to become combined light.
Further, the combined light passes through one of the filters of the second filter set (G2 filter unit 47g2 and B2 filter unit 47b2) of the rotary filter 47, becomes surface-sequential light, enters the condenser lens 48, and is collected. The light is condensed by the optical lens 48 and enters the rod integrator 50.

通常光モード及び特殊光モードいずれの場合においても、ロッドインテグレータ50に入射した光は、ロッドインテグレータ50内で反射を繰り返し、出射時には出射端面内の光量分布が均一になる。
すなわち、通常光モード及び特殊光モードのいずれの場合も、ロッドインテグレータ50を通過した光は光量分布が均一になり、光ファイバ20に入力され、コネクタ部に伝送される。コネクタ部まで伝送された光は、照明光学系を構成する光ファイバ20によって、それぞれ内視鏡12の先端部まで伝搬される。
In both the normal light mode and the special light mode, the light incident on the rod integrator 50 is repeatedly reflected in the rod integrator 50, and the light quantity distribution in the exit end face becomes uniform during emission.
That is, in both the normal light mode and the special light mode, the light passing through the rod integrator 50 has a uniform light amount distribution, is input to the optical fiber 20, and is transmitted to the connector unit. The light transmitted to the connector portion is propagated to the distal end portion of the endoscope 12 by the optical fiber 20 constituting the illumination optical system.

上述したように、通常光モードの白色光、又は、特殊光モードの合波光は、内視鏡12の先端部の照射口28Aから被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域からの戻り光が、受光部28Bを介して撮像素子22の受光面上に結像され、撮像素子22によって被観察領域が撮像される。
撮像後に撮像素子22から出力される撮像画像の画像信号は、スコープケーブル41を通じてプロセッサ16の画像処理システム28に入力される。
次に、こうして撮像素子22によって撮像された撮像画像の画像信号は、プロセッサ16の画像処理システム28を含む信号処理系によって画像処理され、モニタ30や記録装置に出力され、ユーザの観察に供される。
As described above, the white light in the normal light mode or the combined light in the special light mode is irradiated from the irradiation port 28A at the distal end portion of the endoscope 12 toward the observation region of the subject. Then, the return light from the observation region irradiated with the illumination light is imaged on the light receiving surface of the image sensor 22 through the light receiving unit 28B, and the image pickup device 22 images the observation region.
An image signal of a captured image output from the image sensor 22 after imaging is input to the image processing system 28 of the processor 16 through the scope cable 41.
Next, the image signal of the captured image captured by the image sensor 22 is subjected to image processing by a signal processing system including the image processing system 28 of the processor 16, output to the monitor 30 and the recording device, and used for user observation. The

一方、光源装置14のキャリブレーションがなされる場合には、以下のように、本発明の内視鏡用光源装置の作動(光源制御)方法が行われる。
図5に、本発明の内視鏡用光源装置の作動(光源制御)方法の一例を示すフローチャートである。
まず、光源装置14において、キャリブレーション時、好ましくは、撮像素子22における撮像画像信号の転送期間中に、第1シャッタ52が集光レンズ48とロッドインテグレータ50との間の、キセノン光源36から出射された白色光の光路、又は白色光と特殊光光源42から出射される狭帯域光との合波光の面順次光の光路に挿入される(ステップS10)。
次いで、通常光モードにおいては、白色光の面順次光が、特殊光モードにおいては、白色光と狭帯域光との合波光の面順次光が、第1シャッタ52の反射ミラー52aで反射されて光量計測センサ54に入射され、光量計測センサ54で、白色光及び狭帯域光との合波光の面順次光の光量が計測される(ステップS12)。
On the other hand, when the light source device 14 is calibrated, the operation method (light source control) of the endoscope light source device of the present invention is performed as follows.
FIG. 5 is a flowchart showing an example of an operation (light source control) method of the endoscope light source device of the present invention.
First, in the light source device 14, the first shutter 52 emits from the xenon light source 36 between the condenser lens 48 and the rod integrator 50 during calibration, preferably during the transfer period of the captured image signal in the image sensor 22. Then, the light is inserted into the optical path of the white light or the surface sequential light of the combined light of the white light and the narrow band light emitted from the special light source 42 (step S10).
Next, in the normal light mode, the surface sequential light of the white light is reflected by the reflection mirror 52a of the first shutter 52 in the special light mode, and the surface sequential light of the combined light of the white light and the narrow band light is reflected. The light quantity measurement sensor 54 is incident, and the light quantity measurement sensor 54 measures the light quantity of the surface sequential light of the combined light of the white light and the narrow band light (step S12).

次に、光量制御部40において、光量計測センサ54で計測された白色光及び狭帯域光との合波光の面順次光の光量の実測値から、白色光及び狭帯域光の光量の計測値が算出される(ステップS14)。
次いで、光量制御部40において、白色光及び狭帯域光の光量の計測値から、白色光と狭帯域光の光量比を一定にするように、狭帯域光源42の駆動部42aを制御して、狭帯域光源42から出射される狭帯域光の光量を調節する(ステップS16)。
こうして、光量計測センサ54で計測された合波光の光量に応じて狭帯域光の光量を制御することができる。
Next, in the light quantity control unit 40, the measured value of the light quantity of the white light and the narrow band light is obtained from the actual measurement value of the surface sequential light of the combined light of the white light and the narrow band light measured by the light quantity measurement sensor 54. Calculated (step S14).
Next, the light amount control unit 40 controls the drive unit 42a of the narrow band light source 42 so as to make the light amount ratio of the white light and the narrow band light constant from the measurement value of the light amount of the white light and the narrow band light, The amount of narrowband light emitted from the narrowband light source 42 is adjusted (step S16).
In this way, the light amount of the narrow band light can be controlled according to the light amount of the combined light measured by the light amount measurement sensor 54.

なお、内視鏡システム10の作動方法においては、光量制御部40において、光量計測センサ54で計測された合波光の光量に応じて狭帯域光の光量を制御する代わりに、あるいは、狭帯域光の光量の制御に加えて、光量制御部40で算出された白色光及び狭帯域光の光量の計測値をプロセッサ16の画像処理部システム38に送り、画像処理部システム38において、計測された合波光の光量に応じて、撮像素子22によって撮像された撮像画像の画像信号を補正するようにしても良い。   In the operation method of the endoscope system 10, instead of controlling the light amount of the narrow band light according to the light amount of the combined light measured by the light amount measurement sensor 54 in the light amount control unit 40, or narrow band light. In addition to the control of the amount of light, the measured values of the amounts of white light and narrow band light calculated by the light amount control unit 40 are sent to the image processing unit system 38 of the processor 16, and the image processing unit system 38 measures the measured values. You may make it correct | amend the image signal of the captured image imaged with the image pick-up element 22 according to the light quantity of the wave light.

上述した例においては、合波部材46としてダイクロイックミラーを用いているが、本発明はこれに限定されず、白色光を透過させる透過部と、少なくとも狭帯域光を反射する反射部とを備え、白色光と狭帯域光とを合波して合波光を生成する合波部材を用いることもできる。   In the above-described example, a dichroic mirror is used as the multiplexing member 46, but the present invention is not limited to this, and includes a transmission part that transmits white light and a reflection part that reflects at least narrowband light. A multiplexing member that combines white light and narrowband light to generate combined light can also be used.

なお、上記実施形態においては、回転式フィルタ47を用いて白色光及び合波光の面順次光を生成し、生成された面順次光を撮影対象に照射し、撮影対象からの戻り光をモノクロの撮像素子(センサ)22で撮像する面順次方式の撮像を行う構成としているが、本発明はこれに限定されず、回転式フィルタ47を用いずに、カラー撮像素子を用いる同時方式の撮像を行う構成としてもよい。   In the above embodiment, the rotary filter 47 is used to generate the surface sequential light of the white light and the combined light, the generated surface sequential light is irradiated to the imaging target, and the return light from the imaging target is monochrome. Although the image pickup device (sensor) 22 is configured to perform frame-sequential imaging, the present invention is not limited to this, and a simultaneous imaging using a color imaging device is performed without using the rotary filter 47. It is good also as a structure.

以上、本発明の内視鏡用光源装置及びその作動方法並びに内視鏡システム及びその作動方法についての実施形態を詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。   As mentioned above, although the embodiment about the light source device for endoscope of the present invention, its operating method, and the endoscope system and its operating method was explained in detail, the present invention is not limited to the above-mentioned embodiment, and is the gist of the present invention. It goes without saying that various improvements or changes may be made without departing from the scope of the invention.

例えば、内視鏡用光源装置は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する狭帯域光光源及び該狭帯域光光源を駆動する駆動部を備える第2の光源部と、該合波部材によって合波された前記合波光を集光して内視鏡のライトガイドに入射させるための集光レンズと、該合波部材によって合波された前記合波光の光量を計測する光量計測手段と、該光量計測手段によって計測された前記合波光の光量に応じて前記狭帯域光の光量を調整するように前記第2の光源部の駆動部を制御する光量制御手段と、を有するものであっても良い。   For example, an endoscope light source device drives a first light source unit that emits white illumination light, a narrow-band light source that emits narrow-band light in a narrower wavelength band than the white illumination light, and the narrow-band light source A second light source unit including a driving unit, a condensing lens for condensing the combined light combined by the combining member and entering the light guide of the endoscope, and the combining member A light amount measuring unit that measures the light amount of the combined light, and the second light source unit that adjusts the light amount of the narrowband light according to the light amount of the combined light measured by the light amount measuring unit. And a light amount control means for controlling the drive unit.

ここで、内視鏡用光源装置は、さらに、前記合波部材より下流側の前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタを有し、該第1シャッタは、前記合波光の光路の上流側の面に反射ミラーを備え、前記光量制御手段は、前記合波光の光路から外れた位置に配置され、前記反射ミラーによって反射された前記合波光の光量を計測するものであっても良い。   Here, the endoscope light source device further includes a first shutter that is disposed in an optical path of the combined light downstream of the combining member and blocks the optical path of the combined light, and the first shutter is A reflection mirror is provided on the upstream surface of the optical path of the combined light, and the light amount control unit is disposed at a position deviated from the optical path of the combined light, and measures the light amount of the combined light reflected by the reflection mirror It may be what you do.

また、内視鏡用光源装置は、さらに、前記合波部材より下流側の前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタと、前記光量制御手段を、前記第1シャッタより前記合波光の光路の上流側に、前記第1シャッタの閉動作に同期させて入れ、前記第1シャッタの開動作に同期させて前記合波光の光路から出す移動手段と、を有し、前記光量制御手段は、前記第1シャッタの閉動作中に前記合波光の光量を計測するものであっても良い。
また、前記集光レンズは、前記合波部材の下流側に配置され、前記第1シャッタは、前記集光レンズと前記内視鏡の前記ライトガイドとの間に配置され、前記光量制御手段は、前記集光レンズによって集光された前記合波光の光量を計測するものであっても良い。
The endoscope light source device further includes a first shutter disposed in an optical path of the combined light downstream of the combining member, and blocking the optical path of the combined light, and the light amount control means. Moving means that is placed upstream of the one shutter from the optical path of the multiplexed light in synchronization with the closing operation of the first shutter and that exits the optical path of the combined light in synchronization with the opening operation of the first shutter. The light amount control means may measure the light amount of the combined light during the closing operation of the first shutter.
The condensing lens is disposed on the downstream side of the combining member, the first shutter is disposed between the condensing lens and the light guide of the endoscope, and the light amount control unit includes: The light quantity of the combined light condensed by the condenser lens may be measured.

また、内視鏡用光源装置は、さらに、前記合波部材より下流側の前記合波光の光路に作用して前記合波光を複数の異なる所定波長域成分に分離する色フィルタを有し、前記光量制御手段は、前記色フィルタによって分離された前記合波光の前記複数の所定波長域成分毎に各所定波長成分の光量を計測するものであっても良い。
また、前記合波部材は、前記第1の光源部から出射される前記白色照明光を反射させ、前記第2の光源部から出射される前記狭帯域光を少なくとも透過させるものであっても良く、ダイクロイックミラーであっても良い。
The endoscope light source device further includes a color filter that acts on an optical path of the combined light downstream from the combining member to separate the combined light into a plurality of different predetermined wavelength band components, The light amount control means may measure the light amount of each predetermined wavelength component for each of the plurality of predetermined wavelength region components of the combined light separated by the color filter.
The multiplexing member may reflect the white illumination light emitted from the first light source unit and transmit at least the narrowband light emitted from the second light source unit. It may be a dichroic mirror.

また、内視鏡システムは、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、前記白色照明光と前記狭帯域光とを合波して合波光を生成する合波部材と、該合波部材によって合波された前記合波光の光量を計測する光量計測手段と、を備える内視鏡用光源装置と、該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子とを備える内視鏡と、前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有し、前記光量計測手段によって計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御する光量制御手段をさらに有するか、もしくは、前記画像処理部において、前記光量計測手段によって計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正するものであっても良い。   In addition, the endoscope system includes a first light source unit that emits white illumination light, a second light source unit that emits narrowband light having a narrower wavelength band than the white illumination light, the white illumination light, and the narrow light source. A light source device for an endoscope, comprising: a multiplexing member that combines band light and generates combined light; and a light amount measuring unit that measures the amount of light of the combined light combined by the combining member; A light guide for guiding the combined light emitted from the endoscope light source device to irradiate the imaging target, and the imaging target obtained when the combined light is irradiated to the imaging target through the light guide An endoscope including an imaging device that captures the return light from the imaging device, and a captured image signal that is captured by the imaging device of the endoscope and is input from the imaging device, and the received captured image signal is predetermined An image processing unit for performing image processing of And further includes a light amount control means for controlling the light amount of the narrow-band light emitted from the second light source unit according to the light amount of the combined light measured by the light amount measuring means, or the image In the processing unit, the captured image signal obtained by the imaging element may be corrected in accordance with the light amount of the combined light measured by the light amount measuring unit.

また、内視鏡用光源装置の作動方法は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部とを有する内視鏡用光源装置の前記合波部材によって合波された合波光の光量を制御する作動方法であって、前記合波部材によって合波された前記合波光の光量を計測し、計測された前記合波光の光量に応じて前記狭帯域光の光量を制御するものであっても良い。   In addition, an operating method of the endoscope light source device includes a first light source unit that emits white illumination light and a second light source unit that emits narrowband light having a narrower wavelength band than the white illumination light. An operation method for controlling the amount of combined light combined by the combining member of the light source device for endoscope, wherein the amount of combined light combined by the combining member is measured and measured. The amount of the narrow band light may be controlled according to the amount of the combined light.

また、内視鏡システムの作動方法は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、前記白色照明光と前記狭帯域光とを合波して合波光を生成する合波部材と、を備える内視鏡用光源装置と、該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子と、を備える内視鏡と、前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有する内視鏡システムの制御方法であって、前記内視鏡用光源装置の前記合波部材によって合波された前記合波光の光量を計測し、計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御するか、もしくは、前記画像処理部において、計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正するものであっても良い。   The operation method of the endoscope system includes: a first light source unit that emits white illumination light; a second light source unit that emits narrow band light having a narrower wavelength band than the white illumination light; and the white illumination light. An endoscope light source device comprising: and a multiplexing member that generates a combined light by combining the narrowband light, and guiding the combined light emitted from the endoscope light source device An endoscope comprising: a light guide for irradiating the object to be imaged; and an image pickup device for imaging return light from the object to be imaged obtained by irradiating the object to be imaged with the combined light through the light guide; An endoscope system control comprising: an image processing unit that receives an imaged image signal that is imaged by the imaging element of an endoscope and that is input from the imaging element, and that performs predetermined image processing on the received imaged image signal A method comprising: a light source device for an endoscope; The amount of the combined light combined by the combining member is measured, and the amount of the narrowband light emitted from the second light source unit is controlled according to the measured amount of the combined light. Alternatively, the image processing unit may correct the captured image signal obtained by the imaging device in accordance with the measured amount of the combined light.

10 内視鏡システム
12 内視鏡
14 光源装置
16 プロセッサ
18 入出力部
20 光ファイバ
22 撮像素子
24 第1の光源部
26 第2の光源部
30 表示部(モニタ)
32 入力部
34 リフレクタ
36 キセノン光源
38 画像処理システム
40 光量制御部
42 特殊光光源
42a 駆動部
44 コリメートレンズ
46 合波部材
47 回転フィルタ
48 集光レンズ
50 ロッドインテグレータ
52 第1シャッタ
52a 反射ミラー
54 光量計測部
DESCRIPTION OF SYMBOLS 10 Endoscope system 12 Endoscope 14 Light source device 16 Processor 18 Input / output part 20 Optical fiber 22 Imaging element 24 1st light source part 26 2nd light source part 30 Display part (monitor)
32 Input unit 34 Reflector 36 Xenon light source 38 Image processing system 40 Light amount control unit 42 Special light source 42a Drive unit 44 Collimator lens 46 Combined member 47 Rotating filter 48 Condensing lens 50 Rod integrator 52 First shutter 52a Reflective mirror 54 Light amount measurement Part

Claims (18)

白色照明光を出射する第1の光源部と、
前記白色照明光より狭い波長帯域の狭帯域光を出射する狭帯域光光源及び該狭帯域光光源を駆動する駆動部を備える第2の光源部と、
前記白色照明光と前記狭帯域光とが合波された前記合波光を集光して内視鏡のライトガイドに入射させるための集光レンズと、
前記合波光の光量を計測する光量計測手段と、
該光量計測手段によって計測された前記合波光の光量に応じて前記狭帯域光の光量を調整するように前記第2の光源部の駆動部を制御する光量制御手段と、を有することを特徴とする内視鏡用光源装置。
A first light source that emits white illumination light;
A second light source unit including a narrow-band light source that emits narrow-band light having a narrower wavelength band than the white illumination light, and a drive unit that drives the narrow-band light source;
A condensing lens for condensing the combined light in which the white illumination light and the narrowband light are combined and entering the light guide of an endoscope;
A light amount measuring means for measuring the light amount of the combined light;
A light amount control means for controlling the drive unit of the second light source unit so as to adjust the light amount of the narrow-band light according to the light amount of the combined light measured by the light amount measuring means. Endoscope light source device.
前記光量制御手段は、前記白色照明光と前記狭帯域光との光量比が一定となるように、前記光量計測手段によって計測された前記合波光の光量に応じて前記第2の光源部の駆動部を制御する請求項1に記載の内視鏡用光源装置。   The light quantity control means drives the second light source unit according to the light quantity of the combined light measured by the light quantity measurement means so that the light quantity ratio between the white illumination light and the narrow band light is constant. The endoscope light source device according to claim 1, wherein the endoscope light source device is controlled. さらに、前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタを有し、
該第1シャッタは、前記合波光の光路の上流側の面に反射ミラーを備え、
前記光量計測手段は、前記合波光の光路から外れた位置に配置され、前記反射ミラーによって反射された前記合波光の光量を計測する請求項1又は2に記載の内視鏡用光源装置。
And a first shutter disposed in the optical path of the combined light and blocking the optical path of the combined light,
The first shutter includes a reflection mirror on an upstream surface of the optical path of the combined light,
The endoscope light source device according to claim 1, wherein the light amount measuring unit is disposed at a position out of an optical path of the combined light and measures the light amount of the combined light reflected by the reflection mirror.
さらに、前記合波光の光路に配置され、前記合波光の光路を遮断する第1シャッタと、前記光量計測手段を、前記第1シャッタより前記合波光の光路の上流側に、前記第1シャッタの閉動作に同期させて入れ、前記第1シャッタの開動作に同期させて前記合波光の光路から出す移動手段と、を有し、
前記光量計測手段は、前記第1シャッタの閉動作中に前記合波光の光量を計測する請求項1又は2に記載の内視鏡用光源装置。
Further, a first shutter disposed in the optical path of the combined light and blocking the optical path of the combined light, and the light amount measuring means are arranged on the upstream side of the optical path of the combined light from the first shutter. Moving means that synchronizes with the closing operation, and moves out of the optical path of the combined light in synchronization with the opening operation of the first shutter;
The endoscope light source device according to claim 1, wherein the light amount measuring unit measures the light amount of the combined light during the closing operation of the first shutter.
前記集光レンズは、前記合波光の光路に配置され、
前記第1シャッタは、前記集光レンズと前記内視鏡の前記ライトガイドとの間に配置され、
前記光量計測手段は、前記集光レンズによって集光された前記合波光の光量を計測する請求項3又は4に記載の内視鏡用光源装置。
The condenser lens is disposed in an optical path of the combined light;
The first shutter is disposed between the condenser lens and the light guide of the endoscope,
5. The endoscope light source device according to claim 3, wherein the light amount measuring unit measures a light amount of the combined light condensed by the condenser lens.
さらに、前記合波光の光路に作用して前記合波光を複数の異なる所定波長域成分に分離する色フィルタを有し、
前記光量計測手段は、前記色フィルタによって分離された前記合波光の前記複数の所定波長域成分毎に各所定波長成分の光量を計測する請求項1〜5のいずれかに記載の内視鏡用光源装置。
And a color filter that acts on an optical path of the combined light and separates the combined light into a plurality of different predetermined wavelength band components,
The endoscope for an endoscope according to any one of claims 1 to 5, wherein the light amount measuring unit measures a light amount of each predetermined wavelength component for each of the plurality of predetermined wavelength region components of the combined light separated by the color filter. Light source device.
前記色フィルタは、前記合波光を、白色照明光の赤成分、緑成分及び青成分に分離する第1フィルタ組と、前記緑成分の波長域に含まれ、これより狭い波長域の緑狭帯域成分及び前記青成分の波長域に含まれ、これより狭い波長域の青狭帯域成分に分離する第2フィルタ組とを有する請求項6に記載の内視鏡用光源装置。   The color filter is included in a first filter group that separates the combined light into a red component, a green component, and a blue component of white illumination light, and a green narrow band of a narrower wavelength range than the green component. The endoscope light source device according to claim 6, further comprising: a second filter set that is included in a wavelength range of the component and the blue component and separates into a blue narrowband component of a narrower wavelength range. 前記色フィルタは、前記第1フィルタ組を外側に、前記第2フィルタ組を内側に配置した回転フィルタである請求項7に記載の内視鏡用光源装置。   8. The endoscope light source device according to claim 7, wherein the color filter is a rotary filter in which the first filter set is disposed outside and the second filter set is disposed inside. 前記光量計測手段は、前記内視鏡の前記ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子の撮像画像信号の転送期間中に、前記合波光の光量を計測する請求項1〜8のいずれかに記載の内視鏡用光源装置。   The light amount measuring unit is configured to transfer a picked-up image signal of an image pickup device that picks up return light from the photographing target obtained when the combined light is irradiated onto the photographing target through the light guide of the endoscope. The light source device for endoscopes according to any one of claims 1 to 8, which measures a light amount of the combined light. 前記光量計測手段は、前記内視鏡の前記ライトガイドを通して、前記色フィルタによって分離された前記合波光の前記複数の所定波長域成分毎に各所定波長成分を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子の各所定波長成分の撮像画像信号の転送期間中に、前記合波光の光量を計測する請求項6〜8のいずれかに記載の内視鏡用光源装置。   The light amount measuring means is obtained when each predetermined wavelength component is irradiated to the imaging target for each of the plurality of predetermined wavelength region components of the combined light separated by the color filter through the light guide of the endoscope. 9. The endoscope according to claim 6, wherein the amount of the combined light is measured during a transfer period of a captured image signal of each predetermined wavelength component of an imaging element that captures the return light from the imaging target. Light source device. 前記撮像素子は、フレームトランスファー方式CCDである請求項9又は10のいずれかに記載の内視鏡用光源装置。   The light source device for an endoscope according to claim 9, wherein the imaging element is a frame transfer type CCD. 前記第2の光源が、半導体光源である請求項1〜11のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to claim 1, wherein the second light source is a semiconductor light source. 前記第1の光源が、放電管である請求項1〜12のいずれかに記載の内視鏡用光源装置。   The endoscope light source device according to any one of claims 1 to 12, wherein the first light source is a discharge tube. 白色照明光を出射する第1の光源部と、
前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、
前記白色照明光と前記狭帯域光とが合波された前記合波光の光量を計測する光量計測手段と、を備える内視鏡用光源装置と、
該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子とを備える内視鏡と、
前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有し、
前記光量計測手段によって計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御する光量制御手段をさらに有するか、もしくは、前記画像処理部において、前記光量計測手段によって計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正することを特徴とする内視鏡システム。
A first light source that emits white illumination light;
A second light source that emits narrowband light having a narrower wavelength band than the white illumination light;
An endoscope light source device comprising: a light amount measuring unit that measures a light amount of the combined light in which the white illumination light and the narrowband light are combined;
A light guide for guiding the combined light emitted from the endoscope light source device to irradiate the imaging target, and the imaging target obtained when the combined light is irradiated to the imaging target through the light guide An endoscope provided with an imaging device for imaging the return light from
An image processing unit that receives the captured image signal that is captured by the imaging element of the endoscope and that is input from the imaging element, and that performs predetermined image processing on the received captured image signal;
The image processing unit further includes a light amount control unit that controls a light amount of the narrowband light emitted from the second light source unit according to a light amount of the combined light measured by the light amount measuring unit. The endoscope system according to claim 1, wherein the photographic image signal obtained by the imaging device is corrected in accordance with a light amount of the combined light measured by the light amount measuring unit.
前記内視鏡用光源装置は、請求項1〜13のいずれかに記載の内視鏡用光源装置である請求項14に記載の内視鏡システム。   The endoscope system according to claim 14, wherein the endoscope light source device is the endoscope light source device according to any one of claims 1 to 13. 前記光量制御手段は、前記光量計測手段によって計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御すると共に、前記画像処理部は、前記光量計測手段によって計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正する請求項14又は15に記載の内視鏡システム。   The light amount control unit controls the light amount of the narrowband light emitted from the second light source unit according to the light amount of the combined light measured by the light amount measurement unit, and the image processing unit includes: The endoscope system according to claim 14 or 15, wherein the captured image signal obtained by the imaging device is corrected in accordance with a light amount of the combined light measured by the light amount measuring unit. 白色照明光を出射する第1の光源部と、
前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、を有し、前記白色照明光と前記狭帯域光とが合波された合波光の光量を制御する内視鏡用光源装置の作動方法であって、
前記合波光の光量を計測し、計測された前記合波光の光量に応じて前記狭帯域光の光量を制御することを特徴とする内視鏡用光源装置の作動方法。
A first light source that emits white illumination light;
A second light source unit that emits narrowband light having a narrower wavelength band than the white illumination light, and controls the amount of combined light obtained by combining the white illumination light and the narrowband light. A method of operating a mirror light source device,
A method of operating an endoscope light source device, comprising: measuring a light amount of the combined light; and controlling the light amount of the narrowband light according to the measured light amount of the combined light.
白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を出射する第2の光源部と、を備え、前記白色照明光と前記狭帯域光とが合波された合波光を出射する内視鏡用光源装置と、
該内視鏡用光源装置から出射される前記合波光を導光して撮影対象に照射するためのライトガイドと、該ライトガイドを通して前記合波光を撮影対象に照射した際に得られる前記撮影対象からの戻り光を撮像する撮像素子と、を備える内視鏡と、
前記内視鏡の前記撮像素子によって撮像され、前記撮像素子から入力される撮影画像信号を受け取り、受け取った前記撮影画像信号に所定の画像処理を施す画像処理部と、を有する内視鏡システムの作動方法であって、
前記内視鏡用光源装置から出射された前記合波光の光量を計測し、計測された前記合波光の光量に応じて、前記第2の光源部から出射される前記狭帯域光の光量を制御するか、もしくは、前記画像処理部において、計測された前記合波光の光量に応じて前記撮像素子によって得られた前記撮影画像信号を補正することを特徴とする内視鏡システムの作動方法。
A first light source unit that emits white illumination light; and a second light source unit that emits narrowband light having a narrower wavelength band than the white illumination light, and the white illumination light and the narrowband light are combined. A light source device for an endoscope that emits waved combined light; and
A light guide for guiding the combined light emitted from the endoscope light source device to irradiate the imaging target, and the imaging target obtained when the combined light is irradiated to the imaging target through the light guide An endoscope provided with an image sensor that images the return light from
An endoscope system comprising: an image processing unit that receives an imaged image signal that is imaged by the imaging element of the endoscope and that is input from the imaging element, and that performs predetermined image processing on the received imaged image signal. An operating method,
The light amount of the combined light emitted from the endoscope light source device is measured, and the light amount of the narrowband light emitted from the second light source unit is controlled according to the measured light amount of the combined light. Alternatively, the image processing unit corrects the photographed image signal obtained by the imaging device in accordance with the measured amount of the combined light, and operates the endoscope system.
JP2014029817A 2014-02-19 2014-02-19 Endoscope light source device and operating method thereof, and endoscope system and operating method thereof Active JP5934267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029817A JP5934267B2 (en) 2014-02-19 2014-02-19 Endoscope light source device and operating method thereof, and endoscope system and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029817A JP5934267B2 (en) 2014-02-19 2014-02-19 Endoscope light source device and operating method thereof, and endoscope system and operating method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010199495A Division JP5485835B2 (en) 2010-09-07 2010-09-07 Endoscope light source device and light amount control method thereof, endoscope system and control method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016092629A Division JP6227706B2 (en) 2016-05-02 2016-05-02 Endoscope light source device and endoscope system

Publications (2)

Publication Number Publication Date
JP2014138868A true JP2014138868A (en) 2014-07-31
JP5934267B2 JP5934267B2 (en) 2016-06-15

Family

ID=51415963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029817A Active JP5934267B2 (en) 2014-02-19 2014-02-19 Endoscope light source device and operating method thereof, and endoscope system and operating method thereof

Country Status (1)

Country Link
JP (1) JP5934267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160172A1 (en) * 2022-02-25 2023-08-31 杭州莱恩瑟特医疗技术有限公司 Swing filter, illumination device for endoscope, and medical endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313797A (en) * 1998-05-06 1999-11-16 Olympus Optical Co Ltd Endoscope device
JP2005348794A (en) * 2004-06-08 2005-12-22 Pentax Corp Light source device for endoscope
JP2006000157A (en) * 2004-06-15 2006-01-05 Pentax Corp Light source apparatus
JP2009201940A (en) * 2008-02-29 2009-09-10 Hoya Corp Endoscopic light source system, endoscopic light source equipment, endoscopic processor, and endoscopic unit
JP2009279172A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313797A (en) * 1998-05-06 1999-11-16 Olympus Optical Co Ltd Endoscope device
JP2005348794A (en) * 2004-06-08 2005-12-22 Pentax Corp Light source device for endoscope
JP2006000157A (en) * 2004-06-15 2006-01-05 Pentax Corp Light source apparatus
JP2009201940A (en) * 2008-02-29 2009-09-10 Hoya Corp Endoscopic light source system, endoscopic light source equipment, endoscopic processor, and endoscopic unit
JP2009279172A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160172A1 (en) * 2022-02-25 2023-08-31 杭州莱恩瑟特医疗技术有限公司 Swing filter, illumination device for endoscope, and medical endoscope

Also Published As

Publication number Publication date
JP5934267B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5485835B2 (en) Endoscope light source device and light amount control method thereof, endoscope system and control method thereof
JP4855728B2 (en) Illumination device and observation device
JP5258869B2 (en) Endoscope device
JP5460506B2 (en) Endoscope apparatus operating method and endoscope apparatus
JP5303012B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5587120B2 (en) Endoscope light source device
JP5582948B2 (en) Endoscope device
JP2012029703A (en) Method for controlling endoscope apparatus, and endoscope apparatus
JP2012071012A (en) Endoscope device
JP6995866B2 (en) Endoscope system
JP2010012102A (en) Light source device and endoscope apparatus using the same
JPWO2016080130A1 (en) Observation device
JP2012010962A (en) Light source device for excitation light, and electronic endoscope system
JP6227706B2 (en) Endoscope light source device and endoscope system
JP5921984B2 (en) Electronic endoscope apparatus and illumination apparatus
JP2012081048A (en) Electronic endoscope system, electronic endoscope, and excitation light irradiation method
CN109549614B (en) Endoscope system
JP5677555B2 (en) Endoscope device
JP6560968B2 (en) Endoscope system and operating method thereof
JP5934267B2 (en) Endoscope light source device and operating method thereof, and endoscope system and operating method thereof
JP4459710B2 (en) Fluorescence observation endoscope device
JP6467483B2 (en) Endoscope light source device and endoscope system
JP7399151B2 (en) Light source device, medical observation system, adjustment device, lighting method, adjustment method and program
JP5450342B2 (en) Endoscope light source device
JP5467972B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250