JP2014138291A - Wavelength-variable receiver and method of controlling the same - Google Patents

Wavelength-variable receiver and method of controlling the same Download PDF

Info

Publication number
JP2014138291A
JP2014138291A JP2013006165A JP2013006165A JP2014138291A JP 2014138291 A JP2014138291 A JP 2014138291A JP 2013006165 A JP2013006165 A JP 2013006165A JP 2013006165 A JP2013006165 A JP 2013006165A JP 2014138291 A JP2014138291 A JP 2014138291A
Authority
JP
Japan
Prior art keywords
wavelength
light receiving
signal light
drive voltage
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013006165A
Other languages
Japanese (ja)
Other versions
JP5990469B2 (en
Inventor
Kota Asaka
航太 浅香
Hirotaka Nakamura
浩崇 中村
Katsuhisa Taguchi
勝久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013006165A priority Critical patent/JP5990469B2/en
Publication of JP2014138291A publication Critical patent/JP2014138291A/en
Application granted granted Critical
Publication of JP5990469B2 publication Critical patent/JP5990469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength-variable receiver that allows wavelength-variable operation at high speed, maximally exploits characteristics of each PD constituting the wavelength-variable receiver, and is excellent in minimum reception sensitivity.SOLUTION: A wavelength-variable receiver according to the present invention includes: a plurality of light-receiving circuits photo-electric-converting signal light having different wavelength channels; a driving voltage source supplying a driving voltage to the plurality of light-receiving circuits; and a control circuit changing the driving voltage of the driving voltage source when a wavelength channel of signal light to be received is changed.

Description

本発明は、波長可変受信器及び制御方法に関し、特に光モジュール全般、特に高速波長可変動作に優れた光受信器の制御法に関する。   The present invention relates to a wavelength tunable receiver and a control method, and more particularly to an optical module in general, and more particularly to a control method of an optical receiver excellent in high-speed wavelength tunable operation.

近年、急速なインターネットの普及に伴い、光アクセスシステムの大容量化、高度化、経済化が求められている。そのようなシステムを実現する手法としてPON(Passive Optical Network)の研究が進められている。PONとは、光パワースプリッタなどの光受動素子により複数ユーザからの複数伝送路を単一伝送路に集線することで、センタ装置と光受動素子との間の伝送路を複数ユーザで共有することのできる経済化に有利な光アクセス通信システムである。   In recent years, with the rapid spread of the Internet, there has been a demand for increasing the capacity, sophistication, and economy of optical access systems. As a method for realizing such a system, research on PON (Passive Optical Network) has been advanced. PON means that multiple transmission lines from multiple users are concentrated on a single transmission line by an optical passive element such as an optical power splitter, so that the transmission line between the center device and the optical passive element is shared by multiple users. This is an optical access communication system that is advantageous for economy.

現在日本では、1Gbps級の回線容量を最大32ユーザで時分割多重(TDM:Time Division Multiplexing)によって共有する経済的な光アクセス通信システムGE−PON(Gigabit Ethernet(登録商標)−PON)が導入されている。これにより、FTTHサービスがユーザにとって現実的な料金で提供されることとなり、急速に普及してきた。   Currently, in Japan, an economical optical access communication system GE-PON (Gigabit Ethernet (registered trademark) -PON) which shares a 1 Gbps class line capacity by time division multiplexing (TDM) with a maximum of 32 users has been introduced. ing. As a result, the FTTH service is provided at a realistic fee for the user and has rapidly spread.

一方、さらなる大容量化のニーズに対応可能な次世代光アクセスシステムとして、10Gbps級の10G−EPONの研究が進められており、2009年にIEEE標準化が完了した。この方式では、光送受信器のビットレート増大により、伝送路部分は既存のGE−PONと同一のものを利用しつつも大容量化が可能なシステムである。また、高精細映像サービスなど、サービスによっては10Gbps級を超える大容量化が求められることも考えられるが、送受信器のビットレートさらなる高速化(40または100Gbps級)は、送受信器の大幅なコスト増を招き、実用的なシステムとならないことが課題であった。   On the other hand, as a next-generation optical access system that can meet the needs for further increase in capacity, research on 10G-class 10G-EPON is underway, and IEEE standardization was completed in 2009. This system is a system capable of increasing the capacity while using the same transmission line portion as that of the existing GE-PON due to an increase in the bit rate of the optical transceiver. Also, depending on the service, such as high-definition video services, it may be necessary to increase the capacity exceeding the 10 Gbps class. However, further increase in the bit rate of the transceiver (40 or 100 Gbps class) significantly increases the cost of the transceiver. The problem was that it would not be a practical system.

経済的な大容量化を実現する手段として、帯域要求量に応じて局側装置内の光送受信器を段階的に増設することができるように、光送受信器に波長可変性を付与し、TDMと波長多重(WDM:Wavelength Division Multiplexing)を組み合わせた波長可変型WDM/TDM−PONが報告されている(例えば、非特許文献1参照。)。   As means for realizing an economically large capacity, wavelength tunability is imparted to the optical transceiver so that optical transceivers in the station side apparatus can be added in stages according to the bandwidth requirement, and TDM is provided. And WDM: Wavelength Division Multiplexing (WDM) have been reported (see, for example, Non-Patent Document 1).

特願平10−47630号公報Japanese Patent Application No. 10-47630

S. Kimura, “WDM/TDM−PON Technologies for Future Flexible Optical Access Netwoks”, 15th OECC 2010, 6A1−1.S. Kimura, “WDM / TDM-PON Technologies for Future Flexible Optical Access Networks”, 15th OECC 2010, 6A1-1. R. Murano et al., “Tunable 2.5Gb/s Receiver for Wavelength−Agile DWDM−PON”, OFC 2008 Post deadline paper.R. Murano et al. “Tunable 2.5 Gb / s Receiver for Wavelength-Agile DWDM-PON”, OFC 2008 Post deadline paper. T. Tamanuki et al., “High Density Packaged 4−channel Transceiver for Metro and Access Applications”, 2005 Electronic Components and Technology Conference, p. 1050.T.A. Tamanuki et al. , “High Density Packaged 4-channel Transceiver for Metro and Access Applications”, 2005 Electronic Components and Technology Conference, p. 1050.

このようなシステムにおいては、加入者装置又は局側装置に波長可変性を有する光送受信器が必要となるが、波長可変速度が高速であるほどプロテクションなどの複数の機能を付与することが可能となる。ところが、波長可変型WDM/TDM−PON用の光受信器については、これまで波長可変速度1s程度のデバイスしか報告されておらず(例えば、非特許文献2参照。)、高速な波長可変受信器を実現することが、波長可変型WDM/TDM−PONの重大な課題となっていた。   In such a system, an optical transmitter / receiver having wavelength tunability is required for the subscriber unit or the station side device. However, the higher the wavelength variable speed, the more functions such as protection can be given. Become. However, as for the optical receiver for wavelength tunable WDM / TDM-PON, only a device having a wavelength variable speed of about 1 s has been reported so far (for example, see Non-Patent Document 2), and a high-speed wavelength variable receiver. Realizing the above has been a serious problem for the wavelength-tunable WDM / TDM-PON.

これは、TO−CANパッケージなどを用いる光受信器内に実装可能なほど小型で、かつ高速波長可変動作(波長可変速度1ms以下)が可能な波長可変フィルタが存在しないことに起因する。一方、波長多重化されたN波の信号光を、波長フィルタで1波ずつに分波した後、各波長に対応するPD(Photodiode)で信号光を電気信号に光電変換したのち、電気スイッチで所望の波長を有する信号光に対応する電気信号を選択して受信することで、波長可変受信器を構成できることが知られている(例えば、特願平10−47630参照。)。   This is because there is no wavelength tunable filter that is small enough to be mounted in an optical receiver using a TO-CAN package or the like and capable of high-speed wavelength tunable operation (wavelength tunable speed 1 ms or less). On the other hand, after the wavelength multiplexed N-wave signal light is demultiplexed into one wave by the wavelength filter, the signal light is photoelectrically converted into an electric signal by PD (Photodiode) corresponding to each wavelength, and then the electric switch It is known that a wavelength tunable receiver can be configured by selecting and receiving an electrical signal corresponding to signal light having a desired wavelength (see, for example, Japanese Patent Application No. 10-47630).

このような波長可変受信器は、TO−CANパッケージに収容できるほどの小型化は困難ではあるが、電気スイッチの可変速度が波長可変速度に対応するため、市販の10Gbps級電気スイッチを用いて30ns程度と極めて高速な波長可変速度を実現することが可能である。しかしながら、このような構成では信号光の波長多重数と同数のPDを用いる必要があるため、以下の問題が生じる。   Such a wavelength tunable receiver is difficult to be miniaturized so that it can be accommodated in a TO-CAN package. However, since the variable speed of the electric switch corresponds to the wavelength variable speed, a commercially available 10 Gbps class electric switch is used for 30 ns. It is possible to achieve a wavelength variable speed that is extremely high. However, in such a configuration, since it is necessary to use the same number of PDs as the number of multiplexed wavelengths of signal light, the following problems arise.

PDには逆バイアス電圧(Vpd)を供給して駆動する必要がある。最適なVpd値は、pin−PDの場合は1.5〜3Vであり3Vを超えると受信帯域が飽和するため、3.3V以下で駆動することが一般的である。   The PD needs to be driven by supplying a reverse bias voltage (Vpd). The optimum Vpd value is 1.5 to 3 V in the case of pin-PD, and if it exceeds 3 V, the reception band is saturated, so driving at 3.3 V or less is common.

一方、増幅機能を有するAPD(Avalanche Photodiode)は、pin−PDに比べて非常に高い感度を有するため、PONのような無中継光通信システムには非常に有利であるが、Vpdが十分な増幅効果を得るために例えば27V程度と高い電圧が必要となる。また、増幅効果はVpdの増大によってもたらされるが、増幅に伴う雑音の増大も同時にもたらすため、Vpdの最適値が例えば27Vに存在する場合、Vpdが27V未満でも27Vを超えても最適なS/N(信号対雑音)比を得ることができない。   On the other hand, APD (Avalanche Photodiode) having an amplification function has a very high sensitivity compared with pin-PD, and thus is very advantageous for a repeaterless optical communication system such as PON, but Vpd is sufficiently amplified. In order to obtain the effect, for example, a high voltage of about 27V is required. Further, although the amplification effect is brought about by an increase in Vpd, the noise accompanying the amplification is also brought about at the same time. N (signal to noise) ratio cannot be obtained.

一方、製造上のばらつきにより、APDの最適駆動電圧は、同じ製造ロットにおいてでさえも、27V±0.3V程度とばらつきを有することが知られている。さらには、製造メーカによってAPDの材料、構造、製造方法が異なるため、APDのVpd最適値は26V〜28V程度と大きく異なる。   On the other hand, it is known that the optimum driving voltage of APD has a variation of about 27V ± 0.3V even in the same production lot due to variations in manufacturing. Furthermore, since the APD material, structure, and manufacturing method differ depending on the manufacturer, the optimum Vpd value for APD varies greatly from about 26V to 28V.

一方、先に述べた波長フィルタ、N個のPD及び電気スイッチから構成される波長可変受信器において、N個のPDへの駆動電圧Vpdは、回路構成の単純化と低コスト化のためにN個のPDを、単一の電源回路に並列に接続することが一般的である(例えば、非特許文献3参照。)。よって、各PDへは同一のVpd値が与えられることになるが、先に述べたようにpin−PDでは3.3Vを供給すれば同一の受信帯域が得られるため、受光感度が各PDでばらつく、などという問題とはならない。   On the other hand, in the wavelength tunable receiver composed of the wavelength filter, N PDs, and electrical switches described above, the drive voltage Vpd to the N PDs is N for simplifying the circuit configuration and reducing the cost. In general, a single PD is connected in parallel to a single power supply circuit (see, for example, Non-Patent Document 3). Therefore, although the same Vpd value is given to each PD, as described above, the same reception band can be obtained if 3.3 V is supplied with pin-PD, so that the light receiving sensitivity is the same for each PD. It doesn't become a problem of variation.

しかしながら、先に述べた高速波長可変動作が可能な波長可変受信器に、高感度化に有利なN個のAPDを導入するときに、このような方式で各APDに同一のVpd値を与えると、製造ロット内における個体差あるいは製造メーカ毎の仕様による差異のため、最適Vpd値はAPD毎に異なり、APD毎に最小受光感度(伝送速度10Gbps、符号誤り率10−3)が、例えば−26〜−30dBmと大きくばらつくことが重大な課題となっていた。さらには、波長可変受信器としては、受信する波長チャネル毎に受信感度が大きく異なることになるため、実用上致命的な問題となっていた。 However, when N APDs advantageous for high sensitivity are introduced into the wavelength tunable receiver capable of the high-speed wavelength tunable operation described above, the same Vpd value is given to each APD in this manner. The optimum Vpd value differs for each APD due to individual differences in the production lot or differences due to specifications for each manufacturer, and the minimum light receiving sensitivity (transmission speed 10 Gbps, code error rate 10 −3 ) for each APD is, for example, −26. It has been a serious problem to have a large variation of -30 dBm. Furthermore, the wavelength tunable receiver has a fatal problem in practical use because the reception sensitivity differs greatly for each wavelength channel to be received.

そこで、本発明は、高速で波長可変動作が可能で、かつ波長可変受信器を構成する各PDの特性を最大限に引き出す最小受信感度の良い波長可変受信器の提供を目的とする。   Accordingly, an object of the present invention is to provide a wavelength tunable receiver that can perform a wavelength tunable operation at high speed and that has a minimum reception sensitivity that maximizes the characteristics of each PD that constitutes the wavelength tunable receiver.

本発明は、制御回路が有する波長テーブルの予め定められている波長チャネルに応じて各フォトダイオードが必要とする駆動電圧を供給する。   The present invention supplies a driving voltage required for each photodiode in accordance with a predetermined wavelength channel of a wavelength table included in the control circuit.

具体的には、本発明の波長可変受信器は、
異なる波長チャネルの信号光を光電変換する複数の受光回路と、
前記複数の受光回路に駆動電圧を供給する駆動電圧源と、
受信する信号光の波長チャネルが変化すると、前記駆動電圧源の駆動電圧を変化させる制御回路と、を備える。
Specifically, the wavelength tunable receiver of the present invention is:
A plurality of light receiving circuits that photoelectrically convert signal light of different wavelength channels;
A driving voltage source for supplying a driving voltage to the plurality of light receiving circuits;
And a control circuit that changes the drive voltage of the drive voltage source when the wavelength channel of the received signal light changes.

具体的には、本発明の波長可変受信器の制御方法は、
1つの駆動電圧源から供給された駆動電圧を用いて複数の受光回路が異なる波長チャネルの信号光を受光する波長可変受信器の制御方法であって、
受信する信号光の波長チャネルが変化すると、前記駆動電圧の駆動電圧を変化させる駆動電圧制御手順と、
前記駆動電圧制御手順で変化させた駆動電圧を、前記複数の受光回路に供給する駆動電圧供給手順と、
受信する信号光の波長チャネルに応じた受光回路が、前記波長可変受信器に入力された信号光を光電変換する受光手順と、を順に有する。
Specifically, the control method of the wavelength tunable receiver of the present invention is:
A control method of a wavelength tunable receiver in which a plurality of light receiving circuits receive signal light of different wavelength channels using a driving voltage supplied from one driving voltage source,
When the wavelength channel of the received signal light changes, a driving voltage control procedure for changing the driving voltage of the driving voltage;
A drive voltage supply procedure for supplying the drive voltage changed in the drive voltage control procedure to the plurality of light receiving circuits;
The light receiving circuit corresponding to the wavelength channel of the received signal light sequentially includes a light receiving procedure for photoelectrically converting the signal light input to the variable wavelength receiver.

本発明の波長可変受信器では、
前記制御回路は、信号光の波長チャネルに応じて駆動電圧が定められた波長テーブルに従って、前記駆動電圧源の駆動電圧を変化させてもよい。
In the wavelength tunable receiver of the present invention,
The control circuit may change the drive voltage of the drive voltage source according to a wavelength table in which the drive voltage is determined according to the wavelength channel of the signal light.

本発明の波長可変受信器では、
前記波長テーブルは、信号光の波長チャネルごとに異なる各受光回路の最小受光感度に応じて駆動電圧が定められていてもよい。
In the wavelength tunable receiver of the present invention,
In the wavelength table, a driving voltage may be determined according to the minimum light receiving sensitivity of each light receiving circuit that is different for each wavelength channel of the signal light.

本発明の波長可変受信器では、
前記複数の受光回路のうちの1つの受光回路からの電気信号を選択的に出力する電気スイッチをさらに備え、
前記制御回路は、受信する信号光の波長チャネルに応じて、前記電気スイッチの選択する前記1つの受光回路を変化させてもよい。
In the wavelength tunable receiver of the present invention,
An electrical switch that selectively outputs an electrical signal from one of the plurality of light receiving circuits;
The control circuit may change the one light receiving circuit selected by the electric switch according to the wavelength channel of the received signal light.

本発明の波長可変受信器では、
前記受光回路は、pinフォトダイオード又はアバランシェフォトダイオードであってもよい。
In the wavelength tunable receiver of the present invention,
The light receiving circuit may be a pin photodiode or an avalanche photodiode.

本発明の波長可変受信器では、局側装置から送信された信号光を、加入者装置で波長可変受信器を用いて受信してもよい。   In the wavelength tunable receiver of the present invention, the signal light transmitted from the station side device may be received by the subscriber device using the wavelength tunable receiver.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、高速で波長可変動作が可能で、かつ波長可変受信器を構成する各PDの特性を最大限に引き出す最小受信感度の良い波長可変受信器を提供することができる。   According to the present invention, it is possible to provide a wavelength tunable receiver that can perform a wavelength tunable operation at a high speed and has a minimum reception sensitivity that maximizes the characteristics of each PD constituting the wavelength tunable receiver.

第1実施形態に係る波長可変受信器の構成例を示す図である。It is a figure which shows the structural example of the wavelength variable receiver which concerns on 1st Embodiment. 第1実施形態に係る波長可変受信器の構成例を示す図である。It is a figure which shows the structural example of the wavelength variable receiver which concerns on 1st Embodiment. 異なる波長チャネルを受信する状態に切り替える動作を説明するフローチャートである。It is a flowchart explaining the operation | movement switched to the state which receives a different wavelength channel. 波長チャネルを格納した波長テーブルを説明する図である。It is a figure explaining the wavelength table which stored the wavelength channel. 図3に示す駆動電圧を用いた場合の符号誤り率特性を説明する図である。It is a figure explaining the code error rate characteristic at the time of using the drive voltage shown in FIG. 受光回路におけるAPD駆動電圧と最小受光感度とを示す図である。It is a figure which shows the APD drive voltage and minimum light reception sensitivity in a light reception circuit. 第2実施形態に係る波長可変受信器における構成例を示す図である。It is a figure which shows the structural example in the wavelength variable receiver which concerns on 2nd Embodiment. 第3実施形態に係る波長可変受信器における構成例を示す図である。It is a figure which shows the structural example in the wavelength variable receiver which concerns on 3rd Embodiment. 関連技術に係る受光回路における駆動電圧と最小受光感度とを示す図である。It is a figure which shows the drive voltage and minimum light receiving sensitivity in the light receiving circuit which concern on related technology. 図8に示す駆動電圧を用いた場合の符号誤り率特性を説明する図である。It is a figure explaining the code error rate characteristic at the time of using the drive voltage shown in FIG.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

本実施形態に係る波長可変受信器1は、受光回路、駆動電圧源100及び制御回路70を備える。本実施形態に係る波長可変受信器の制御方法は、駆動電圧制御手順、駆動電圧供給手順及び受光手順を順に有する。受光回路は、例えば、pinフォトダイオード又はアバランシェフォトダイオードである。   The wavelength tunable receiver 1 according to the present embodiment includes a light receiving circuit, a drive voltage source 100, and a control circuit 70. The control method of the wavelength tunable receiver according to this embodiment includes a drive voltage control procedure, a drive voltage supply procedure, and a light reception procedure in order. The light receiving circuit is, for example, a pin photodiode or an avalanche photodiode.

駆動電圧制御手順では、制御回路70が、受信する信号光の波長チャネルが変化すると、駆動電圧源の駆動電圧を変化させる。駆動電圧供給手順では、駆動電圧源100が、駆動電圧制御手順で変化された駆動電圧を、複数の受光回路に供給する。受光手順では、受光回路が、受信する信号光の波長チャネルに応じた受光回路が、波長可変受信器に入力された信号光を光電変換する。   In the drive voltage control procedure, the control circuit 70 changes the drive voltage of the drive voltage source when the wavelength channel of the received signal light changes. In the drive voltage supply procedure, the drive voltage source 100 supplies the drive voltage changed in the drive voltage control procedure to the plurality of light receiving circuits. In the light receiving procedure, the light receiving circuit according to the wavelength channel of the received signal light photoelectrically converts the signal light input to the wavelength variable receiver.

(第1実施形態)
以下、図1aに基づいて本発明の第1実施形態である波長可変受信器1について詳細に説明する。図1aにおいて、波長可変受信器1は、波長フィルタ10、受光回路であるAPD20、TIA(Transimpedance Amplifier)30、リミッタアンプ50、電気スイッチ40、CDR(Clock Data Recovery)60、制御回路70、波長制御回路80、APD駆動電圧源100から構成される。
(First embodiment)
Hereinafter, the wavelength tunable receiver 1 according to the first embodiment of the present invention will be described in detail with reference to FIG. In FIG. 1a, a wavelength tunable receiver 1 includes a wavelength filter 10, an APD 20 that is a light receiving circuit, a TIA (Transmimpance Amplifier) 30, a limiter amplifier 50, an electrical switch 40, a CDR (Clock Data Recovery) 60, a control circuit 70, and a wavelength control. The circuit 80 and the APD driving voltage source 100 are included.

なお、本実施形態では、4波長が波長多重化された信号光のうち、1波長を選択して受信する(波長数N=4)波長可変受信器1について詳細を述べるが、波長数Nはどのような整数でも同様の効果が得られる。以下、波長可変受信器1の波長可変動作について詳細を述べる。   In the present embodiment, the wavelength tunable receiver 1 that selects and receives one wavelength of signal light in which four wavelengths are wavelength-multiplexed (number of wavelengths N = 4) will be described in detail. The same effect can be obtained with any integer. Hereinafter, the wavelength variable operation of the wavelength tunable receiver 1 will be described in detail.

波長フィルタ10の入力ポート10−0に入力された波長多重化(波長数N=4)された信号光は、波長フィルタ10により、波長チャネル毎に各出力ポート10−1〜10−4に出力される(λ1〜λ4はそれぞれ出力ポート10−1〜10−4に出力される)。分波された各波長の信号光λ1〜λ4は、それぞれAPD20−1から20−4に入射して電気信号に変換される。各電気信号e1〜e4はそれぞれTIA30−1〜30−4により増幅され、リミッタアンプ50により信号レベルを一定にされた後、電気スイッチ40により電気信号e1〜e4の内の一つが選択される。   The wavelength multiplexed signal light (number of wavelengths N = 4) input to the input port 10-0 of the wavelength filter 10 is output to the output ports 10-1 to 10-4 for each wavelength channel by the wavelength filter 10. (Λ1 to λ4 are output to the output ports 10-1 to 10-4, respectively). The demultiplexed signal lights λ1 to λ4 of each wavelength are respectively incident on the APDs 20-1 to 20-4 and converted into electric signals. The electric signals e1 to e4 are amplified by the TIAs 30-1 to 30-4, respectively, and after the signal level is made constant by the limiter amplifier 50, one of the electric signals e1 to e4 is selected by the electric switch 40.

図1aに示した本実施形態では、電気信号e1が選択された例を示している。選択された電気信号e1はCDR60に入力され、後段の識別判定回路(図示せず)により電気信号e1の識別判定が行われる。   In the present embodiment shown in FIG. 1a, an example in which the electrical signal e1 is selected is shown. The selected electrical signal e1 is input to the CDR 60, and the electrical signal e1 is identified and determined by a subsequent identification determination circuit (not shown).

ここで、波長制御回路80は、制御回路70に制御信号S1(受信すべき信号光情報)を送出する。制御回路70は、格納された波長テーブル(図3)を参照して受信したい信号光(λ1〜λ4)の波長チャネルまたは波長情報(あるいは波長チャネルと波長情報の両方)に対応するAPD20の各最適駆動電圧値(Vapd)をAPD20に供給し、かつ制御回路70は制御信号S2(スイッチ制御信号)を電気スイッチ40に送出して、対応する波長チャネルを受信できるように電気スイッチ40の方路を切り換える。   Here, the wavelength control circuit 80 sends a control signal S1 (signal light information to be received) to the control circuit 70. The control circuit 70 refers to the stored wavelength table (FIG. 3), and each optimum of the APD 20 corresponding to the wavelength channel or wavelength information (or both wavelength channel and wavelength information) of the signal light (λ1 to λ4) desired to be received. The drive voltage value (Vapd) is supplied to the APD 20, and the control circuit 70 sends a control signal S2 (switch control signal) to the electrical switch 40, so that the path of the electrical switch 40 can be received so as to receive the corresponding wavelength channel. Switch.

波長可変動作について詳細を説明する。図1(a)に示した波長チャネルch1(信号光λ1)を受信している状態から、図1(b)に示した波長チャネルch3(信号光λ3)を受信している状態に切り替わる動作の例を図2に示したフローチャートと図3に示した波長テーブルを用いて説明する。   Details of the wavelength variable operation will be described. The operation of switching from the state of receiving the wavelength channel ch1 (signal light λ1) shown in FIG. 1A to the state of receiving the wavelength channel ch3 (signal light λ3) shown in FIG. An example will be described using the flowchart shown in FIG. 2 and the wavelength table shown in FIG.

図1aでは、波長多重化された信号光(λ1〜λ4)の内、電気スイッチ40の入力ポートを40−1に設定することにより、波長チャネルch1(信号光λ1、波長チャネルch1、波長1577.03nm)を受信している状態を示している。なお、APD20−1に対しては、波長テーブル(図3)の情報に基づきVapdはAPD駆動電圧源100により26.52Vの逆バイアス電圧が印可されている。   In FIG. 1a, among the wavelength multiplexed signal lights (λ1 to λ4), the input port of the electrical switch 40 is set to 40-1, so that the wavelength channel ch1 (signal light λ1, wavelength channel ch1, wavelength 1577. 03 nm) is being received. For APD 20-1, a reverse bias voltage of 26.52 V is applied to Vapd by APD drive voltage source 100 based on information in the wavelength table (FIG. 3).

次に、この状態から、駆動電圧制御手順を実行することによって、波長チャネルch3を受信するように波長可変動作を行うときは次のような手順で行われる。まず、波長制御回路80に上位通信網レイヤなど(図示せず)から波長チャネルch3を受信するように波長可変受信器1に制御信号S0が送られてくる。   Next, when the wavelength variable operation is performed so as to receive the wavelength channel ch3 by executing the drive voltage control procedure from this state, the following procedure is performed. First, a control signal S0 is sent to the wavelength tunable receiver 1 so that the wavelength control circuit 80 receives the wavelength channel ch3 from an upper communication network layer or the like (not shown).

その制御信号S0を受け取った波長制御回路80は、波長チャネルch1から波長チャネルch3に切り替える制御信号S1を制御回路70に送出する(ステップS110)。制御回路70は格納されている図3に示した波長テーブルに基づき、APD駆動電圧源100に波長チャネルch3に対応するVapd値26.44V(制御信号S3)を送出する。また、同時に電気スイッチ40に対し、方路入力ポート40−3に制御信号S2を送出する(ステップS120)。   The wavelength control circuit 80 that has received the control signal S0 sends a control signal S1 for switching from the wavelength channel ch1 to the wavelength channel ch3 to the control circuit 70 (step S110). Based on the stored wavelength table shown in FIG. 3, the control circuit 70 sends a Vapd value of 26.44 V (control signal S3) corresponding to the wavelength channel ch3 to the APD drive voltage source 100. At the same time, a control signal S2 is sent to the route input port 40-3 to the electrical switch 40 (step S120).

APD駆動電圧源100は、制御回路70から受け取った制御信号S3に基づきVapd値を26.52Vから26.44Vに変更する(ステップS130)。一方、電気スイッチ40は、制御回路70からの波長テーブルに格納されている情報を参照して制御信号S2を電気スイッチ40に送出し、方路入力ポートを40−1から40−3に切り替える(ステップS140)。この一連の動作により、波長可変受信器1の受信する信号光の波長チャネルがch1(波長1577.03nm)からch3(波長1578.69nm)に切り替わったことになる。   The APD drive voltage source 100 changes the Vapd value from 26.52V to 26.44V based on the control signal S3 received from the control circuit 70 (step S130). On the other hand, the electrical switch 40 refers to the information stored in the wavelength table from the control circuit 70 and sends the control signal S2 to the electrical switch 40, and switches the route input port from 40-1 to 40-3 ( Step S140). With this series of operations, the wavelength channel of the signal light received by the wavelength tunable receiver 1 is switched from ch1 (wavelength 1577.03 nm) to ch3 (wavelength 1578.69 nm).

この状態を図1bに示す。なお、APD駆動電圧源100及び電気スイッチ40は、制御回路70から次の異なる波長チャネル(ch1、ch2、ch4)への変更指示があるまで、それぞれVpad値及び方路入力ポート40−3をそのまま保持する。変更指示があった場合は、図2に示したフローチャートに基づき波長可変動作を行う。   This state is shown in FIG. The APD drive voltage source 100 and the electric switch 40 keep the Vpad value and the route input port 40-3 as they are, respectively, until the control circuit 70 instructs to change to the next different wavelength channel (ch1, ch2, ch4). Hold. When there is a change instruction, the wavelength variable operation is performed based on the flowchart shown in FIG.

本発明の効果を検証するために、図1a及び図1bに示した波長可変受信器1について、符号誤り率(BER:Bit−error rate)特性の比較を行う。図4に本実施形態の波長可変受信器1を用いた場合を示す。図9に比較例として、図8に記載のAPD駆動電圧値を用いた場合のBER特性を示す。   In order to verify the effect of the present invention, the bit error rate (BER) characteristics of the variable wavelength receiver 1 shown in FIGS. 1a and 1b are compared. FIG. 4 shows a case where the wavelength tunable receiver 1 of the present embodiment is used. FIG. 9 shows a BER characteristic when the APD drive voltage value shown in FIG. 8 is used as a comparative example.

図4及び図9に示すBER特性は、波長チャネル毎に測定した結果を重ね書きしたグラフとなっている。図8に示すように、関連技術では各APD20へは同一の値のAPD駆動電圧値を用いていたため、製造ロットまたは製造メーカの差異により、最適なAPD駆動電圧値Vapdが異なる。そのため、同一の電圧値(図8の例では27.0V)でAPD20を駆動すると、図9に示したようにBER=10−3における最小受光感度が−28.0〜−31.0dBmの範囲で大きく異なる。そのため、波長可変受信器1の出荷検査仕様の最小受光感度が−30.0dBm(BER=10−3)の場合、波長チャネルch3及びch4が不合格となり、波長可変受信器1は仕様未達となり出荷できず、波長可変受信器1の製造歩留まりが低下する。 The BER characteristics shown in FIGS. 4 and 9 are graphs in which the measurement results for each wavelength channel are overwritten. As shown in FIG. 8, in the related art, the same APD drive voltage value is used for each APD 20, and therefore the optimum APD drive voltage value Vapd differs depending on the manufacturing lot or manufacturer. Therefore, when the APD 20 is driven at the same voltage value (27.0 V in the example of FIG. 8), the minimum light receiving sensitivity at a BER = 10 −3 is in the range of −28.0 to −31.0 dBm as shown in FIG. It differs greatly. Therefore, when the minimum light receiving sensitivity of the shipment inspection specification of the wavelength tunable receiver 1 is −30.0 dBm (BER = 10 −3 ), the wavelength channels ch3 and ch4 are rejected, and the wavelength tunable receiver 1 fails to meet the specifications. It cannot be shipped, and the manufacturing yield of the wavelength tunable receiver 1 decreases.

一方、本実施形態に記載の本発明技術を適用することにより、波長チャネル毎に各APD20−1〜20−4の最適駆動電圧値Vapdに調整して各信号光を受信することが可能となるため、図4及び図5に示したように、各波長チャネルの最小受光感度は、−30.8〜−31.2dBmとばらつきの範囲が小さくかつ、出荷検査仕様も十分に満たしている。   On the other hand, by applying the technique of the present invention described in the present embodiment, it is possible to receive each signal light by adjusting the optimum driving voltage value Vapd of each APD 20-1 to 20-4 for each wavelength channel. Therefore, as shown in FIGS. 4 and 5, the minimum light receiving sensitivity of each wavelength channel has a small variation range of −30.8 to −31.2 dBm, and the shipping inspection specification is sufficiently satisfied.

(第2実施形態)
以下、図6に基づいて本発明の第2実施形態である波長可変受信器1について説明する。図6に示した第2実施形態の波長可変受信器1の構成は、図1a及び図1bに示した第1実施形態の波長可変受信器1の構成とほぼ同様であるが、以下の点が異なる。図1a及び図1bにおいて、リミッタアンプ50は、TIA30と電気スイッチ40の間に4つ(50−1〜50−4)挿入された状態で配置されていたが、図6における第2実施形態では配置が異なり、電気スイッチ40とCDR60の間に単一のリミッタアンプ50が挿入されている。
(Second Embodiment)
Hereinafter, the wavelength tunable receiver 1 according to the second embodiment of the present invention will be described with reference to FIG. The configuration of the wavelength tunable receiver 1 of the second embodiment shown in FIG. 6 is substantially the same as the configuration of the wavelength tunable receiver 1 of the first embodiment shown in FIGS. 1a and 1b. Different. In FIG. 1a and FIG. 1b, the limiter amplifier 50 is arranged with four (50-1 to 50-4) inserted between the TIA 30 and the electric switch 40, but in the second embodiment in FIG. The arrangement is different, and a single limiter amplifier 50 is inserted between the electrical switch 40 and the CDR 60.

電気スイッチ40の電気的なひずみが少ない場合は、リミッタアンプ処理は電気スイッチ通過後で良いためこのような構成が可能となる。本構成の利点は、リミッタアンプ50の構成が簡略化され、かつリミッタアンプ50の数自体が単一で良いため、第1実施形態と比較し、低消費電力化、低コスト化及び小型化に有利である。   When the electrical distortion of the electrical switch 40 is small, such a configuration is possible because the limiter amplifier processing may be performed after passing through the electrical switch. The advantage of this configuration is that the configuration of the limiter amplifier 50 is simplified and the number of limiter amplifiers 50 may be a single number. Therefore, compared to the first embodiment, the power consumption, the cost, and the size can be reduced. It is advantageous.

(第3実施形態)
以下、図7に基づいて本発明の第3実施形態である波長可変受信器1について説明する。図7に示した第3実施形態の波長可変受信器1の構成は、図1a及び図1bに示した第1実施形態の波長可変受信器1の構成とほぼ同様であるが、波長可変受信器集積モジュール200を導入している点が異なる。
(Third embodiment)
Hereinafter, the wavelength tunable receiver 1 according to the third embodiment of the present invention will be described with reference to FIG. The configuration of the wavelength tunable receiver 1 according to the third embodiment shown in FIG. 7 is substantially the same as the configuration of the wavelength tunable receiver 1 according to the first embodiment shown in FIGS. 1a and 1b. The difference is that the integrated module 200 is introduced.

波長可変受信器集積モジュール200は、InP等の半導体基板上にAWG(Arrayed Waveguide Grating、アレイ導波路回折格子)、4chAPDアレイがモノリシック集積されており、シリコンテラスあるいはAlNなどのヒートシンク上に、4chTIAアレイ(もしくは4chTIA)がハイブリッド集積され、同一のモジュールパッケージ内に実装されている。   The wavelength tunable receiver integrated module 200 includes an AWG (Arrayed Waveguide Grating, 4ch APD array) monolithically integrated on a semiconductor substrate such as InP, and a 4ch TIA array on a heat sink such as a silicon terrace or AlN. (Or 4chTIA) is hybrid-integrated and mounted in the same module package.

このような構成を採用することで、波長可変受信器1の小型化・低コスト化が可能となる。なお、波長可変受信集積モジュール200を導入した以外は、本実施形態における波長可変動作及びその効果は、第1実施形態に記載した内容と同一である。   By adopting such a configuration, the wavelength tunable receiver 1 can be reduced in size and cost. Except for the introduction of the wavelength variable reception integrated module 200, the wavelength variable operation and its effect in the present embodiment are the same as those described in the first embodiment.

本発明は、情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

1:波長可変受信器
10:波長フィルタ
10−0:入力ポート(波長フィルタ側)
10−1、10−2、10−3、10−4:入力ポート
20、20−1、20−2、20−3、20−4:APD
30、30−1、30−2、30−3、30−4:TIA
40:電気スイッチ
40−1、40−2、40−3、40−4:方路入力ポート(電気スイッチ側)
50、50−1、50−2、50−3、50−4:リミッタアンプ
60:CDR
70:制御回路
80:波長制御回路
100:APD駆動電圧源
200:波長可変受信器集積モジュール
S0、S1、S2、S3:制御信号
1: Variable wavelength receiver 10: Wavelength filter 10-0: Input port (wavelength filter side)
10-1, 10-2, 10-3, 10-4: input ports 20, 20-1, 20-2, 20-3, 20-4: APD
30, 30-1, 30-2, 30-3, 30-4: TIA
40: Electric switch 40-1, 40-2, 40-3, 40-4: Path input port (electric switch side)
50, 50-1, 50-2, 50-3, 50-4: Limiter amplifier 60: CDR
70: Control circuit 80: Wavelength control circuit 100: APD driving voltage source 200: Wavelength variable receiver integrated module S0, S1, S2, S3: Control signal

Claims (7)

異なる波長チャネルの信号光を光電変換する複数の受光回路と、
前記複数の受光回路に駆動電圧を供給する駆動電圧源と、
受信する信号光の波長チャネルが変化すると、前記駆動電圧源の駆動電圧を変化させる制御回路と、
を備える波長可変受信器。
A plurality of light receiving circuits that photoelectrically convert signal light of different wavelength channels;
A driving voltage source for supplying a driving voltage to the plurality of light receiving circuits;
When the wavelength channel of the received signal light changes, a control circuit that changes the drive voltage of the drive voltage source;
A tunable receiver comprising:
前記制御回路は、信号光の波長チャネルに応じて駆動電圧が定められた波長テーブルに従って、前記駆動電圧源の駆動電圧を変化させることを特徴とする請求項1に記載の波長可変受信器。   The variable wavelength receiver according to claim 1, wherein the control circuit changes the drive voltage of the drive voltage source according to a wavelength table in which the drive voltage is determined according to the wavelength channel of the signal light. 前記波長テーブルは、信号光の波長チャネルごとに異なる各受光回路の最小受光感度に応じて駆動電圧が定められていることを特徴とする請求項2に記載の波長可変受信器。   3. The wavelength tunable receiver according to claim 2, wherein in the wavelength table, a driving voltage is determined in accordance with a minimum light receiving sensitivity of each light receiving circuit which is different for each wavelength channel of the signal light. 前記複数の受光回路のうちの1つの受光回路からの電気信号を選択的に出力する電気スイッチをさらに備え、
前記制御回路は、受信する信号光の波長チャネルに応じて、前記電気スイッチの選択する前記1つの受光回路を変化させることを特徴とする請求項1から3のいずれかに記載の波長可変受信器。
An electrical switch that selectively outputs an electrical signal from one of the plurality of light receiving circuits;
4. The wavelength tunable receiver according to claim 1, wherein the control circuit changes the one light receiving circuit selected by the electric switch according to a wavelength channel of received signal light. 5. .
前記受光回路は、pinフォトダイオード又はアバランシェフォトダイオードであることを特徴とする請求項1から4のいずれかに記載の波長可変受信器。   The wavelength tunable receiver according to claim 1, wherein the light receiving circuit is a pin photodiode or an avalanche photodiode. 局側装置から送信された信号光を、請求項1から5のいずれかに記載の波長可変受信器を用いて受信する加入者装置。   A subscriber unit that receives signal light transmitted from a station side device using the wavelength tunable receiver according to claim 1. 1つの駆動電圧源から供給された駆動電圧を用いて複数の受光回路が異なる波長チャネルの信号光を受光する波長可変受信器の制御方法であって、
受信する信号光の波長チャネルが変化すると、前記駆動電圧源の駆動電圧を変化させる駆動電圧制御手順と、
前記駆動電圧制御手順で変化させた駆動電圧を、前記複数の受光回路に供給する駆動電圧供給手順と、
受信する信号光の波長チャネルに応じた受光回路が、前記波長可変受信器に入力された信号光を光電変換する受光手順と、
を順に有する波長可変受信器の制御方法。
A control method of a wavelength tunable receiver in which a plurality of light receiving circuits receive signal light of different wavelength channels using a driving voltage supplied from one driving voltage source,
When the wavelength channel of the received signal light changes, a driving voltage control procedure for changing the driving voltage of the driving voltage source;
A drive voltage supply procedure for supplying the drive voltage changed in the drive voltage control procedure to the plurality of light receiving circuits;
A light receiving circuit corresponding to the wavelength channel of the signal light to be received, a light receiving procedure for photoelectrically converting the signal light input to the wavelength variable receiver,
A method for controlling a wavelength tunable receiver having the following.
JP2013006165A 2013-01-17 2013-01-17 Wavelength variable receiver and control method Expired - Fee Related JP5990469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006165A JP5990469B2 (en) 2013-01-17 2013-01-17 Wavelength variable receiver and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006165A JP5990469B2 (en) 2013-01-17 2013-01-17 Wavelength variable receiver and control method

Publications (2)

Publication Number Publication Date
JP2014138291A true JP2014138291A (en) 2014-07-28
JP5990469B2 JP5990469B2 (en) 2016-09-14

Family

ID=51415584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006165A Expired - Fee Related JP5990469B2 (en) 2013-01-17 2013-01-17 Wavelength variable receiver and control method

Country Status (1)

Country Link
JP (1) JP5990469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186176A1 (en) * 2015-05-21 2016-11-24 日本電信電話株式会社 Subscriber device and light receiving method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244801A (en) * 1993-02-16 1994-09-02 Hitachi Cable Ltd Optical receiver
WO2006006231A1 (en) * 2004-07-12 2006-01-19 Mitsubishi Denki Kabushiki Kaisha Photon detecting apparatus and optical communication system
JP2011004095A (en) * 2009-06-17 2011-01-06 Broad Net Mux Corp Optical catv system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244801A (en) * 1993-02-16 1994-09-02 Hitachi Cable Ltd Optical receiver
WO2006006231A1 (en) * 2004-07-12 2006-01-19 Mitsubishi Denki Kabushiki Kaisha Photon detecting apparatus and optical communication system
JP2011004095A (en) * 2009-06-17 2011-01-06 Broad Net Mux Corp Optical catv system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186176A1 (en) * 2015-05-21 2016-11-24 日本電信電話株式会社 Subscriber device and light receiving method
JPWO2016186176A1 (en) * 2015-05-21 2017-11-30 日本電信電話株式会社 Subscriber device and optical receiving method
CN107615685A (en) * 2015-05-21 2018-01-19 日本电信电话株式会社 User's set and method for optical reception
US10250331B2 (en) 2015-05-21 2019-04-02 Nippon Telegraph And Telephone Corporation Subscriber device and light receiving method
CN107615685B (en) * 2015-05-21 2020-06-19 日本电信电话株式会社 User device and optical reception method

Also Published As

Publication number Publication date
JP5990469B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
US9628188B2 (en) Apparatus and methods for generating and receiving optical signals having standard and shifted wavelengths
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
US9306671B2 (en) Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same
US9039303B2 (en) Compact multi-channel optical transceiver module
KR101819254B1 (en) Large capacity Optical transceiver module
US9479259B2 (en) Multi-channel optical transceiver module including thermal arrayed waveguide grating multiplexer and athermal arrayed waveguide grating demultiplexer
US8831433B2 (en) Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US8995836B2 (en) Passive optical network with adaptive filters for upstream transmission management
WO2015154389A1 (en) Optical transceiving module and configuration method and device for operating parameter thereof
US9531155B2 (en) Switched radio frequency (RF) driver for tunable laser with multiple in-line sections
US9847434B2 (en) Multichannel receiver optical subassembly with improved sensitivity
US9313562B2 (en) Wavelength auto-negotiation
KR20050002467A (en) Ethernet Passive Optical Network for Convergence of Broadcasting and Telecommunication
Cheng Flexible TWDM PONs
US10090961B2 (en) Multi-channel optical cross-phase modulation compensator
JP5990469B2 (en) Wavelength variable receiver and control method
US20150229429A1 (en) Multiplexer with Non-Interleaved Channel Plan
JP6438578B2 (en) Subscriber device
Lee et al. Compact 4× 25 Gb/s optical receiver and transceiver for 100G ethernet interface
Bauwelinck et al. Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs
KR102280109B1 (en) Passive optical network transceiver with multiple wavelength switching function and wavelength switching method thereof
Ziari et al. Integrated laser sources for WDM coherent transmission
JP2017053908A (en) Wavelength selection module and optical switch control method
Lambert et al. Large-scale photonic integrated circuits used for ultra long haul transmission
JP2017053907A (en) Wavelength selection module and optical switch control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5990469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees