JP2014135812A - Distribution line different system loop switching propriety discrimination method - Google Patents
Distribution line different system loop switching propriety discrimination method Download PDFInfo
- Publication number
- JP2014135812A JP2014135812A JP2013001520A JP2013001520A JP2014135812A JP 2014135812 A JP2014135812 A JP 2014135812A JP 2013001520 A JP2013001520 A JP 2013001520A JP 2013001520 A JP2013001520 A JP 2013001520A JP 2014135812 A JP2014135812 A JP 2014135812A
- Authority
- JP
- Japan
- Prior art keywords
- loop
- phase difference
- loop point
- distribution
- distribution line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012850 discrimination method Methods 0.000 title abstract 2
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 34
- 238000005259 measurement Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 102220486681 Putative uncharacterized protein PRO1854_S10A_mutation Human genes 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本発明は、上位系統が異なる二つの配電線の末端で開閉器を投入してループ切替を行う場合の配電線異系統ループ切替可否判定方法に関するものである。 The present invention relates to a method for determining whether or not different distribution line loop switching is possible when a switch is inserted at the end of two distribution lines having different upper systems to perform loop switching.
上位系統が異なる二つの配電線の末端で連系する開閉器を投入して無停電のループ切替を行う場合、ループ配電線にはループ横流が既存の負荷電流に重畳されて流れ、ループ時の電流が配電線許容電流値や変電所過電流リレーの動作整定値を超えるようなことがあるので、これは避けなければならない。これは、ループ時の電流が配電線許容電流値を超えたときは配電設備の損傷となり、ループ時の電流が変電所過電流リレーの動作整定値を超えたときは過電流リレー動作による遮断器トリップの停電事故となるからである。 When switching the uninterruptible loop by inserting a switch linked to the end of two distribution lines with different upper systems, loop cross current flows over the existing load current in the loop distribution line, This should be avoided because the current may exceed the allowable distribution line value and the operating settling value of the substation overcurrent relay. This is because the distribution equipment is damaged when the current in the loop exceeds the allowable distribution line current value, and when the current in the loop exceeds the operation set value of the substation overcurrent relay, the circuit breaker is activated by the overcurrent relay operation. This is due to a trip blackout.
このため、異系統ループ切替を検討する場合は、事前にループ点の位相差計算やループチェッカー(位相角測定器)を用いた実測により、計算値と実測値の比較を行いつつ、切替可否判断を行っている。ループチェッカーによるループ点の現地測定については、現場の配電設備によっては物理的にループチェッカーの取り付けができない場合があり、また、悪天候で現地測定作業を中止せざるを得ない場合がある。 For this reason, when switching between different loops is considered, it is determined whether switching is possible while comparing the calculated value and the actual measured value by calculating the phase difference of the loop points and using the loop checker (phase angle measuring device) in advance. It is carried out. Regarding the on-site measurement of the loop point by the loop checker, depending on the on-site power distribution equipment, the loop checker may not be physically attached, and the on-site measurement operation may be canceled due to bad weather.
そこで、異系統ループの切替を行うにあたり、ループ対象線路の上位系統情報として電圧階級が66kVの送電系統にかかる電力潮流Pを取得し、ループ点の位相差計算を行うようにしたものがある(例えば、特許文献1、2参照)。
Therefore, when switching between different system loops, there is one in which the power flow P applied to the transmission system having a voltage class of 66 kV is acquired as upper system information of the loop target line, and the phase difference calculation of the loop points is performed ( For example, see
しかしながら、特許文献1、2のものでは、ループ点の位相差計算を行うにあたって、ループ対象線路の上位系統情報として電圧階級が66kVの送電系統にかかる電力潮流Pを取得する必要がある。上位系統の電力潮流Pは、制御所が管轄するデータではないので、ループ点の位相差計算を行うにあたって、制御所が管轄するデータのみでは不足する。
However, in
このため、上位系統を管轄する給電所の情報を入手する必要があり、時々刻々変化する電力潮流Pを考慮してループ点の位相差計算を行う必要がある。従って、これにかかる計算負荷も大きくなり、システム化にはそれ相当の規模や導入費用を要することになる。 For this reason, it is necessary to obtain information on a power supply station that has jurisdiction over the host system, and it is necessary to calculate the phase difference of the loop points in consideration of the power flow P that changes from moment to moment. Therefore, the calculation load concerning this increases, and considerable scale and introduction cost are required for systemization.
また、特許文献1、2のものでは、上位系統の位相差(ループアングル)を計測する常時切り箇所は一箇所のみの単純な系統となっているが、実際の上位系統では電源変電所遮断器の常時切り箇所が複数存在しており、常時切り箇所が複数存在する場合には、上位系統の位相差(ループアングル)の計算は複雑となる。
Also, in
このように、特許文献1、2のものでは、ループ点の位相差計算過程において、ループ対象線路の上位系統の電力潮流Pを使用しているので、上位系統を管轄する給電所の電力潮流P情報を入手する必要があり、また、実際の上位系統では電源変電所遮断器の常時切り箇所が複数存在する系統が大半であることから、複雑な系統にかかる電力潮流Pを考慮して上位系統の位相差の計算を行う必要がある。
As described above, in
本発明の目的は、配電線の異系統ループ切替における可否判定を安全で容易に行うことができる配電線異系統ループ切替可否判定方法を提供することである。 An object of the present invention is to provide a method for determining whether or not a distribution line different system loop can be switched safely and easily.
請求項1の発明に係る配電線異系統ループ切替可否判定方法は、上位系統の変電所が異なる二つの配電線のループ点で開閉器を投入してループ切替を行うにあたり、前記二つの配電線のループ点におけるループ点位相差を計算し、ループ点におけるループ許容位相差を計算し、前記ループ点位相差と前記ループ許容位相差との比較によりループ切替の可否を判定する配電線異系統ループ切替可否判定方法において、前記ループ点位相差の計算は、前記上位系統の変電所の遮断器開放箇所の位相差をアングル合成した上位系統位相差と、前記二つの配電線のループ点の配電系統位相差とを加算して求めることを特徴とする。 According to the first aspect of the present invention, the method for determining whether or not a different distribution system loop can be switched is performed when a switch is inserted at a loop point of two distribution lines with different substations in the upper system to switch the loop. A distribution line different system loop that calculates a loop point phase difference at a loop point, calculates a loop allowable phase difference at the loop point, and determines whether loop switching is possible or not by comparing the loop point phase difference and the loop allowable phase difference In the switchability determination method, the calculation of the loop point phase difference is performed by calculating the phase difference of the circuit breaker open location of the upper system substation and the upper system phase difference obtained by angle synthesis and the distribution system of the loop points of the two distribution lines. It is characterized by being obtained by adding the phase difference.
請求項2の発明に係る配電線異系統ループ切替可否判定方法は、請求項1の発明において、前記ループ点位相差の計算誤差を考慮した安全裕度を予め用意しておき、前記ループ切替の可否の判定は、前記ループ点位相差に前記安全裕度を加算した安全裕度加算ループ点位相差を求め、その安全裕度加算ループ点位相差が前記ループ許容位相差以下のときは前記ループ切替を可と判定することを特徴とする。 According to a second aspect of the present invention, there is provided a method for determining whether or not a distribution line different system loop can be switched. In the first aspect of the invention, a safety margin in consideration of a calculation error of the loop point phase difference is prepared in advance. The determination of availability is performed by obtaining a safety margin addition loop point phase difference obtained by adding the safety margin to the loop point phase difference, and when the safety margin addition loop point phase difference is equal to or less than the loop allowable phase difference, the loop It is characterized by determining that switching is possible.
請求項3の発明に係る配電線異系統ループ切替可否判定方法は、請求項2の発明において、前記ループ点位相差の計算値と実測値との誤差の最大値を最大誤差として、前記ループ点位相差の計算値と実測値との誤差の平均値を平均誤差として予め取得しておき、前記安全裕度は、前記ループ点位相差の極性により、以下のように決定することを特徴とする。
A method for determining whether or not a distribution line different system loop can be switched according to the invention of
(1)前記ループ点位相差の極性が正のとき
前記二つの配電線のうち基準位相でない非基準配電線の前記ループ許容位相差と前記ループ点位相差との差分が前記最大誤差より小さいときは前記最大誤差を前記安全裕度とし、前記最大誤差より大きいときは前記平均誤差を前記安全裕度とする。
(1) When the polarity of the loop point phase difference is positive When the difference between the loop allowable phase difference of the non-reference distribution line that is not the reference phase of the two distribution lines and the loop point phase difference is smaller than the maximum error Uses the maximum error as the safety margin, and when it is larger than the maximum error, the average error as the safety margin.
(2)前記ループ点位相差の極性が負のとき
前記二つの配電線のうち基準位相の基準配電線の前記ループ許容位相差と前記ループ点位相差との差分が前記最大誤差より小さいときは前記最大誤差を前記安全裕度とし、前記最大誤差より大きいときは前記平均誤差を前記安全裕度とする。
(2) When the polarity of the loop point phase difference is negative When the difference between the loop allowable phase difference of the reference distribution line of the reference phase of the two distribution lines and the loop point phase difference is smaller than the maximum error The maximum error is set as the safety margin, and when the maximum error is larger than the maximum error, the average error is set as the safety margin.
請求項1の発明によれば、上位系統の変電所の遮断器開放箇所(常時切り箇所)の位相差をアングル合成した上位系統位相差と、二つの配電線のループ点の配電系統位相差とを加算してループ点位相差を求めるので、配電線の異系統ループ切替にあたって、ループチェッカー(位相角測定器)による現地測定を行わず切替可否の判定ができる。従って、現場作業の削減や効率化が図れる。また、ループ点位相差の計算にあたって、上位系統の電力潮流Pの収集を行う必要がなく、上位系統情報は常時切り箇所の位相差(ループアングル)をもって上位系統分の位相差と見なし、66kVの送電系統にかかる電力潮流Pを計算から省くことで、簡易で低廉な計算が図れる。
According to the invention of
請求項2の発明によれば、ループ点位相差の計算誤差を考慮した安全裕度を予め用意しておき、ループ切替の可否の判定は、ループ点位相差に安全裕度を加算した安全裕度加算ループ点位相差に基づいてループ切替の可否を判定するので、ループ切替の安全性を確保できる。 According to the second aspect of the present invention, a safety margin in consideration of the calculation error of the loop point phase difference is prepared in advance, and whether or not the loop can be switched is determined by adding a safety margin to the loop point phase difference. Since it is determined whether or not loop switching is possible based on the phase difference of the addition loop points, the safety of loop switching can be ensured.
請求項3の発明によれば、ループ点位相差の計算値と実測値との誤差の最大値を最大誤差として、ループ点位相差の計算値と実測値との誤差の平均値を平均誤差として予め取得しておき、安全裕度は、ループ点位相差の極性、二つの配電線の各々のループ許容位相差とループ点位相差との差分に基づいて、最大誤差または平均誤差のいずれかを選択するので、ループ許容位相差に対してループ点位相差に余裕があるときはループ切替を可とする範囲を拡げることができる。
According to the invention of
まず、本発明に至った経緯を説明する。実際の系統において、異系統ループ切替の実績を積み上げながら、二つの配電線のループ点において、位相差計算値とループチェッカー(位相角測定器)の実測値との比較を行いつつ、二つの配電線のループ点の位相差の計算にあたって、ループ対象線路のどの部分が位相差の発生割合が大きいかを検証した。それによると、上位系統の位相差、配電用変電所バンクの位相差、配電線の位相差の発生割合が大きく、66kV送電線の位相差はインピーダンス値も小さいため、位相差の発生割合も微小となり、省略しても僅かな誤差であることが判明した。 First, the background to the present invention will be described. While accumulating the track record of different system loop switching in the actual system, at the loop point of the two distribution lines, comparing the calculated phase difference and the measured value of the loop checker (phase angle measuring device), In calculating the phase difference of the loop point of the electric wire, it was verified which part of the loop target line has a large phase difference generation rate. According to it, the phase difference of the upper system, the phase difference of the distribution substation bank, the phase difference of the distribution line is large, and the phase difference of the 66 kV transmission line has a small impedance value, so the generation ratio of the phase difference is also very small Thus, even if omitted, it was found that there was a slight error.
さらに、実際の上位系統では電源変電所の遮断器の常時切り箇所が複数存在する系統が大半である。このため、上位系統の位相差(ループアングル)が複数であっても計算できる手法を取り入れることとし、安全かつ簡易で低廉な手段によって配電線の異系統ループ切替における可否判定を机上で行えるようにした。 Furthermore, in the actual upper system, most of the systems have a plurality of always-off locations of circuit breakers in power substations. For this reason, we will adopt a method that can calculate even if there are multiple phase differences (loop angles) in the upper system, so that it is possible to determine whether or not the distribution system can be switched between different system loops on the desk by safe, simple and inexpensive means. did.
そこで本発明ではループ点の位相差計算にあたって、計算にかかる負荷を極力簡易にするために、上位系統情報は上位系統変電所(電源変電所)の遮断器の常時切り箇所の位相差(ループアングル)をもって上位系統分の位相差とし、66kVの送電系統にかかる電力潮流Pを計算から省くことで簡易な計算を実現することとした。これにより、時々刻々変化する電力潮流Pの収集や複雑な系統にかかる電力潮流Pを考慮した計算を行う必要がないようにした。 Therefore, in the present invention, when calculating the phase difference of the loop point, in order to make the load required for the calculation as simple as possible, the upper system information is the phase difference (loop angle) of the always-off part of the circuit breaker of the upper system substation (power supply substation). ) Is used as a phase difference for the upper system, and a simple calculation is realized by omitting the power flow P applied to the 66 kV transmission system from the calculation. As a result, it is not necessary to collect the power flow P that changes from time to time and to perform calculation in consideration of the power flow P applied to a complicated system.
さらに上位系統の位相差が系統状態によって複数存在する場合でもアングル合成計算で上位系統の位相差の合成値を求め、これに配電用変電所バンクから配電線ループ点に至るまでの配電系統の位相差を合計してループ点位相差を導き出すこととした。 Furthermore, even if there are multiple phase differences in the upper system depending on the system status, the composite value of the phase difference in the upper system is obtained by angle synthesis calculation, and the distribution system level from the distribution substation bank to the distribution line loop point is calculated. The phase differences were summed to derive the loop point phase difference.
また、過去履歴の実測値と計算値との誤差分の最大値(最大誤差)と平均値(平均誤差)を用いて、安全裕度を決定し、ループ点位相差の計算値に安全裕度を加算し、加算により得られた安全裕度加算ループ点位相差が配電線許容電流から見たループ時のループ許容位相差の範囲内にあるか否かを判定基準として、ループ切替の可否を判定する。従って、安全かつ簡易で低廉な配電線の異系統ループ切替の可否判定が可能となる。 Also, the safety margin is determined using the maximum value (maximum error) and average value (average error) of the error between the measured value and the calculated value of the past history, and the safety margin is calculated as the calculated loop point phase difference. The safety margin addition loop point phase difference obtained by the addition is determined based on whether or not the loop can be switched based on whether or not the loop point phase difference is within the range of the loop allowable phase difference at the time of the loop as seen from the distribution line allowable current. judge. Therefore, it is possible to determine whether or not the different system loop switching of the distribution line is safe, simple, and inexpensive.
以下、本発明の実施形態を説明する。図1は、本発明の実施形態に係る配電線異系統ループ切替可否判定方法の工程の一例を示すフローチャート、図2は本発明の実施形態における配電線異系統ループ切替の対象となる系統の一例であり上位系統変電所の遮断器開放箇所が単数の場合の系統図、図3は本発明の実施形態における配電線異系統ループ切替の対象となる系統の他の一例であり上位系統変電所の遮断器開放箇所が複数(2箇所)の場合の系統図である。 Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing an example of a process of a method for determining whether or not a distribution line different system loop can be switched according to the embodiment of the present invention, and FIG. 2 shows an example of a system which is a target of distribution line different system loop switching in the embodiment of the present invention. FIG. 3 is another example of a system that is a target of switching a distribution line different system loop in the embodiment of the present invention, and is a diagram of the upper system substation. It is a systematic diagram in case a circuit breaker open location is multiple (2 places).
図1において、まず、ループ点切替の対象となる配電線の上位系統及び配電系統のデータの取り込み処理を行う(S1)。以下、図2に示す系統の場合について説明する。 In FIG. 1, first, data acquisition processing is performed for the upper system of the distribution line and the distribution system to be loop point switched (S1). Hereinafter, the case of the system shown in FIG. 2 will be described.
図2において、配電系統のループ点Xがループ切替の対象のループ点であるとする。配電系統のループ点Xは開放されており、a配電線11aにはF配電用変電所バンク12fから負荷電流Iaが供給され、b配電線11bにはC配電用変電所バンク12cから負荷電流Ibが供給されている。F配電用変電所バンク12fは上位系統のA変電所13aから電力の供給を受け、C配電用変電所バンク12cは上位系統のB変電所13bから電力の供給を受けている。そして、A変電所13aの遮断器14aは閉じており、B変電所13bの遮断器14bは開いている。黒は閉じており、白は開いていることを示している。
In FIG. 2, it is assumed that the loop point X of the power distribution system is a loop point to be switched. The loop point X of the distribution system is open, the load current Ia is supplied from the F
図1のステップS1では、上位系統情報として、A変電所13aの遮断器14aの常時入り箇所の位相差θAB、B変電所13bの遮断器14bの常時切り箇所の位相差θBA、A変電所13aの上位系統インピーダンス%Ze、B変電所13bの上位系統インピーダンス%Zdを取得する。A変電所13aの遮断器14aの常時入り箇所の位相差θAB、B変電所13bの遮断器14aの常時切り箇所の位相差θBAは、遮断器14a、14bの常時切り箇所の位相差(ループアングル)を同期検出継電器を介して制御所内にある変電システムより取得し、これをもって上位系統分の位相差(ループアングル)とする。
In step S1 of FIG. 1, as upper system information, the phase difference .theta.AB of the always-on part of the
また、配電系統情報として、F配電用変電所バンク12fのバンク電流If、バンクインピーダンス%Zfを取得し、バンク電流Ifを有効電力Pf(P=√3・V・If・cosθ)に変換する。同様に、C配電用変電所バンク12cのバンク電流Ic、バンクインピーダンス%Zcを取得し、バンク電流Icを有効電力Pc(P=√3・V・Ic・cosθ)に変換する。
Further, as the distribution system information, the bank current If and the bank impedance% Zf of the F
さらに、配電系統情報として、a配電線11aの負荷電流Ia、配電線インピーダンス%Zaを取得し、負荷電流Iaを有効電力Pa(P=√3・V・Ia・cosθ)に変換する。同様に、b配電線11bの負荷電流Ib、配電線インピーダンス%Zbを取得し、負荷電流Ibを有効電力Pb(P=√3・V・Ib・cosθ)に変換する。
Furthermore, the load current Ia and the distribution line impedance% Za of the a
次に、ループ対象の基準を設定する(S2)。例えば、上位系統のA変電所13aを上位系統の基準変電所に設定し、a配電線11aを基準と設定する。これにより、A変電所13aの遮断器14aの常時入り箇所の位相差θABを基準位相とし、遮断器14bの常時切り箇所の位相差θBAを比較位相とする。
Next, a reference for the loop target is set (S2). For example, the upper system A
次に、上位系統変電所の遮断器開放箇所の位相差は複数あるかどうかを判定する(S3)。図2の場合は、遮断器開放箇所は遮断器14bであり、上位系統変電所の遮断器開放箇所の位相差は単数(1箇所)である。一方、図3の場合は、遮断器開放箇所は遮断器14b、14cであり、上位系統変電所の遮断器開放箇所の位相差は複数(2箇所)である。
Next, it is determined whether there are a plurality of phase differences at the breaker opening locations of the upper system substation (S3). In the case of FIG. 2, the circuit breaker opening location is the
ステップS3の判定で、遮断器開放箇所の位相差が複数であると判定された場合は、上位系統位相差の計算処理K1を行う(S4)。 If it is determined in step S3 that there are a plurality of phase differences at the circuit breaker opening location, the higher system phase difference calculation process K1 is performed (S4).
上位系統位相差の計算処理K1は、下記(1)式により上位系統位相差θ0をアングル合成して求める。 In the upper system phase difference calculation process K1, the upper system phase difference θ0 is obtained by angle synthesis using the following equation (1).
θ0=基準位相差θAB−{第1比較位相差θBA−第2比較位相差θCB}
=θAB−{θBA−θCB} …(1)
位相差θABは、A変電所13aの遮断器14aの常時入り箇所の基準位相差θAB(A変電所13aを基準)、第1比較位相差θBAは、B変電所13bの遮断器14bの常時切り箇所の位相差θBA(B変電所13bを基準)、第2比較位相差θCBは、C変電所13cの遮断器14cの常時切り箇所の位相差θCB(C変電所13cを基準)である。
θ0 = reference phase difference θAB− {first comparison phase difference θBA−second comparison phase difference θCB}
= ΘAB− {θBA−θCB} (1)
The phase difference θAB is the reference phase difference θAB at the place where the
ここで、図3の場合、遮断器14aは投入されているので、A変電所13aとB変電所13bとの間は同相であり基準位相差θABは0である。また、第2比較位相差θCBを、C変電所13cを基準として表すと、−θBCとなる。このことから、第1比較位相差θBA−第2比較位相差θCBは、θBA−(−θBC)=θBA+θBC=θACとなる。従って、図3の場合には、(1)式は、θ0=−θACで表される。
Here, in the case of FIG. 3, since the
また、図4に示すように、基準のA変電所の遮断器14aが開放しており、非基準のB変電所の遮断器14bが閉じており、非基準のC変電所の遮断器14cが開放している場合も、上位系統変電所の遮断器開放箇所の位相差は複数(2箇所)である。
Also, as shown in FIG. 4, the
この場合、遮断器14bは投入されているので、B変電所13bとA変電所13aとの間は同相であり第1比較位相差θBAは0である。また、第2比較位相差θCBを、C変電所13cを基準として表すと、−θBCとなる。このことから、図4の場合には、(1)式は、θ0=θAB+θBC=θACで表される。
In this case, since the
ステップS3の判定で、遮断器開放箇所の位相差が単数であると判定された場合は、上位系統位相差の計算処理K2を行う(S5)。 If it is determined in step S3 that the circuit breaker opening portion has a single phase difference, a higher-system phase difference calculation process K2 is performed (S5).
上位系統位相差の計算処理K2についても、上記(1)式により上位系統位相差θ0をアングル合成して求めるが、(1)式で第2比較位相差θCBがない場合の(2)式となる。 The upper system phase difference calculation process K2 is also obtained by angle-synthesizing the upper system phase difference θ0 according to the above expression (1), but with the expression (2) when there is no second comparison phase difference θCB in expression (1) Become.
θ0=基準位相差θAB−第1比較位相差θBA
=θAB−θBA …(2)
図2に示すように、遮断器開放箇所が非基準のB変電所13bの遮断器14bであり、基準のA変電所13aの遮断器14aが閉じている場合は、取得される位相差は変電所Bの第1比較位相差θBAである。また、基準変電所Aの遮断器が閉じていることから、基準のA変電所13aとB変電所13bとの間は同相であり基準位相差θABは0である。これにより、上位系統位相差θ0は、(2)式から変電所Bの第1比較位相差θBAの符号反転した(−θBA)となる。
θ0 = reference phase difference θAB−first comparison phase difference θBA
= ΘAB−θBA (2)
As shown in FIG. 2, when the breaker open location is the
一方、図5に示すように、遮断器開放箇所が基準のA変電所13aであり、非基準のB変電所の遮断器14bが閉じている場合は、取得される位相差は基準のA変電所13aの基準位相差θABである。また、非基準のB変電所13bの遮断器14bが閉じていることから、非基準のB変電所13bと基準のA変電所13aとの間は同相であり第1比較位相差θBAは0となる。これにより、上位系統位相差θ0は、(2)式から基準のA変電所13aの基準位相差θABとなる。
On the other hand, as shown in FIG. 5, when the breaker open location is the
このように、上位系統位相差θ0は、上位系統の変電所の遮断器開放箇所の位相差をアングル合成して求められる。 Thus, the higher system phase difference θ0 is obtained by angle-combining the phase differences of the circuit breaker open locations of the upper system substation.
次に、配電線abのループ点Xで連系した場合のループ全体のループ点位相差θxを求める(S6)。ループ点位相差θxは、(3)式に示すように、上位系統位相差θ0に、配電系統の位相差Δθを加算して求められる。 Next, the loop point phase difference θx of the entire loop when linked at the loop point X of the distribution line ab is obtained (S6). As shown in the equation (3), the loop point phase difference θx is obtained by adding the phase difference Δθ of the distribution system to the higher system phase difference θ0.
θx=θ0+Δθ …(3)
配電系統の位相差Δθは、配電系統の配電用変電所バンク12f、12cからループ点Xまでの位相差であり、(4)式に示すように、F配電用変電所バンク12fからループ点Xに至る基準のa配電線11aの基準位相θaと、C配電用変電所バンク12cからループ点Xに至る非基準のb配電線11bの比較位相θbとの差分として求められる。
θx = θ0 + Δθ (3)
The phase difference Δθ of the distribution system is a phase difference from the
Δθ=基準位相θa−比較位相θb
=θa−θb …(4)
基準位相θaは下記の(5)式で求められ、比較位相θbは下記の(6)式で求められる。なお、(5)式、(6)式において、送電線の基準容量を10MVAとした場合を示している。
Δθ = reference phase θa−comparison phase θb
= Θa−θb (4)
The reference phase θa is obtained by the following equation (5), and the comparison phase θb is obtained by the following equation (6). In addition, in the formulas (5) and (6), the case where the reference capacity of the transmission line is 10 MVA is shown.
θa=(Pf・%Zf+Pa・%Za)/1000…(5)
θb=(Pc・%Zc+Pb・%Zb)/1000…(6)
そして、(4)式を(3)式に代入すると、ループ全体のループ点位相差θxは、下記(7)式で示される。
θa = (Pf ·% Zf + Pa ·% Za) / 1000 (5)
θb = (Pc ·% Zc + Pb ·% Zb) / 1000 (6)
Then, when the equation (4) is substituted into the equation (3), the loop point phase difference θx of the entire loop is expressed by the following equation (7).
θx=θ0+Δθ
=θ0+(θa−θb)…(7)
このように、ループ点位相差θxの計算は、上位系統の変電所の遮断器開放箇所の位相差をアングル合成した上位系統位相差θ0と、配電用変電所バンクからループ点までの位相差である配電系統位相差Δθとを加算して求める。
θx = θ0 + Δθ
= Θ0 + (θa−θb) (7)
Thus, the calculation of the loop point phase difference θx is based on the phase difference from the upper system phase difference θ0, which is an angle composition of the phase difference of the circuit breaker opening of the upper system substation, and the phase difference from the distribution substation bank to the loop point. It is obtained by adding a certain distribution system phase difference Δθ.
次に、ループ点を閉じたときに形成されるループのループインピーダンスを計算する(S7)。このループインピーダンス%ZLは下記(8)式で求められる。 Next, the loop impedance of the loop formed when the loop point is closed is calculated (S7). This loop impedance% ZL is obtained by the following equation (8).
%ZL=%Za+%Zb+%Zc+%Zd+%Ze+%Zf …(8)
すなわち、ループ点を閉じたときに形成されるループの配電線インピーダンス%Za、%Zb、バンクインピーダンス%Zc、%Zf、上位系統インピーダンス%Zd、%Zeを合計して求められる。
% ZL =% Za +% Zb +% Zc +% Zd +% Ze +% Zf (8)
That is, the distribution line impedance% Za,% Zb, bank impedance% Zc,% Zf, upper system impedance% Zd,% Ze of the loop formed when the loop point is closed are obtained in total.
一方、a配電線11a、b配電線11bの配電許容電流から見たループ許容電流を計算する(S8)。a配電線11aのループ許容電流IAは、ループ点を閉じたときにa配電線11aに流れる電流の許容電流であり、b配電線11bのループ許容電流IBは、ループ点を閉じたときにb配電線11bに流れる電流の許容電流である。
On the other hand, the loop allowable current viewed from the distribution allowable current of the a
a配電線の短時間許容電流Iu、配電線負荷電流Iaとすると、a配電線11aのループ許容電流IAは(9)式で示され、b配電線の短時間許容電流Iu、配電線負荷電流Ibとすると、b配電線11bのループ許容電流IBは(10)式で示される。
When the a-distribution line short-time allowable current Iu and the distribution-line load current Ia are assumed, the loop-distribution current IA of the
IA=Iu−Ia …(9)
IB=Iu−Ib …(10)
そして、このa配電線11aのループ許容電流IA、b配電線11bのループ許容電流IBに基づいてループ許容位相差を計算する(S9)。すなわち、ループ許容電流IA、IBをループ許容位相差|θA’|、|θB’|に変換する。ループ許容位相差|θA’|は、基準のa配電線11aに対してループ点位相差θxが負の場合の閾値であり、ループ許容位相差|θB’|は、基準のa配電線11aに対してループ点位相差θxが正の場合の閾値である。
IA = Iu-Ia (9)
IB = Iu-Ib (10)
Then, the loop allowable phase difference is calculated based on the loop allowable current IA of the a
ループ許容位相差|θA’|、|θB’|は、下記(11)、(12)式で示される。 The loop allowable phase differences | θA ′ | and | θB ′ | are expressed by the following equations (11) and (12).
|θA’|=IA×%ZL/1520…(11)
|θB’|=IB×%ZL/1520…(12)
なお、(11)式、(12)式において、配電線の線間電圧6.6kV、送電線の基準容量を10MVAとした場合を示している。
| ΘA ′ | = IA ×% ZL / 1520 (11)
| ΘB ′ | = IB ×% ZL / 1520 (12)
In the equations (11) and (12), the line voltage of the distribution line is 6.6 kV, and the reference capacity of the transmission line is 10 MVA.
そして、ループ許容位相差|θA’|、|θB’|が得られると、ループ許容位相差結果によるループ可否判定を行う(S10)。 ループ点のループ点位相差θxと、配電線許容電流IA、IBから見たループ許容位相差|θA’|、|θB’|との比較により、ループ点のループ点位相差θxが許容範囲を満足する条件式を下記(13)式、(14)式のように導く。 Then, when the loop allowable phase differences | θA ′ | and | θB ′ | are obtained, the loop availability determination is performed based on the loop allowable phase difference result (S10). By comparing the loop point phase difference θx of the loop point with the loop allowable phase difference | θA '| and | θB' | seen from the distribution line allowable currents IA and IB, the loop point phase difference θx of the loop point is within the allowable range. Satisfying conditional expressions are derived as the following expressions (13) and (14).
θxが負の場合、|θA’|≧|θx|…(13)
θxが正の場合、|θB’|≧|θx|…(14)
図6は、ループ点位相差θxの極性に応じたループ許容位相差|θA’|及びループ許容位相差|θB’|の説明図である。ループ点位相差θxがa配電線11aの基準位相差θaに対して、正であるときは、|θx|が|θB’|以下の範囲ならばループ点でのループ切替は可であると判定する。同様に、ループ点位相差θxがa配電線11aの位相差θaに対して、負であるときは、|θx|が|θA’|以下の範囲ならばループ点でのループ切替は可であると判定する。
When θx is negative, | θA ′ | ≧ | θx | (13)
When θx is positive, | θB ′ | ≧ | θx | (14)
FIG. 6 is an explanatory diagram of the loop allowable phase difference | θA ′ | and the loop allowable phase difference | θB ′ | according to the polarity of the loop point phase difference θx. When the loop point phase difference θx is positive with respect to the reference phase difference θa of the
以上の説明では、ループ切替の可否の判定は、ループ点のループ点位相差θxと、ループ許容位相差|θA’|、|θB’|との比較により、ループ点のループ点位相差θxが許容範囲を満足するか否かで判断するようにしたが、ループ点位相差θxの計算誤差を考慮した安全裕度|θα|を予め用意しておき、ループ切替の可否の判定は、ループ点位相差θxに安全裕度|θα|を加算した安全裕度加算ループ点位相差θi(=|θx|+|θα|)を求め、その安全裕度加算ループ点位相差θiがループ許容位相差|θA’|、|θB’|以下のときは、ループ切替を可と判定するようにしてもよい。 In the above description, whether or not loop switching is possible is determined by comparing the loop point phase difference θx of the loop point with the loop allowable phase differences | θA ′ | and | θB ′ | Judgment is made based on whether or not the allowable range is satisfied. However, a safety margin | θα | considering the calculation error of the loop point phase difference θx is prepared in advance, and whether or not loop switching is possible is determined by the loop point. The safety margin addition loop point phase difference θi (= | θx | + | θα |) obtained by adding the safety margin | θα | to the phase difference θx, and the safety tolerance addition loop point phase difference θi is the loop allowable phase difference. When | θA ′ | and | θB ′ | or less, it may be determined that loop switching is possible.
図7は本発明の実施形態に係る配電線異系統ループ切替可否判定方法の他の工程の一例を示すフローチャートであり、図1に示した一例に対し、ステップS9A、S9Bを追加し、ステップS10Aにおいて、安全裕度加算ループ点位相差θiがループ許容位相差|θA’|、|θB’|以下のときは、ループ切替を可と判定するようにしたものである。図1に示した一例と同一ステップについては、同一符号を付し重複する説明は省略する。 FIG. 7 is a flowchart showing an example of another process of the method for determining whether or not a distribution line different system loop can be switched according to the embodiment of the present invention. Steps S9A and S9B are added to the example shown in FIG. When the safety tolerance addition loop point phase difference θi is less than or equal to the loop allowable phase difference | θA ′ | and | θB ′ |, it is determined that loop switching is possible. The same steps as those in the example shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
図7において、まず、ステップS9でループ許容位相差|θA’|、|θB’|を求めた後に、安全裕度|θα|を決定するための安全裕度の決定処理を行う(S9A)。図8は安全裕度の決定処理の一例を示すフローチャートである。予めループ点位相差θxの実測値と計算値とを蓄積しておく(T1)。例えば、上位系統の変電所が異なる二つの配電線の各々のループ点におけるループ点位相差θxの実測値と計算値とを蓄積しておく。各々のループ点において、日時が異なる複数の実測値と計算値とを蓄積しておいてもよい。次に、蓄積した各々のループ点におけるループ点位相差θxの実測値と計算値との誤差を算出し、各々のループ点の誤差の最大値を最大誤差として求める(T2)。そして、最大誤差を安全裕度とする(T3)。 In FIG. 7, first, after obtaining the loop allowable phase differences | θA ′ | and | θB ′ | in step S9, a safety margin determination process for determining the safety margin | θα | is performed (S9A). FIG. 8 is a flowchart showing an example of the safety margin determination process. The measured value and calculated value of the loop point phase difference θx are stored in advance (T1). For example, the measured value and the calculated value of the loop point phase difference θx at each loop point of two distribution lines with different substations in the upper system are stored. At each loop point, a plurality of actually measured values and calculated values having different dates and times may be accumulated. Next, an error between the measured value and the calculated value of the loop point phase difference θx at each accumulated loop point is calculated, and the maximum value of the error at each loop point is obtained as the maximum error (T2). The maximum error is set as a safety margin (T3).
次に、ステップS9Aで決定された安全裕度|θα|をループ点位相差θxに加算した安全裕度加算ループ点位相差θiを下記(15)式で求める(S9B)。 Next, a safety margin addition loop point phase difference θi obtained by adding the safety margin | θα | determined in step S9A to the loop point phase difference θx is obtained by the following equation (15) (S9B).
θi=|θx|+|θα|…(15)
ここで、図8では、各々のループ点の誤差の最大値(最大誤差)を安全裕度|θα|としたが、図9に示すように、ループ点位相差θxの極性、二つの配電線の各々のループ許容位相差|θA’|、|θB’|とループ点位相差θxとの差分に基づいて、各々のループ点の誤差の最大誤差または平均誤差のいずれかを選択するようにしてもよい。
θi = | θx | + | θα | (15)
Here, in FIG. 8, the maximum value (maximum error) of the error at each loop point is the safety margin | θα |, but as shown in FIG. 9, the polarity of the loop point phase difference θx, the two distribution lines Based on the difference between each loop allowable phase difference | θA ′ |, | θB ′ | and the loop point phase difference θx, either the maximum error or the average error of each loop point is selected. Also good.
図9は安全裕度の決定処理の他の一例を示すフローチャートである。図8のステップT1と同様に、予めループ点位相差θxの実測値と計算値とを蓄積しておく(U1)。次に、蓄積した各々のループ点におけるループ点位相差θxの実測値と計算値との誤差を算出し、各々のループ点の誤差の最大値を最大誤差として、各々のループ点の誤差の平均値を平均誤差として求める(U2)。 FIG. 9 is a flowchart showing another example of the safety margin determination process. Similar to step T1 in FIG. 8, the measured value and calculated value of the loop point phase difference θx are stored in advance (U1). Next, an error between the actually measured value and the calculated value of the loop point phase difference θx at each accumulated loop point is calculated, and the average value of the error at each loop point is calculated with the maximum value of the error at each loop point as the maximum error. The value is obtained as an average error (U2).
そして、ループ点位相差θxの極性が正(+)かどうかを判定する(U3)。ループ点位相差θxの極性が正(+)のときは、基準位相でない非基準配電線のループ許容位相差|θB’|とループ点位相差|θx|との差分が最大誤差εmax以下かどうかを判定する(U4)。その差分が最大誤差εmax以下であるときは、最大誤差εmaxを安全裕度|θα|とする(U5)。一方、ステップU4の判定で、非基準配電線のループ許容位相差|θB’|とループ点位相差|θx|との差分が最大誤差εmaxより大きいときは平均誤差εaveを安全裕度|θα|とする(U6)。 Then, it is determined whether the polarity of the loop point phase difference θx is positive (+) (U3). When the polarity of the loop point phase difference θx is positive (+), whether the difference between the loop allowable phase difference | θB ′ | and the loop point phase difference | θx | Is determined (U4). When the difference is equal to or smaller than the maximum error εmax, the maximum error εmax is set as a safety margin | θα | (U5). On the other hand, when the difference between the loop allowable phase difference | θB ′ | and the loop point phase difference | θx | of the non-reference distribution line is larger than the maximum error εmax in the determination in step U4, the average error εave is determined as the safety margin | θα | (U6).
一方、ステップU3の判定で、ループ点位相差θxの極性が負(−)のときは、基準位相の基準配電線のループ許容位相差|θA’|とループ点位相差|θx|との差分が最大誤差εmax以下かどうかを判定する(U7)。その差分が最大誤差εmax以下であるときは、最大誤差εmaxを安全裕度|θα|とする(U8)。一方、ステップU7の判定で、基準配電線のループ許容位相差|θA’|とループ点位相差|θx|との差分が最大誤差εmaxより大きいときは平均誤差εaveを安全裕度|θα|とする(U9)。 On the other hand, if the polarity of the loop point phase difference θx is negative (−) in the determination of step U3, the difference between the loop allowable phase difference | θA ′ | and the loop point phase difference | θx | Is less than or equal to the maximum error εmax (U7). When the difference is equal to or smaller than the maximum error εmax, the maximum error εmax is set as the safety margin | θα | (U8). On the other hand, when the difference between the loop allowable phase difference | θA ′ | and the loop point phase difference | θx | of the reference distribution line is larger than the maximum error εmax in the determination of step U7, the average error εave is set as the safety margin | θα | (U9).
このように、ループ点位相差θxがループ許容位相差|θA’|、|θb’|に対して余裕があるときは、その差分が最大誤差εmaxより大きいので、平均誤差εaveを安全裕度|θα|とする。従って、ループ切替を可とする範囲を拡げることができる。図9の処理で得られた安全裕度|θα|の場合も同様に、上記(15)式により、安全裕度加算ループ点位相差θi(=|θx|+|θα|)を求める。 As described above, when the loop point phase difference θx has a margin with respect to the loop allowable phase differences | θA ′ | and | θb ′ |, the difference is larger than the maximum error εmax. Let θα |. Therefore, the range in which loop switching is possible can be expanded. Similarly, in the case of the safety margin | θα | obtained by the processing of FIG. 9, the safety tolerance addition loop point phase difference θi (= | θx | + | θα |) is obtained by the above equation (15).
図10は、このようにして、ステップS9Bの処理で得られた安全裕度加算ループ点位相差θi(=|θx|+|θα|)を用いてループ可否判定を行う場合のステップS10Aの詳細図である。 FIG. 10 shows details of step S10A in the case where the loop availability determination is performed using the safety margin addition loop point phase difference θi (= | θx | + | θα |) obtained in the process of step S9B in this way. FIG.
まず、ループ点位相差θxの極性が正(+)かどうかを判定する(V1)。ループ点位相差θxの極性が正(+)のときは、安全裕度加算ループ点位相差θi(=|θx|+|θα|)が非基準配電線のループ許容位相差|θB’|以下かどうかを判定する(V2)。安全裕度加算ループ点位相差θiが非基準配電線のループ許容位相差|θB’|以下であるときは、特段の対策を行わず、ループ切替は可能と判定する(V3)。一方、ステップV2の判定で、安全裕度加算ループ点位相差θiが非基準配電線のループ許容位相差|θB’|より大きいときは、ループ切替は不可と判定し、(16)式を満足する対策を行う必要ありと判断する(V4)。(16)式を満足する対策としては、当該配電線に接続される負荷を他配電線へ切り替えたり、配電用変電所バンクを片側に寄せたりする。 First, it is determined whether the polarity of the loop point phase difference θx is positive (+) (V1). When the polarity of the loop point phase difference θx is positive (+), the safety tolerance addition loop point phase difference θi (= | θx | + | θα |) is less than or equal to the loop allowable phase difference | θB '| Is determined (V2). When the safety margin addition loop point phase difference θi is equal to or less than the loop allowable phase difference | θB ′ | of the non-reference distribution line, it is determined that loop switching is possible without taking any special measures (V3). On the other hand, when the safety margin addition loop point phase difference θi is larger than the loop allowable phase difference | θB ′ | of the non-reference distribution line in the determination of step V2, it is determined that loop switching is not possible, and the expression (16) is satisfied. (V4). As countermeasures satisfying the equation (16), the load connected to the distribution line is switched to another distribution line, or the distribution substation bank is moved to one side.
|θB’|≧θi=(|θx|+|θα|)…(16)
一方、ステップV1の判定で、ループ点位相差θxの極性が負(−)のときは、安全裕度加算ループ点位相差θi(=|θx|+|θα|)が基準配電線のループ許容位相差|θA’|以下かどうかを判定する(V5)。安全裕度加算ループ点位相差θiが基準配電線のループ許容位相差|θA’|以下であるときは、特段の対策を行わず、ループ切替は可能と判定する(V6)。一方、ステップV5の判定で、安全裕度加算ループ点位相差θiが基準配電線のループ許容位相差|θA’|より大きいときは、ループ切替は不可と判定し、(17)式を満足する対策を行う必要ありと判断する(V7)。(17)式を満足する対策としては、配電線に接続される負荷を他配電線へ切り替えたり、配電用変電所バンクを片側に寄せたりする。
| ΘB ′ | ≧ θi = (| θx | + | θα |) (16)
On the other hand, when the polarity of the loop point phase difference θx is negative (−) in the determination of step V1, the safety margin addition loop point phase difference θi (= | θx | + | θα |) is the loop tolerance of the reference distribution line. It is determined whether or not the phase difference is equal to or smaller than | θA ′ | (V5). When the safety margin addition loop point phase difference θi is equal to or smaller than the loop allowable phase difference | θA ′ | of the reference distribution line, it is determined that loop switching is possible without taking any special measures (V6). On the other hand, when the safety margin addition loop point phase difference θi is larger than the loop allowable phase difference | θA ′ | of the reference distribution line in the determination of step V5, it is determined that loop switching is not possible, and the expression (17) is satisfied. It is determined that countermeasures need to be taken (V7). As countermeasures satisfying the equation (17), the load connected to the distribution line is switched to another distribution line, or the distribution substation bank is moved to one side.
|θA’|≧θi(=|θx|+|θα|)…(17)
このように、安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiが配電線許容電流IA、IBから見たループ時のループ許容位相差|θB’|、|θA’|以内かどうかを上記(16)式、(17)式を用いて判定し、ループ切替の可否を判定する。
| ΘA ′ | ≧ θi (= | θx | + | θα |) (17)
In this way, the safety margin addition loop point phase difference θi of the loop point obtained by adding the safety margin | θα | is the loop allowable phase difference at the time of loop as viewed from the distribution line allowable currents IA and IB | θB '|, | θA It is determined whether or not it is within “|” using the above equations (16) and (17), and whether or not loop switching is possible is determined.
図11は、ループ点位相差θxの極性に応じた安全裕度加算ループ点位相差θi(=|θx|+|θα|)とループ許容位相差|θA’|及びループ許容位相差|θB’|との関係の説明図である。ループ点位相差θxがa配電線11aの基準位相差θaに対して、正であるときは、安全裕度加算ループ点位相差θi(=|θx|+|θα|)がループ許容位相差|θB’|以下の範囲ならばループ点でのループ切替は可であると判定する。同様に、ループ点位相差θxがa配電線11aの位相差θaに対して、負であるときは、安全裕度加算ループ点位相差θi(=|θx|+|θα|)がループ許容位相差|θA’|以下の範囲ならばループ点でのループ切替は可であると判定する。
FIG. 11 shows the safety margin addition loop point phase difference θi (= | θx | + | θα |), the loop allowable phase difference | θA ′ |, and the loop allowable phase difference | θB ′ according to the polarity of the loop point phase difference θx. It is explanatory drawing of the relationship with |. When the loop point phase difference θx is positive with respect to the reference phase difference θa of the
次に、66kVの送電系統にかかる電力潮流Pを考慮に入れてループ点位相差を計算した場合(比較例)と、本発明の実施形態にように66kVの送電系統にかかる電力潮流Pを考慮に入れない(計算から省くこと)で簡易な計算をした場合(実施例)との計算結果の比較を行う。 Next, the case where the power flow P applied to the 66 kV transmission system is taken into consideration and the loop point phase difference is calculated (comparative example), and the power flow P applied to the 66 kV transmission system as in the embodiment of the present invention is considered. The calculation result is compared with the case where the simple calculation is performed (excluded from the calculation).
<比較例>
図12は、本発明の比較例での66kVの送電系統にかかる電力潮流Pを考慮に入れてループ点位相差を計算する場合の系統図である。
<Comparative example>
FIG. 12 is a system diagram in a case where the loop point phase difference is calculated in consideration of the power flow P applied to the 66 kV transmission system in the comparative example of the present invention.
(1)データ取込処理
(上位系統情報)
上位系統インピーダンス:%Zg=0.2326、%Zf=0.5、66kV送電線インピーダンス:%Zh=0.067、%Zi=0.0914、%Ze=0.0702、%Zd=0.0548、%Zk=0.1625。66kV送電線にかかる電力潮流:Ph=45MW、Pi=21MW、Pe=28MW、Pd=13MW、Pk=14MW。
(1) Data acquisition processing (upper system information)
Upper system impedance:% Zg = 0.2326,% Zf = 0.5, 66 kV transmission line impedance:% Zh = 0.067,% Zi = 0.0914,% Ze = 0.0702,% Zd = 0.0548 % Zk = 0.1625. Power flow applied to 66 kV transmission line: Ph = 45 MW, Pi = 21 MW, Pe = 28 MW, Pd = 13 MW, Pk = 14 MW.
(配電系統情報)
Ij、Ic:J、C配電用変電所バンク電流[A]であり、取得した電流値(Ij=560[A]、Ic=1210)は、(P=√3・V・I・cosθ)式により電力値に変換する。力率cosθ(=0.95)。J配電用変電所バンクの有効電力:Pj=√3・V・Ij・cosθ=√3×6.6kV×560[A]×0.95=6MW、C配電用変電所バンクの有効電力:Pc=√3・V・Ic・cosθ=√3×6.6kV×1210[A]×0.95=13MW。
(Distribution system information)
Ij, Ic: J, C distribution substation bank current [A], and the obtained current value (Ij = 560 [A], Ic = 1210) is expressed by the equation (P = √3 · V · I · cos θ) To convert it to a power value. Power factor cos θ (= 0.95). Effective power of J distribution substation bank: Pj = √3 · V · Ij · cos θ = √3 × 6.6 kV × 560 [A] × 0.95 = 6 MW, effective power of C distribution substation bank: Pc = √3 · V · Ic · cos θ = √3 × 6.6 kV × 1210 [A] × 0.95 = 13 MW.
a配電線インピーダンス:%Za=8.744、b配電線インピーダンス:%Zb=9.31、Ia、Ibはa、b配電線電流であり、取得した電流値(Ia=177[A]、Ib=228[A])は、(P=√3・V・I・cosθ)式により電力値に変換する。力率cosθ(=0.95)。a配電線の有効電力:Pa=√3・V・Ia・cosθ=√3×6.6kV×177[A]×0.95=1.9MW、b配電線の有効電力:Pb=√3・V・Ib・cosθ=√3×6.6kV×228[A]×0.95=2.5MW。 a distribution line impedance:% Za = 8.744, b distribution line impedance:% Zb = 9.31, Ia, Ib are a, b distribution line currents, and obtained current values (Ia = 177 [A], Ib = 228 [A]) is converted into a power value by the equation (P = √3 · V · I · cos θ). Power factor cos θ (= 0.95). Effective power of a distribution line: Pa = √3 · V · Ia · cos θ = √3 × 6.6 kV × 177 [A] × 0.95 = 1.9 MW, b Effective power of distribution line: Pb = √3 · V · Ib · cos θ = √3 × 6.6 kV × 228 [A] × 0.95 = 2.5 MW.
(2)ループ対象の基準設定)
基準となる上位系統変電所はA変電所を基準と設定する。基準となる配電線はa配電線を基準と設定する。
(2) Loop target reference setting)
The upper system substation as a reference is set with the A substation as the reference. The reference distribution line is set with the a distribution line as the reference.
(3)上位系統位相差θ0の計算
・上位系統変電所の遮断器開放箇所が1箇所であり、取得した基準変電所の位相が、上位系統位相差であるので、上位系統位相差θ0は、θ0=−1.00[度]である。上位系統位相差θ0は(A1)式で示される。
(3) Calculation of upper system phase difference θ0-Since the circuit breaker open position of the upper system substation is one and the phase of the acquired reference substation is the upper system phase difference, the upper system phase difference θ0 is θ0 = −1.00 [degree]. The higher system phase difference θ0 is expressed by the equation (A1).
θ0=[{Pg・%Zg−(Pf・%Zf+Pk・%Zk)}/1000]
×(180/π)=−1.00[度] …(A1)
[66kV送電線にかかる電力潮流を考慮した計算]
66kV送電線にかかる電力潮流を考慮した計算を行うには、A変電所からB変電所へ連絡する66kV送電線にかかる電力潮流分の位相差を基準変電所(A変電所)で取得した位相差θ0(=−1.00[度])から、A変電所〜B変電所間の66kV送電線にかかる位相差{−(Pk・%Zk/1000)×(180/π)}を除くことになる。これにより、(A2)式に示すように、A変電所からB変電所へ連絡する66kV送電線にかかる電力潮流分の位相差を除いた位相差θ0’が得られる。
θ0 = [{Pg ·% Zg− (Pf ·% Zf + Pk ·% Zk)} / 1000]
× (180 / π) = − 1.00 [degree] (A1)
[Calculation taking into account the power flow of 66 kV transmission lines]
In order to perform the calculation considering the power flow applied to the 66kV transmission line, the phase difference of the power flow applied to the 66kV transmission line connected from the A substation to the B substation is obtained at the reference substation (A substation). The phase difference {− (Pk ·% Zk / 1000) × (180 / π)} applied to the 66 kV transmission line between the A substation and the B substation is excluded from the phase difference θ0 (= −1.00 [degree]). become. As a result, as shown in the equation (A2), a phase difference θ0 ′ excluding the phase difference for the power flow applied to the 66 kV transmission line connected from the A substation to the B substation is obtained.
θ0’=θ0−{−(Pk・%Zk/1000)×(180/π)}
=−1.00+(Pk・%Zk/1000)×(180/π)}
=−1.00+(14×0.1625/1000)×(180/π)
=−1.00+0.13=−0.87[度] …(A2)
(4)ループ点のループ点位相差計算
まず、上位系統変電所(A変電所、B変電所)からループ点Xに至るa配電線側の位相θa、b配電線側の位相θbを各々(A3)式、(A4)式で求める。
θ0 ′ = θ0 − {− (Pk ·% Zk / 1000) × (180 / π)}
= −1.00 + (Pk ·% Zk / 1000) × (180 / π)}
= −1.00 + (14 × 0.1625 / 1000) × (180 / π)
= −1.00 + 0.13 = −0.87 [degree] (A2)
(4) Loop point phase difference calculation of loop points First, the phase θa on the a distribution line side and the phase θb on the b distribution line side from the upper system substation (A substation, B substation) to the loop point X ( A3) and (A4) are used for the calculation.
θa=(Ph・%Zh+Pi・%Zi+Pj・%Zj+Pa・%Za)/1000
=(45×0.067+21×0.0914+6×7.584
+1.9×8.744)/1000 …(A3)
θb=(Pe・%Ze+Pd・%Zd+Pc・%Zc+Pb・%Zb)/1000
=(28×0.0702+13×0.0548+13×7.38
+2.5×9.31)/1000 …(A4)
上位系統変電所(A変電所、B変電所)からループ点Xに至るa−b配電線間の位相差Δθは(A5)式より求められる。(A5)式は前述の(4)式に対応する。
θa = (Ph ·% Zh + Pi ·% Zi + Pj ·% Zj + Pa ·% Za) / 1000
= (45 × 0.067 + 21 × 0.0914 + 6 × 7.584
+ 1.9 × 8.744) / 1000 (A3)
θb = (Pe ·% Ze + Pd ·% Zd + Pc ·% Zc + Pb ·% Zb) / 1000
= (28 x 0.0702 + 13 x 0.0548 + 13 x 7.38
+ 2.5 × 9.31) / 1000 (A4)
The phase difference Δθ between the ab distribution lines from the upper system substation (A substation, B substation) to the loop point X is obtained from the equation (A5). Equation (A5) corresponds to Equation (4) described above.
Δθ=(θa−θb) …(A5)
(A5)式に(A3)式及び(A4)式を代入し[rad]を[度]に変換すると位相差Δθは、Δθ(≒−3.14「度」)となる。
Δθ = (θa−θb) (A5)
When the equations (A3) and (A4) are substituted into the equation (A5) and [rad] is converted into [degrees], the phase difference Δθ becomes Δθ (≈−3.14 “degrees”).
ループ全体のループ点位相差θxは、前述の(7)式で示されるので、(7)式に、(A2)式及び(A5)式を代入すると、(A6)式が得られる。 Since the loop point phase difference θx of the entire loop is expressed by the above-described equation (7), when the equations (A2) and (A5) are substituted into the equation (7), the equation (A6) is obtained.
θx=θ0’+Δθ=−0.87+(−3.14)=−4.01[度] …(A6)
(5)ループインピーダンスの計算
ループインピーダンス%ZLは下記(A7)式で求められる。
θx = θ0 ′ + Δθ = −0.87 + (− 3.14) = − 4.01 [degree] (A6)
(5) Calculation of loop impedance The loop impedance% ZL is obtained by the following equation (A7).
%ZL=%Za+%Zb+%Zc+%Zd+%Ze
+%Zf+%Zg+%Zh+%Zi+%Zj
=8.744+9.31+7.38+0.0548+0.0702
+0.5+0.2326+0.067+0.0914+7.584
=34.035 …(A7)
(6)配電許容電流から見たループ時の許容電流計算
a、b配電線のループ許容電流IA、IBは、前述の(9)、(10)式で示される。a、b配電線短時間許容電流Iuを600[A]とすると、a配電線負荷電流Ia(=177[A])、b配電線負荷電流Ib(=228[A])であるので、前述の(9)、(10)式に代入すると、a、b配電線のループ許容電流IA、IBは、(A8)式、(A9)式で示される。
% ZL =% Za +% Zb +% Zc +% Zd +% Ze
+% Zf +% Zg +% Zh +% Zi +% Zj
= 8.744 + 9.31 + 7.38 + 0.0548 + 0.0702
+ 0.5 + 0.2326 + 0.067 + 0.0914 + 7.584
= 34.035 (A7)
(6) Allowable current calculation during loop as seen from distribution allowable current The loop allowable currents IA and IB of the a and b distribution lines are expressed by the above-described equations (9) and (10). When the a and b distribution line short-time allowable current Iu is 600 [A], the a distribution line load current Ia (= 177 [A]) and the b distribution line load current Ib (= 228 [A]) Substituting into the equations (9) and (10), the loop allowable currents IA and IB of the a and b distribution lines are expressed by the equations (A8) and (A9).
IA=Iu−Ia=600−177=423[A] …(A8)
IB=Iu−Ib=600−228=372[A] …(A9)
(7)配電許容電流から見たループ時の許容位相差計算
ループ点Xのループ点位相差の許容位相差|θA’|、|θB’|は、前述の(11)、(12)式で示される。(A7)式で求めたループインピーダンス、(A8)式、(A9)式で求めたa、b配電線のループ許容電流IA、IBを前述の(11)、(12)式でに代入すると、ループ許容位相差|θA’|、|θB’|は、(A10)式、(A11)式で示される。
IA = Iu-Ia = 600-177 = 423 [A] (A8)
IB = Iu-Ib = 600-228 = 372 [A] (A9)
(7) Allowable phase difference calculation during loop from the viewpoint of allowable distribution current The allowable phase differences | θA ′ | and | θB ′ | of the loop point phase difference of the loop point X are expressed by the above-described equations (11) and (12). Indicated. Substituting the loop impedance obtained by the equation (A7), the loop allowable currents IA and IB of the a and b distribution lines obtained by the equation (A8) and (A9) into the above equations (11) and (12), The loop allowable phase differences | θA ′ | and | θB ′ | are expressed by equations (A10) and (A11).
|θA’|=IA×%ZL/1520
=423×34.035/1520=9.47 …(A10)
|θB’|=IB×%ZL/1520
=372×34.035/1520=8.33 …(A11)
(8)安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiの計算
安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiは、前述の(15)式で求められる。例えば、安全裕度|θα|が0.7である場合には、安全裕度加算ループ点位相差θiは、(A12)式で示される。
| ΘA '| = IA ×% ZL / 1520
= 423 * 34.035 / 1520 = 9.47 (A10)
| ΘB '| = IB ×% ZL / 1520
= 372 × 34.035 / 1520 = 8.33 (A11)
(8) Calculation of safety tolerance addition loop point phase difference θi of the loop point added with safety margin | θα | The safety tolerance addition loop point phase difference θi of the loop point added with safety margin | θα | (15). For example, when the safety margin | θα | is 0.7, the safety tolerance addition loop point phase difference θi is expressed by the equation (A12).
θi=|θx|+|θα|=|−4.01|+|0.7|=4.71 …(A12)
(9)安全裕度加算ループ点位相差θiの計算結果によるループ可否判断
安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiが配電線許容電流IA、IBから見たループ時の許容位相差|θA’|、|θB’|以内かどうかは、前述の(16)式、(17)式を用いて判定される。
θi = | θx | + | θα | = | −4.01 | + | 0.7 | = 4.71 (A12)
(9) Loop tolerance judgment based on the calculation result of safety margin addition loop point phase difference θi The safety margin addition loop point phase difference θi of the loop point added with safety margin | θα | is determined from the distribution line allowable currents IA and IB. Whether or not the phase difference is within the allowable phase differences | θA ′ | and | θB ′ | at the time of the loop is determined using the above-described equations (16) and (17).
ループ全体のループ点位相差θxは(A6)式で示されるように、極性が負である(θx==−4.01[度])ので、前述の(17)式のループ許容位相差|θA’|が適用される。(A10)式より|θA’|=9.47、(A12)式よりθi=4.71であるので、前述の(17)式を満たす。 Since the loop point phase difference θx of the entire loop has a negative polarity (θx = −− 4.01 [degrees]) as shown by the equation (A6), the loop allowable phase difference of the above equation (17) | θA ′ | is applied. Since | θA ′ | = 9.47 from the formula (A10) and θi = 4.71 from the formula (A12), the above formula (17) is satisfied.
図13は、比較例におけるa配電線を基準とした場合のループ許容位相差|θA’|、|θB’|、安全裕度加算ループ点位相差θi及びループ全体のループ点位相差θxの説明図である。a配電線を基準とし、a配電線に対してb配電線の位相差θbを進み(+)、遅れ(−)で示している。ループ全体のループ点位相差θxが(A6)式で示されるように、極性が負である場合(θx==−4.01[度])には、ループ許容位相差|θA’|(=9.47[度])が適用される。 FIG. 13 illustrates the loop allowable phase differences | θA ′ |, | θB ′ |, the safety margin addition loop point phase difference θi, and the loop point phase difference θx of the entire loop when the a distribution line in the comparative example is used as a reference. FIG. With reference to the a distribution line, the phase difference θb of the b distribution line with respect to the a distribution line is indicated by advance (+) and delay (−). As shown in the equation (A6), when the loop point phase difference θx of the entire loop is negative (θx == − 4.01 [degrees]), the loop allowable phase difference | θA ′ | (= 9.47 [degrees]) applies.
ループ全体のループ点位相差θxは(A6)式で示されるように、極性が負である(θx==−4.01[度])ので、前述の(17)式のループ許容位相差|θA’|が適用される。(A10)式より|θA’|=9.47、(A12)式よりθi=4.71であるので、前述の(17)式を満たす。 Since the loop point phase difference θx of the entire loop has a negative polarity (θx = −− 4.01 [degrees]) as shown by the equation (A6), the loop allowable phase difference of the above equation (17) | θA ′ | is applied. Since | θA ′ | = 9.47 from the formula (A10) and θi = 4.71 from the formula (A12), the above formula (17) is satisfied.
<実施例>
図14は、本発明の実施例での66kVの送電系統にかかる電力潮流Pを考慮に入れないでループ点位相差を計算する場合の系統図である。図12に示した比較例の系統図と同じであり、(1)データ取込処理、(2)ループ対象の基準設定)は同じであるので、説明は省略する。
<Example>
FIG. 14 is a system diagram in the case where the loop point phase difference is calculated without taking into consideration the power flow P applied to the 66 kV transmission system in the embodiment of the present invention. Since it is the same as the system diagram of the comparative example shown in FIG. 12 and (1) data fetching process and (2) reference setting of loop target) are the same, description thereof will be omitted.
(3)上位系統位相差θ0の計算
・上位系統変電所の遮断器開放箇所が1箇所であり、取得した位相が上位系統位相差であるので、上位系統位相差θ0は、θ0=−1.00[度]である。上位系統位相差θ0は(A1’)式で示される。
(3) Calculation of upper system phase difference θ0 • Since there is one open circuit breaker in the upper system substation and the acquired phase is the upper system phase difference, the upper system phase difference θ0 is θ0 = −1. 00 degrees. The higher system phase difference θ0 is expressed by the equation (A1 ′).
θ0=[{Pg・%Zg−(Pf・%Zf+Pk・%Zk)}/1000]
×(180/π)=−1.00[度] …(A1’)
[66kV送電線にかかる電力潮流の位相差計算を省略]
この部分の位相差は小数点以下の微少値のため、省略しても僅かな誤差である。従って、実施例では、下記のこれらの位相差を省略する。
θ0 = [{Pg ·% Zg− (Pf ·% Zf + Pk ·% Zk)} / 1000]
× (180 / π) = − 1.00 [degree] (A1 ′)
[Calculation of phase difference of power flow applied to 66kV transmission line is omitted]
Since the phase difference in this part is a minute value below the decimal point, it is a slight error even if omitted. Therefore, in the embodiment, the following phase differences are omitted.
A変電所〜B変電所間の66kV送電線にかかる位相計算
(Pk・%Zk/1000)×(180/π)≒0.13[度]
A変電所〜J変電所間の66kV送電線にかかる位相計算
{(Ph・%Zh)+(Pj・%Zj)/1000}×(180/π)≒0.28[度]
B変電所〜C変電所間の66kV送電線にかかる位相計算
{(Pe・%Ze)+(Pd・%Zd)/1000}×(180/π)≒0.15[度]
(4)ループ点のループ点位相差計算
まず、上位系統変電所(A変電所、B変電所)からループ点Xに至るa配電線側の位相θa、b配電線側の位相θbは、比較例の場合と異なり、各々(A3’)式、(A4’)式で求められる。
Phase calculation for 66 kV transmission line between A substation and B substation (Pk ·% Zk / 1000) × (180 / π) ≈0.13 [degree]
Phase calculation for 66 kV transmission line between A substation and J substation {(Ph ·% Zh) + (Pj ·% Zj) / 1000} × (180 / π) ≈0.28 [degree]
Phase calculation for 66 kV transmission line between B substation and C substation {(Pe ·% Ze) + (Pd ·% Zd) / 1000} × (180 / π) ≈0.15 [degree]
(4) Loop point phase difference calculation of loop points First, the phase θa on the a distribution line side from the upper system substation (A substation, B substation) to the loop point X, and the phase θb on the b distribution line side are compared. Unlike the case of the example, it is obtained by the equations (A3 ′) and (A4 ′).
θa=(Pj・%Zj+Pa・%Za)/1000
=(6×7.584+1.9×8.744)/1000 …(A3’)
θb=(Pc・%Zc+Pb・%Zb)/1000
=(13×7.38+2.5×9.31)/1000 …(A4’)
上位系統変電所(A変電所、B変電所)からループ点Xに至るa−b配電線間の位相差Δθは(A5’)式より求められる。(A5’)式は前述の(4)式に対応する。
θa = (Pj ·% Zj + Pa ·% Za) / 1000
= (6 × 7.584 + 1.9 × 8.744) / 1000 (A3 ′)
θb = (Pc ·% Zc + Pb ·% Zb) / 1000
= (13 × 7.38 + 2.5 × 9.31) / 1000 (A4 ′)
The phase difference Δθ between the ab distribution lines from the upper system substation (A substation, B substation) to the loop point X is obtained from the equation (A5 ′). The expression (A5 ′) corresponds to the expression (4) described above.
Δθ=(θa−θb) …(A5’)
(A5’)式に(A3’)式及び(A4’)式を代入し[rad]を[度]に変換すると位相差Δθは、比較例と異なった値のΔθ(≒−3.27「度」)となる。
Δθ = (θa−θb) (A5 ′)
When the equations (A3 ′) and (A4 ′) are substituted into the equation (A5 ′) and [rad] is converted into [degrees], the phase difference Δθ is different from the comparative example by Δθ (≈−3.27 “ Degree ").
ループ全体のループ点位相差θxは、前述の(7)式で示されるので、(7)式に、(A2’)式及び(A5’)式を代入すると、(A6’)式により、比較例と異なった値のループ全体のループ点位相差θxが得られる。 Since the loop point phase difference θx of the entire loop is expressed by the above-described equation (7), if the equations (A2 ′) and (A5 ′) are substituted into the equation (7), the comparison is made according to the equation (A6 ′). The loop point phase difference θx of the entire loop having a value different from the example is obtained.
θx= θ0+Δθ=−1.00+(−3.27)=−4.27[度] …(A6’)
(5)ループインピーダンスの計算
ループインピーダンス%ZLは比較例の場合と同様であり、下記(A7’)式により比較例と同じ値のループインピーダンス%ZLが求められる。
θx = θ0 + Δθ = −1.00 + (− 3.27) = − 4.27 [degrees] (A6 ′)
(5) Calculation of Loop Impedance The loop impedance% ZL is the same as that in the comparative example, and the loop impedance% ZL having the same value as in the comparative example is obtained by the following formula (A7 ′).
%ZL=%Za+%Zb+%Zc+%Zd+%Ze
+%Zf+%Zg+%Zh+%Zi+%Zj
=8.744+9.31+7.38+0.0548+0.0702
+0.5+0.2326+0.067+0.0914+7.584
=34.035 …(A7’)
(6)配電許容電流から見たループ時の許容電流計算
a、b配電線のループ許容電流IA、IBも比較例の場合と同様であり、(A8’)式、(A9’)式で示される。
% ZL =% Za +% Zb +% Zc +% Zd +% Ze
+% Zf +% Zg +% Zh +% Zi +% Zj
= 8.744 + 9.31 + 7.38 + 0.0548 + 0.0702
+ 0.5 + 0.2326 + 0.067 + 0.0914 + 7.584
= 34.035 (A7 ')
(6) Calculation of allowable current during loop from the viewpoint of distribution allowable current The loop allowable currents IA and IB of the a and b distribution lines are the same as in the comparative example, and are shown by the formulas (A8 ′) and (A9 ′). It is.
IA=Iu−Ia=600−177=423[A] …(A8’)
IB=Iu−Ib=600−228=372[A] …(A9’)
(7)配電許容電流から見たループ時の許容位相差計算
ループ点Xのループ点位相差の許容位相差|θA’|、|θB’|も比較例の場合と同様であり、(A10)式、(A11)式で示される。
IA = Iu-Ia = 600-177 = 423 [A] (A8 ')
IB = Iu-Ib = 600-228 = 372 [A] (A9 ')
(7) Calculation of allowable phase difference in loop as viewed from distribution allowable current Allowable phase difference | θA '|, | θB' | of loop point phase difference of loop point X is the same as that in the comparative example, and (A10) This is expressed by the equation (A11).
|θA’|=IA×%ZL/1520
=423×34.035/1520=9.47 …(A10’)
|θB’|=IB×%ZL/1520
=372×34.035/1520=8.33 …(A11’)
(8)安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiの計算
安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiは、前述の(15)式で求められる。例えば、安全裕度|θα|が0.7である場合には、安全裕度加算ループ点位相差θiは、(A12’)式で示される。
| ΘA '| = IA ×% ZL / 1520
= 423 × 34.035 / 1520 = 9.47 (A10 ′)
| ΘB '| = IB ×% ZL / 1520
= 372 × 34.035 / 1520 = 8.33 (A11 ′)
(8) Calculation of safety tolerance addition loop point phase difference θi of the loop point added with safety margin | θα | The safety tolerance addition loop point phase difference θi of the loop point added with safety margin | θα | (15). For example, when the safety margin | θα | is 0.7, the safety tolerance addition loop point phase difference θi is expressed by the equation (A12 ′).
θi=|θx|+|θα|=|−4.27|+|0.7|=4.97 …(A12’)
(9)安全裕度加算ループ点位相差θiの計算結果によるループ可否判断
安全裕度|θα|を加算したループ点の安全裕度加算ループ点位相差θiが配電線許容電流IA、IBから見たループ時の許容位相差|θA’|、|θB’|以内かどうかは、前述の(16)式、(17)式を用いて判定される。
θi = | θx | + | θα | = | −4.27 | + | 0.7 | = 4.97 (A12 ′)
(9) Loop tolerance judgment based on the calculation result of safety margin addition loop point phase difference θi The safety margin addition loop point phase difference θi of the loop point added with safety margin | θα | is determined from the distribution line allowable currents IA and IB. Whether or not the phase difference is within the allowable phase differences | θA ′ | and | θB ′ | at the time of the loop is determined using the above-described equations (16) and (17).
ループ全体のループ点位相差θxは(A6’)式で示されるように、極性が負である(θx==−4.27[度])ので、前述の(17)式のループ許容位相差|θA’|が適用される。(A10’)式より|θA’|=9.47、(A12’)式よりθi=4.97であるので、前述の(17)式を満たす。 Since the loop point phase difference θx of the entire loop has a negative polarity (θx == − 4.27 [degrees]) as shown by the equation (A6 ′), the loop allowable phase difference of the above equation (17). | ΘA '| is applied. Since | θA ′ | = 9.47 from the expression (A10 ′) and θi = 4.97 from the expression (A12 ′), the above expression (17) is satisfied.
このように、実施例のように、66kVの送電系統にかかる電力潮流Pを考慮に入れない場合であっても、66kVの送電系統にかかる電力潮流Pを考慮に入れた場合と同様に、ループ切替の判定が精度よく行える。 Thus, even when the power flow P applied to the 66 kV transmission system is not taken into consideration as in the embodiment, the loop is applied in the same manner as when the power flow P applied to the 66 kV transmission system is taken into consideration. Switching can be determined accurately.
本発明の実施形態によれば、配電線の異系統ループ切替にあたって、ループチェッカー(位相角測定器)による現地測定を行わず、切替可否の判定ができるため、現場作業の削減や効率化が図れる。また、ループ点の位相差計算にあたって、上位系統の電力潮流Pの収集やそれにかかる電力潮流Pの計算を行う必要がなく、上位系統情報は常時切り箇所の位相差(ループアングル)をもって上位系統分の位相差とし、66kVの送電系統にかかる電力潮流Pを計算から省くことで、簡易で低廉な計算が図れる。 According to the embodiment of the present invention, when switching a distribution system to a different system loop, it is possible to determine whether or not switching is possible without performing on-site measurement by a loop checker (phase angle measuring device), thereby reducing field work and improving efficiency. . In addition, when calculating the phase difference of the loop point, it is not necessary to collect the power flow P of the upper system and to calculate the power flow P related thereto. By omitting the power flow P applied to the 66 kV transmission system from the calculation, a simple and inexpensive calculation can be achieved.
また、実際の上位系統では電源変電所遮断器の常時切り箇所が複数存在する系統が大半であるため、上位系統の電源変電所遮断器の常時切り箇所の位相差が系統状態によって複数存在する場合でもアングル合成計算で上位系統の位相差の合成値が求められるため、上位系統がどのような状態であっても簡易で低廉な計算が図れる。 In addition, in the actual upper system, the majority of the systems have multiple points where the power substation breakers are always disconnected, so there are multiple phase differences depending on the system status. However, since the composite value of the phase difference of the host system is obtained by angle composition calculation, simple and inexpensive calculation can be achieved regardless of the state of the host system.
また、電源変電所遮断器の常時切り箇所における上位系統の位相差と配電用変電所バンクから配電線ループ点に至るまでの位相差を合計してトータル位相差を求め、これに過去履歴の実測値と計算値との誤差分の最大値と平均値を用いて、安全裕度を決定し、位相差計算値に安全裕度を加算して得られたループ点の位相差が配電線許容電流から見たループ時のループ許容位相差の範囲内にあるか否かを判定する安全かつ簡易な異系統ループ切替の可否判定方法を提供できる。 In addition, the total phase difference is obtained by summing the phase difference of the upper system at the location where the power supply substation breaker is always turned off and the phase difference from the distribution substation bank to the distribution line loop point, and this is used to measure the past history. The safety margin is determined using the maximum and average values of the error between the calculated value and the calculated value, and the phase difference at the loop point obtained by adding the safety tolerance to the calculated phase difference is the distribution line allowable current. Therefore, it is possible to provide a safe and simple method for determining whether or not different system loops can be switched, for determining whether or not the current phase is within the range of the loop allowable phase difference at the time of the loop.
以上、本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The embodiment of the present invention has been presented as an example, and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
11…配電線、12…配電用変電所バンク、13…上位系統変電所、14…遮断器 11 ... Distribution line, 12 ... Distribution substation bank, 13 ... Upper system substation, 14 ... Breaker
Claims (3)
前記ループ点位相差の計算は、前記上位系統の変電所の遮断器開放箇所の位相差をアングル合成した上位系統位相差と、前記二つの配電線のループ点の配電系統位相差とを加算して求めることを特徴とする配電線異系統ループ切替可否判定方法。 When switching a loop by switching a switch at the loop point of two distribution lines with different substations in the upper system, calculate the loop point phase difference at the loop point of the two distribution lines and calculate the loop tolerance at the loop point. In the distribution line different system loop switching possibility determination method for calculating the phase difference and determining whether the loop switching is possible by comparing the loop point phase difference and the loop allowable phase difference.
The calculation of the loop point phase difference is performed by adding the upper system phase difference obtained by angle synthesis of the phase difference of the circuit breaker open part of the upper system substation and the distribution system phase difference of the loop points of the two distribution lines. A method for determining whether or not a distribution line different system loop can be switched.
(1)前記ループ点位相差の極性が正のとき
前記二つの配電線のうち基準位相でない非基準配電線の前記ループ許容位相差と前記ループ点位相差との差分が前記最大誤差より小さいときは前記最大誤差を前記安全裕度とし、前記最大誤差より大きいときは前記平均誤差を前記安全裕度とする。
(2)前記ループ点位相差の極性が負のとき
前記二つの配電線のうち基準位相の基準配電線の前記ループ許容位相差と前記ループ点位相差との差分が前記最大誤差より小さいときは前記最大誤差を前記安全裕度とし、前記最大誤差より大きいときは前記平均誤差を前記安全裕度とする。 The maximum value of the error between the calculated value of the loop point phase difference and the actual measurement value is set as the maximum error, and the average value of the error between the calculated value of the loop point phase difference and the actual measurement value is obtained in advance as the average error, The safety margin is determined as follows according to the polarity of the phase difference of the loop points, and the method for determining whether or not the distribution line different system loop switching is possible.
(1) When the polarity of the loop point phase difference is positive When the difference between the loop allowable phase difference of the non-reference distribution line that is not the reference phase of the two distribution lines and the loop point phase difference is smaller than the maximum error Uses the maximum error as the safety margin, and when it is larger than the maximum error, the average error as the safety margin.
(2) When the polarity of the loop point phase difference is negative When the difference between the loop allowable phase difference of the reference distribution line of the reference phase of the two distribution lines and the loop point phase difference is smaller than the maximum error The maximum error is set as the safety margin, and when the maximum error is larger than the maximum error, the average error is set as the safety margin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001520A JP5895854B2 (en) | 2013-01-09 | 2013-01-09 | Judgment method for switching loops between different distribution lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001520A JP5895854B2 (en) | 2013-01-09 | 2013-01-09 | Judgment method for switching loops between different distribution lines |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014135812A true JP2014135812A (en) | 2014-07-24 |
JP5895854B2 JP5895854B2 (en) | 2016-03-30 |
Family
ID=51413723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013001520A Active JP5895854B2 (en) | 2013-01-09 | 2013-01-09 | Judgment method for switching loops between different distribution lines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5895854B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009055705A (en) * | 2007-08-27 | 2009-03-12 | Chugoku Electric Power Co Inc:The | Synchronized state prediction system and the synchronized state prediction method of electric power system |
JP2009176107A (en) * | 2008-01-25 | 2009-08-06 | Tokyo Electric Power Co Inc:The | Closed circuit determining device and distribution system structure |
JP2012090386A (en) * | 2010-10-18 | 2012-05-10 | Chugoku Electric Power Co Inc:The | Distribution line switching load permission determination system |
-
2013
- 2013-01-09 JP JP2013001520A patent/JP5895854B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009055705A (en) * | 2007-08-27 | 2009-03-12 | Chugoku Electric Power Co Inc:The | Synchronized state prediction system and the synchronized state prediction method of electric power system |
JP2009176107A (en) * | 2008-01-25 | 2009-08-06 | Tokyo Electric Power Co Inc:The | Closed circuit determining device and distribution system structure |
JP2012090386A (en) * | 2010-10-18 | 2012-05-10 | Chugoku Electric Power Co Inc:The | Distribution line switching load permission determination system |
Also Published As
Publication number | Publication date |
---|---|
JP5895854B2 (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Funmilayo et al. | Overcurrent protection for the IEEE 34-node radial test feeder | |
Duong et al. | A new method for secured optimal power flow under normal and network contingencies via optimal location of TCSC | |
BR112021018919B1 (en) | METHOD AND SYSTEM TO IDENTIFY A LOCATION OF A FAILURE IN AN ELECTRIC POWER DISTRIBUTION NETWORK | |
KR102460706B1 (en) | Apparatus and method detecting direction of fault current | |
Dallas et al. | Teleprotection in multi-terminal HVDC supergrids | |
KR102128442B1 (en) | Apparatus for protecting OLTC of main transformer | |
CN107832886A (en) | A kind of method that big data supports Utilities Electric Co.'s operation and development | |
Kemabonta et al. | A syncretistic approach to grid reliability and resilience: Investigations from Minnesota | |
JP5895854B2 (en) | Judgment method for switching loops between different distribution lines | |
ITLU20080013A1 (en) | SAFETY SYSTEM FOR ELECTRICITY SUPPLY TO SINGLE OR MULTIPLE LIVING UNITS (PARTICULARLY PART OF MULTI-STOREY BUILDINGS), TO AVOID THAT HAZARDOUS CONTACT VOLTAGES CAN BE HAVING ON THE GENERAL NODE | |
Kim et al. | Active TCC based protection coordination scheme for networked distribution system | |
Mack et al. | Impacts of substation transformer backfeed at high PV penetrations | |
BR112020002669A2 (en) | methods for classifying network assets based on downstream events and distribution network management system | |
CN103825259A (en) | Relay protection system | |
Sun et al. | A new approach for real-time voltage stability monitoring using PMUs | |
CN109541399A (en) | A kind of electrical power distribution network fault location method and device | |
CN209344751U (en) | Protective circuit | |
CN105207176B (en) | A kind of line protection method | |
Samkari et al. | Modeling and simulation the impacts of STATCOMs on distance protection | |
Gangolu et al. | Relay algorithm for STATCOM compensated line using differential current ratio | |
JP2013252012A (en) | Power storage system | |
JP6333668B2 (en) | Electric power independent system | |
CN109274058A (en) | Protection circuit, protection method and protection device | |
Nose et al. | A LRT control method using sensor information in distribution systems with a large amount of PVs and EVs | |
Wang et al. | Total supply capability for city distribution systems based on the probability load growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5895854 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |