JP2014135357A - Illumination optical system and illumination method, polarization unit, and light exposure method and device - Google Patents

Illumination optical system and illumination method, polarization unit, and light exposure method and device Download PDF

Info

Publication number
JP2014135357A
JP2014135357A JP2013001878A JP2013001878A JP2014135357A JP 2014135357 A JP2014135357 A JP 2014135357A JP 2013001878 A JP2013001878 A JP 2013001878A JP 2013001878 A JP2013001878 A JP 2013001878A JP 2014135357 A JP2014135357 A JP 2014135357A
Authority
JP
Japan
Prior art keywords
light
optical
polarization
illumination
optical rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013001878A
Other languages
Japanese (ja)
Inventor
Hisanori Kita
尚憲 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013001878A priority Critical patent/JP2014135357A/en
Publication of JP2014135357A publication Critical patent/JP2014135357A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an illumination optical system having a high degree of freedom for changing a polarization state.SOLUTION: An illumination optical system ILS illuminating a reticle surface Ra with illumination light IL from a light source 10, comprises: a spatial optical modulator 22 having a plurality of mirror elements 24 arranged on an arrangement surface P1, and forming light intensity distribution to an illumination pupil of the illumination optical system ILS; an optical rotation member 29B arranged between the arrangement surface P1 and the reticle surface Ra, and changing a polarization state of at least a part of light toward the reticle surface Ra via the spatial optical modulator 22; and a birefringent member 31B arranged between the arrangement surface P1 and the reticle surface Ra, and that is a uniaxial birefringent crystal with no optical rotation, and that is arranged so that its optical axis is parallel to an optical axis AXI of the illumination optical system ILS.

Description

本発明は、被照射面を照明する照明技術、光の偏光状態を制御するために使用される偏光ユニット、その照明技術を用いる露光技術、及び露光技術を用いるデバイス製造技術に関する。   The present invention relates to an illumination technique for illuminating a surface to be irradiated, a polarization unit used for controlling the polarization state of light, an exposure technique using the illumination technique, and a device manufacturing technique using the exposure technique.

この種の典型的な露光装置においては、光源から射出された光が、オプティカルインテグレータとしての例えばフライアイレンズを介して、多数の小さい光源からなる実質的な面光源としての二次光源(照明瞳における光強度分布)を形成する。また、照明瞳が形成される面(照明瞳面)は、照明瞳面と被照射面(露光装置の場合にはレチクル(マスク)のパターン面)との間の光学系の作用によって、被照射面が照明瞳面のフーリエ変換面となるような位置として定義することもできる。その照明瞳からの光は、その光学系、レチクル、及び投影光学系を介してウェハ等の感光性基板の表面にレチクルパターンの像を形成する。以下、照明瞳面又はこれと共役な面における光強度分布を瞳強度分布ともいう。   In a typical exposure apparatus of this type, light emitted from a light source is a secondary light source (illumination pupil) as a substantial surface light source composed of a large number of small light sources via, for example, a fly-eye lens as an optical integrator. A light intensity distribution). The surface on which the illumination pupil is formed (illumination pupil surface) is illuminated by the action of the optical system between the illumination pupil surface and the illuminated surface (reticle (mask) pattern surface in the case of an exposure apparatus). It can also be defined as a position where the plane is the Fourier transform plane of the illumination pupil plane. The light from the illumination pupil forms an image of a reticle pattern on the surface of a photosensitive substrate such as a wafer via the optical system, reticle, and projection optical system. Hereinafter, the light intensity distribution on the illumination pupil plane or a plane conjugate thereto is also referred to as a pupil intensity distribution.

従来、レチクルのパターンに応じて照明条件の一つである照明瞳内での偏光状態の分布を制御するために、輪帯状又は複数極状の照明瞳を形成し、波長板付きの開口絞りを用いて、その照明瞳を通過する光束の偏光状態を、光軸に対してほぼ周方向を偏光方向とする直線偏光状態(以下、周方向偏光状態ともいう)に設定する技術が提案されている(例えば、特許文献1を参照)。   Conventionally, in order to control the distribution of the polarization state in the illumination pupil, which is one of the illumination conditions, according to the pattern of the reticle, an annular or multipolar illumination pupil is formed, and an aperture stop with a wavelength plate is formed. And a technique for setting the polarization state of a light beam passing through the illumination pupil to a linear polarization state (hereinafter, also referred to as a circumferential polarization state) having a polarization direction substantially in the circumferential direction with respect to the optical axis has been proposed. (For example, see Patent Document 1).

特許第3246615号明細書Japanese Patent No. 3246615

最近は、様々な形態の微細パターンを忠実に転写するのに適した照明条件を実現するために、瞳強度分布の形状(大きさを含む広い概念)及び偏光状態の変更に関する自由度の向上が望まれている。しかしながら、特許文献1に記載された従来技術では、波長板付きの開口絞りを交換しない限り、瞳強度分布の形状や偏光状態を変化させることができなかった。   Recently, in order to realize illumination conditions suitable for faithfully transferring various patterns of fine patterns, the degree of freedom in changing the shape (wide concept including size) and polarization state of the pupil intensity distribution has been improved. It is desired. However, in the prior art described in Patent Document 1, the shape of the pupil intensity distribution and the polarization state cannot be changed unless the aperture stop with the wave plate is replaced.

本発明は、前述の課題に鑑みてなされたものであり、偏光状態の変更に関して高い自由度を得ることができるようにすることを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to obtain a high degree of freedom regarding a change in polarization state.

本発明の第1の態様によれば、光源からの光により被照射面を照明する照明光学系において、所定面内に配置されて、その照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材と、その所定面とその被照射面との間に配置され、その光強度分布形成部材を介してその被照射面に向かう少なくとも一部の光の偏光状態を変化させる旋光性を有する光学材料より形成された第1旋光部材と、その所定面とその被照射面との間に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸がその照明光学系の光軸に平行になるように配置される調整部材と、を備える照明光学系が提供される。   According to the first aspect of the present invention, in an illumination optical system that illuminates a surface to be irradiated with light from a light source, the light that is disposed within a predetermined plane and forms a light intensity distribution on the illumination pupil of the illumination optical system An optical power that changes the polarization state of at least part of the light that is disposed between the intensity distribution forming member and the predetermined surface and the irradiated surface and that is directed to the irradiated surface through the light intensity distribution forming member. A first rotatory member formed of an optical material having a uniaxial birefringent crystal without optical rotation disposed between a predetermined surface and an irradiated surface, the optical axis of which is the illumination optical An illumination optical system is provided that includes an adjustment member that is arranged to be parallel to the optical axis of the system.

また、第2の態様によれば、所定のパターンを照明するための本発明の態様の照明光学系を備え、その照明光学系からの光を用いてその所定のパターンを感光性基板に露光する露光装置が提供される。
また、第3の態様によれば、所定面内に配置されて、照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材を介して射出される光束の偏光状態を制御する偏光ユニットであって、その光強度分布形成部材から射出される光の光路に配置されて、その光強度分布形成部材から射出される少なくとも一部の光の偏光状態を変化させる旋光性を有する光学材料より形成された第1旋光部材と、その光強度分布形成部材から射出される光の光路に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸がその照明光学系の光軸に平行になるように配置される調整部材と、を備える偏光ユニットが提供される。
According to the second aspect, the illumination optical system according to the aspect of the present invention for illuminating a predetermined pattern is provided, and the predetermined pattern is exposed on the photosensitive substrate using light from the illumination optical system. An exposure apparatus is provided.
Further, according to the third aspect, the polarization that controls the polarization state of the light beam that is arranged in the predetermined plane and that is emitted through the light intensity distribution forming member that forms the light intensity distribution on the illumination pupil of the illumination optical system. An optical material which is a unit and is arranged in the optical path of light emitted from the light intensity distribution forming member and has an optical rotation property that changes the polarization state of at least part of the light emitted from the light intensity distribution forming member A uniaxial birefringent crystal having no optical rotation, the optical axis of the illumination optical system being arranged in the optical path of light emitted from the first optical rotation member formed from the light intensity distribution forming member And an adjusting member arranged to be parallel to the optical axis of the polarizing unit.

また、第4の態様によれば、光源からの光により被照射面を照明する照明方法において、所定面内に配置されて、照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材にその光源からの光を供給することと、旋光性を有する光学材料より形成された第1旋光部材を用いて、その光強度分布形成部材を介してその被照射面に向かう少なくとも一部の光の偏光状態を変化させることと、その所定面とその被照射面との間に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸がその照明光学系の光軸に平行になるように配置される調整部材を用いて、その被照射面に向かう少なくとも一部の光の偏光状態を調整することと、を含む照明方法が提供される。   According to the fourth aspect, in the illumination method for illuminating the illuminated surface with the light from the light source, the light intensity distribution is formed in the predetermined plane and forms the light intensity distribution on the illumination pupil of the illumination optical system. Supplying light from the light source to the member and using the first optical rotation member formed of an optical material having optical activity, at least a part of the light intensity distribution forming member toward the irradiated surface A uniaxial birefringent crystal having no optical rotation, which is disposed between the predetermined surface and the irradiated surface, and whose optical axis is the light of the illumination optical system. Adjusting the polarization state of at least a part of the light toward the irradiated surface using an adjusting member arranged to be parallel to the axis.

また、第5の態様によれば、本発明の態様の照明方法を用いて所定のパターンを照明し、その所定のパターンを感光性基板に露光する露光方法が提供される。
また、第6の態様によれば、本発明の態様の露光装置又は露光方法を用いて、その所定のパターンをその感光性基板に露光することと、その所定のパターンが転写されたその感光性基板を現像し、その所定のパターンに対応する形状のマスク層をその感光性基板の表面に形成することと、そのマスク層を介してその感光性基板の表面を加工することと、を含むデバイス製造方法が提供される。
Moreover, according to the 5th aspect, the exposure method which illuminates a predetermined pattern using the illumination method of the aspect of this invention and exposes the predetermined pattern to a photosensitive substrate is provided.
According to the sixth aspect, the exposure apparatus or the exposure method of the aspect of the present invention is used to expose the predetermined pattern on the photosensitive substrate, and the photosensitive property to which the predetermined pattern is transferred. Developing a substrate, forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate, and processing the surface of the photosensitive substrate through the mask layer A manufacturing method is provided.

本発明の態様によれば、光強度分布形成部材と第1旋光部材との協働作用によって、光学部材の交換を行うことなく、偏光状態の変更に関して高い自由度を得ることが可能となる。さらに、第1旋光部材に比較的大きい入射角で入射する光(斜入射光)の射出時の偏光状態が、垂直入射光の射出時の偏光状態に対して変化する場合には、その第1旋光部材の入射側又は射出側で調整部材によってその射出入射光の偏光状態を調整することで、その斜入射光の射出時の偏光状態を垂直入射光の射出時の偏光状態に合わせることが可能となる。   According to the aspect of the present invention, the cooperative action of the light intensity distribution forming member and the first optical rotation member makes it possible to obtain a high degree of freedom for changing the polarization state without replacing the optical member. Furthermore, when the polarization state at the time of emission of light (obliquely incident light) incident on the first optical rotation member with a relatively large incident angle changes with respect to the polarization state at the time of emission of normal incident light, the first By adjusting the polarization state of the incident incident light with the adjusting member on the incident side or the exit side of the optical rotation member, it is possible to match the polarization state when the oblique incident light is emitted with the polarization state when the perpendicular incident light is emitted. It becomes.

(A)は実施形態の一例に係る露光装置の概略構成を示す図、(B)は図1(A)中の偏光制御系の要部を示す拡大図、(C)は変形例の偏光制御系の要部を示す拡大図である。(A) is a view showing a schematic configuration of an exposure apparatus according to an example of the embodiment, (B) is an enlarged view showing a main part of the polarization control system in FIG. 1 (A), and (C) is a polarization control of a modification. It is an enlarged view which shows the principal part of a system | strain. (A)はSLM(空間光変調器)の一部のミラー要素を示す拡大斜視図、(B)はSLMに入射する光束の偏光状態を示す図、(C)は照明瞳の偏光状態の分布の一例を示す図、(D)は照明瞳の偏光状態の分布の他の例を示す図である。(A) is an enlarged perspective view showing a part of mirror elements of an SLM (spatial light modulator), (B) is a diagram showing a polarization state of a light beam incident on the SLM, and (C) is a distribution of polarization states of an illumination pupil. (D) is a figure which shows another example of distribution of the polarization state of an illumination pupil. (A)は図1中のSLMのミラー要素のアレイを示す図、(B)はSLMの部分アレイ領域の他の例を示す図、(C)は偏光制御系を示す図、(D)は偏光制御系を駆動した状態を示す図である。(A) is a diagram showing an array of mirror elements of the SLM in FIG. 1, (B) is a diagram showing another example of a partial array region of the SLM, (C) is a diagram showing a polarization control system, (D) is It is a figure which shows the state which driven the polarization control system. 照明光学系の要部を示す斜視図である。It is a perspective view which shows the principal part of an illumination optical system. (A)は第2の偏光ユニットの旋光部材を通過した複数の光の偏光状態の変化を示す斜視図、(B)は旋光部材に入射する複数の光の偏光状態を示す図、(C)は旋光部材から射出される複数の光の偏光状態を示す図である。(A) is a perspective view showing a change in the polarization state of a plurality of lights that have passed through the optical rotation member of the second polarization unit, (B) is a diagram showing the polarization state of a plurality of lights incident on the optical rotation member, (C) FIG. 5 is a diagram showing a polarization state of a plurality of lights emitted from an optical rotation member. (A)は第2の偏光ユニットの旋光部材及び複屈折部材を通過した複数の光の偏光状態の変化を示す斜視図、(B)は複屈折部材に入射する複数の光の偏光状態を示す図、(C)は複屈折部材から射出される複数の光の偏光状態を示す図である。(A) is a perspective view which shows the change of the polarization state of the some light which passed the optical rotation member and birefringent member of the 2nd polarization unit, (B) shows the polarization state of the some light which injects into a birefringent member. FIG. 4C is a diagram showing the polarization state of a plurality of lights emitted from the birefringent member. (A)は第3の偏光ユニットの旋光部材を通過した複数の光の偏光状態の変化を示す斜視図、(B)は旋光部材に入射する複数の光の偏光状態を示す図、(C)は旋光部材から射出される複数の光の偏光状態を示す図である。(A) is a perspective view showing a change in the polarization state of a plurality of lights that have passed through the optical rotation member of the third polarization unit, (B) is a diagram showing the polarization state of a plurality of lights incident on the optical rotation member, (C) FIG. 5 is a diagram showing a polarization state of a plurality of lights emitted from an optical rotation member. (A)は第3の偏光ユニットの旋光部材及び複屈折部材を通過した複数の光の偏光状態の変化を示す斜視図、(B)は複屈折部材に入射する複数の光の偏光状態を示す図、(C)は複屈折部材から射出される複数の光の偏光状態を示す図である。(A) is a perspective view which shows the change of the polarization state of the several light which passed the optical rotation member and birefringent member of the 3rd polarizing unit, (B) shows the polarization state of the several light which injects into a birefringent member. FIG. 4C is a diagram showing the polarization state of a plurality of lights emitted from the birefringent member. 照明方法及び露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the illumination method and the exposure method. (A)は変形例の偏光制御系の要部を示す斜視図、(B)は図10(A)中の補正用旋光部材から射出される光の偏光状態を示す図、(C)は偏光ユニットの変形例を示す側面図、(D)は偏光ユニットの別の変形例を示す側面図である。(A) is a perspective view showing an essential part of a polarization control system of a modification, (B) is a diagram showing a polarization state of light emitted from a correction optical rotation member in FIG. 10 (A), and (C) is polarized light. The side view which shows the modification of a unit, (D) is a side view which shows another modification of a polarizing unit. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device.

以下、実施形態の一例につき図1(A)〜図9を参照して説明する。図1(A)は、本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは投影光学系PLを備えており、以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面で図1(A)の紙面に垂直な方向にX軸を、その紙面に平行な方向にY軸を取って説明する。
図1(A)において、露光装置EXは、露光用の照明光(露光光)ILを発生する光源10と、光源10からの照明光ILを用いてレチクルRのパターン面(ここでは下面)Raを照明する照明光学系ILSと、レチクルRを保持して移動するレチクルステージRSTとを備えている。さらに、露光装置EXは、レチクルRのパターンの像を感光性基板としての半導体ウェハ(以下、単にウェハという。)Wの表面に形成する投影光学系PLと、ウェハWを保持して移動するウェハステージWSTと、装置全体の動作を統括的に制御するコンピュータよりなる主制御装置38と、主制御装置38の制御のもとで照明光学系ILSの照明条件を制御する照明制御部36とを備えている。本実施形態の照明光学系ILSは、照明光の瞳強度分布を制御するための空間光変調器(spatial light modulator: SLM)22、及び空間光変調器22と協働して照明光の照明瞳における偏光状態の分布を制御する偏光制御系28を備えている。
Hereinafter, an exemplary embodiment will be described with reference to FIGS. FIG. 1A shows a schematic configuration of an exposure apparatus EX according to the present embodiment. The exposure apparatus EX includes a projection optical system PL. Hereinafter, the exposure apparatus EX has a Z-axis parallel to the optical axis AX of the projection optical system PL, and in a direction perpendicular to the plane of FIG. 1A on a plane perpendicular to the Z-axis. The X axis will be described by taking the Y axis in a direction parallel to the paper surface.
In FIG. 1A, an exposure apparatus EX uses a light source 10 that generates illumination light (exposure light) IL for exposure, and a pattern surface (here, the lower surface) Ra of the reticle R using the illumination light IL from the light source 10. Is provided with an illumination optical system ILS and a reticle stage RST that holds and moves the reticle R. Further, the exposure apparatus EX includes a projection optical system PL that forms an image of the pattern of the reticle R on the surface of a semiconductor wafer (hereinafter simply referred to as a wafer) W as a photosensitive substrate, and a wafer that holds and moves the wafer W. A stage WST, a main control unit 38 comprising a computer that controls the overall operation of the apparatus, and an illumination control unit 36 that controls the illumination conditions of the illumination optical system ILS under the control of the main control unit 38 are provided. ing. The illumination optical system ILS of the present embodiment cooperates with a spatial light modulator (SLM) 22 for controlling the pupil intensity distribution of illumination light, and the spatial light modulator 22, and the illumination pupil of illumination light Is provided with a polarization control system 28 for controlling the distribution of the polarization state.

光源10としては波長193nmのパルス光を供給するArFエキシマレーザ光源が使用されている。ただし、光源10としては、波長248nmの光を供給するKrFエキシマレーザ光源、固体レーザ光源(YAGレーザ、半導体レーザ等)、又はレーザ光の高調波発生装置等も用いることができる。光源10から射出される照明光ILは、光源10の構成に応じたある方向に沿った直線偏光を主成分とする偏光状態となっている。ここで、ある方向に沿った直線偏光を主成分とする偏光状態とは、その方向の直線偏光の光の強度の全体の光強度に対する割合(偏光度)が80%以上である状態とすることができる。本明細書では、ある方向に直線偏光の光は、その方向に沿った直線偏光を主成分とする偏光状態の光を含むものとする。   As the light source 10, an ArF excimer laser light source that supplies pulsed light having a wavelength of 193 nm is used. However, as the light source 10, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, a solid-state laser light source (such as a YAG laser or a semiconductor laser), or a harmonic generator for laser light can also be used. The illumination light IL emitted from the light source 10 has a polarization state in which linearly polarized light along a certain direction according to the configuration of the light source 10 is a main component. Here, a polarization state mainly composed of linearly polarized light along a certain direction is a state in which the ratio of the intensity of linearly polarized light in that direction to the total light intensity (degree of polarization) is 80% or more. Can do. In this specification, linearly polarized light in a certain direction includes light in a polarization state whose main component is linearly polarized light along that direction.

光源10から+Z方向に射出された直線偏光の照明光ILは、ビーム送光系12で断面形状が制御された後、ミラーMR1で+Y方向に反射され、一例としてX方向を長手方向とする長方形状の断面50(図2(B)参照)を持つ平行光束として照明光学系ILSに入射する。照明光学系ILSに入射した照明光は、まず偏光設定系14に入射して全体としての偏光状態が所望の状態に設定される。偏光設定系14は、一例として1/2波長板15A、1/4波長板15B、及び非平行な状態で配置されたそれぞれ旋光性を有する1対の楔形の光学素子よりなり、入射する光を非偏光(ランダム偏光)にして射出する非偏光化素子15C、及び駆動部DR1を有する。一例として、波長板15A,15Bは照明光ILの光路(照明光路)に常時設置され、それらの回転角が駆動部DR1によって制御される。一方、非偏光化素子15Cは、照明光ILを非偏光にする場合にのみ駆動部DR1によって照明光路に設置される。本実施形態において、偏光制御系28を用いて照明光ILの偏光状態を制御する場合には、非偏光化素子15Cは照明光路外に待避しており、波長板15A,15Bの回転角は、波長板15A,15Bを通過した後の光がX方向又はZ方向(光束断面内の直交する2方向)の直線偏光となるように設定される。   The linearly polarized illumination light IL emitted in the + Z direction from the light source 10 is reflected in the + Y direction by the mirror MR1 after the cross-sectional shape is controlled by the beam transmission system 12, and as an example, a rectangle having the X direction as the longitudinal direction. Is incident on the illumination optical system ILS as a parallel light beam having a cross section 50 (see FIG. 2B). The illumination light incident on the illumination optical system ILS is first incident on the polarization setting system 14 and the entire polarization state is set to a desired state. The polarization setting system 14 includes, as an example, a half-wave plate 15A, a quarter-wave plate 15B, and a pair of optical optical elements arranged in a non-parallel state and having optical rotation, respectively. A non-polarizing element 15C that emits non-polarized light (random polarized light) and a drive unit DR1 are included. As an example, the wave plates 15A and 15B are always installed in the optical path (illumination optical path) of the illumination light IL, and their rotation angles are controlled by the drive unit DR1. On the other hand, the non-polarizing element 15C is installed in the illumination optical path by the drive unit DR1 only when the illumination light IL is unpolarized. In the present embodiment, when the polarization state of the illumination light IL is controlled using the polarization control system 28, the non-polarization element 15C is retracted outside the illumination optical path, and the rotation angles of the wave plates 15A and 15B are The light after passing through the wave plates 15A and 15B is set to be linearly polarized light in the X direction or the Z direction (two directions orthogonal to each other in the cross section of the light beam).

以下では、+Y方向に進行する光に関してZ方向に直線偏光した状態を縦偏光DVと呼び、X方向に直線偏光した状態を横偏光DHと呼ぶこととする。一例として、偏光設定系14を通過した照明光ILは、図2(B)に示すように、Z方向(レチクルRのパターン面RaではY方向に対応する方向)の直線偏光(縦偏光DV)になっているものとする。
なお、偏光設定系14としては、光束の偏光方向及び/又は偏光度を制御することが可能である米国特許第7,423,731号公報に開示される偏光状態切換部を使用することができる。
図1(A)において、偏光設定系14を通過した平行光束よりなる照明光ILは、ミラーMR2で斜め上方(−Y方向でかつ+Z方向)に反射されて空間光変調器(以下、SLMという)22の複数のミラー要素24に入射する。そして、複数のミラー要素24で+Y方向を中心とする方向に反射された照明光ILは、前側レンズ群26a及び後側レンズ群26bよりなるリレー光学系26を介して偏光制御系28に入射する。本実施形態では、照明光学系ILSの光軸AXIの方向は、ミラーMR1,MR2の間、及びSLM22と偏光制御系28との間でそれぞれY軸に平行(Y方向)である。
Hereinafter, a state where light traveling in the + Y direction is linearly polarized in the Z direction is referred to as longitudinally polarized light DV, and a state where light linearly polarized in the X direction is referred to as laterally polarized light DH. As an example, the illumination light IL that has passed through the polarization setting system 14 is linearly polarized light (longitudinal polarization DV) in the Z direction (the direction corresponding to the Y direction in the pattern surface Ra of the reticle R) as shown in FIG. Suppose that
As the polarization setting system 14, a polarization state switching unit disclosed in US Pat. No. 7,423,731 that can control the polarization direction and / or polarization degree of a light beam can be used. .
In FIG. 1A, the illumination light IL made up of parallel light beams that has passed through the polarization setting system 14 is reflected obliquely upward (in the −Y direction and the + Z direction) by the mirror MR2, and is referred to as a spatial light modulator (hereinafter referred to as SLM). ) Is incident on a plurality of mirror elements 24. The illumination light IL reflected by the plurality of mirror elements 24 in the direction centered on the + Y direction is incident on the polarization control system 28 via the relay optical system 26 including the front lens group 26a and the rear lens group 26b. . In the present embodiment, the direction of the optical axis AXI of the illumination optical system ILS is parallel to the Y axis (Y direction) between the mirrors MR1 and MR2 and between the SLM 22 and the polarization control system 28.

SLM22は、Y軸に垂直な面に対してX軸に平行な軸を中心として右回りに、所定の小さい角度だけ回転した平面である配列面P1に平行な支持面を有する本体部23と、本体部23のその支持面に支持されて配列面P1にX方向及びX方向に直交する方向(ほぼZ方向)に所定間隔で配列されて個別に制御される複数のミラー要素24とを有する。さらに、SLM22は、照明制御部36からの制御信号に基づいて、複数のミラー要素24の姿勢としての配列面P1内の直交する(斜めに交差していてもよい)2つの軸の回りの傾斜角θx,θz(図2(A)参照)を個別に制御する駆動部25を有する。ミラー要素24のX方向、及びX方向に直交する方向の配列数はそれぞれ例えば数10〜数100であり、ミラー要素24は例えば正方形状(又は長方形状)でできるだけ隙間が少なくなるように密に配列されている。なお、ミラー要素24は必ずしも正方形状(又は長方形状)でなくともよい。各ミラー要素24の角度は変化するため、配列面P1とは、一例として複数のミラー要素24の中心が配列される面であるとする。配列面P1の法線方向は、SLM22に入射する光の光軸及びSLM22で反射して射出される光の光軸AXI(この部分ではY軸に平行)に互いに同じ角度で交差する。   The SLM 22 has a main body portion 23 having a support surface parallel to the array surface P1, which is a plane rotated by a predetermined small angle clockwise about an axis parallel to the X axis with respect to a surface perpendicular to the Y axis, A plurality of mirror elements 24 that are supported on the supporting surface of the main body 23 and arranged on the array surface P1 in the X direction and in a direction orthogonal to the X direction (substantially in the Z direction) at predetermined intervals and individually controlled. Further, the SLM 22 is tilted around two axes orthogonal to each other (may be crossed obliquely) in the array plane P <b> 1 as the postures of the plurality of mirror elements 24 based on the control signal from the illumination control unit 36. A drive unit 25 that individually controls the angles θx and θz (see FIG. 2A) is provided. The number of arrangements of the mirror elements 24 in the X direction and the direction orthogonal to the X direction is, for example, several tens to several hundreds, for example, and the mirror elements 24 are, for example, square (or rectangular) and are dense so that the gap is as small as possible. It is arranged. The mirror element 24 does not necessarily have to be square (or rectangular). Since the angle of each mirror element 24 changes, the arrangement plane P1 is assumed to be a plane on which the centers of the plurality of mirror elements 24 are arranged as an example. The normal direction of the array plane P1 intersects the optical axis of the light incident on the SLM 22 and the optical axis AXI of the light reflected and emitted from the SLM 22 (parallel to the Y axis in this portion) at the same angle.

本実施形態では、ミラーMR1で反射された平行光束よりなる縦偏光DVの照明光ILは、SLM22の配列面P1上のほぼX方向に長い長方形状の照射領域50A(図3(A)参照)に、配列面P1に対してP偏光PPの状態で入射する。なお、照射領域50Aは、実際にはミラー要素24のアレイ上に設定されている。この場合のP偏光とは、配列面P1に斜めに入射する光束とこの光束の入射点を通る配列面P1の法線とを含む面を入射面と定義すると、その光束がその入射面に対して平行な方向に偏光方向を有する直線偏光(入射面に平行な方向に電気ベクトルが振動している偏光)となっていることを意味する。そして、照射領域50A内の各ミラー要素24で反射される光は、Z方向に偏光した縦偏光DV(配列面P1に関してP偏光)の状態でリレー光学系26に入射する。   In the present embodiment, the illumination light IL of longitudinally polarized light DV consisting of parallel light beams reflected by the mirror MR1 is a rectangular irradiation region 50A that is long in the X direction on the arrangement plane P1 of the SLM 22 (see FIG. 3A). Are incident on the array plane P1 in the state of P-polarized PP. Note that the irradiation region 50A is actually set on the array of mirror elements 24. In this case, the P-polarized light is defined as an incident surface including a light beam incident obliquely on the array surface P1 and a normal line of the array surface P1 passing through the incident point of the light beam. That is, it is linearly polarized light having a polarization direction in a parallel direction (polarized light having an electric vector oscillating in a direction parallel to the incident surface). The light reflected by each mirror element 24 in the irradiation region 50A enters the relay optical system 26 in the state of longitudinally polarized light DV (P-polarized light with respect to the array plane P1) polarized in the Z direction.

なお、照明光ILを、SLM22の配列面P1に対してS偏光SP(本実施形態では横偏光DHでもある)の状態で入射させてもよい。この場合のS偏光とは、配列面P1に斜めに入射する光束がその入射面に対して垂直な方向に偏光方向を有する直線偏光となっていることを意味する。配列面P1にS偏光の状態で入射した光は、各ミラー要素24で反射されてからX方向に偏光した横偏光DH(配列面P1に関してS偏光)の状態でリレー光学系26に入射する。   Note that the illumination light IL may be incident on the arrangement plane P1 of the SLM 22 in the state of S-polarized light SP (which is also laterally polarized light DH in this embodiment). The S-polarized light in this case means that the light beam incident obliquely on the array plane P1 is linearly polarized light having a polarization direction in a direction perpendicular to the incident surface. The light incident on the array plane P1 in the S-polarized state enters the relay optical system 26 in the state of laterally polarized light DH (S-polarized with respect to the array plane P1) that is reflected in the X direction after being reflected by each mirror element 24.

また、各ミラー要素24の角度は配列面P1に平行な方向に対して変化するが、その変化量は配列面P1に対する照明光ILの入射角に比べてほぼ小さいため、配列面P1にP偏光又はS偏光で入射する光は、各ミラー要素24に対してもほぼP偏光又はS偏光で入射するとみなすことができる。
一般にミラー要素24のような反射部材では、斜めに入射する光束に対してP偏光とS偏光とで反射率及び位相が僅かに異なるとともに、その反射率等の相違は入射角に応じて変化する。このため、その反射部材に斜めにP偏光及びS偏光以外の直線偏光の光が入射すると、反射光の偏光方向が変化するか、又は偏光状態が楕円偏光に変化する恐れがある。これに対して、本実施形態では、SLM22の配列面P1に入射する光はP偏光又はS偏光であり、反射光の偏光状態は入射時とほぼ同じであるため、照明瞳における偏光状態の分布を目標とする分布に高精度に制御できる。
In addition, the angle of each mirror element 24 changes with respect to the direction parallel to the array plane P1, but the amount of change is substantially smaller than the incident angle of the illumination light IL with respect to the array plane P1, so Alternatively, light incident as S-polarized light can be considered to be incident as approximately P-polarized light or S-polarized light on each mirror element 24.
In general, in a reflecting member such as the mirror element 24, the reflectance and phase are slightly different between the P-polarized light and the S-polarized light with respect to the obliquely incident light beam, and the difference in the reflectance and the like varies depending on the incident angle. . For this reason, when linearly polarized light other than P-polarized light and S-polarized light is incident on the reflecting member obliquely, the polarization direction of the reflected light may change or the polarization state may change to elliptically polarized light. On the other hand, in this embodiment, the light incident on the arrangement plane P1 of the SLM 22 is P-polarized light or S-polarized light, and the polarization state of the reflected light is almost the same as that at the time of incidence. Can be controlled with high accuracy to the target distribution.

なお、SLM22の各ミラー要素24の角度は連続的に変化させてもよいが、離散的に例えば複数の角度(直交する2軸の回りのそれぞれにおいて、例えば0.5度単位で変化する角度等)で切り換え制御してもよい。
本実施形態のSLM22(空間光変調器)としては、例えば欧州特許公開第779530号公報、米国特許第5,867,302号公報、米国特許第6,600,591号公報、米国特許第6,900,915号公報、米国特許第7,295,726号公報、米国特許第7,567,375号公報、国際特許公開第2010/037476号パンフレット、又は特開2006−113437号公報等に開示される空間光変調器を用いることができる。また、このような空間光変調器は、例えばいわゆるMEMS(Microelectromechanical Systems:微小電気機械システム)技術を用いて製造することもできる。
The angle of each mirror element 24 of the SLM 22 may be continuously changed, but discretely, for example, a plurality of angles (for example, an angle that changes in units of 0.5 degrees in each of two orthogonal axes, etc.) ) May be switched.
As the SLM 22 (spatial light modulator) of the present embodiment, for example, European Patent Publication No. 779530, US Pat. No. 5,867,302, US Pat. No. 6,600,591, US Pat. No. 900,915, U.S. Pat. No. 7,295,726, U.S. Pat. No. 7,567,375, Pamphlet of International Patent Publication No. 2010/037476, or JP-A-2006-113437. A spatial light modulator can be used. Such a spatial light modulator can also be manufactured using, for example, a so-called MEMS (Microelectromechanical Systems) technique.

SLM22の複数のミラー要素24で反射された光は、リレー光学系26の前側レンズ群26aを介して、リレー光学系26の瞳面P2に光強度分布を形成した後、後側レンズ群26bを介して、偏光制御系28にX方向を長手方向とする長方形状の断面50B(図3(C)参照)で入射する。SLM22の複数のミラー要素24の2軸の回りの傾斜角によって、そのミラー要素24で反射される光の瞳面P2におけるX方向及びZ方向の位置が規定される。このため、瞳面P2における光強度分布は、SLM22の複数のミラー要素24の2軸の回りの傾斜角を個別に制御することによって、2次元的にほぼ任意の分布に設定できる。   The light reflected by the plurality of mirror elements 24 of the SLM 22 forms a light intensity distribution on the pupil plane P2 of the relay optical system 26 via the front lens group 26a of the relay optical system 26, and then passes through the rear lens group 26b. Then, the light enters the polarization control system 28 at a rectangular cross section 50B (see FIG. 3C) whose longitudinal direction is the X direction. The inclination angles around the two axes of the plurality of mirror elements 24 of the SLM 22 define the positions of the light reflected by the mirror element 24 in the X direction and the Z direction on the pupil plane P2. For this reason, the light intensity distribution on the pupil plane P2 can be set to an almost arbitrary distribution two-dimensionally by individually controlling the inclination angles around the two axes of the plurality of mirror elements 24 of the SLM 22.

偏光制御系28は、一例として、それぞれ入射する光をその偏光方向を第1の角度、第2の角度、第3の角度、及び第4角度だけ回転させて射出する、断面50Bよりも大きい長方形の平行平面板状の第1、第2、第3、及び第4の偏光ユニット30A,30B,30C,及び30D、並びに偏光ユニット30A〜30Dを個別に照明光路を横切るように移動させる駆動部DR2を有する。偏光ユニット30A〜30Dは、一例として偏光ユニット30D,30C,30B,30Aの順に+Y方向に配置されているが、その配置の順序は任意である。   As an example, the polarization control system 28 is a rectangle that is larger than the cross section 50B and emits the incident light with its polarization direction rotated by a first angle, a second angle, a third angle, and a fourth angle. The first, second, third, and fourth polarization units 30A, 30B, 30C, and 30D, and the polarization units 30A to 30D each having a plane parallel plate shape are individually moved so as to cross the illumination optical path. Have For example, the polarization units 30A to 30D are arranged in the + Y direction in the order of the polarization units 30D, 30C, 30B, and 30A, but the arrangement order is arbitrary.

また、その偏光ユニット30A〜30Dにおける偏光方向の回転角である第1〜第4の角度は、一例として左回りに22.5度、90度、45度、及び90度である。なお、入射する光の偏光方向を左回りにθa回転した場合でも、その偏光方向を右回りに(180度−θa)だけ回転した場合でも、射出される光の偏光方向は同じであるため、その第1〜第4の角度を右回りに157.5度、90度、135度、及び90度としてもよい。さらに、後述のようにその第1〜第4の角度の組み合わせは任意であり、その第1〜第4の角度は、例えば左回り(又は右回りに)に90度、22.5度、22.5度、及び22.5度等とすることも可能である。   Moreover, the 1st-4th angle which is a rotation angle of the polarization direction in the polarization units 30A-30D is 22.5 degrees, 90 degrees, 45 degrees, and 90 degrees counterclockwise as an example. Even when the polarization direction of the incident light is rotated counterclockwise by θa or when the polarization direction is rotated clockwise by (180 degrees −θa), the polarization direction of the emitted light is the same. The first to fourth angles may be 157.5 degrees, 90 degrees, 135 degrees, and 90 degrees clockwise. Furthermore, as will be described later, the combination of the first to fourth angles is arbitrary, and the first to fourth angles are, for example, counterclockwise (or clockwise) 90 degrees, 22.5 degrees, 22 .5 degrees, 22.5 degrees, etc. are also possible.

本実施形態では、図1(B)に示すように、偏光制御系28を構成する偏光ユニット30A,30B,30C,及び30Dは、それぞれ入射する直線偏光の光の偏光方向を回転させる光学特性である旋光性を有する光学材料より形成された平板状の旋光部材29A,29B,29C,及び29Dと、旋光性のない一軸性の複屈折結晶より形成された平板状の複屈折部材31A,31B,31C,及び31Dとを、光透過性の接着剤を介して貼り合わせたものである。このため、偏光ユニット30A(旋光部材29A及び複屈折部材31A)は一体的に駆動部DR2によって駆動され、同様に他の偏光ユニット30B〜30Dも互いに独立に一体的に駆動部DR2によって駆動される。   In this embodiment, as shown in FIG. 1B, the polarization units 30A, 30B, 30C, and 30D that constitute the polarization control system 28 have optical characteristics that rotate the polarization direction of the incident linearly polarized light, respectively. Plate-shaped optical rotatory members 29A, 29B, 29C, and 29D formed of an optical material having a certain optical rotation, and tabular birefringent members 31A, 31B, formed of uniaxial birefringent crystals having no optical rotation 31C and 31D are bonded together through a light-transmitting adhesive. For this reason, the polarization unit 30A (the optical rotation member 29A and the birefringent member 31A) is integrally driven by the drive unit DR2, and similarly, the other polarization units 30B to 30D are also integrally driven by the drive unit DR2 independently of each other. .

なお、図1(B)の例では、旋光部材29A〜29Dに対して複屈折部材31A〜31Dは照明光の射出側(下流)に配置されているが、旋光部材29A〜29Dに対して複屈折部材31A〜31Dを照明光の入射側(上流)に配置してもよい。さらに、旋光部材29A〜29Dに対してY方向に僅かな間隔を隔てて複屈折部材31A〜31Dを配置してもよい。この場合、旋光部材29A〜29D及び複屈折部材31A〜31Dを駆動部DR2によって互いに独立に支持した状態で、同期して駆動してもよい。 In the example of FIG. 1B, the birefringent members 31A to 31D are arranged on the illumination light exit side (downstream) with respect to the optical rotation members 29A to 29D. The refractive members 31A to 31D may be arranged on the incident light incident side (upstream). Further, the birefringent members 31A to 31D may be arranged at a slight interval in the Y direction with respect to the optical rotation members 29A to 29D. In this case, the optical rotation members 29A to 29D and the birefringent members 31A to 31D may be driven synchronously in a state where they are independently supported by the drive unit DR2.

旋光部材29A〜29Dの光学材料としては、旋光性を有する結晶材料、例えば一軸性結晶である水晶が使用できる。水晶としては、左旋光性(levorotatory)の左水晶又は右旋光性(dextrorotatory)の右水晶のいずれでも使用できる。旋光部材29A〜29Dの光束が入射する前面(ひいては光束が射出する後面)はそれぞれ光軸AXIと直交し、それらの結晶光学軸(以下、単に光学軸という。)はそれぞれ光軸AXIに平行(すなわち光軸AXIに平行な入射光の進行方向であるY方向と平行)である。代表的に、偏光ユニット30Bの旋光部材29Bの光学軸OAAはY方向に平行である。なお、旋光部材29A〜29Dの前面(後面)は光軸AXIにほぼ直交し、旋光部材29A〜29Dの光学軸はY方向にほぼ平行でもよい。   As the optical material of the optical rotation members 29A to 29D, a crystal material having optical activity, for example, a crystal that is a uniaxial crystal can be used. As the quartz crystal, either a left-rotating left crystal or a right-handing dextrorotatory right crystal can be used. The front surfaces (and consequently the rear surfaces from which the light beams are incident) of the optical rotation members 29A to 29D are orthogonal to the optical axis AXI, and their crystal optical axes (hereinafter simply referred to as optical axes) are parallel to the optical axis AXI ( That is, it is parallel to the Y direction, which is the traveling direction of incident light parallel to the optical axis AXI. Typically, the optical axis OAA of the optical rotation member 29B of the polarization unit 30B is parallel to the Y direction. The front surfaces (rear surfaces) of the optical rotation members 29A to 29D may be substantially orthogonal to the optical axis AXI, and the optical axes of the optical rotation members 29A to 29D may be substantially parallel to the Y direction.

一軸性結晶では、常光線に対する屈折率(以下、常光屈折率という)noが異常光線に対する主屈折率(以下、異常光屈折率という)neより小さい結晶(例えば水晶)が正結晶、常光屈折率noが異常光屈折率neより大きい結晶が負結晶と呼ばれている。旋光部材29A〜29Dが正結晶である場合、その光学軸は遅相軸(この場合に位相速度が最も遅い方向に沿った軸)でもあり、その光学軸に垂直な面内に進相軸(その面内で位相速度が最も速い方向に沿った軸)がある。旋光部材29A〜29Dが負結晶である場合、その光学軸は進相軸(この場合に位相速度が最も速い方向に沿った軸)でもあり、その光学軸に垂直な面内に遅相軸(その面内で位相速度が最も遅い方向に沿った軸)がある。 In uniaxial crystals, the refractive index for the ordinary ray (hereinafter, ordinary referred refractive index) n o is the principal refractive index with respect to extraordinary ray (hereinafter, extraordinary refractive index of) n e smaller crystal (e.g. quartz) is positive crystal, ordinary refractive index n o is the extraordinary refractive index n e larger crystals are called negative crystals. When the optical rotators 29A to 29D are positive crystals, the optical axis is also a slow axis (in this case, the axis along the direction in which the phase velocity is slowest), and the fast axis (in the plane perpendicular to the optical axis) The axis along the direction in which the phase velocity is fastest in the plane). When the optical rotators 29A to 29D are negative crystals, the optical axis is also a fast axis (in this case, the axis along the direction in which the phase velocity is fastest), and the slow axis (in the plane perpendicular to the optical axis) The axis along the direction in which the phase velocity is the slowest in the plane).

旋光性を有する光学材料より形成された部材(旋光部材又は旋光子)では、入射する直線偏光の光は、偏光方向がその旋光部材の厚さに応じた角度だけ回転した状態で射出される。従って、旋光部材29A〜29Dの厚さは、上記の偏光ユニット30A〜30Dにおける入射光の偏光方向の回転角(第1〜第4の角度)に応じて定められる。以下では、直線偏光の光の旋光部材による偏光方向の回転角を旋光角(又は旋光度)(angle of rotation)と呼ぶ。また、旋光角を数値のみで表す場合、符号が+(正)の旋光角は光の進行方向に対して左回り(反時計回り)の角度を表し、符号が−(負)の旋光角は光の進行方向に対して右回り(時計回り)の角度を表すものとする。また、特に回転方向が定められていない符号のない旋光角は、左回りか又は右回りのいずれの角度でもよいことを意味する。   In a member (optical rotator or optical rotator) formed of an optical material having optical activity, incident linearly polarized light is emitted in a state where the polarization direction is rotated by an angle corresponding to the thickness of the optical rotator. Therefore, the thickness of the optical rotation members 29A to 29D is determined according to the rotation angle (first to fourth angles) of the polarization direction of the incident light in the polarization units 30A to 30D. Hereinafter, the rotation angle of the polarization direction by the optical polarization member of linearly polarized light is referred to as an angle of rotation. When the optical rotation angle is expressed only by a numerical value, the optical rotation angle with the sign + (positive) indicates the counterclockwise (counterclockwise) angle with respect to the light traveling direction, and the optical rotation angle with the sign-(negative) is It is assumed to represent a clockwise (clockwise) angle with respect to the light traveling direction. Further, an optical rotation angle without a sign in which the rotation direction is not particularly defined means that it may be either a counterclockwise or clockwise direction.

一方、複屈折部材31A〜31Dの光学材料としては、旋光性のない一軸性の複屈折結晶であるフッ化マグネシウム(MgF2)、サファイア(酸化アルミニウムであるAl23の結晶)、又は方解石(炭酸カルシウムであるCaCO3の結晶)等が使用できる。複屈折部材31A〜31Dの光束が入射する前面(ひいては光束が射出する後面)はそれぞれ光軸AXIと直交し、それらの光学軸(結晶光学軸)はそれぞれ光軸AXIに平行(すなわち光軸AXIに平行な入射光の進行方向であるY方向に平行)である。代表的に、偏光ユニット30Bの複屈折部材31Bの光学軸OABはY方向に平行である。なお、複屈折部材31A〜31Dの前面(後面)は光軸AXIにほぼ直交し、複屈折部材31A〜31Dの光学軸はY方向にほぼ平行でもよい。複屈折部材31A〜31Dが正結晶である場合、その光学軸は遅相軸でもあり、その光学軸に垂直な面内に進相軸がある。そして、複屈折部材31A〜31Dが負結晶である場合、その光学軸は進相軸でもあり、その光学軸に垂直な面内に遅相軸がある。 On the other hand, as the optical material of the birefringent members 31A to 31D, magnesium fluoride (MgF 2 ), sapphire (a crystal of Al 2 O 3 which is aluminum oxide), or calcite, which is a uniaxial birefringent crystal without optical rotation, (CaCO 3 crystal which is calcium carbonate) or the like can be used. The front surfaces of the birefringent members 31A to 31D on which light beams enter (and hence the rear surfaces from which the light beams exit) are orthogonal to the optical axis AXI, and their optical axes (crystal optical axes) are parallel to the optical axis AXI (that is, the optical axis AXI). Parallel to the Y direction, which is the traveling direction of the incident light parallel to. Typically, the optical axis OAB of the birefringent member 31B of the polarization unit 30B is parallel to the Y direction. The front surfaces (rear surfaces) of the birefringent members 31A to 31D may be substantially orthogonal to the optical axis AXI, and the optical axes of the birefringent members 31A to 31D may be substantially parallel to the Y direction. When the birefringent members 31A to 31D are positive crystals, the optical axis is also a slow axis, and there is a fast axis in a plane perpendicular to the optical axis. When the birefringent members 31A to 31D are negative crystals, the optical axis is also a fast axis, and there is a slow axis in a plane perpendicular to the optical axis.

以下の表1に、旋光部材29A〜29Dの光学材料として使用可能な水晶、及び複屈折部材31A〜31Dの光学材料として使用可能なフッ化マグネシウム、サファイアに関して、波長193nmの光(ArF光)に対する常光屈折率no、異常光屈折率ne、及び旋光能ρ(光学軸に平行な入射光に対する単位長さ当たりの旋光角[deg/mm])のデータを示す。フッ化マグネシウム及びサファイアは旋光性がないため、表1における旋光能ρはそれぞれ0である。また、水晶及びフッ化マグネシウムは正結晶(no<ne)であり、サファイア及び方解石(表1では不掲載)は負結晶(no>ne)である。

Figure 2014135357
Table 1 below relates to light having a wavelength of 193 nm (ArF light) with respect to quartz that can be used as an optical material for optical rotators 29A to 29D and magnesium fluoride and sapphire that can be used as optical materials for birefringent members 31A to 31D. ordinary refractive index n o, indicating the data of the extraordinary refractive index n e, and optical rotatory power [rho (optical rotation angle per unit length to parallel incident light on the optical axis [deg / mm]). Since magnesium fluoride and sapphire have no optical rotation, the optical rotation power ρ in Table 1 is 0, respectively. Moreover, quartz and magnesium fluoride <a (n e, sapphire and calcite (Table 1 not published) negative crystals (n o positive crystal n o)> is a n e).
Figure 2014135357

本実施形態において、複屈折部材31A〜31Dの光学軸がY方向に平行であるため、偏光ユニット30A〜30D(旋光部材29A〜29D)の前面に垂直に(光軸AXIに平行に)入射する照明光(以下、垂直入射光という)に対して、複屈折部材31A〜31Dの複屈折作用はなく、複屈折部材31A〜31Dは単なる光透過性基板として作用する。また、旋光部材29A〜29Dは、直線偏光の垂直入射光に対してはその偏光方向を規定された旋光角だけ回転させて直線偏光の光として射出する。このため、直線偏光の垂直入射光は、偏光ユニット30A〜30Dを通過すると、旋光部材29A〜29Dにおける旋光角だけ偏光方向が回転した直線偏光の光として射出される。   In the present embodiment, since the optical axes of the birefringent members 31A to 31D are parallel to the Y direction, they enter perpendicularly (in parallel to the optical axis AXI) to the front surfaces of the polarization units 30A to 30D (optical rotation members 29A to 29D). The birefringent members 31A to 31D do not have a birefringence action with respect to illumination light (hereinafter referred to as perpendicular incident light), and the birefringent members 31A to 31D act as a simple light-transmitting substrate. Further, the optical rotation members 29A to 29D rotate the polarization direction of the linearly polarized vertical incident light by a specified optical rotation angle and emit the linearly polarized light. For this reason, when linearly polarized vertically incident light passes through the polarization units 30A to 30D, it is emitted as linearly polarized light whose polarization direction is rotated by the optical rotation angle of the optical rotation members 29A to 29D.

これに対して、偏光ユニット30A〜30D(旋光部材29A〜29D)の前面に、直線偏光で、かつ光軸AXIに対してある角度で傾斜して入射する照明光(以下、斜入射光という)は、旋光部材29A〜29Dを通過したときに、偏光方向がその旋光角だけ回転するとともに、その光軸AXIに対する傾斜角に応じてわずかに楕円偏光化した偏光状態で射出される。また、斜入射光に対しては、直交する2つの偏光方向(P偏光及びS偏光)で複屈折部材31A〜31Dの屈折率が異なるため、複屈折部材31A〜31Dの複屈折作用が生じるようになる。その複屈折作用はその斜入射光の光軸AXIに対する傾斜角が大きくなるほど大きくなる。そこで、斜入射光に対しては、複屈折部材31A〜31Dにおける複屈折作用を用いて、旋光部材29A〜29Dで楕円偏光化した光を直線偏光に補正する。このため、複屈折部材31A〜31Dの厚さは、対応する旋光部材29A〜29Dの旋光角(又は厚さ)に応じて設定される(詳細後述)。   On the other hand, illumination light (hereinafter referred to as oblique incident light) incident on the front surfaces of the polarization units 30A to 30D (optical rotation members 29A to 29D) as linearly polarized light and inclined at an angle with respect to the optical axis AXI. When the light passes through the optical rotation members 29A to 29D, the polarization direction is rotated by the optical rotation angle, and the light is emitted in a polarization state slightly elliptically polarized according to the inclination angle with respect to the optical axis AXI. For obliquely incident light, the birefringent members 31A to 31D have different refractive indexes in two orthogonal polarization directions (P-polarized light and S-polarized light), so that the birefringent action of the birefringent members 31A to 31D occurs. become. The birefringence action increases as the inclination angle of the oblique incident light with respect to the optical axis AXI increases. Therefore, for obliquely incident light, the birefringent action of the birefringent members 31A to 31D is used to correct the light that has been elliptically polarized by the optical rotation members 29A to 29D to linearly polarized light. For this reason, the thicknesses of the birefringent members 31A to 31D are set according to the optical rotation angles (or thicknesses) of the corresponding optical rotation members 29A to 29D (details will be described later).

図1(A)において、一例として、中央の偏光ユニット30C,30Bの間の面(又は偏光ユニット30Dの前面から偏光ユニット30Aの後面までの間の面、若しくはこれらの面の近傍の面でもよい)を偏光ユニット30A〜30Dの設置面P3とすると、設置面P3は光軸AXIにほぼ垂直である。なお、図4に示すように、偏光ユニット30A〜30Dの厚さは実際には後側レンズ群26bの焦点距離等に比べてかなり小さいため、偏光ユニット30A〜30Dは全部がほぼ設置面P3の位置にあるとみなすことができる。   In FIG. 1A, as an example, a surface between the central polarizing units 30C and 30B (or a surface between the front surface of the polarizing unit 30D and the rear surface of the polarizing unit 30A, or a surface in the vicinity of these surfaces may be used. ) Is the installation surface P3 of the polarization units 30A to 30D, the installation surface P3 is substantially perpendicular to the optical axis AXI. As shown in FIG. 4, since the thickness of the polarization units 30A to 30D is actually considerably smaller than the focal length of the rear lens group 26b, the polarization units 30A to 30D are almost entirely on the installation surface P3. Can be considered in position.

また、リレー光学系26の前側レンズ群26aの前側焦点位置の近傍にSLM22の配列面P1の中心があり、前側レンズ群26aの後側焦点位置と後側レンズ群26bの前側焦点位置とはほぼ一致しており、後側レンズ群26bの後側焦点位置がほぼ偏光ユニット30A〜30Dの設置面P3の中心に位置している。従って、設置面P3とSLM22の配列面P1とはリレー光学系26に関して光学的にほぼ共役であり、図3(C)の照明光ILの長方形状の断面50Bは、図3(A)のSLM22の配列面P1内の照明光ILの照射領域50Aとほぼ共役である。   Further, the center of the arrangement surface P1 of the SLM 22 is in the vicinity of the front focal position of the front lens group 26a of the relay optical system 26, and the rear focal position of the front lens group 26a and the front focal position of the rear lens group 26b are almost the same. The rear focal position of the rear lens group 26b is substantially at the center of the installation surface P3 of the polarization units 30A to 30D. Accordingly, the installation surface P3 and the arrangement surface P1 of the SLM 22 are optically conjugate with respect to the relay optical system 26, and the rectangular cross section 50B of the illumination light IL in FIG. 3C is the SLM 22 in FIG. Are substantially conjugate with the irradiation region 50A of the illumination light IL in the arrangement plane P1.

なお、説明の便宜上、図1(A)及び図4等では、SLM22のミラー要素24が配列された領域(アレイ領域)を実際の形状より大きく表現している。実際には、ミラー要素24が配列された領域の幅は、前側レンズ群26a等の光学系の最大の直径に比べてかなり小さい値である。このため、ミラー要素24が配列された領域は、ほぼ光軸AXIの近傍にあると考えてよい。同様に、偏光ユニット30A〜30Dにおいて、照明光ILが照射される領域(後述の部分領域C1〜C8)も、ほぼ光軸AXIの近傍にあるとみなすことができる。   For convenience of explanation, in FIG. 1A and FIG. 4 and the like, the region (array region) in which the mirror elements 24 of the SLM 22 are arranged is expressed larger than the actual shape. Actually, the width of the region where the mirror elements 24 are arranged is considerably smaller than the maximum diameter of the optical system such as the front lens group 26a. For this reason, it may be considered that the region where the mirror elements 24 are arranged is substantially in the vicinity of the optical axis AXI. Similarly, in the polarization units 30 </ b> A to 30 </ b> D, regions (partial regions C <b> 1 to C <b> 8 described later) irradiated with the illumination light IL can be regarded as being substantially in the vicinity of the optical axis AXI.

偏光制御系28の駆動部DR2は、図3(C)に示すように、照明光ILの断面50Bに対して、一例として偏光ユニット30AをZ方向(短辺方向)に平行移動し、他の3個の偏光ユニット30B〜30DをX方向(長辺方向)に互いに独立に平行移動する。また、偏光ユニット30Aの断面50B内のZ方向(移動方向)のエッジ部は、断面50Bの輪郭のZ方向のエッジ部(X軸にほぼ平行な直線状の部分)にほぼ平行であり、偏光ユニット30B〜30Dの断面50B内のX方向(移動方向)のエッジ部は、断面50Bの輪郭のX方向のエッジ部(Z軸にほぼ平行な直線状の部分)にほぼ平行である。駆動部DR2は、偏光ユニット30A〜30Dを個別に移動させるための4つのアクチュエータと、偏光ユニット30A〜30Dの移動量を個別に検知するための4つのエンコーダとを備えており、照明制御部36からの制御信号に基づいて偏光ユニット30A〜30Dを移動させる。本実施形態では、偏光ユニット30A〜30Dはそれぞれ1次元方向に移動する構成であるため、偏光ユニット30A〜30Dの支持及び駆動機構を簡素化できる。   As shown in FIG. 3C, the drive unit DR2 of the polarization control system 28 translates the polarization unit 30A in the Z direction (short-side direction) as an example with respect to the cross section 50B of the illumination light IL. The three polarization units 30B to 30D are translated independently in the X direction (long side direction). Further, the edge portion in the Z direction (movement direction) in the cross section 50B of the polarization unit 30A is substantially parallel to the edge portion in the Z direction (a linear portion substantially parallel to the X axis) of the outline of the cross section 50B. The edge portion in the X direction (movement direction) in the cross section 50B of the units 30B to 30D is substantially parallel to the X direction edge portion (a linear portion substantially parallel to the Z axis) of the outline of the cross section 50B. The drive unit DR2 includes four actuators for individually moving the polarization units 30A to 30D and four encoders for individually detecting the movement amounts of the polarization units 30A to 30D. The polarization units 30 </ b> A to 30 </ b> D are moved based on the control signal from. In the present embodiment, since the polarization units 30A to 30D are each configured to move in a one-dimensional direction, the support and drive mechanism of the polarization units 30A to 30D can be simplified.

なお、本実施形態ではSLM22の配列面P1は光軸に垂直な面に対して僅かに傾斜しているため、配列面P1に対して共役な面も光軸に垂直な面に対して僅かに傾斜している場合がある。このような場合には、偏光制御系28の設置面P3をその配列面P1に対して共役な面に沿って傾斜させて設定し、偏光ユニット30A〜30Dをその傾斜した面に沿って移動するようにしてもよい。また、例えばリレー光学系(不図示)によって、設置面P3と光学的に共役な別の設置面を設定し、設置面P3に偏光ユニット30A,30Bを設置し、その別の設置面に偏光ユニット30C,30Dを設置するように、偏光ユニット30A〜30Dを互いに共役な複数の面に分けて設置してもよい。   In this embodiment, since the arrangement plane P1 of the SLM 22 is slightly inclined with respect to the plane perpendicular to the optical axis, the plane conjugate to the arrangement plane P1 is also slightly different from the plane perpendicular to the optical axis. It may be inclined. In such a case, the installation surface P3 of the polarization control system 28 is set to be inclined along a plane conjugate with the arrangement plane P1, and the polarization units 30A to 30D are moved along the inclined surface. You may do it. Further, for example, another installation surface optically conjugate with the installation surface P3 is set by a relay optical system (not shown), the polarization units 30A and 30B are installed on the installation surface P3, and the polarization unit is installed on the other installation surface. The polarization units 30 </ b> A to 30 </ b> D may be divided into a plurality of conjugate surfaces so as to install 30 </ b> C and 30 </ b> D.

また、一例として、断面50B内で、偏光ユニット30A〜30Dが重ならない部分(素通しの部分)を第1部分領域C1、偏光ユニット30Aだけがある部分を第2部分領域C2、偏光ユニット30B〜30Dだけが重なる部分を第3部分領域C3、旋光部材30A〜30Dの全部が重なる部分を第4部分領域C4、偏光ユニット30Bだけがある部分を第5部分領域C5、偏光ユニット30A,30Bだけが重なる部分を第6部分領域C6、偏光ユニット30B,30Cだけが重なる部分を第7部分領域C7、偏光ユニット30A〜30Cの全部が重なる部分を第8部分領域C8と呼ぶ。   Further, as an example, in the cross section 50B, a portion where the polarization units 30A to 30D do not overlap (a transparent portion) is the first partial region C1, a portion having only the polarization unit 30A is the second partial region C2, and the polarization units 30B to 30D. Only the overlapping part is the third partial region C3, the optically rotating members 30A to 30D are all overlapping the fourth partial region C4, the part having only the polarizing unit 30B is the fifth partial area C5, and only the polarizing units 30A and 30B are overlapping. The portion is referred to as a sixth partial region C6, a portion where only the polarization units 30B and 30C overlap is referred to as a seventh partial region C7, and a portion where all of the polarization units 30A to 30C overlap is referred to as an eighth partial region C8.

このとき、部分領域C1〜C8に入射する光は、その部分領域に配置されている偏光ユニット30A〜30D内の旋光部材29A〜29Dによって連続して旋光作用を受けるため、入射時の偏光方向が射出時には変化する。例えば第2部分領域C2は、例えば縦偏光DVの入射光が偏光ユニット30Aによって1回だけ旋光作用を受ける領域であり、第3部分領域C3は、その入射光が偏光ユニット30B〜30Cによって3回の旋光作用を連続して受ける領域である。   At this time, the light incident on the partial areas C1 to C8 is continuously subjected to an optical rotation action by the optical rotation members 29A to 29D in the polarization units 30A to 30D arranged in the partial areas. It changes at the time of injection. For example, the second partial region C2 is a region where, for example, the incident light of the longitudinally polarized light DV is subjected to the optical rotation action only once by the polarization unit 30A, and the third partial region C3 is the three times of the incident light by the polarization units 30B to 30C. This is a region that continuously receives the optical rotation.

また、偏光制御系28における照明光ILの断面50Bと図3(A)のSLM22に対する照明光ILの照射領域50Aとは共役である。そこで、断面50B内の8個の部分領域C1,C2,C3,C4,C5,C6,C7,C8と共役な照射領域50A内の領域をそれぞれミラー要素24の部分アレイ領域D1,D2,D3,D4,D5,D6,D7,D8と呼ぶ。偏光制御系28の偏光ユニット30A〜30Dの駆動によって、例えば図3(D)に示すように、8個の部分領域C1〜C8の面積比(ひいては部分領域C1〜C8を通過する光の断面積の比)は広い範囲で変更可能である。部分領域C1〜C8の面積比が変更されるのに応じて、図3(B)に示すように、SLM22における部分アレイ領域D1〜D8の面積比(ひいてはこれらのアレイ領域内のミラー要素24の数の比)も同じ割合で変更される。   Further, the cross section 50B of the illumination light IL in the polarization control system 28 and the irradiation region 50A of the illumination light IL for the SLM 22 in FIG. 3A are conjugate. Therefore, the regions in the irradiation region 50A conjugate with the eight partial regions C1, C2, C3, C4, C5, C6, C7, and C8 in the cross section 50B are respectively represented as partial array regions D1, D2, D3, and D3. Called D4, D5, D6, D7, and D8. By driving the polarization units 30A to 30D of the polarization control system 28, for example, as shown in FIG. 3D, the area ratio of the eight partial regions C1 to C8 (and thus the sectional area of the light passing through the partial regions C1 to C8). Ratio) can be changed over a wide range. As the area ratio of the partial regions C1 to C8 is changed, as shown in FIG. 3B, the area ratio of the partial array regions D1 to D8 in the SLM 22 (and thus the mirror elements 24 in these array regions). The number ratio is also changed at the same rate.

また、本実施形態の照明光学系ILSは、一例として、照明瞳における偏光状態の分布を、光の偏光方向に関して例えば縦偏光DV(又は横偏光DHでもよい)を基準として180度(π(rad))の1/N(Nは2以上の整数)の角度φ1を単位として設定可能とするものとする。この場合、照明瞳の任意の光強度分布内で同時に設定可能な複数の偏光方向はN個であり、その偏光方向は、ある基準となる方向に関して以下のN個の角度のうちいずれかの角度だけずれている。   Further, as an example, the illumination optical system ILS of the present embodiment has a polarization state distribution at the illumination pupil that is 180 degrees (π (rad) with respect to the polarization direction of light, for example, with reference to longitudinally polarized light DV (or laterally polarized light DH). )) Of 1 / N (N is an integer of 2 or more), and the angle φ1 can be set as a unit. In this case, there are N polarization directions that can be set simultaneously in an arbitrary light intensity distribution of the illumination pupil, and the polarization direction is any one of the following N angles with respect to a certain reference direction. It is only shifted.

偏光方向=i・φ1,(i=0,1,2,…,N−1) …(1)
φ1=180度/N …(2)
一例として、N=4とすると、偏光方向の設定単位の角度φ1は45度(=180度/4)となる。また、N=8とすると、角度φ1は22.5度(=180度/8)となる。
以下では、N=8の場合について説明する。このとき、照明瞳が形成される面である照明瞳面IPP(詳細後述)において、偏光方向が縦偏光DVに対して左回りにi・22.5度(i=0〜7)、すなわち0度、22.5度、45度、67.5度、90度、112.5度、135度、及び157.5度回転した方向をそれぞれ図2(C)の方向A1,A2,A3,A4,A5,A6,A7,A8とする。このとき、偏光方向が縦偏光DVに対して右回りにi・22.5度(i=0〜7)回転した方向は方向A8〜A1となる。照明瞳内で局所的な複数の領域の偏光方向を方向A1〜A8の任意の組み合わせとすることで、極めて自由度の高い偏光状態を設定できる。
Polarization direction = i · φ1, (i = 0, 1, 2,..., N−1) (1)
φ1 = 180 degrees / N (2)
As an example, when N = 4, the angle φ1 of the setting unit of the polarization direction is 45 degrees (= 180 degrees / 4). If N = 8, the angle φ1 is 22.5 degrees (= 180 degrees / 8).
Hereinafter, a case where N = 8 will be described. At this time, in the illumination pupil plane IPP (detailed later) on which the illumination pupil is formed, the polarization direction is i · 22.5 degrees (i = 0 to 7) counterclockwise with respect to the longitudinal polarization DV, that is, 0. The directions rotated by degrees, 22.5 degrees, 45 degrees, 67.5 degrees, 90 degrees, 112.5 degrees, 135 degrees, and 157.5 degrees are directions A1, A2, A3, and A4 in FIG. , A5, A6, A7, A8. At this time, directions in which the polarization direction is rotated by i · 22.5 degrees (i = 0 to 7) clockwise with respect to the longitudinal polarization DV are directions A8 to A1. A polarization state with a very high degree of freedom can be set by setting the polarization directions of a plurality of regions local in the illumination pupil to any combination of directions A1 to A8.

N=8(角度φ1=22.5度)の場合、図3(C)に示すように、一例として、偏光ユニット30A,30B,30C,30Dにおける入射光に対する偏光方向の回転角(上記の第1、第2、第3、第4の角度)(図1(B)の旋光部材29A〜29Dの旋光角)は、例えば左回りに22.5度、90度、45度、及び90度である。この際に、対応する旋光部材29A,29B,29C,29Dの厚さは、それぞれ+Y方向に入射する光に対する旋光角(偏光方向の回転角)を左回りに「22.5度+n1・180度」、「90度+n2・180度」、「45度+n3・180度」、及び「90度+n4・180度」とするように設定されている。なお、n1,n2,n3,n4はそれぞれ0以上の整数であり、n1〜n4は互いに異なっていてもよい。仮にn1=n2=n3=n4=0とすると、旋光部材29A,29B,29C,29Dにおける旋光角は左回りに22.5度、90度、45度、90度となり、また、n1=n2=n3=n4=1とすると、旋光部材29A,29B,29C,29Dにおける旋光角は左回りに202.5度、270度、225度、270度となる。   In the case of N = 8 (angle φ1 = 22.5 degrees), as shown in FIG. 3C, as an example, the rotation angle of the polarization direction with respect to the incident light in the polarization units 30A, 30B, 30C, 30D (the above-mentioned first 1, 2nd, 3rd, 4th angle) (rotational angle of the optical rotation members 29 </ b> A to 29 </ b> D in FIG. 1B) is, for example, 22.5 degrees, 90 degrees, 45 degrees, and 90 degrees counterclockwise. is there. At this time, the thicknesses of the corresponding optical rotation members 29A, 29B, 29C, and 29D are “22.5 degrees + n1 · 180 degrees” with the optical rotation angle (rotation angle in the polarization direction) with respect to the light incident in the + Y direction counterclockwise. ”,“ 90 degrees + n2 · 180 degrees ”,“ 45 degrees + n3 · 180 degrees ”, and“ 90 degrees + n4 · 180 degrees ”. Note that n1, n2, n3, and n4 are each an integer of 0 or more, and n1 to n4 may be different from each other. If n1 = n2 = n3 = n4 = 0, the optical rotation angles in the optical rotation members 29A, 29B, 29C, 29D are 22.5 degrees, 90 degrees, 45 degrees, 90 degrees counterclockwise, and n1 = n2 = When n3 = n4 = 1, the optical rotation angles in the optical rotation members 29A, 29B, 29C, and 29D are 202.5 degrees, 270 degrees, 225 degrees, and 270 degrees counterclockwise.

また、偏光方向を左回りにある角度φaだけ回転しても、偏光方向を右回りに(180度−φa)だけ回転しても、射出される光の偏光方向は同じであるため、旋光部材29A,29B,29C,29Dの厚さを、それぞれ入射光に対する旋光角を右回りに「157.5度(=180度−22.5度)+n1・180度」、「90度+n2・180度」、「135度(=180度−45度)+n3・180度」、及び「90度+n4・180度」とするように設定してもよい(以下、同様)。さらに、例えば旋光部材29A,29C(偏光ユニット30A,30C)では旋光角を左回りに設定し、旋光部材29B,29D(偏光ユニット30B,30D)では旋光角を右回りに設定するように、旋光部材29A〜29D(偏光ユニット30A〜30D)間で旋光角の符号(左回り又は右回り)を異ならせてもよい。旋光角を規定する整数n1〜n4が大きくなると、旋光部材29A〜29Dを厚くできるため、旋光部材29A〜29D、ひいては偏光ユニット30A〜30Dの製造及び支持が容易になることもある。   Further, even if the polarization direction is rotated counterclockwise by an angle φa or the polarization direction is rotated clockwise (180 degrees−φa), the polarization direction of the emitted light is the same. The thicknesses of 29A, 29B, 29C, and 29D are set to “157.5 degrees (= 180 degrees−22.5 degrees) + n1 · 180 degrees” and “90 degrees + n2 · 180 degrees” with the optical rotation angle with respect to the incident light clockwise. ”,“ 135 degrees (= 180 degrees−45 degrees) + n3 · 180 degrees ”, and“ 90 degrees + n4 · 180 degrees ”(hereinafter the same). Further, for example, the optical rotation angle is set so that the optical rotation angle is set counterclockwise in the optical rotation members 29A and 29C (polarization units 30A and 30C), and the optical rotation angle is set clockwise in the optical rotation members 29B and 29D (polarization units 30B and 30D). The sign of the optical rotation angle (counterclockwise or clockwise) may be varied between the members 29A to 29D (polarization units 30A to 30D). When the integers n1 to n4 that define the optical rotation angle are increased, the optical rotation members 29A to 29D can be thickened, and thus the optical rotation members 29A to 29D, and thus the polarizing units 30A to 30D may be easily manufactured and supported.

なお、以下では、説明の便宜上、旋光部材における旋光角が左回り又は右回りにφaであるときには、その角度は「φa+n・180度」(nは0以上の整数)の場合を含むものとする。
本実施形態において、部分領域C1〜C8に入射する光の偏光方向は、楕円偏光化を無視すると、当該部分領域内にある偏光ユニット30A〜30D内の旋光部材29A〜29Dの旋光角の和の角度だけ変化する。また、ある角度φaで回転した後の偏光方向と、角度「φa+na・180度」(naは整数)で回転した後の偏光方向とは同じである。このため、図3(D)において、断面50B内の部分領域C1,C2,C3,C4,C5,C6,C7,及びC8を通過した後の照明光ILの偏光方向は、基準となる縦偏光DVに対してそれぞれ左回りに0度、22.5度、45度、67.5度、90度、112.5度、135度、及び157.5度だけ回転している。従って、偏光制御系28を通過した後の照明光ILは、8個の互いに偏光方向が22.5度(=180度/8)ずつ異なる直線偏光の成分を有する。
In the following, for convenience of explanation, when the optical rotation angle of the optical rotation member is φa counterclockwise or clockwise, the angle includes “φa + n · 180 degrees” (n is an integer of 0 or more).
In the present embodiment, the polarization direction of the light incident on the partial regions C1 to C8 is the sum of the optical rotation angles of the optical rotation members 29A to 29D in the polarization units 30A to 30D in the partial region, ignoring elliptical polarization. It changes by angle. Further, the polarization direction after rotating at an angle φa is the same as the polarization direction after rotating at an angle “φa + na · 180 degrees” (na is an integer). For this reason, in FIG. 3D, the polarization direction of the illumination light IL after passing through the partial regions C1, C2, C3, C4, C5, C6, C7, and C8 in the cross section 50B is the longitudinal polarization as a reference. They are rotated counterclockwise by 0 degrees, 22.5 degrees, 45 degrees, 67.5 degrees, 90 degrees, 112.5 degrees, 135 degrees, and 157.5 degrees with respect to the DV. Therefore, the illumination light IL after passing through the polarization control system 28 has eight linearly polarized light components whose polarization directions are different from each other by 22.5 degrees (= 180 degrees / 8).

ここで、縦偏光DVに対して±45度変化した偏光方向を持つ偏光状態を45度偏光DSA及びDSB、縦偏光DVに対して±22.5度変化した偏光方向を持つ偏光状態を22.5度の偏光DV1及びDV2、横偏光DHに対して±22.5度変化した偏光方向を持つ偏光状態を22.5度の偏光DH1及びDH2と呼ぶこととする。このとき、断面50B内の部分領域C1,C2,C3,C4,C5,C6,C7,及びC8を通過した後の照明光の偏光状態はそれぞれDV,DV1,DSA,DH2,DH,DH1,DSB,及びDV2となる。これらの偏光状態DV〜DV2の偏光方向が図2(C)の偏光方向A1〜A8に平行となって対応している。   Here, the polarization state having a polarization direction changed by ± 45 degrees with respect to the longitudinal polarization DV is changed to 45 degrees polarization DSA and DSB, and the polarization state having a polarization direction changed by ± 22.5 degrees with respect to the longitudinal polarization DV is referred to as 22. The polarization state having the polarization direction changed by ± 22.5 degrees with respect to the 5 degrees polarization DV1 and DV2 and the lateral polarization DH will be referred to as 22.5 degrees polarization DH1 and DH2. At this time, the polarization state of the illumination light after passing through the partial regions C1, C2, C3, C4, C5, C6, C7, and C8 in the cross section 50B is DV, DV1, DSA, DH2, DH, DH1, DSB, respectively. , And DV2. The polarization directions of these polarization states DV to DV2 correspond to the polarization directions A1 to A8 in FIG.

また、断面50B内の部分領域C1〜C8はSLM22の照射領域50A内の部分アレイ領域D1〜D8と共役であるため、部分領域C1〜C8を通過した後の光の偏光方向が互いに異なることは、実質的にSLM22の照射領域50A内の8個の面積比が可変の部分アレイ領域D1〜D8で反射された光が互いに偏光方向の異なる直線偏光になっているのと等価である。このため、部分アレイ領域D1〜D8内の一つ又は複数のミラー要素24の角度を個別に制御することによって、照明瞳内の光強度分布を任意の配置で8個の偏光方向を持つ分布に設定できる。   Further, since the partial areas C1 to C8 in the cross section 50B are conjugate with the partial array areas D1 to D8 in the irradiation area 50A of the SLM 22, the polarization directions of the light after passing through the partial areas C1 to C8 are different from each other. This is equivalent to the fact that the light reflected by the eight partial array regions D1 to D8 having variable area ratios in the irradiation region 50A of the SLM 22 is linearly polarized light having different polarization directions. For this reason, by individually controlling the angle of one or a plurality of mirror elements 24 in the partial array regions D1 to D8, the light intensity distribution in the illumination pupil can be changed to a distribution having eight polarization directions in an arbitrary arrangement. Can be set.

なお、要は断面50B内の8個の部分領域を通過した後の光の偏光方向が22.5度単位で異なる8個の方向になればよいため、この条件を満たす範囲で偏光ユニット30A〜30Dにおける偏光方向の回転角(旋光部材29A〜29Dの旋光角)は任意の組み合わせが可能である。例えば、偏光ユニット30A,30B,30C,30Dにおける偏光方向の回転角(上記の第1〜第4の角度)をそれぞれ左回りに90度、22.5度、22.5度、及び22.5度としても、これらを通過した後の光の偏光方向を8個の方向に設定できる。さらに、偏光ユニット30A,30B,30C,30Dにおける偏光方向の回転角をそれぞれ右回りに90度、22.5度、22.5度、及び22.5度としてもよい。   The point is that the polarization direction of the light after passing through the eight partial regions in the cross section 50B only needs to be eight different directions in units of 22.5 degrees. The rotation angle of the polarization direction at 30D (the rotation angle of the optical rotation members 29A to 29D) can be arbitrarily combined. For example, the rotation angles (the first to fourth angles) in the polarization direction in the polarization units 30A, 30B, 30C, and 30D are respectively 90 degrees, 22.5 degrees, 22.5 degrees, and 22.5 counterclockwise. Also, the polarization direction of the light after passing through these can be set to eight directions. Furthermore, the rotation angle of the polarization direction in the polarization units 30A, 30B, 30C, and 30D may be 90 degrees, 22.5 degrees, 22.5 degrees, and 22.5 degrees clockwise.

図1(A)において、第2偏光制御系28を経た照明光ILは、集光光学系32を介してマイクロレンズアレイ(又はフライアイレンズでもよい)34に入射する。後側レンズ群26b及び集光光学系32は、瞳面P2とマイクロレンズアレイ34の入射面P5とを光学的に共役に設定している。従って、SLM22のミラー要素24のアレイを経た照明光ILは、マイクロレンズアレイ34の入射面P5に、瞳面P2に形成された光強度分布と相似の光強度分布を有し、かつ偏光制御系28によって制御された偏光状態の分布を有する光強度分布を形成する。   In FIG. 1A, the illumination light IL that has passed through the second polarization control system 28 enters a microlens array (or a fly-eye lens) 34 via a condensing optical system 32. The rear lens group 26b and the condensing optical system 32 optically conjugate the pupil plane P2 and the incident plane P5 of the microlens array 34. Accordingly, the illumination light IL that has passed through the array of mirror elements 24 of the SLM 22 has a light intensity distribution similar to the light intensity distribution formed on the pupil plane P2 on the incident surface P5 of the microlens array 34, and a polarization control system. A light intensity distribution having a polarization state distribution controlled by 28 is formed.

マイクロレンズアレイ34は、例えば縦横に且つ稠密に配列された多数の正屈折力を有する断面が矩形状の微小レンズからなる光学素子であり、例えば平行平面板にエッチング処理を施して微小レンズ群を形成することによって形成可能である。レンズ要素が縦横に配置されている点でマイクロレンズアレイはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。マイクロレンズアレイ34の後側焦点面又はその近傍の面が照明瞳面IPPとなり、この面に照明瞳が形成される。なお、照明瞳面IPP又はその近傍に、後述の二次光源に対応した形状の開口部(光透過部)を有する照明開口絞りを配置してもよい。   The microlens array 34 is an optical element composed of microlenses having a large number of positive refracting powers arranged vertically and horizontally and densely, for example, and having a rectangular cross section. It can be formed by forming. The microlens array is a wavefront division type optical integrator similar to the fly-eye lens in that the lens elements are arranged vertically and horizontally. A rear focal plane of the microlens array 34 or a plane in the vicinity thereof becomes an illumination pupil plane IPP, and an illumination pupil is formed on this plane. An illumination aperture stop having an opening (light transmission part) having a shape corresponding to a secondary light source to be described later may be disposed at or near the illumination pupil plane IPP.

マイクロレンズアレイ34における単位波面分割面としての矩形状の微小屈折面は、レチクルR上において形成すべき照野(照明領域)の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。なお、マイクロレンズアレイ34として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成及び作用は、例えば米国特許第6913373号明細書に開示されている。   A rectangular minute refracting surface as a unit wavefront dividing surface in the microlens array 34 is similar to the shape of the illumination field (illumination region) to be formed on the reticle R (and the shape of the exposure region to be formed on the wafer W). A rectangular shape. For example, a cylindrical micro fly's eye lens can be used as the microlens array 34. The configuration and operation of the cylindrical micro fly's eye lens are disclosed in, for example, US Pat. No. 6,913,373.

マイクロレンズアレイ34による波面分割数は比較的大きいため、マイクロレンズアレイ34の入射面P5に形成される大局的な光強度分布と、照明瞳面IPPにおける二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロレンズアレイ34の入射面P5及び当該入射面P5と光学的に共役な面における光強度分布についても実質的に瞳強度分布と称することができる。リレー光学系26、集光光学系32、及びマイクロレンズアレイ34は、SLM22を経た光束に基づいてマイクロレンズアレイ34の直後の照明瞳面IPP(照明瞳)に瞳強度分布を形成する強度分布形成光学系を構成している。   Since the number of wavefront divisions by the microlens array 34 is relatively large, the overall light intensity distribution formed on the incident surface P5 of the microlens array 34 and the overall light intensity distribution of the entire secondary light source on the illumination pupil plane IPP. (Pupil intensity distribution) shows a high correlation. For this reason, the light intensity distribution on the incident surface P5 of the microlens array 34 and the surface optically conjugate with the incident surface P5 can also be substantially referred to as a pupil intensity distribution. The relay optical system 26, the condensing optical system 32, and the microlens array 34 form an intensity distribution that forms a pupil intensity distribution on the illumination pupil plane IPP (illumination pupil) immediately after the microlens array 34 based on the light beam that has passed through the SLM 22. An optical system is configured.

マイクロレンズアレイ34に入射した照明光ILは多数の微小レンズにより二次元的に分割されて照明瞳面IPPに入射し、照明瞳面IPPには入射面P5に形成される光強度分布とほぼ同じ光強度分布でほぼ同じ偏光状態の分布を有する二次光源(多数の小さい光源からなる実質的な面光源としての瞳強度分布)が形成される。照明瞳面IPPに形成された二次光源からの光束は、コンデンサー光学系42を介して、照明視野絞りとしてのレチクルブラインド44を重畳的に照明する。   The illumination light IL incident on the microlens array 34 is two-dimensionally divided by a large number of microlenses and incident on the illumination pupil plane IPP. The illumination pupil plane IPP has substantially the same light intensity distribution as that formed on the incident plane P5. A secondary light source (pupil intensity distribution as a substantial surface light source made up of a large number of small light sources) having a light intensity distribution and substantially the same polarization state distribution is formed. The light beam from the secondary light source formed on the illumination pupil plane IPP illuminates the reticle blind 44 as an illumination field stop via the condenser optical system 42 in a superimposed manner.

レチクルブラインド44の矩形状の開口部(光透過部)を介した光束は、第1レンズ群46aを経てミラーMR3によりほぼ−Z方向へ反射された後、第2レンズ群46bによって集光されて、転写用のパターンが形成されたレチクルRのパターン面Ra(ここでは下面)の照明領域IAを重畳的に照明する。このとき、レンズ群46a及び46bよりなる結像光学系46は、レチクルブラインド44の矩形状開口部の像をレチクルRのパターン面Raに形成する。上述のように、偏光設定系14、ミラーMR2,MR3、SLM22、リレー光学系26、偏光制御系28(偏光ユニット30A〜30D)、集光光学系32、マイクロレンズアレイ34、コンデンサー光学系42、レチクルブラインド44、及び結像光学系46を含んで照明光学系ILSが構成されている。また、レチクルRのパターン面Ra(被照射面)は、照明光学系ILSのコンデンサー光学系42及び結像光学系46によって照明瞳面IPPに対して光学的なフーリエ変換面となっている。なお、瞳強度分布とは、照明瞳面IPP又は照明瞳面IPPと光学的に共役な面における光強度分布(輝度分布)である。   The light beam that has passed through the rectangular opening (light transmission portion) of the reticle blind 44 is reflected in the approximately -Z direction by the mirror MR3 via the first lens group 46a, and then condensed by the second lens group 46b. The illumination area IA on the pattern surface Ra (here, the lower surface) of the reticle R on which the transfer pattern is formed is illuminated in a superimposed manner. At this time, the imaging optical system 46 including the lens groups 46 a and 46 b forms an image of the rectangular opening of the reticle blind 44 on the pattern surface Ra of the reticle R. As described above, the polarization setting system 14, the mirrors MR2, MR3, the SLM 22, the relay optical system 26, the polarization control system 28 (polarization units 30A to 30D), the condensing optical system 32, the microlens array 34, the condenser optical system 42, An illumination optical system ILS is configured including the reticle blind 44 and the imaging optical system 46. The pattern surface Ra (irradiated surface) of the reticle R is an optical Fourier transform surface with respect to the illumination pupil plane IPP by the condenser optical system 42 and the imaging optical system 46 of the illumination optical system ILS. The pupil intensity distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane IPP or a plane optically conjugate with the illumination pupil plane IPP.

レチクルステージRSTに保持されたレチクルRの照明領域を透過した照明光ILは、投影光学系PLを介して、ウェハステージWSTに保持されたウェハWの表面の露光領域(照明領域と共役な領域)にレチクルパターンの像を形成する。投影光学系PLの瞳面(入射瞳と共役な面)は照明瞳面IPPと共役であり、投影光学系PLの瞳面又はその近傍の位置に開口絞りASが設置されている。ウェハWは、例えばシリコン等の半導体の円板状の基材の表面にフォトレジスト(感光剤)を数10〜200nm程度の厚さで塗布した基板を含む。   The illumination light IL transmitted through the illumination area of the reticle R held on the reticle stage RST is exposed to the surface of the wafer W held on the wafer stage WST via the projection optical system PL (an area conjugate with the illumination area). Then, an image of the reticle pattern is formed. The pupil plane of the projection optical system PL (a plane conjugate with the entrance pupil) is conjugate with the illumination pupil plane IPP, and an aperture stop AS is installed at a position near or in the pupil plane of the projection optical system PL. The wafer W includes a substrate in which a photoresist (photosensitive agent) is applied to a surface of a disk-shaped base material of a semiconductor such as silicon with a thickness of about several tens to 200 nm.

本実施形態の露光装置EXが液浸型である場合には、例えば米国特許出願公開第2007/242247号明細書等に開示されるように液体の供給及び回収を行う装置(不図示)によって、露光中に投影光学系PLの先端のレンズとウェハWとの間の局所的な領域に照明光ILを透過する液体が供給される。
また、レチクルステージRSTは、不図示のレチクルベースの上面に、少なくともXY平面内で移動可能に載置されている。レチクルステージRSTの少なくとも2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて、主制御装置38がリニアモータ等を含む駆動系DRRを介してレチクルステージRSTの位置及び速度を制御する。また、ウェハステージWSTは、不図示のベース部材の上面に少なくともXY平面内で移動可能に載置されている。ウェハステージWSTの少なくとも2次元的な位置は不図示のレーザ干渉計又はエンコーダによって計測され、この計測情報に基づいて、主制御装置38がリニアモータ等を含む駆動系DRWを介してウェハステージWSTの位置及び速度を制御する。
When the exposure apparatus EX of the present embodiment is a liquid immersion type, an apparatus (not shown) that supplies and recovers liquid as disclosed in, for example, US Patent Application Publication No. 2007/242247, etc. During exposure, a liquid that transmits the illumination light IL is supplied to a local region between the lens at the tip of the projection optical system PL and the wafer W.
In addition, reticle stage RST is placed on an upper surface of a reticle base (not shown) so as to be movable at least in the XY plane. At least a two-dimensional position of the reticle stage RST is measured by a laser interferometer (not shown). Based on this measurement information, the main controller 38 detects the position of the reticle stage RST via a drive system DRR including a linear motor and the like. Control the speed. Wafer stage WST is placed on the upper surface of a base member (not shown) so as to be movable at least within the XY plane. At least a two-dimensional position of wafer stage WST is measured by a laser interferometer or an encoder (not shown). Based on this measurement information, main controller 38 of wafer stage WST passes through drive system DRW including a linear motor and the like. Control position and speed.

また、本実施形態の露光装置EXは、照明光学系ILS及び投影光学系PLを介した照明光ILに基づいて、照明瞳面IPP又は投影光学系PLの瞳面における瞳強度分布及び偏光状態の分布を計測する計測装置40を備えている。計測装置40は、瞳強度分布を計測する第1計測部と、偏光状態(例えばストークスパラメータ又はジョーンズ行列等で表される偏光状態)の分布を計測する第2計測部とを有する。計測装置40の計測結果は主制御装置38に供給される。なお、計測装置40と同様の計測装置をレチクルステージRSTに設け、照明光学系ILSのみの瞳強度分布及び偏光状態の分布を計測可能としてもよい。瞳強度分布の計測部として使用できる計測装置が、例えば米国特許公開第2010/0020302号明細書に開示されている。   Further, the exposure apparatus EX of the present embodiment, based on the illumination light IL via the illumination optical system ILS and the projection optical system PL, determines the pupil intensity distribution and the polarization state on the illumination pupil plane IPP or the pupil plane of the projection optical system PL. A measuring device 40 for measuring the distribution is provided. The measurement device 40 includes a first measurement unit that measures the pupil intensity distribution and a second measurement unit that measures the distribution of the polarization state (for example, a polarization state represented by a Stokes parameter or a Jones matrix). The measurement result of the measuring device 40 is supplied to the main control device 38. Note that a measurement device similar to the measurement device 40 may be provided on the reticle stage RST so that the pupil intensity distribution and the polarization state distribution of only the illumination optical system ILS can be measured. A measurement apparatus that can be used as a pupil intensity distribution measurement unit is disclosed in, for example, US 2010/0020302.

ウェハWの露光時には、主制御装置38の制御のもとで、照明光学系ILSからの照明光ILでレチクルRを照明した状態で、投影光学系PLを介してウェハWを一括露光又は走査露光する動作と、ウェハステージWSTを介してX方向、Y方向にウェハWを移動する動作とを繰り返すことで、ウェハWの全部のショット領域にレチクルRのパターンの像が露光される。走査露光を行う場合には、図1(A)におけるY方向をレチクルR及びウェハWの走査方向に設定することができる。   At the time of exposure of the wafer W, under the control of the main controller 38, the wafer W is collectively exposed or scanned through the projection optical system PL while the reticle R is illuminated with the illumination light IL from the illumination optical system ILS. By repeating this operation and the operation of moving the wafer W in the X direction and the Y direction via the wafer stage WST, the image of the pattern of the reticle R is exposed on all shot areas of the wafer W. When performing scanning exposure, the Y direction in FIG. 1A can be set as the scanning direction of the reticle R and the wafer W.

次に、本実施形態の偏光制御系28の偏光ユニット30A〜30Dにおいて、旋光部材29A〜29Dに光軸AXIに対して傾斜した照明光(斜入射光)が入射したときに、複屈折部材31A〜31Dからわずかに楕円偏光化して射出される光の偏光状態が、対応する複屈折部材31A〜31Dによって直線偏光に近くなるように補正されることについて説明する。   Next, in the polarization units 30A to 30D of the polarization control system 28 of the present embodiment, when illumination light (oblique incident light) inclined with respect to the optical axis AXI is incident on the optical rotation members 29A to 29D, the birefringent member 31A. A description will be given of the fact that the polarization state of the light emitted after being slightly elliptically polarized from ˜31D is corrected to be close to linearly polarized light by the corresponding birefringent members 31A to 31D.

図4は、図1(A)の照明光学系ILSの要部を示す。図4において、図3(A)に示すSLM22の4個の部分アレイ領域D5,D6,D7,D8内のそれぞれ一つのミラー要素24C,24D,24E,24Fが代表的に示されている。なお、SLM22のミラー要素24のアレイ(照射領域50A)及び偏光制御系28の照明光ILが入射する領域(断面50B)は、実際にはほぼ照明光学系ILSの光軸AXIの近傍にある。また、ミラー要素24C,24D,24E,24Fで反射された光IL5,IL6,IL7,IL8は、それぞれ縦偏光DVの状態で前側レンズ群26aを介して、ミラー要素24C〜24Fの傾斜角に応じて任意に定まる瞳面P2上の領域を通過する。ここでは、ミラー要素24C〜24Fから反射される光IL5〜IL8は光軸AXIに対する傾斜角が大きく、瞳面P2上で光軸AXIから離れた領域を通過しているものとする。そして、瞳面P2を通過した光IL5,IL6,IL7,IL8は、後側レンズ群26bを介してそれぞれ縦偏光DVの状態で偏光制御系28の部分領域C5,C6,C7,C8に入射する。   FIG. 4 shows a main part of the illumination optical system ILS in FIG. 4 representatively shows one mirror element 24C, 24D, 24E, and 24F in each of the four partial array regions D5, D6, D7, and D8 of the SLM 22 shown in FIG. Note that the array (irradiation region 50A) of the mirror elements 24 of the SLM 22 and the region (cross section 50B) where the illumination light IL of the polarization control system 28 is incident are actually near the optical axis AXI of the illumination optical system ILS. Further, the lights IL5, IL6, IL7, and IL8 reflected by the mirror elements 24C, 24D, 24E, and 24F correspond to the inclination angles of the mirror elements 24C to 24F through the front lens group 26a in the state of longitudinally polarized light DV, respectively. Pass through a region on the pupil plane P2 that is arbitrarily determined. Here, it is assumed that the lights IL5 to IL8 reflected from the mirror elements 24C to 24F have a large inclination angle with respect to the optical axis AXI and pass through a region away from the optical axis AXI on the pupil plane P2. Then, the light beams IL5, IL6, IL7, and IL8 that have passed through the pupil plane P2 enter the partial regions C5, C6, C7, and C8 of the polarization control system 28 in the state of the longitudinal polarization DV through the rear lens group 26b. .

この場合、偏光制御系28の偏光ユニット30A,30B,30C,30Dにおける入射光に対する偏光方向の回転角を、一例としてそれぞれ左回りに22.5度、90度、45度、及び90度であるとする。このとき、部分領域C5,C6,C7,C8を通過する光の偏光方向の回転角は、それぞれ左回りに90度、112.5度(=90度+22.5度)、135度(=90度+45度)、及び157.5度(=135度+22.5度)である。従って、部分領域C5,C6,C7,C8を通過した光IL5,IL6,IL7,IL8は、それぞれ横偏光DH、22.5度ずれた横偏光DH1、右回りの45度偏光DSB、及び22.5度ずれた縦偏光DV2となって、集光光学系32を介して照明瞳面IPP(又は図1(A)の入射面P5)の光軸AXIから離れた部分領域(以下、瞳領域という)53a.53b,53c,53dに入射する。瞳領域53a〜53dは、照明瞳面IPPに形成される瞳強度分布53のうち、光強度が大きい領域の一部である。そして、瞳領域53a〜53dに入射する光の偏光方向は、図2(C)に示されている方向A5〜A8となる。   In this case, the rotation angles of the polarization direction with respect to the incident light in the polarization units 30A, 30B, 30C, and 30D of the polarization control system 28 are 22.5 degrees, 90 degrees, 45 degrees, and 90 degrees, respectively, counterclockwise as an example. And At this time, the rotation angles of the polarization direction of the light passing through the partial regions C5, C6, C7, and C8 are 90 degrees, 112.5 degrees (= 90 degrees + 22.5 degrees), and 135 degrees (= 90), respectively. Degree + 45 degrees) and 157.5 degrees (= 135 degrees + 22.5 degrees). Accordingly, the lights IL5, IL6, IL7, and IL8 that have passed through the partial regions C5, C6, C7, and C8 are respectively the horizontally polarized light DH, the horizontally polarized light DH1 that is shifted by 22.5 degrees, the clockwise 45 degrees polarized light DSB, and 22. The longitudinally polarized light DV2 is shifted by 5 degrees, and a partial area (hereinafter referred to as a pupil area) separated from the optical axis AXI of the illumination pupil plane IPP (or the entrance plane P5 in FIG. 1A) via the condensing optical system 32. 53a. Incident on 53b, 53c, 53d. The pupil regions 53a to 53d are part of a region having a high light intensity in the pupil intensity distribution 53 formed on the illumination pupil plane IPP. And the polarization direction of the light which injects into the pupil area | regions 53a-53d turns into direction A5-A8 shown by FIG.2 (C).

本実施形態では、SLM22のミラー要素24の配列面P1と偏光ユニット30A〜30Dの設置面P3とはほぼ共役であるため、偏光ユニット30A〜30Dの前面のある点に入射する光の入射角(光軸AXIに対する傾斜角と同じ角度)は、その点と共役な位置にあるSLM22のミラー要素24における反射光の光軸AXIに対する傾斜角に対応している。そして、ミラー要素24での反射光の光軸AXIに対する傾斜角が大きいときに、光IL5〜IL8で示すように、偏光ユニット30A〜30Dを通過した光は、照明瞳面IPP上で光軸AXIから離れた瞳領域に入射する。また、偏光ユニット30A〜30D内の旋光部材29A〜29Dを通過した光が楕円偏光化するのは、斜入射光が入射する場合であり、その楕円偏光化の程度はその斜入射光の光軸AXIに対する傾斜角が大きくなるほど、すなわち射出光の照明瞳面IPPでの光軸AXIからの距離が大きくなるほど大きくなる。   In this embodiment, since the arrangement plane P1 of the mirror element 24 of the SLM 22 and the installation plane P3 of the polarization units 30A to 30D are substantially conjugate, the incident angle of light incident on a point on the front surface of the polarization units 30A to 30D ( (The same angle as the tilt angle with respect to the optical axis AXI) corresponds to the tilt angle with respect to the optical axis AXI of the reflected light at the mirror element 24 of the SLM 22 at a position conjugate to that point. When the angle of inclination of the reflected light from the mirror element 24 with respect to the optical axis AXI is large, as shown by the lights IL5 to IL8, the light that has passed through the polarization units 30A to 30D has the optical axis AXI on the illumination pupil plane IPP. Incident into the pupil region away from the. The light passing through the optical rotation members 29A to 29D in the polarization units 30A to 30D is elliptically polarized when obliquely incident light is incident. The degree of elliptical polarization is the optical axis of the obliquely incident light. The larger the inclination angle with respect to AXI, that is, the larger the distance from the optical axis AXI on the illumination pupil plane IPP of the emitted light, the larger the angle.

従って、照明瞳面IPPの有効領域(コヒーレンスファクタが1の円周で囲まれた領域)で、周縁部の領域の光軸AXIからの距離の平均値をRILとして、この距離RILに対応する傾斜角を持つ斜入射光に対して、楕円偏光化された射出光が最も直線偏光に近くなるように調整することによって、その有効領域内のほぼ全部の領域に入射する光に対して楕円偏光化を補正することができる。以下では、その照明瞳面IPPにおいて光軸AXIからの距離がRILとなる位置に入射する光に関して、偏光ユニット30A〜30Dに入射するときの光軸AXIに対する傾斜角θ(すなわち偏光ユニット30A〜30Dの前面に対する入射角θ)が数度(例えば5度程度)であるものとして、この入射角θで偏光ユニット30A〜30Dに入射する光に対する楕円偏光化を補正する場合につき説明する。   Therefore, in the effective area of the illumination pupil plane IPP (area surrounded by a circle having a coherence factor of 1), the average value of the distance from the optical axis AXI of the peripheral area is RIL, and the slope corresponding to this distance RIL For obliquely incident light with an angle, the elliptically polarized light is incident on almost all of its effective area by adjusting the elliptically polarized light so that it is closest to linearly polarized light. Can be corrected. In the following, regarding the light incident on the illumination pupil plane IPP at a position where the distance from the optical axis AXI is RIL, the inclination angle θ with respect to the optical axis AXI when entering the polarization units 30A to 30D (that is, the polarization units 30A to 30D). Assuming that the incident angle [theta] with respect to the front surface is several degrees (e.g., about 5 degrees), the case of correcting the elliptical polarization for the light incident on the polarization units 30A to 30D at this incident angle [theta] will be described.

まず、入射光に対する偏光方向の回転角が90度の偏光ユニット30Bについて、偏光ユニット30Bを構成する旋光部材29B及び複屈折部材31Bの偏光特性につき説明する。
図5(A)は、本実施形態の偏光制御系28において、偏光ユニット30B内の旋光部材29Bだけが設置面P3に設置されている状態を示す。図5(A)及び以下で説明する図6(A)等において、照明瞳面IPPの光軸AXIを通りX軸及びZ軸に平行な座標をそれぞれX1軸及びZ1軸とする。旋光部材29Bの旋光角は、左回りに(又は右回りに)90度又は(90度+n2・180度)(n2は0以上の整数)である。図5(A)において、旋光部材29Bは例えば水晶のような正結晶であるとする。このとき、旋光部材29Bの光学軸は遅相軸となる。そして、旋光部材29Bはその光学軸OAA(ここでは遅相軸PSAでもある)が光軸AXIに平行であり、旋光部材29Bの2つの直交する進相軸PF1A,PF2Aは、旋光部材29Bの前面(光軸AXIに垂直な面)に平行である。また、旋光部材29Bの前面の光軸AXIの近傍の領域において、縦偏光DVの状態で点29Baに垂直入射する光ILAは、旋光部材29Bによって偏光方向が90度左回りに回転されて横偏光DHとして、照明瞳面IPPの瞳強度分布54内で光軸AXIを中心とする瞳領域54aに入射する。
First, the polarization characteristics of the optical rotation member 29B and the birefringence member 31B constituting the polarization unit 30B will be described with respect to the polarization unit 30B whose polarization direction rotation angle with respect to incident light is 90 degrees.
FIG. 5A shows a state in which only the optical rotation member 29B in the polarization unit 30B is installed on the installation surface P3 in the polarization control system 28 of the present embodiment. In FIG. 5A, FIG. 6A described below, and the like, coordinates that pass through the optical axis AXI of the illumination pupil plane IPP and are parallel to the X axis and the Z axis are defined as an X1 axis and a Z1 axis, respectively. The optical rotation angle of the optical rotation member 29B is 90 degrees counterclockwise (or clockwise) or (90 degrees + n2 · 180 degrees) (n2 is an integer of 0 or more). In FIG. 5A, the optical rotation member 29B is assumed to be a positive crystal such as quartz. At this time, the optical axis of the optical rotation member 29B is a slow axis. The optical rotator 29B has an optical axis OAA (also a slow axis PSA here) parallel to the optical axis AXI, and the two orthogonal fast axes PF1A and PF2A of the optical rotator 29B are the front surfaces of the optical rotator 29B. (Plane perpendicular to the optical axis AXI). Further, in the region near the optical axis AXI on the front surface of the optical rotation member 29B, the light ILA that is perpendicularly incident on the point 29Ba in the state of the longitudinal polarization DV is rotated by 90 degrees counterclockwise in the polarization direction by the optical rotation member 29B and is laterally polarized. DH enters the pupil region 54a centered on the optical axis AXI within the pupil intensity distribution 54 of the illumination pupil plane IPP.

一方、旋光部材29Bの前面の点29Bb,29Bc,29Bdにそれぞれ+Z方向、Z軸に対して左回りに45度回転した方向、及び−X方向に入射角θ(光軸AXIに対して傾斜角θ)で入射する縦偏光DVの光ILB,ILC,ILDは、集光光学系32を介して照明瞳面IPPの光軸AXIに対して+Z1方向、Z1軸に対して左回りに45度傾斜した方向、及び−X1方向に離れた瞳領域54b,54c,54dに入射する。この際に、照明瞳面IPPにおいて、光軸AXIから入射時の縦偏光DVの偏光方向(Z方向)に対して同じ方向及び90度回転した方向にずれた瞳領域54b,54dに入射する光ILB,ILDは、旋光部材29Bにおける楕円偏光化の作用が大きくなっており、横偏光がわずかに楕円偏光化した偏光状態DHEとなっている。また、照明瞳面IPPにおいて、光軸AXIから入射時の縦偏光DVの偏光方向(Z方向)に対して45度回転した方向にずれた瞳領域54cに入射する光ILCは、旋光部材29Bにおける楕円偏光化の作用が小さいため、ほぼ目標とする横偏光DHとなっている。このように光ILB,ILDに対して楕円偏光化の作用が大きくなる理由につき、図5(B)、(C)を参照して説明する。   On the other hand, the incident angle θ (inclination angle with respect to the optical axis AXI) in the + Z direction, the direction rotated 45 degrees counterclockwise with respect to the Z axis, and the −X direction at the front points 29Bb, 29Bc, 29Bd of the optical rotation member 29B, respectively. Light ILB, ILC, and ILD of longitudinally polarized light DV incident at θ) is tilted 45 degrees counterclockwise with respect to the optical axis AXI of the illumination pupil plane IPP with respect to the optical axis AXI of the illumination pupil plane IPP via the condensing optical system 32. And the pupil regions 54b, 54c, and 54d that are separated in the −X1 direction. At this time, on the illumination pupil plane IPP, the light incident on the pupil regions 54b and 54d shifted from the optical axis AXI in the same direction and the direction rotated by 90 degrees with respect to the polarization direction (Z direction) of the longitudinally polarized light DV at the time of incidence. ILB and ILD have an elliptical polarization effect in the optical rotation member 29B, and are in a polarization state DHE in which the lateral polarization is slightly elliptically polarized. Also, on the illumination pupil plane IPP, the light ILC incident on the pupil region 54c shifted from the optical axis AXI in a direction rotated by 45 degrees with respect to the polarization direction (Z direction) of the longitudinally polarized light DV at the time of incidence is incident on the optical rotation member 29B. Since the action of elliptical polarization is small, the target laterally polarized light DH is obtained. The reason why the effect of elliptical polarization on the lights ILB and ILD is increased will be described with reference to FIGS. 5B and 5C.

図5(B)及び(C)は、それぞれ図5(A)の旋光部材29Bに垂直入射する光ILA及び入射角θで入射する光ILB〜ILDの入射時及び射出時の偏光状態を示す。図5(B)、(C)において、点55は、旋光部材29Bに対する垂直入射光の進行方向を表し、点線の円周56は、入射角θで入射する光の進行方向を表す。点55及び円周56は、それぞれその垂直入射光及び入射角θの光が照明瞳面IPPにおいて入射する位置に対応している。   FIGS. 5B and 5C show polarization states at the time of incidence and emergence of light ILA perpendicularly incident on the optical rotation member 29B of FIG. 5A and light ILB to ILD incident at an incident angle θ, respectively. 5B and 5C, a point 55 represents the traveling direction of vertically incident light with respect to the optical rotation member 29B, and a dotted circumference 56 represents the traveling direction of light incident at an incident angle θ. The point 55 and the circumference 56 correspond to the positions where the vertically incident light and the light having the incident angle θ are incident on the illumination pupil plane IPP, respectively.

一般に、旋光部材(又は旋光子)に入射する光の偏光状態は、2つの互いに直交する固有偏光の成分に分解できる。なお、固有偏光は、例えば参考文献「鶴田匡夫著:応用光学II(応用物理学選書),pp.174−181(培風館,1990)」に記載されている。また、本実施形態の旋光部材29Bは光学軸OAAが光軸AXIに平行であるため、光ILAのように、光軸AXIに平行に(旋光部材29Bの前面に垂直に)旋光部材29Bに入射する光の偏光状態は、右回り及び左回りの円偏光57A,57Bよりなる第1及び第2の固有偏光に分解できる。なお、図5(B)、(C)等では、光の偏光状態を進行方向に見た振動する電気ベクトルの軌跡で表している。一方、光ILB〜ILDのように、入射角θで旋光部材29Bに入射する光の偏光状態は、円周56の半径方向を例えば長軸方向とする例えば右回りの楕円偏光57C,57E,57Gからなる第1の固有偏光と、円周56の円周方向を長軸方向とする左回りの楕円偏光57D,57F,57Hからなる第2の固有偏光とに分解できる。   In general, the polarization state of light incident on the optical rotatory member (or optical rotator) can be decomposed into two mutually orthogonal intrinsic polarization components. The intrinsic polarization is described, for example, in a reference document “Tatsuo Tsuruta: Applied Optics II (Applied Physics Selection), pp. 174-181 (Baifukan, 1990)”. Further, since the optical axis OAA of the optical rotation member 29B of this embodiment is parallel to the optical axis AXI, the optical rotation member 29B is incident on the optical rotation member 29B in parallel to the optical axis AXI (perpendicular to the front surface of the optical rotation member 29B) like the optical ILA. The polarization state of the light can be decomposed into first and second intrinsic polarizations consisting of clockwise and counterclockwise circularly polarized light 57A, 57B. In FIGS. 5B and 5C, the polarization state of light is represented by a trajectory of an oscillating electric vector viewed in the traveling direction. On the other hand, as in the light ILB to ILD, the polarization state of the light incident on the optical rotation member 29B at the incident angle θ is, for example, clockwise elliptically polarized light 57C, 57E, 57G with the radial direction of the circumference 56 as the major axis direction, for example. 1 and the second intrinsic polarization consisting of counterclockwise elliptically polarized light 57D, 57F, 57H whose major axis is the circumferential direction of the circumference 56.

また、旋光子又は旋光部材は、旋光性を持つ複屈折性部材でもある。このため、旋光部材29Bの常光屈折率no、異常光屈折率ne及び入射角θを用いると、上記の参考文献に記載されているように、旋光部材29Bの常光線に対する屈折率nI及び入射角θの異常光線に対する屈折率nIIは次の式のようになる。

Figure 2014135357
また、旋光部材29Bにおける第1の固有偏光の光に対する屈折率をn+、第2の固有偏光の光に対する屈折率をn-とすると、上記の参考文献に記載されているように、これらの屈折率n±は、その屈折率nI及びnIIを用いて次式(4)のように表すことができる。なお、式(4)における係数Rは式(5)で表され、係数Cは旋光部材29Bの旋回ベクトルの係数Gを用いて式(6)で表される。 The optical rotator or the optical rotatory member is also a birefringent member having optical activity. Therefore, the ordinary refractive index n o of the optical rotation member 29B, the use of extraordinary refractive index n e and the incident angle theta, as described in the above references, the refractive index n I for ordinary ray of the optical rotation member 29B And the refractive index n II for the extraordinary ray at the incident angle θ is as follows.
Figure 2014135357
Further, when the refractive index for the light of the first intrinsic polarization in the optical rotation member 29B is n + and the refractive index for the light of the second intrinsic polarization is n , as described in the above-mentioned reference, refractive index n ± can be expressed by the following equation (4) using the refractive index n I and n II. The coefficient R in Expression (4) is expressed by Expression (5), and the coefficient C is expressed by Expression (6) using the coefficient G of the turning vector of the optical rotation member 29B.

Figure 2014135357
なお、旋回ベクトルの係数Gは、上記の表1の旋光能ρ、旋光部材29Bの平均屈折率n、入射光の波長λを用いて、次のようになる。
G=ρnλ/π …(6A)
また、第1及び第2の固有偏光が楕円偏光である場合、上記の参考文献に記載されているように、その楕円率k(=短軸半径/長軸半径)の絶対値は次式で表される。
Figure 2014135357
The swirl vector coefficient G is as follows using the optical rotation power ρ of Table 1 above, the average refractive index n of the optical rotation member 29B, and the wavelength λ of the incident light.
G = ρnλ / π (6A)
When the first and second intrinsic polarizations are elliptical polarizations, the absolute value of the ellipticity k (= short axis radius / major axis radius) is expressed by the following equation, as described in the above-mentioned reference. expressed.

Figure 2014135357
式(4)から分かるように、第1及び第2の固有偏光の光に対する屈折率が互いに異なっているため、旋光部材29Bの厚さd1に応じて第1及び第2の固有偏光間の位相差が変化する。
本実施形態では、光ILA〜ILDは縦偏光DVで旋光部材29Bに入射するため、垂直入射する光ILAは、入射時には、円偏光57A,57Bの位相がZ方向の端部で一致する。同様に、入射角θで入射する光ILB〜ILDは、一方の楕円偏光57C〜57Gと他方の楕円偏光57D〜57Hとの位相がZ方向の端部で一致する。また、旋光部材29Bの旋光角は(90度+n2・180度)であるため、垂直入射する光ILAが射出されるときには、図5(C)に示すように、円偏光57A,57B間に180度の位相差が付与される。そして、光ILAの射出時の偏光状態は、180度の位相差がある円偏光57A,57Bを合成することで正確に横偏光DHとなる。
Figure 2014135357
As can be seen from the equation (4), since the refractive indexes of the first and second intrinsic polarizations with respect to the light are different from each other, the position between the first and second intrinsic polarizations depends on the thickness d1 of the optical rotation member 29B. The phase difference changes.
In the present embodiment, the lights ILA to ILD are incident on the optical rotation member 29B with longitudinally polarized light DV, and therefore the vertically incident light ILA has the phases of the circularly polarized lights 57A and 57B coincide with each other at the end in the Z direction. Similarly, in the lights ILB to ILD that are incident at the incident angle θ, the phases of the one elliptically polarized light 57C to 57G and the other elliptically polarized light 57D to 57H coincide at the end in the Z direction. Since the optical rotation angle of the optical rotation member 29B is (90 degrees + n2 · 180 degrees), when vertically incident light ILA is emitted, as shown in FIG. A phase difference of degrees is given. The polarization state at the time of emission of the light ILA is accurately the laterally polarized light DH by combining the circularly polarized light 57A and 57B having a phase difference of 180 degrees.

なお、その整数n2が例えば3である場合、旋光部材29Bの旋光角は630度(=90度+3・180度)となる。このときの旋光部材29Bの厚さd1は、表1の旋光能ρを用いて次のようにほぼ1.9mmとなる。
d1=630/ρ=630/325=1.94(mm) …(8)
このとき、入射角θでZ方向及びX方向に傾斜した光ILB,ILDにおいても、射出時には楕円偏光57C,57Gと楕円偏光57D,57Hとの間に180度の位相差が付与されるが、これらの楕円偏光57C,57Gと楕円偏光57D,57Hとを合成すると、得られる偏光状態はそれぞれ横偏光DHに近い楕円偏光DHEとなる。しかしながら、入射角θでZ方向に45度傾斜した方向に傾斜した光ILCにおいては、射出時には楕円偏光57Eと楕円偏光57Fとの間に180度の位相差が付与されるが、これらの楕円偏光57E及び57Fを合成すると、得られる偏光状態はほぼ横偏光DHとなる。この結果、図5(A)の照明瞳面IPPにおいて、光軸AXIからZ1方向及びX1方向にずれた瞳領域54b,54dに入射する光ILB,ILDは入射角θに応じてわずかに楕円偏光化する。この楕円偏光の程度は、上記の式(7)の第1及び第2の固有偏光の楕円率kによって表される。
When the integer n2 is 3, for example, the optical rotation angle of the optical rotation member 29B is 630 degrees (= 90 degrees + 3 · 180 degrees). At this time, the thickness d1 of the optical rotation member 29B is approximately 1.9 mm using the optical rotation power ρ of Table 1 as follows.
d1 = 630 / ρ = 630/325 = 1.94 (mm) (8)
At this time, even in the lights ILB and ILD inclined in the Z direction and the X direction at the incident angle θ, a phase difference of 180 degrees is given between the elliptically polarized light 57C and 57G and the elliptically polarized light 57D and 57H at the time of emission. When the elliptically polarized light 57C and 57G and the elliptically polarized light 57D and 57H are combined, the obtained polarization state becomes the elliptically polarized light DHE close to the laterally polarized light DH. However, in the light ILC inclined in the direction inclined by 45 degrees in the Z direction at the incident angle θ, a phase difference of 180 degrees is given between the elliptically polarized light 57E and the elliptically polarized light 57F at the time of emission. When 57E and 57F are synthesized, the polarization state obtained is substantially laterally polarized light DH. As a result, on the illumination pupil plane IPP in FIG. 5A, the lights ILB and ILD incident on the pupil regions 54b and 54d shifted in the Z1 direction and the X1 direction from the optical axis AXI are slightly elliptically polarized according to the incident angle θ. Turn into. The degree of elliptically polarized light is expressed by the ellipticity k of the first and second intrinsic polarized light in the above equation (7).

このように旋光部材29Bから射出される光が楕円偏光化している場合、この光をそのまま使用すると、レチクルRに照射される光の偏光状態の所望の偏光状態からのズレが大きくなり、ウェハW上に投影されるパターン像の解像度や均一性が低下する恐れがある。
そこで、本実施形態では、図6(A)に示すように、旋光部材29Bに隣接して複屈折部材31Bをその光学軸OABが光軸AXIに平行になるように設置している。複屈折部材31Bが例えばフッ化マグネシウムのような正結晶であるとすると、複屈折部材31Bの光学軸OABは遅相軸PSBでもあり、複屈折部材31Bの2つの直交する進相軸PF1B,PF2Bは、複屈折部材31Bの前面(光軸AXIに垂直な面)に平行である。また、旋光部材29Bに垂直入射して射出された光ILAは、複屈折部材31Bにも垂直入射し、旋光部材29Bに入射角θで入射して射出された光ILB〜ILDは、複屈折部材31Bにも入射角θで入射する。そして、複屈折部材31Bを通過した光ILA〜ILDは照明瞳面IPPの瞳領域54a〜54dに入射する。
When the light emitted from the optical rotation member 29B is elliptically polarized in this way, if this light is used as it is, the deviation of the polarization state of the light irradiated to the reticle R from the desired polarization state increases, and the wafer W There is a possibility that the resolution and uniformity of the pattern image projected on the top may be lowered.
Therefore, in this embodiment, as shown in FIG. 6A, the birefringent member 31B is installed adjacent to the optical rotation member 29B so that the optical axis OAB is parallel to the optical axis AXI. If the birefringent member 31B is a positive crystal such as magnesium fluoride, the optical axis OAB of the birefringent member 31B is also the slow axis PSB, and the two orthogonal fast axes PF1B and PF2B of the birefringent member 31B. Is parallel to the front surface (surface perpendicular to the optical axis AXI) of the birefringent member 31B. The light ILA emitted perpendicularly to the optical rotatory member 29B is also perpendicularly incident on the birefringent member 31B, and the light ILB to ILD incident on the optical rotatory member 29B at the incident angle θ and emitted are birefringent members. It also enters 31B at an incident angle θ. The lights ILA to ILD that have passed through the birefringent member 31B are incident on the pupil regions 54a to 54d of the illumination pupil plane IPP.

図6(B)及び(C)は、それぞれ図6(A)の複屈折部材31Bに垂直入射する光ILA及び入射角θで入射する光ILB〜ILDの入射時及び射出時の偏光状態を示す。図6(B)に示すように、複屈折部材31Bに対する入射時に、垂直入射する光ILAは横偏光DH、Z軸に45度で左回りに傾斜した光ILCはほぼ横偏光DHであり、Z方向及びX方向に傾斜した光ILB,ILDは横偏光DHに近いわずかに楕円偏光DHEである。また、上記の参考文献に記載されているように、旋光性のない複屈折部材に入射する光の偏光状態は、2つの互いに直交する直線偏光よりなる第1及び第2の固有偏光の成分に分解できる。   FIGS. 6B and 6C show polarization states at the time of incidence and emission of light ILA perpendicularly incident on the birefringent member 31B of FIG. 6A and light ILB to ILD incident at an incident angle θ, respectively. . As shown in FIG. 6B, at the time of incidence on the birefringent member 31B, the vertically incident light ILA is laterally polarized light DH, and the light ILC tilted counterclockwise at 45 degrees to the Z axis is substantially laterally polarized light DH. Lights ILB and ILD inclined in the direction and the X direction are slightly elliptically polarized light DHE close to the laterally polarized light DH. Further, as described in the above-mentioned reference, the polarization state of the light incident on the birefringent member having no optical rotation is the first and second intrinsic polarization components composed of two mutually orthogonal linearly polarized lights. Can be disassembled.

本実施形態の複屈折部材31Bは光学軸OABが光軸AXIに平行であるため、光ILAのように、複屈折部材31Bの前面に垂直に入射する光の偏光状態は、直交する互いに位相速度が等しい2つの直線偏光に分解できる。このため、入射時及び射出時の偏光状態は同じであり、光ILAは複屈折部材31Bから横偏光DHのままで射出される(図6(C)参照)。   Since the birefringent member 31B of the present embodiment has the optical axis OAB parallel to the optical axis AXI, the polarization state of the light perpendicularly incident on the front surface of the birefringent member 31B, like the optical ILA, is orthogonal to each other. Can be decomposed into two linearly polarized lights having the same value. For this reason, the polarization state at the time of incidence is the same as that at the time of emission, and the light ILA is emitted from the birefringent member 31B as the laterally polarized light DH (see FIG. 6C).

一方、光ILB〜ILDのように、入射角θで複屈折部材31Bに入射する光の偏光状態は、図6(B)の円周56の円周方向に沿った直線偏光(第1の固有偏光)と、円周56の半径方向に沿った直線偏光(第2の固有偏光)とに分解できる。複屈折部材31Bでは、その第1の固有偏光は常光線の偏光状態であり、その第2の固有偏光は異常光線の偏光状態でもある。複屈折部材31Bの常光屈折率をno、異常光屈折率をneとして、入射角θを用いると、常光線及び異常光線(第1及び第2の固有偏光の光)に対する屈折率nI及びnIIはそれぞれ上記の式(3A)及び(3B)で表される。式(3B)から分かるように、入射角θが0より大きくなると、屈折率nII及びnIが互いに異なるため、斜入射光に対して複屈折部材31Bの厚さd2に応じて常光線及び異常光線間の位相差が変化する。 On the other hand, the polarization state of the light incident on the birefringent member 31B at the incident angle θ, such as the light ILB to ILD, is linearly polarized along the circumferential direction of the circumference 56 in FIG. Polarization) and linearly polarized light (second intrinsic polarization) along the radial direction of the circumference 56. In the birefringent member 31B, the first intrinsic polarization is an ordinary ray polarization state, and the second intrinsic polarization is also an extraordinary ray polarization state. The birefringent member 31B has an ordinary light refractive index n o , an extraordinary light refractive index ne , and an incident angle θ, and the refractive index n I for ordinary light and extraordinary light (first and second intrinsic polarized light). And n II are represented by the above formulas (3A) and (3B), respectively. As can be seen from equation (3B), when the incident angle θ is greater than 0, the refractive indexes n II and n I are different from each other. The phase difference between extraordinary rays changes.

本実施形態では、複屈折部材31Bへの入射時に、Z方向に傾斜して楕円偏光DHEで入射する光ILBは円周方向の大きい直線偏光58Cと、半径方向の小さい直線偏光58Cとに分解され(これらの間に90度の位相差がある)、ほぼ横偏光DHで入射する光ILCは円周方向の直線偏光58Eと、半径方向のほぼ同じ大きさの直線偏光58Fとに分解され、X方向に傾斜して楕円偏光DHEで入射する光ILDは円周方向の小さい直線偏光58Gと、半径方向の大きい直線偏光58Hとに分解される(これらの間に90度の位相差がある。この場合、直線偏光58C,58E,58Gの光(常光線)に対する屈折率がnIであるとすると、直線偏光58D,58F,58Hの光(異常光線)に対する屈折率が入射角θに応じて変化するnIIである。 In the present embodiment, when entering the birefringent member 31B, the light ILB that is inclined in the Z direction and incident on the elliptically polarized light DHE is decomposed into linearly polarized light 58C having a large circumferential direction and linearly polarized light 58C having a small radial direction. (There is a phase difference of 90 degrees between them.) Light ILC that is incident as substantially laterally polarized light DH is decomposed into linearly polarized light 58E in the circumferential direction and linearly polarized light 58F of approximately the same size in the radial direction. The light ILD inclined in the direction and incident as elliptically polarized light DHE is decomposed into linearly polarized light 58G having a small circumferential direction and linearly polarized light 58H having a large radial direction (there is a phase difference of 90 degrees between them). If linearly polarized light 58C, 58E, the refractive index for light (ordinary ray) of 58G is assumed to be n I, linearly polarized light 58D, 58F, the refractive index for light of 58H (extraordinary ray) according to the incident angle θ changes N II .

このとき、複屈折部材31Bの厚さd2は、一例として、光ILBが複屈折部材31Bを通過する間に、直線偏光58C,58Dの光の間に90度(又は90度+n5・180度)(n5は0以上の整数)の位相差δが付与されるように設定される。このとき、光の波長λを用いて次の関係がある。
δ=360°(nII−nI)d2/λ …(9)
言い換えると、照明光学系ILSの光軸AXIに対して所定角度(入射角θ)で傾斜して旋光部材29Bを通過する光の偏光状態を楕円偏光に調整するとき(又は入射光が楕円偏光であるときに直線偏光に調整するとき)の複屈折部材31B(調整部材)の光軸方向の最小の厚さをda、その所定角度で複屈折部材31Bに入射した光の偏光状態が入射時の状態に戻るときの複屈折部材31Bの光軸方向の最小の厚さ(ここでは直線偏光58C,58Dの光の間に180度の位相差が付与される厚さ)をdbとして、複屈折部材31Bの光軸方向の厚さd2は、da+i・db(iは0以上の整数)に設定される。
At this time, the thickness d2 of the birefringent member 31B is, for example, 90 degrees (or 90 degrees + n5 · 180 degrees) between the lights of the linearly polarized light 58C and 58D while the light ILB passes through the birefringent member 31B. The phase difference δ is set such that n5 is an integer equal to or greater than 0. At this time, there is the following relationship using the wavelength λ of light.
δ = 360 ° (n II −n I ) d2 / λ (9)
In other words, when the polarization state of the light that passes through the optical rotation member 29B and is inclined at a predetermined angle (incident angle θ) with respect to the optical axis AXI of the illumination optical system ILS is adjusted to elliptically polarized light (or the incident light is elliptically polarized light). The minimum thickness in the optical axis direction of the birefringent member 31B (adjusting member) when adjusting to linearly polarized light is da, and the polarization state of the light incident on the birefringent member 31B at the predetermined angle is The minimum thickness in the optical axis direction of the birefringent member 31B when returning to the state (here, the thickness to which a phase difference of 180 degrees is given between the light beams of the linearly polarized light 58C and 58D) is db, and the birefringent member The thickness d2 of 31B in the optical axis direction is set to da + i · db (i is an integer of 0 or more).

複屈折部材31Bがフッ化マグネシウムであるとして、上記の表1の屈折率no,neを用いて、式(3B)の入射角θを一例として5度、波長λを193nmとすると、式(9)中の(nII−nI)/λはほぼ0.528(1/mm)となる。そこで、位相差δを450度(=90度+360度)(n5=2)とすると、式(9)から複屈折部材31Bの厚さd2は次のようにほぼ2.4mm(ここでは厚さd1のほぼ1.2倍)となる。
d2=(δ/360)・λ/(nII−nI)=2.4mm …(10)
このとき、図6(C)に示すように、入射角θでZ方向及びX方向に傾斜した光ILB,ILDの射出時には、直線偏光58C,58Dの間、及び直線偏光58G,58Hの間にそれぞれ90度の位相差が付加されるため、得られる偏光状態はそれぞれほぼ横偏光DHとみなすことができる直線偏光DHL及びDHRとなる。なお、複屈折部材31Bに入射するときの光ILB,ILDの楕円偏光DHEの楕円率に応じて、射出時の直線偏光DHL及びDHRはそれぞれ例えば左回り及び右回りにわずかに回転しているが、この回転量は偏光方向の設定単位(ここでは22.5度)に比べてかなり小さいため、通常の使用時には無視できる量である。
As the birefringent member 31B is magnesium fluoride, the refractive index n o of Table 1 above, using a n e, 5 degrees incident angle θ of the formula (3B) as an example, when the wavelength λ and 193 nm, wherein (N II −n I ) / λ in (9) is approximately 0.528 (1 / mm). Therefore, when the phase difference δ is 450 degrees (= 90 degrees + 360 degrees) (n5 = 2), the thickness d2 of the birefringent member 31B is approximately 2.4 mm (here, the thickness) from the equation (9) as follows. d1 approximately 1.2 times).
d2 = (δ / 360) · λ / (n II −n I ) = 2.4 mm (10)
At this time, as shown in FIG. 6C, when the light ILB and ILD inclined at the incident angle θ in the Z direction and the X direction are emitted, between the linearly polarized light 58C and 58D and between the linearly polarized light 58G and 58H. Since a phase difference of 90 degrees is added to each, the obtained polarization state is linearly polarized light DHL and DHR that can be regarded as substantially horizontally polarized light DH. Note that, depending on the ellipticity of the elliptically polarized light DHE of the light ILB and ILD when entering the birefringent member 31B, the linearly polarized light DHL and DHR at the time of emission slightly rotate, for example, counterclockwise and clockwise, respectively. The amount of rotation is considerably smaller than the unit for setting the polarization direction (here, 22.5 degrees), and is negligible during normal use.

また、入射角θでZ方向に45度傾斜した方向に傾斜した光ILCにおいては、射出時の偏光状態はほぼ横偏光DHとなる。この結果、図6(A)の照明瞳面IPPにおいて、光軸AXIからZ1方向及びX1方向にずれた瞳領域54b,54dに入射する光ILB,ILDは目標とする偏光状態である横偏光DHに近いDHL、DHRとなり、瞳強度分布54には全体として目標とする偏光状態の分布が得られる。このため、レチクルRのパターンの像を高い解像度及びコントラストでウェハに露光できる。   In addition, in the light ILC inclined in the direction inclined by 45 degrees in the Z direction at the incident angle θ, the polarization state at the time of emission is substantially horizontal polarization DH. As a result, in the illumination pupil plane IPP of FIG. 6A, the light beams ILB and ILD that are incident on the pupil regions 54b and 54d that are shifted from the optical axis AXI in the Z1 direction and the X1 direction are the lateral polarization DH that is the target polarization state. DHL and DHR that are close to each other, and the target polarization state distribution is obtained in the pupil intensity distribution 54 as a whole. Therefore, the pattern image of the reticle R can be exposed on the wafer with high resolution and contrast.

なお、図3(C)の偏光ユニット30Dは、偏光方向の回転角が偏光ユニット30Bと同じく90度であるため、偏光ユニット30Dは偏光ユニット30Bと同様の構成でよい。
次に、入射光に対する偏光方向の回転角が45度の偏光ユニット30Cについて、偏光ユニット30Cを構成する旋光部材29C及び複屈折部材31Cの偏光特性につき説明する。
Note that the polarization unit 30D in FIG. 3C has the same rotation angle as the polarization unit 30B, and therefore the polarization unit 30D may have the same configuration as the polarization unit 30B.
Next, the polarization characteristics of the optical rotation member 29C and the birefringence member 31C constituting the polarization unit 30C will be described for the polarization unit 30C whose polarization direction rotation angle with respect to incident light is 45 degrees.

図7(A)は、本実施形態の偏光制御系28において、偏光ユニット30C内の旋光部材29Cだけが設置面P3に設置されている状態を示す。旋光部材29Cの旋光角は、左回りに45度又は(45度+n3・180度)(n3は0以上の整数)である。図7(A)において、旋光部材29Cはその光学軸OAC(ここでは遅相軸PSCでもあるとする)が光軸AXIに平行であり、旋光部材29Cの2つの直交する進相軸PF1C,PF2Cは、旋光部材29Cの前面(光軸AXIに垂直な面)に平行である。また、旋光部材29Cの前面の光軸AXIの近傍の領域において、縦偏光DVの状態で点29Caに垂直入射する光ILEは、旋光部材29Cによって偏光方向が45度左回りに回転されて45度偏光DSAとして、照明瞳面IPPの光軸AXIを中心とする瞳領域54aに入射する。   FIG. 7A shows a state where only the optical rotation member 29C in the polarization unit 30C is installed on the installation surface P3 in the polarization control system 28 of the present embodiment. The optical rotation angle of the optical rotation member 29C is 45 degrees counterclockwise or (45 degrees + n3 · 180 degrees) (n3 is an integer of 0 or more). In FIG. 7A, the optical rotator 29C has an optical axis OAC (here, also a slow axis PSC) parallel to the optical axis AXI, and two orthogonal fast axes PF1C and PF2C of the optical rotator 29C. Is parallel to the front surface (surface perpendicular to the optical axis AXI) of the optical rotation member 29C. Further, in the region near the optical axis AXI on the front surface of the optical rotatory member 29C, the light ILE perpendicularly incident on the point 29Ca in the state of longitudinally polarized light DV is rotated 45 degrees counterclockwise by the optical rotatory member 29C and the polarization direction is rotated 45 degrees counterclockwise. The polarized light DSA is incident on the pupil region 54a centered on the optical axis AXI of the illumination pupil plane IPP.

一方、旋光部材29Cの前面の点29Cb,29Cc,29Cdにそれぞれ+Z方向、Z軸に対して左回りに45度回転した方向、及び−X方向に入射角θ(光軸AXIに対して傾斜角θ)で入射する縦偏光DVの光ILF,ILG,ILHは、照明瞳面IPPの光軸AXIに対して+Z1方向、Z1軸に対して左回りに45度傾斜した方向、及び−X1方向に離れた瞳領域54b,54c,54dに入射する。この際に、照明瞳面IPPにおいて、瞳領域54b,54c,54dに入射する光ILF,ILG,ILHは、旋光部材29Cにおける楕円偏光化の作用によって、偏光DSAがわずかに楕円偏光化した偏光状態DSAEとなっている。なお、旋光部材29Cの場合、瞳領域54b,54c,54dの中間の領域54e,54fに入射する光(Z1軸又はX1軸から22.5度ずれた方向の光)に関しては、照明瞳面IPP上での偏光状態はほぼ正確な45度偏光DSAとなる。このように光ILF〜ILHに対して楕円偏光化の作用が大きくなる理由につき、図7(B)、(C)を参照して説明する。   On the other hand, the incident angle θ (inclination angle with respect to the optical axis AXI) in the + Z direction, the direction rotated 45 degrees counterclockwise with respect to the Z axis, and the −X direction at the front points 29Cb, 29Cc, 29Cd of the optical rotation member 29C, respectively. The light ILF, ILG, ILH of the longitudinally polarized light DV incident at θ) is in the + Z1 direction with respect to the optical axis AXI of the illumination pupil plane IPP, in the direction inclined 45 degrees counterclockwise with respect to the Z1 axis, and in the −X1 direction. The light enters the separated pupil regions 54b, 54c, and 54d. At this time, in the illumination pupil plane IPP, the light ILF, ILG, ILH incident on the pupil regions 54b, 54c, 54d is a polarization state in which the polarization DSA is slightly elliptically polarized by the action of elliptical polarization in the optical rotation member 29C. It is DSAE. In the case of the optical rotation member 29C, the illumination pupil plane IPP is used for light incident on the regions 54e, 54f intermediate the pupil regions 54b, 54c, 54d (light in a direction shifted by 22.5 degrees from the Z1 axis or the X1 axis). The polarization state above is a nearly accurate 45 degree polarization DSA. The reason why the action of elliptical polarization becomes large with respect to the light ILF to ILH will be described with reference to FIGS. 7B and 7C.

図7(B)及び(C)は、それぞれ図7(A)の旋光部材29Cに垂直入射する光ILE及び入射角θで入射する光ILF〜ILHの入射時及び射出時の偏光状態を示す。図5(A)の旋光部材29Bの場合と同様に、光ILAの偏光状態は、円偏光57A,57Bよりなる第1及び第2の固有偏光に分解でき、入射角θの光ILF〜ILHの偏光状態は、円周56の半径方向に沿った楕円偏光57C,57E,57Gからなる第1の固有偏光と、円周56の円周方向に沿った楕円偏光57D,57F,57Hからなる第2の固有偏光とに分解できる。本実施形態では、光ILE〜ILHは縦偏光DVで旋光部材29Cに入射するため、入射時の偏光状態の第1及び第2の固有偏光に対する分解は図5(A)と同様である。   FIGS. 7B and 7C show the polarization states at the time of incidence and emergence of the light ILE perpendicularly incident on the optical rotation member 29C of FIG. 7A and the light ILF to ILH incident at the incident angle θ, respectively. As in the case of the optical rotation member 29B in FIG. 5A, the polarization state of the light ILA can be decomposed into first and second intrinsic polarizations composed of circularly polarized light 57A and 57B, and the light ILF to ILH having the incident angle θ. The polarization state is the first intrinsic polarization composed of elliptically polarized light 57C, 57E, 57G along the radial direction of the circumference 56 and the second intrinsic polarization 57D, 57F, 57H along the circumferential direction of the circumference 56. It can be decomposed into intrinsic polarization. In the present embodiment, the light ILE to ILH are incident on the optical rotatory member 29C as longitudinally polarized light DV, and therefore the decomposition of the first and second intrinsic polarizations in the polarization state at the time of incidence is the same as in FIG.

また、旋光部材29Cの旋光角は左回りに(45度+n3・180度)であるため、垂直入射する光ILAが射出されるときには、図7(C)に示すように、円偏光57A,57B間に90度の位相差が付与される。そして、光ILAの射出時の偏光状態は、90度の位相差がある円偏光57A,57Bを合成することで正確に45度偏光DSAとなる。旋光部材29Cの厚さは旋光部材29Bの場合と同様に計算できる。   Further, since the optical rotation angle of the optical rotation member 29C is counterclockwise (45 degrees + n3 · 180 degrees), when vertically incident light ILA is emitted, as shown in FIG. 7C, circularly polarized light 57A, 57B A phase difference of 90 degrees is given between them. The polarization state at the time of emission of the light ILA is accurately 45 degrees polarized DSA by combining the circularly polarized light 57A and 57B having a phase difference of 90 degrees. The thickness of the optical rotatory member 29C can be calculated in the same manner as the optical rotatory member 29B.

このとき、入射角θで傾斜した光ILF〜ILHにおいても、射出時には楕円偏光57C,57Gと楕円偏光57D,57Hとの間に90度の位相差が付与されるが、これらの楕円偏光57C,57Gと楕円偏光57D,57Hとを合成すると、得られる偏光状態はそれぞれ45度偏光DSAに近い楕円偏光DSAEとなる。同様に、Z方向に45度傾斜した方向に傾斜した光ILGにおいても、射出時には楕円偏光57Eと楕円偏光57Fとの間に90度の位相差が付与されるため、これらの楕円偏光57E及び57Fを合成すると、得られる偏光状態はほぼ楕円偏光DSAEとなる。この結果、図7(A)の照明瞳面IPPにおいて、瞳領域54b〜54dに入射する光ILF〜ILHは入射角θに応じてわずかに楕円偏光化する。この楕円偏光の程度は、上記の式(7)の第1及び第2の固有偏光の楕円率kによって表される。   At this time, even in the light ILF to ILH inclined at the incident angle θ, a phase difference of 90 degrees is given between the elliptically polarized light 57C and 57G and the elliptically polarized light 57D and 57H at the time of emission, but these elliptically polarized light 57C, When 57G and elliptically polarized light 57D and 57H are combined, the polarization state obtained becomes elliptically polarized DSAE close to 45 degree polarized light DSA. Similarly, in the light ILG inclined in the direction inclined by 45 degrees in the Z direction, a phase difference of 90 degrees is given between the elliptically polarized light 57E and the elliptically polarized light 57F at the time of emission, so that these elliptically polarized lights 57E and 57F Are combined, the polarization state obtained is approximately elliptically polarized DSAE. As a result, in the illumination pupil plane IPP of FIG. 7A, the light ILF to ILH incident on the pupil regions 54b to 54d is slightly elliptically polarized according to the incident angle θ. The degree of elliptically polarized light is expressed by the ellipticity k of the first and second intrinsic polarized light in the above equation (7).

本実施形態では、旋光部材29Cにおける楕円偏光化を補正するために、図8(A)に示すように、旋光部材29Cに隣接して複屈折部材31Cをその光学軸OAD(ここでは遅相軸PSDでもあるとする)が光軸AXIに平行になるように設置している。複屈折部材31Cの2つの直交する進相軸PF1D,PF2Dは、複屈折部材31Cの前面(光軸AXIに垂直な面)に平行である。また、旋光部材29Cに垂直入射して射出された光ILEは、複屈折部材31Cにも垂直入射し、旋光部材29Cに入射角θで入射して射出された光ILF〜ILHは、複屈折部材31Cにも入射角θで入射する。そして、複屈折部材31Cを通過した光ILE〜ILHは照明瞳面IPPの瞳領域54a〜54dに入射する。   In this embodiment, in order to correct the elliptical polarization in the optical rotation member 29C, as shown in FIG. 8A, the birefringent member 31C is adjacent to the optical rotation member 29C and its optical axis OAD (here, the slow axis). (It is assumed that it is also a PSD) in parallel with the optical axis AXI. Two orthogonal fast axes PF1D and PF2D of the birefringent member 31C are parallel to the front surface (a surface perpendicular to the optical axis AXI) of the birefringent member 31C. In addition, the light ILE perpendicularly incident on the optical rotatory member 29C is incident on the birefringent member 31C, and the light ILF to ILH incident upon the optical rotatory member 29C at the incident angle θ and emitted are birefringent members. It also enters 31C at an incident angle θ. The lights ILE to ILH that have passed through the birefringent member 31C enter the pupil regions 54a to 54d of the illumination pupil plane IPP.

図8(B)及び(C)は、それぞれ図8(A)の複屈折部材31Cに垂直入射する光ILE及び入射角θで入射する光ILF〜ILHの入射時及び射出時の偏光状態を示す。図8(B)に示すように、複屈折部材31Cに対する入射時に、垂直入射する光ILEは45度偏光DSAであり、他の光ILF〜ILHは、45度偏光DSAに近い楕円偏光DSAEである。   FIGS. 8B and 8C show the polarization states at the time of incidence and emergence of light ILE perpendicularly incident on the birefringent member 31C of FIG. 8A and light ILF to ILH incident at an incident angle θ, respectively. . As shown in FIG. 8B, when entering the birefringent member 31C, vertically incident light ILE is 45-degree polarized DSA, and the other lights ILF to ILH are elliptically polarized DSAE close to 45-degree polarized DSA. .

本実施形態の複屈折部材31Cは光学軸OADが光軸AXIに平行であるため、光ILEのように、複屈折部材31Cの前面に垂直に入射する光の偏光状態は、入射時及び射出時で同じであり、光ILEは複屈折部材31Bから45度偏光DSAのままで射出される(図8(C)参照)。一方、光ILF〜ILHのように、入射角θで複屈折部材31Cに入射する光の偏光状態は、図8(B)の円周56の円周方向に沿った直線偏光(第1の固有偏光である常光線の偏光)と、円周56の半径方向に沿った直線偏光(第2の固有偏光である以上光線の偏光)とに分解できる。図6(A)の複屈折部材31Bの場合と同様に、斜入射光に対して複屈折部材31Cの厚さに応じて常光線及び異常光線間の位相差が変化する。   Since the optical axis OAD of the birefringent member 31C of this embodiment is parallel to the optical axis AXI, the polarization state of light that is perpendicularly incident on the front surface of the birefringent member 31C, as in the case of the light ILE, is the time of incidence and the time of emission. The light ILE is emitted from the birefringent member 31B as it is with 45-degree polarization DSA (see FIG. 8C). On the other hand, the polarization state of the light incident on the birefringent member 31C at the incident angle θ, such as the light ILF to ILH, is linearly polarized along the circumferential direction of the circumference 56 in FIG. It can be decomposed into ordinary polarized light that is polarized light) and linearly polarized light along the radial direction of the circumference 56 (second polarized light that is the second intrinsic polarized light). Similar to the case of the birefringent member 31B in FIG. 6A, the phase difference between the ordinary ray and the extraordinary ray changes with respect to the oblique incident light according to the thickness of the birefringent member 31C.

本実施形態では、複屈折部材31Cへの入射時に、楕円偏光DSAEで入射する光ILF,ILHは円周方向の大きい直線偏光58C,58Gと、半径方向の大きい直線偏光58D,58Hとに分解され(これらの間に45度程度の位相差がある)、光ILGは円周方向の小さい直線偏光58Eと、半径方向の大きい直線偏光58Fとに分解される(これらの間に45度程度の位相差がある。
このとき、複屈折部材31Cの厚さは、一例として、光ILFが複屈折部材31Cを通過する間に、直線偏光58C,58Dの光の間に45度(又は45度+n5・180度)(n6は0以上の整数)の位相差δが付与されるように設定される。
In the present embodiment, when entering the birefringent member 31C, the light ILF and ILH incident as elliptically polarized light DSAE are decomposed into linearly polarized light 58C and 58G having a large circumferential direction and linearly polarized light 58D and 58H having a large radial direction. (There is a phase difference of about 45 degrees between them), and the light ILG is decomposed into linearly polarized light 58E having a small circumferential direction and linearly polarized light 58F having a large radial direction (about 45 degrees between them). There is a phase difference.
At this time, the thickness of the birefringent member 31C is, for example, 45 degrees (or 45 degrees + n5 · 180 degrees) between the lights of the linearly polarized light 58C and 58D while the light ILF passes through the birefringent member 31C ( n6 is set to give a phase difference δ of 0 or more.

このとき、図8(C)に示すように、入射角θで入射した光ILF,ILG,ILHの射出時には、直線偏光58C,58E,58Gと、直線偏光58D,58F,58Hとの間にそれぞれ45度の位相差が付加されるため、得られる偏光状態はそれぞれほぼ45度偏光DSAとなる。なお、複屈折部材31Cに入射するときの光ILF〜ILHの楕円偏光DSAEの楕円率に応じて、射出時の直線偏光は正確な45度偏光DSAからそれぞれ例えば左回り及び右回りにわずかに回転しているが、この回転量は偏光方向の設定単位(ここでは22.5度)に比べてかなり小さいため、通常の使用時には無視できる量である。この結果、図8(A)の照明瞳面IPPにおいて、光軸AXIからZ1方向及びX1方向にずれた瞳領域54b〜54dに入射する光ILF〜ILHは目標とする偏光状態である45度偏光DSAとなり、瞳強度分布54には全体として目標とする偏光状態の分布が得られる。   At this time, as shown in FIG. 8C, when light ILF, ILG, and ILH incident at an incident angle θ is emitted, the linearly polarized light 58C, 58E, and 58G and the linearly polarized light 58D, 58F, and 58H are respectively provided. Since a 45 degree phase difference is added, the obtained polarization states are approximately 45 degree polarized light DSA, respectively. Depending on the ellipticity of the elliptically polarized light DSAE of the light ILF to ILH when entering the birefringent member 31C, the linearly polarized light at the time of emission slightly rotates, for example, counterclockwise and clockwise from the accurate 45 degree polarized light DSA, respectively. However, this rotation amount is considerably smaller than the setting unit (22.5 degrees in this case) of the polarization direction, and is negligible in normal use. As a result, on the illumination pupil plane IPP in FIG. 8A, the light ILF to ILH incident on the pupil regions 54b to 54d shifted in the Z1 direction and the X1 direction from the optical axis AXI are 45-degree polarized light that is a target polarization state. DSA is obtained, and the distribution of the target polarization state is obtained in the pupil intensity distribution 54 as a whole.

同様に、図3(A)の入射光に対する偏光方向の回転角が22.5度の偏光ユニット30Aについては、旋光角が22.5度の旋光部材29Aと、例えば常光線と異常光線との位相差が22.5度になるように厚さが設定された複屈折部材31Aとを組み合わせることで、旋光部材29Aにおける楕円偏光化を補正できる。
なお、偏光ユニット30A〜30Dにおいて、1枚の偏光ユニットで偏光方向を回転させた場合も、複数枚の偏光ユニット30A〜30Dを直列に配置して、順次偏光方向を回転させた場合も、最終的な偏光の回転角が同じであれば、結果は同じになる。また、偏光方向の回転角(旋光角)が、上記の角度に180度の整数倍を加えた角度であっても、結果は同じになる。
Similarly, for the polarization unit 30A having a polarization direction rotation angle of 22.5 degrees with respect to the incident light in FIG. 3A, an optical rotation member 29A having an optical rotation angle of 22.5 degrees and, for example, an ordinary ray and an extraordinary ray By combining with the birefringent member 31A whose thickness is set so that the phase difference is 22.5 degrees, elliptical polarization in the optical rotation member 29A can be corrected.
In addition, in the polarization units 30A to 30D, even when the polarization direction is rotated by one polarization unit, or when the polarization directions are sequentially rotated by arranging a plurality of polarization units 30A to 30D in series, the final The result will be the same if the polarization rotation angle is the same. Further, the result is the same even if the rotation angle (optical rotation angle) of the polarization direction is an angle obtained by adding an integral multiple of 180 degrees to the above angle.

以上のように、照明瞳面IPPの全面に、偏光制御系28の断面50Bに縦偏光DVの照明光ILが入射するものとして設定した8個の偏光方向を組み合わせた偏光状態の瞳強度分布が高精度に設定される。
次に、本実施形態の露光装置EXにおいて照明瞳面IPPにおける光強度分布及び偏光状態の分布を制御してレチクルRを照明する照明方法、及びこの照明方法を用いる露光方法の一例につき図9のフローチャートを参照して説明する。この方法の動作は主制御装置38によって制御される。まず、図9のステップ102において図1(A)のレチクルステージRSTにレチクルRがロードされる。主制御装置38は内部の記憶装置の露光データファイルからレチクルRの照明条件(瞳強度分布及び偏光状態の分布を含む)を読み出し、その照明条件の情報を照明制御部36に出力する。
As described above, there is a pupil intensity distribution in a polarization state that is a combination of eight polarization directions that are set so that illumination light IL of longitudinally polarized light DV is incident on the cross section 50B of the polarization control system 28 over the entire surface of the illumination pupil plane IPP. High precision is set.
Next, an example of an illumination method for illuminating the reticle R by controlling the light intensity distribution and the polarization state distribution on the illumination pupil plane IPP in the exposure apparatus EX of the present embodiment, and an example of an exposure method using this illumination method are shown in FIG. This will be described with reference to a flowchart. The operation of this method is controlled by the main controller 38. First, in step 102 in FIG. 9, reticle R is loaded onto reticle stage RST in FIG. The main controller 38 reads the illumination conditions (including pupil intensity distribution and polarization state distribution) of the reticle R from the exposure data file in the internal storage device, and outputs information on the illumination conditions to the illumination controller 36.

ここでは、照明瞳面IPPにおける目標とする瞳強度分布は、一例として、図2(C)の8個の偏光方向A1〜A8の直線偏光成分を持つとする。このとき、照明制御部36は、偏光方向A1〜A8別の瞳領域(照明瞳面IPPにおける領域)の目標とする面積比に応じて、偏光制御系28の偏光ユニット30A〜30Dを駆動する(ステップ104)。一例として、図3(C)に示すように、照明光ILの断面50B内での8個の部分領域C1〜C8の面積が互いに同じになるように、偏光ユニット30AのZ方向の位置、及び偏光ユニット30B〜30DのX方向の位置が制御される。そして、照明制御部36は、SLM22の駆動部25を介して、部分領域C1〜C8に対応するSLM22の8個の部分アレイ領域D1〜D8(図3(A)参照)毎に、それらに属する複数のミラー要素24の角度(直交する2軸の回りの傾斜角)を個別に設定する(ステップ106)。この場合、例えばSLM22の部分アレイ領域D5では、反射光が照明瞳面IPPで偏光方向がA5(横偏光DH)となる瞳領域内にほぼ均一に入射するように、その領域に属する複数のミラー要素24の角度が個別に設定される。   Here, as an example, the target pupil intensity distribution on the illumination pupil plane IPP is assumed to have the linearly polarized light components of the eight polarization directions A1 to A8 in FIG. At this time, the illumination control unit 36 drives the polarization units 30A to 30D of the polarization control system 28 according to the target area ratio of the pupil regions (regions on the illumination pupil plane IPP) for the polarization directions A1 to A8 ( Step 104). As an example, as shown in FIG. 3C, the position of the polarization unit 30A in the Z direction so that the areas of the eight partial regions C1 to C8 in the cross section 50B of the illumination light IL are the same, and The positions of the polarization units 30B to 30D in the X direction are controlled. And the illumination control part 36 belongs to every 8 partial array area | regions D1-D8 (refer FIG. 3 (A)) of SLM22 corresponding to the partial area | regions C1-C8 via the drive part 25 of SLM22. The angles (inclination angles around two orthogonal axes) of the plurality of mirror elements 24 are individually set (step 106). In this case, for example, in the partial array region D5 of the SLM 22, a plurality of mirrors belonging to the region are arranged so that the reflected light is substantially uniformly incident in the pupil region having the illumination pupil plane IPP and the polarization direction A5 (laterally polarized light DH). The angles of the elements 24 are set individually.

その後、ウェハステージWSTにウェハWがロードされ(ステップ108)、光源10から照明光ILの照射が開始される(ステップ110)。照明光ILは例えば縦偏光DV(配列面P1に対してP偏光)でSLM22に入射し、SLM22の各ミラー要素24によってステップ106で設定された角度に応じた方向に反射される(ステップ112)。SLM22で反射された照明光ILは、リレー光学系26を介して偏光制御系28の偏光ユニット30A〜30Dに入射する。なお、照明瞳面IPPにおいて縦偏光DVの瞳領域に向かう光は、偏光ユニット30A〜30Dのない部分領域C1を通過して集光光学系32を介して照明瞳面IPPに入射する。   Thereafter, wafer W is loaded onto wafer stage WST (step 108), and irradiation of illumination light IL from light source 10 is started (step 110). The illumination light IL is incident on the SLM 22 with, for example, longitudinally polarized light DV (P-polarized light with respect to the arrangement plane P1), and is reflected by each mirror element 24 of the SLM 22 in a direction corresponding to the angle set in Step 106 (Step 112). . The illumination light IL reflected by the SLM 22 enters the polarization units 30 </ b> A to 30 </ b> D of the polarization control system 28 via the relay optical system 26. In addition, the light which goes to the pupil area | region of longitudinally polarized light DV in the illumination pupil plane IPP passes through the partial area C1 without the polarization units 30A to 30D and enters the illumination pupil plane IPP through the condensing optical system 32.

偏光ユニット30A〜30Dに入射した光は、旋光部材29A〜29Dによって偏光方向が設定された角度だけ個別に回転される(ステップ114)。そして、光軸AXIに対して傾斜した状態で旋光部材29A〜29Dに入射して、旋光部材29A〜29Dを通過した後で楕円偏光化した光は、対応する複屈折部材31A〜31Dを通過してその楕円偏光が直線偏光に補正(調整)される(ステップ116)。なお、旋光部材29A〜29Dに垂直に入射した光がある場合、この光は楕円偏光化することなく目標とする方向の直線偏光となっている。また、旋光部材29A〜29Dに垂直に入射した光は、複屈折部材31A〜31Dにも垂直に入射するが、この光の偏光状態は複屈折部材31A〜31Dによっては変化しない。偏光制御系28の偏光ユニット30A〜30Dを通過した光は、部分領域C1〜C8毎に設定される8個の偏光方向の直線偏光成分を持つ光となる(ステップ118)。   The light incident on the polarization units 30A to 30D is individually rotated by an angle at which the polarization direction is set by the optical rotation members 29A to 29D (step 114). Then, the light that is incident on the optical rotation members 29A to 29D in an inclined state with respect to the optical axis AXI and is elliptically polarized after passing through the optical rotation members 29A to 29D passes through the corresponding birefringence members 31A to 31D. The elliptically polarized light is corrected (adjusted) into linearly polarized light (step 116). When there is light perpendicularly incident on the optical rotation members 29A to 29D, this light is linearly polarized light in a target direction without being elliptically polarized. Moreover, although the light incident perpendicularly to the optical rotation members 29A to 29D is also incident perpendicularly to the birefringent members 31A to 31D, the polarization state of the light does not change depending on the birefringent members 31A to 31D. The light that has passed through the polarization units 30A to 30D of the polarization control system 28 becomes light having eight linearly polarized light components set for the partial regions C1 to C8 (step 118).

偏光制御系28を通過した照明光ILは、集光光学系33を介してマイクロレンズアレイ34の入射面P5、ひいては照明瞳面IPPの少なくとも8個の瞳領域にそれぞれ偏光方向A1〜A8の直線偏光で入射する(ステップ120)。これによって、所望の光強度分布及び偏光状態の分布を有する瞳強度分布(照明瞳)が照明瞳面IPPに形成される。その照明瞳からの照明光ILで照明光学系ILSによってレチクルRのレチクル面Raが照明される。そして、その照明光ILによってウェハWが露光される(ステップ122)。その後、照明光ILの照射が停止され、露光済みのウェハWがアンロードされる。さらに、次のウェハに露光する場合には(ステップ124)、動作はステップ108に戻り、照明瞳の形成及び露光が繰り返される。   The illumination light IL that has passed through the polarization control system 28 passes through the condensing optical system 33 to the incident surface P5 of the microlens array 34, and thus to the at least eight pupil regions of the illumination pupil plane IPP, respectively, with straight lines having polarization directions A1 to A8. Incident with polarized light (step 120). Thus, a pupil intensity distribution (illumination pupil) having a desired light intensity distribution and polarization state distribution is formed on the illumination pupil plane IPP. The reticle surface Ra of the reticle R is illuminated by the illumination optical system ILS with the illumination light IL from the illumination pupil. Then, the wafer W is exposed with the illumination light IL (step 122). Thereafter, the irradiation of the illumination light IL is stopped, and the exposed wafer W is unloaded. Further, when the next wafer is exposed (step 124), the operation returns to step 108, and the formation and exposure of the illumination pupil are repeated.

このように、本実施形態の照明方法及び露光方法によれば、SLM22及び偏光制御系28の協働作用によりレチクルRのパターンに対して高精度に最適化された偏光状態の分布を含む照明条件でレチクルRを照明できるため、レチクルRのパターンをウェハWに高精度に露光できる。
なお、例えば照明瞳面IPPに図2(C)のように光軸AXIを囲むように周方向に16個の瞳領域Bj(j=1〜16)を持つ瞳強度分布52を設定し、瞳領域B1〜B8内の偏光方向がA1〜A8、瞳領域B9〜B16内の偏光方向がA1〜A8となるように周方向偏光状態を設定する場合には、図3(A)のSLM22の部分アレイ領域D1〜D8からの反射光をそれぞれ瞳領域B1〜B8及びB9〜B16に振り分ければよい。
As described above, according to the illumination method and the exposure method of the present embodiment, the illumination condition including the polarization state distribution optimized with high accuracy with respect to the pattern of the reticle R by the cooperative action of the SLM 22 and the polarization control system 28. Since the reticle R can be illuminated with the above, the pattern of the reticle R can be exposed to the wafer W with high accuracy.
For example, a pupil intensity distribution 52 having 16 pupil regions Bj (j = 1 to 16) in the circumferential direction so as to surround the optical axis AXI as shown in FIG. When the circumferential polarization state is set so that the polarization directions in the regions B1 to B8 are A1 to A8 and the polarization directions in the pupil regions B9 to B16 are A1 to A8, the portion of the SLM 22 in FIG. The reflected light from the array areas D1 to D8 may be distributed to the pupil areas B1 to B8 and B9 to B16, respectively.

さらに、瞳領域B1〜B16内の偏光方向を、図2(D)の瞳強度分布52Aで示すように、光軸AXIに対して半径方向(径方向偏光状態)に設定するためには、SLM22の部分アレイ領域D5,D6,D7,D8,D1,D2,D3,D4からの反射光をそれぞれ瞳領域B1〜B8及びB9〜B16に振り分ければよい。図2(D)の分布ではさらに、光軸上の瞳領域B17で偏光方向が方向A1(縦偏光)となり、その周囲の4個の瞳領域B18で偏光方向が方向A5等の周方向偏光となっているが、これらの瞳領域B17,B18にはそれぞれSLM22の対応する部分アレイ領域D1,D5内のミラー要素24からの反射光を振り分ければよい。   Furthermore, in order to set the polarization direction in the pupil regions B1 to B16 in the radial direction (radial polarization state) with respect to the optical axis AXI, as shown by the pupil intensity distribution 52A in FIG. The reflected light from the partial array regions D5, D6, D7, D8, D1, D2, D3, and D4 may be distributed to the pupil regions B1 to B8 and B9 to B16, respectively. In the distribution of FIG. 2 (D), the polarization direction is the direction A1 (vertical polarization) in the pupil region B17 on the optical axis, and the circumferential polarization of the four pupil regions B18 around the polarization direction is the direction A5. However, the reflected light from the mirror elements 24 in the corresponding partial array regions D1 and D5 of the SLM 22 may be distributed to the pupil regions B17 and B18, respectively.

そして、図3(C)の部分領域C1〜C8(ひいてはSLM22の部分アレイ領域D1〜D8)の面積比を変化させて、部分アレイ領域D1〜D8からの反射光をそれぞれ偏光方向がA1〜A8となる瞳領域に導くことによって、照明瞳面IPPに任意の光強度分布で任意の8個の偏光方向の分布の組み合わせを持つ照明瞳を容易に形成できる。
上述のように本実施形態の照明光学系ILSは、光源10からの照明光ILによりレチクル面Ra(被照射面)を照明する光学系である。そして、照明光学系ILSは、配列面P1(所定面)に配置された複数のミラー要素24を有し、照明光学系ILSの照明瞳(照明瞳面IPP)に光強度分布を形成するSLM(空間光変調器)22(光強度分布形成部材)と、配列面P1とレチクル面Raとの間に配置され、SLM22を介してレチクル面Raに向かう少なくとも一部の光の偏光状態を変化させる旋光性を有する光学材料から形成された旋光部材29A,29B,29C,29D(第1旋光部材)と、配列面P1とレチクル面Raとの間に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸OAB等が照明光学系ILSの光軸AXIに平行になるように配置される複屈折部材31A,31B,31C,31D(調整部材)と、を備えている。
Then, by changing the area ratio of the partial regions C1 to C8 (as a result, the partial array regions D1 to D8 of the SLM 22) in FIG. 3C, the polarization directions of the reflected light from the partial array regions D1 to D8 are A1 to A8, respectively. Thus, an illumination pupil having a combination of any eight polarization directions with any light intensity distribution can be easily formed on the illumination pupil plane IPP.
As described above, the illumination optical system ILS of this embodiment is an optical system that illuminates the reticle surface Ra (irradiated surface) with the illumination light IL from the light source 10. The illumination optical system ILS has a plurality of mirror elements 24 arranged on the array surface P1 (predetermined surface), and forms an SLM (light intensity distribution on the illumination pupil (illumination pupil plane IPP) of the illumination optical system ILS. (Spatial light modulator) 22 (light intensity distribution forming member), optical rotation arranged between the array surface P1 and the reticle surface Ra, and changing the polarization state of at least part of the light toward the reticle surface Ra via the SLM 22 Optically rotatory members 29A, 29B, 29C and 29D (first optically rotatory members) formed of an optical material having optical properties, and uniaxial birefringence having no optical activity disposed between the array surface P1 and the reticle surface Ra. A birefringent member 31A, 31B, 31C, 31D (adjusting member) which is a crystal and is disposed so that its optical axis OAB and the like are parallel to the optical axis AXI of the illumination optical system ILS.

また、照明光学系ILSは、偏光制御系28を備え、偏光制御系28は、複数の互いに同様の構成の偏光ユニット30A〜30Dを有する。各偏光ユニット30A〜30Dは、照明瞳に光強度分布を形成するSLM22を介して射出される光束の偏光状態を制御する光学ユニットである。そして、各偏光ユニット30A〜30Dは、SLM22から射出される光の光路に配置されて、SLM22から射出される少なくとも一部の光の偏光状態を変化させる旋光部材29A〜29Dと、SLM22から射出される光の光路に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸が光軸AXIに平行になるように配置される複屈折部材31A〜31Dと、を備えている。   The illumination optical system ILS includes a polarization control system 28, and the polarization control system 28 includes a plurality of polarization units 30A to 30D having the same configuration. Each of the polarization units 30 </ b> A to 30 </ b> D is an optical unit that controls the polarization state of a light beam emitted through the SLM 22 that forms a light intensity distribution on the illumination pupil. The polarization units 30A to 30D are arranged on the optical path of the light emitted from the SLM 22, and are emitted from the SLM 22 and the optical rotation members 29A to 29D that change the polarization state of at least a part of the light emitted from the SLM 22. Birefringent members 31A to 31D, which are disposed in the optical path of the light and are uniaxial birefringent crystals having no optical rotation, the optical axes of which are parallel to the optical axis AXI. Yes.

また、照明光学系ILSを用いる照明方法は、光源10からの光によりレチクル面Raを照明する照明方法である。その照明方法は、配列面P1に配置された複数のミラー要素24を有し、照明光学系ILSの照明瞳に光強度分布を形成するSLM22の複数のミラー要素24に光源10からの照明光ILを供給するステップ110と、旋光部材29A〜29Dを用いて、SLM22を介してレチクル面Raに向かう少なくとも一部の光の偏光状態を変化させるステップ114と、光学軸が光軸AXIに平行になるように配置される複屈折部材31A〜31Dを用いてレチクル面Raに向かう少なくとも一部の光の偏光状態を調整するステップ116と、を含むものである。   The illumination method using the illumination optical system ILS is an illumination method that illuminates the reticle surface Ra with light from the light source 10. The illumination method includes a plurality of mirror elements 24 arranged on the array plane P1, and the illumination light IL from the light source 10 on the plurality of mirror elements 24 of the SLM 22 that forms a light intensity distribution on the illumination pupil of the illumination optical system ILS. , Step 114 for changing the polarization state of at least part of the light toward the reticle surface Ra via the SLM 22 using the optical rotation members 29A to 29D, and the optical axis parallel to the optical axis AXI. Step 116 of adjusting the polarization state of at least a part of the light toward the reticle surface Ra using the birefringent members 31A to 31D arranged as described above.

本実施形態の照明光学系ILS又は照明方法によれば、SLM22(光強度分布形成部材)と偏光ユニット30A〜30D中の旋光部材29A〜29Dとの協働作用によって、光学部材の交換を行うことなく、偏光状態の変更に関して高い自由度を得ることが可能となる。さらに、旋光部材29A〜29Dに比較的大きい入射角で入射する光(斜入射光)の射出時の偏光状態が、垂直入射光の射出時の偏光状態に対して変化する場合(例えばわずかに楕円偏光になっている場合)には、旋光部材29A〜29Dの射出側(下流)で複屈折部材31A〜31Dによってその射出光の偏光状態を調整する(例えば楕円偏光を直線偏光に調整する)ことができる。このため、その斜入射光の射出時の偏光状態を垂直入射光の射出時の偏光状態に合わせることが可能となり、照明瞳面IPPにより高精度に偏光方向の分布を設定でき、レチクルRのパターンをより高精度に露光できる。   According to the illumination optical system ILS or the illumination method of this embodiment, the optical member is exchanged by the cooperative action of the SLM 22 (light intensity distribution forming member) and the optical rotation members 29A to 29D in the polarization units 30A to 30D. In addition, it is possible to obtain a high degree of freedom regarding the change of the polarization state. Furthermore, when the polarization state at the time of emission of light (oblique incident light) incident on the optical rotation members 29A to 29D with a relatively large incident angle changes with respect to the polarization state at the time of emission of normal incident light (for example, slightly elliptical) In the case of polarized light), the polarization state of the emitted light is adjusted by the birefringent members 31A to 31D on the exit side (downstream) of the optical rotation members 29A to 29D (for example, the elliptically polarized light is adjusted to linearly polarized light). Can do. For this reason, it becomes possible to match the polarization state at the time of emission of the oblique incident light with the polarization state at the time of emission of the normal incident light, and the distribution of the polarization direction can be set with high accuracy by the illumination pupil plane IPP, and the pattern of the reticle R Can be exposed with higher accuracy.

なお、複屈折部材31A〜31Dを旋光部材29A〜29Dの入射側(上流)に配置することも可能であり、この場合には、旋光部材29A〜29Dの入射側で複屈折部材31A〜31Dによってその射出光の偏光状態を調整する(例えば旋光部材29A〜29Dを通過した後で直線偏光になるように、入射時の直線偏光をわずかに楕円偏光に調整する)ことで、その斜入射光の射出時の偏光状態を垂直入射光の射出時の偏光状態に合わせることが可能となる。   The birefringent members 31A to 31D can be arranged on the incident side (upstream) of the optical rotation members 29A to 29D. In this case, the birefringent members 31A to 31D are arranged on the incident side of the optical rotation members 29A to 29D. By adjusting the polarization state of the emitted light (for example, the linearly polarized light at the time of incidence is slightly adjusted to elliptically polarized light so as to become linearly polarized light after passing through the optical rotation members 29A to 29D), It becomes possible to match the polarization state at the time of emission with the polarization state at the time of emission of normal incident light.

また、SLM22の各ミラー要素24の角度の制御によって、瞳強度分布の形状(大きさを含む広い概念)をほぼ任意の形状に容易に設定することができ、その瞳強度分布の形状の変更に関する自由度が高い。さらに、本実施形態では、SLM22で反射された光の偏光状態を偏光制御系28によって断面積の比(対応するSLM22の部分アレイ領域D1〜D8のミラー要素24の数の比)が可変の8個の偏光方向の分布に設定している。従って、SLM22と偏光制御系28との協働作用によって、光学部材の交換を伴うことなく、照明瞳の光強度分布(瞳強度分布)をほぼ任意の分布に設定できるとともに、その照明瞳内の照明光ILの偏光状態を8個の偏光方向のほぼ任意の組み合わせの分布に容易に設定できる。従って、光強度分布及び偏光状態の分布の変更に関して極めて高い自由度が得られる。   Further, by controlling the angle of each mirror element 24 of the SLM 22, the shape of the pupil intensity distribution (a broad concept including the size) can be easily set to an almost arbitrary shape, and the shape of the pupil intensity distribution can be changed. High degree of freedom. Furthermore, in the present embodiment, the polarization state of the light reflected by the SLM 22 is variable by the polarization control system 28 so that the cross-sectional area ratio (the ratio of the number of mirror elements 24 in the corresponding partial array regions D1 to D8 of the SLM 22) is variable. The distribution of the polarization direction is set. Therefore, the cooperative action of the SLM 22 and the polarization control system 28 allows the light intensity distribution (pupil intensity distribution) of the illumination pupil to be set to an almost arbitrary distribution without exchanging optical members, The polarization state of the illumination light IL can be easily set to a distribution of almost any combination of the eight polarization directions. Therefore, an extremely high degree of freedom can be obtained with respect to changing the light intensity distribution and the polarization state distribution.

また、本実施形態では、SLM22の複数のミラー要素24に照明光ILが実質的にP偏光又はS偏光の状態で供給されており、SLM22の下流側に配置された偏光制御系28によって、縦偏光DV又は横偏光DHと異なる偏光方向の直線偏光を設定している。このため、ミラー要素24での反射の際に照明光ILの偏光状態が楕円偏光に変化することがなく、照明瞳での偏光状態の分布を高精度に設定できる。   In the present embodiment, the illumination light IL is substantially supplied to the plurality of mirror elements 24 of the SLM 22 in the state of P-polarized light or S-polarized light, and the polarization control system 28 disposed on the downstream side of the SLM 22 vertically Linearly polarized light having a polarization direction different from that of the polarized light DV or the laterally polarized light DH is set. For this reason, the polarization state of the illumination light IL does not change to elliptically polarized light when reflected by the mirror element 24, and the polarization state distribution at the illumination pupil can be set with high accuracy.

また、本実施形態の照明光学系ILSは4枚の偏光ユニット30A〜30Dを持つ偏光制御系28を備えているため、照明瞳上で8個の偏光方向の分布を設定できる。ただし、照明瞳で例えば4つの偏光方向(例えば縦偏光DV、横偏光DH、及び45度偏光DSA,DSB)を得るのみでよい場合には、例えば偏光制御系28の偏光ユニット30Aの旋光角を90度、偏光ユニット30Bの旋光角を45度として、他の旋光部材偏光ユニット30C,30Dを省略してもよい。又は、偏光制御系28のZ方向に移動する偏光ユニット30Aを省略し、他のX方向に移動する3枚の偏光ユニット30B〜30Dの旋光角をそれぞれ例えば右回りに45度としてもよい。   In addition, since the illumination optical system ILS of this embodiment includes the polarization control system 28 having four polarization units 30A to 30D, it is possible to set eight polarization direction distributions on the illumination pupil. However, when it is only necessary to obtain, for example, four polarization directions (for example, vertical polarization DV, horizontal polarization DH, and 45-degree polarization DSA, DSB) at the illumination pupil, the rotation angle of the polarization unit 30A of the polarization control system 28 is set, for example. The optical rotation angle of the polarization unit 30B may be 45 degrees, and the other optical rotation member polarization units 30C and 30D may be omitted. Alternatively, the polarization unit 30A that moves in the Z direction of the polarization control system 28 may be omitted, and the optical rotation angles of the three polarization units 30B to 30D that move in the other X direction may be 45 degrees clockwise, for example.

また、本実施形態の露光装置EXによれば、瞳強度分布の形状及び偏光状態の変更に関して高い自由度を有する照明光学系ILSを備え、照明光学系ILSからの照明光ILでレチクルR及び投影光学系PLを介してウェハWを露光している。このため、転写すべきレチクルRのパターンの特性に応じて実現された適切な照明条件のもとで、微細パターンをウェハWに高精度に転写することができる。   Further, according to the exposure apparatus EX of the present embodiment, the illumination optical system ILS having a high degree of freedom with respect to the change of the shape and polarization state of the pupil intensity distribution is provided, and the reticle R and projection are performed with the illumination light IL from the illumination optical system ILS. The wafer W is exposed through the optical system PL. For this reason, the fine pattern can be transferred to the wafer W with high accuracy under appropriate illumination conditions realized in accordance with the pattern characteristics of the reticle R to be transferred.

なお、上記の実施形態では次のような変形が可能である。
まず、上記の例えば図6(A)の例では、偏光ユニット30Bの旋光部材29Bが正結晶(例えば水晶)から形成され、複屈折部材31Bも正結晶(例えばフッ化マグネシウム)から形成されている。これらの正結晶は容易に入手可能である。これに対して、旋光部材29Bが正結晶から形成されている場合に、複屈折部材31Bを負結晶(例えばサファイア)から形成してもよい。負結晶の場合には、光学軸OAB(光軸AXIに平行に設定される)が進相軸となり、複屈折部材31Bの前面に平行な面に例えば直交する2軸の遅相軸が設定される。
In the above embodiment, the following modifications are possible.
First, in the example of FIG. 6A described above, for example, the optical rotation member 29B of the polarization unit 30B is formed from a positive crystal (for example, quartz), and the birefringent member 31B is also formed from a positive crystal (for example, magnesium fluoride). . These positive crystals are readily available. On the other hand, when the optical rotation member 29B is formed from a positive crystal, the birefringent member 31B may be formed from a negative crystal (for example, sapphire). In the case of a negative crystal, the optical axis OAB (set parallel to the optical axis AXI) is the fast axis, and two slow axes orthogonal to the front surface of the birefringent member 31B are set, for example. The

このように旋光部材29Bを正結晶から形成し、複屈折部材31Bを負結晶から形成する場合に、楕円偏光の補正効果(調整効果)が高くなるときには、これらの正結晶及び負結晶の組み合わせを使用することが好ましい。なお、負結晶の旋光部材がある場合に、楕円偏光の補正効果が高くなるときには、旋光部材29Bを負結晶から形成し、複屈折部材31Bを正結晶から形成してもよい。ただし、負結晶同士の組み合わせで楕円偏光の補正効果が高くなるときには、旋光部材29Bを負結晶から形成し、複屈折部材31Bも負結晶から形成してもよい。   Thus, when the optical rotation member 29B is formed from a positive crystal and the birefringent member 31B is formed from a negative crystal, if the correction effect (adjustment effect) of elliptically polarized light is high, a combination of these positive and negative crystals is selected. It is preferable to use it. When there is a negative crystal optical rotatory member and the elliptical polarization correction effect is high, the optical rotatory member 29B may be formed from a negative crystal and the birefringent member 31B may be formed from a positive crystal. However, when the correction effect of elliptically polarized light is enhanced by the combination of negative crystals, the optical rotation member 29B may be formed from a negative crystal, and the birefringent member 31B may also be formed from a negative crystal.

また、上記の実施形態では、偏光制御系28の偏光ユニット30A〜30Dを構成する旋光部材29A〜29D及び複屈折部材31A〜31Dは接触するか又は近接して、すなわち隣接して配置されている。このため、駆動部DR2によって、旋光部材29A〜29Dと対応する複屈折部材31A〜31Dとを一体的に容易に駆動(移動)できる。なお、例えばリレー光学系(不図示)によって設置面P3の下流に、設置面P3と光学的に共役な面P3A(不図示)を設定し、例えば設置面P3に旋光部材29A〜29Dを設置し、面P3Aに複屈折部材31A〜31Dを設置し、旋光部材29A〜29Dを駆動部DR2で駆動し、複屈折部材31A〜31Dを別の駆動部によって駆動部DR2と同期して駆動してもよい。さらに、設置面P3に複屈折部材31A〜31Dを設置し、下流の面P3Aに旋光部材29A〜29Dを設置してもよい。   In the above-described embodiment, the optical rotation members 29A to 29D and the birefringent members 31A to 31D constituting the polarization units 30A to 30D of the polarization control system 28 are in contact with or in close proximity, that is, adjacent to each other. . For this reason, the optical rotation members 29A to 29D and the corresponding birefringent members 31A to 31D can be easily driven (moved) integrally by the drive unit DR2. For example, a surface P3A (not shown) optically conjugate with the installation surface P3 is set downstream of the installation surface P3 by a relay optical system (not shown), and the optical rotation members 29A to 29D are installed on the installation surface P3, for example. Even if the birefringent members 31A to 31D are installed on the surface P3A, the optical rotation members 29A to 29D are driven by the driving unit DR2, and the birefringent members 31A to 31D are driven in synchronization with the driving unit DR2 by another driving unit. Good. Furthermore, the birefringent members 31A to 31D may be installed on the installation surface P3, and the optical rotation members 29A to 29D may be installed on the downstream surface P3A.

また、図1(C)の変形例の偏光制御系28Aで示すように、例えば偏光方向の回転角が22.5度と小さい偏光ユニット30A1に関しては、この偏光ユニット30A1を旋光角が22.5度の旋光部材29Aのみから構成してもよい。この偏光制御系28Aにおいて、他の偏光方向の回転角が例えば90度、45度、及び90度の偏光ユニット30B1,30C1,30D1は、それぞれ旋光部材29B〜29Dの入射面に複屈折部材31B〜31Dを固定して形成されている。   Further, as shown in the polarization control system 28A of the modification of FIG. 1C, for example, with respect to the polarization unit 30A1 whose rotation angle in the polarization direction is as small as 22.5 degrees, this polarization unit 30A1 has an optical rotation angle of 22.5. You may comprise only the optical rotation member 29A of a degree. In the polarization control system 28A, the polarization units 30B1, 30C1, and 30D1 whose rotation angles in the other polarization directions are 90 degrees, 45 degrees, and 90 degrees, for example, are formed on the incident surfaces of the optical rotation members 29B to 29D, respectively. 31D is fixed and formed.

偏光ユニット30A1のように旋光角が小さい場合には、斜入射光に対する楕円偏光化の程度が小さいため、特に楕円偏光を補正(調整)するための複屈折部材31Dを設けなくとも、照明瞳面IPPにおける偏光状態の誤差を許容範囲内に収めることが可能となる。従って、楕円偏光化を抑制して偏光制御系28Aの構成を簡素化できる。
また、上記の実施形態において、図6(A)の偏光ユニット30Bを使用した場合、斜入射光が旋光部材29Bに入射すると、射出時に生じる楕円偏光DHEが複屈折部材31Bによって直線偏光DHL,DHRに調整される。直線偏光DHL,DHRの正確な横偏光DHからの回転角は小さいものである。しかしながら、その直線偏光DHL,DHRを目標とする直線偏光(ここでは横偏光DH)により近づけるために、図10(A)の変形例の偏光制御系28Bの要部の偏光ユニット30B2に示すように、旋光部材29B及び複屈折部材31Bの射出面に、旋光性を有する光学材料により形成された平板状の旋光部材(以下、補正用旋光部材という)29Fを配置してもよい。旋光部材29B、複屈折部材31B、及び補正用旋光部材29Fよりなる偏光ユニット30B2は、駆動部DR2Aによって一体的に照明光の断面50Bを横切るようにX方向に移動可能である。
When the optical rotation angle is small as in the polarization unit 30A1, since the degree of elliptical polarization with respect to obliquely incident light is small, the illumination pupil plane can be provided without providing the birefringent member 31D for correcting (adjusting) elliptically polarized light. It becomes possible to keep the polarization state error in the IPP within an allowable range. Therefore, elliptical polarization can be suppressed and the configuration of the polarization control system 28A can be simplified.
In the above embodiment, when the polarization unit 30B of FIG. 6A is used, when obliquely incident light enters the optical rotation member 29B, elliptically polarized light DHE generated at the time of emission is linearly polarized light DHL, DHR by the birefringent member 31B. Adjusted to The rotation angle of the linearly polarized light DHL and DHR from the accurate laterally polarized light DH is small. However, in order to bring the linearly polarized light DHL and DHR closer to the target linearly polarized light (in this case, the laterally polarized light DH), as shown in the polarization unit 30B2 of the main part of the polarization control system 28B of the modified example of FIG. A flat plate optical rotatory member (hereinafter referred to as a correction optical rotatory member) 29F formed of an optical material having optical rotatory power may be disposed on the exit surfaces of the optical rotatory member 29B and the birefringent member 31B. The polarization unit 30B2 including the optical rotatory member 29B, the birefringent member 31B, and the correcting optical rotatory member 29F can be moved in the X direction so as to integrally cross the cross section 50B of the illumination light by the drive unit DR2A.

図10(A)において、補正用旋光部材29Fは例えば旋光部材29Bと同じ旋光性を有する光学材料(例えば水晶)により形成され、補正用旋光部材29Fの光学軸も光軸AXIに平行に設置され。また、補正用旋光部材29Fの厚さd3、ひいては旋光部材29Fにおける旋光角(入射光の偏光方向の回転角)は、図10(B)に示すように、入射角θで旋光部材29B及び複屈折部材31Bを通過した光ILB,ILDの直線偏光DHL,DHRをそれぞれ横偏光DHまで回転するように設定されている。この他の構成は、図6(A)及び図1(A)と同様である。   In FIG. 10A, the correction optical rotation member 29F is formed of, for example, an optical material (for example, quartz) having the same optical rotation as the optical rotation member 29B, and the optical axis of the correction optical rotation member 29F is also set parallel to the optical axis AXI. . Further, the thickness d3 of the correction optical rotation member 29F, and consequently the optical rotation angle (rotation angle of the polarization direction of the incident light) in the optical rotation member 29F, as shown in FIG. The linearly polarized lights DHL and DHR of the lights ILB and ILD that have passed through the refracting member 31B are set to rotate to the laterally polarized light DH, respectively. Other configurations are the same as those in FIGS. 6A and 1A.

この変形例の偏光ユニット30B2を用いることによって、旋光部材29B及び複屈折部材31Bを光軸AXIに対して傾斜して、かつZ方向及びX方向に傾斜して通過した光ILB及びILD(斜入射光)が横偏光DHに対してわずかに傾いた直線偏光DHL,DLRになっていても、その直線偏光DHL,DLRは補正用旋光部材29Fによって正確に横偏光DHになるように偏光方向が回転される。従って、照明瞳面IPPにおける偏光状態の分布をより高精度に目標とする分布に近づけることができ、レチクルRのパターンの像をより高精度に露光できる。   By using the polarization unit 30B2 of this modified example, light ILB and ILD (oblique incidence) that have passed through the optical rotation member 29B and the birefringent member 31B with an inclination with respect to the optical axis AXI and with an inclination in the Z direction and the X direction. Even if the light is linearly polarized light DHL, DLR slightly inclined with respect to the laterally polarized light DH, the direction of polarization is rotated so that the linearly polarized light DHL, DLR is accurately converted to the laterally polarized light DH by the correction optical rotation member 29F. Is done. Therefore, the distribution of the polarization state on the illumination pupil plane IPP can be brought closer to the target distribution with higher accuracy, and the pattern image of the reticle R can be exposed with higher accuracy.

なお、直線偏光DHL,DHRと横偏光DHとの間の角度のずれは、例えば偏光制御系28Bによる偏光方向の設定単位(例えば22.5度)に比べると小さいため、補正用旋光部材29Fにおける旋光角はその設定単位よりもかなり小さい角度(又はこの角度+180度の整数倍)である。従って、補正用旋光部材29Fを通過する照明光の偏光状態が楕円偏光になることは実質的にない。   The deviation in angle between the linearly polarized light DHL, DHR and the laterally polarized light DH is smaller than, for example, a unit for setting the polarization direction (for example, 22.5 degrees) by the polarization control system 28B. The optical rotation angle is an angle considerably smaller than the set unit (or this angle + an integral multiple of 180 degrees). Therefore, the polarization state of the illumination light passing through the correction optical rotation member 29F is substantially not elliptically polarized.

また、図8(A)の偏光方向の回転角が例えば45度の偏光ユニット30Cについても、例えばその射出面に、図8(C)の光ILG等で生じている直線偏光の45度偏光DSAに対するわずかなずれを補正するための補正用旋光部材(不図示)を設けてもよい。これによって、より高精度に偏光状態の分布を設定できる。同様に、図1(B)の偏光方向の回転角が例えば22.5度の偏光ユニット30Aについても、例えばその射出面に、斜入射光に生じる可能性がある直線偏光のわずかな角度のずれを補正するための補正用旋光部材(不図示)を設けてもよい。   Further, for the polarization unit 30C whose polarization direction rotation angle in FIG. 8A is 45 degrees, for example, the linearly polarized 45 degree polarization DSA generated by the light ILG or the like in FIG. A correction optical rotation member (not shown) for correcting a slight deviation from the above may be provided. Thereby, the distribution of the polarization state can be set with higher accuracy. Similarly, for the polarization unit 30A having a polarization direction rotation angle of 22.5 degrees, for example, as shown in FIG. 1B, a slight angular deviation of linearly polarized light that may occur in obliquely incident light, for example, on the exit surface thereof. A correction optical rotatory member (not shown) for correcting the above may be provided.

なお、図10(A)の例では、補正用旋光部材29Fは旋光部材29B及び複屈折部材31Bの射出面(下流)に隣接して配置されている。しかしながら、光軸AXIに沿った旋光部材29B、複屈折部材31B、及び補正用旋光部材29Fの配置の順序は任意であり、例えば補正用旋光部材29Fを旋光部材29Bの入射面(上流)に隣接して配置してもよい。
また、補正用旋光部材29Fを旋光部材29Bと光学的に共役の位置に配置することもできる。
In the example of FIG. 10A, the correction optical rotation member 29F is disposed adjacent to the exit surfaces (downstream) of the optical rotation member 29B and the birefringent member 31B. However, the arrangement order of the optical rotation member 29B, the birefringent member 31B, and the correction optical rotation member 29F along the optical axis AXI is arbitrary. For example, the correction optical rotation member 29F is adjacent to the incident surface (upstream) of the optical rotation member 29B. May be arranged.
Further, the correction optical rotation member 29F can be disposed at a position optically conjugate with the optical rotation member 29B.

さらに、補正用旋光部材29F(厚さd3)の光学材料が旋光部材29B(厚さd1とする)の光学材料と同じである場合には、図10(C)に示すように、旋光部材29Bと補正用旋光部材29Fとを一体化してもよい。この場合、旋光部材29Bを形成するための光学材料から形成された厚さ(d1+d3)の旋光部材29B1が、一体化された旋光部材29B及び補正用旋光部材29Fとして設置されている。また、旋光部材29B1の射出面に複屈折部材31B(厚さd2とする)が接着等で固定され、旋光部材29B1及び複屈折部材31Bはそれらの光学軸が光軸AXIに平行になるように配置されている。このように一体化された旋光部材29B1を使用する場合には、旋光部材29B,29Fを個別に製造する場合に比べて製造コストを低減できるとともに、旋光部材29B1の駆動部DR2Aによる支持が容易である。   Further, when the optical material of the correction optical rotation member 29F (thickness d3) is the same as the optical material of the optical rotation member 29B (thickness d1), as shown in FIG. And the correction optical rotation member 29F may be integrated. In this case, an optical rotation member 29B1 having a thickness (d1 + d3) formed of an optical material for forming the optical rotation member 29B is installed as an integrated optical rotation member 29B and a correction optical rotation member 29F. Further, a birefringent member 31B (thickness d2) is fixed to the exit surface of the optical rotatory member 29B1 by adhesion or the like, and the optical rotatory member 29B1 and the birefringent member 31B have their optical axes parallel to the optical axis AXI. Has been placed. When the optical rotation member 29B1 integrated in this way is used, the manufacturing cost can be reduced as compared with the case where the optical rotation members 29B and 29F are manufactured individually, and the support of the optical rotation member 29B1 by the drive unit DR2A is easy. is there.

また、図10(D)に示すように、旋光部材29B1の照明光ILの入射面側に複屈折部材31Bを配置してもよい。
また、上述の各実施形態では、旋光部材29A〜29D等が例えば水晶により形成されている。しかしながら、これに限定されることなく、旋光性を有する他の適当な光学材料を用いて旋光部材29A〜29D等を形成することもできる。
また、上述の各実施形態では、偏光制御系28を構成する光学素子(旋光部材等)の外形形状、数、配置、光学的特性などについては様々な形態が可能である。
また、上述の各実施形態では、二次元的に配列されて個別に制御される複数のミラー要素24を有するSLM22として、二次元的に配列された複数の反射面の角度を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば米国特許第5,312,513号公報、並びに米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。
As shown in FIG. 10D, a birefringent member 31B may be disposed on the incident surface side of the illumination light IL of the optical rotation member 29B1.
In each of the above-described embodiments, the optical rotation members 29A to 29D and the like are made of, for example, quartz. However, the present invention is not limited to this, and the optical rotation members 29A to 29D and the like can be formed using other appropriate optical materials having optical activity.
Further, in each of the above-described embodiments, various forms are possible with respect to the outer shape, number, arrangement, optical characteristics, and the like of the optical elements (such as the optical rotation member) constituting the polarization control system 28.
Further, in each of the above-described embodiments, as the SLM 22 having the plurality of mirror elements 24 arranged two-dimensionally and individually controlled, the angles of the plurality of reflection surfaces arranged two-dimensionally can be individually controlled. A spatial light modulator is used. However, the present invention is not limited to this. For example, a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used. As such a spatial light modulator, for example, the spatial light modulator disclosed in FIG. 1d of US Pat. No. 5,312,513 and US Pat. No. 6,885,493 can be used.

さらに、上述の実施形態では、SLM22が所定面内で二次元的に配列された複数のミラー要素24を備えているが、これに限定されることなく、所定面内に配列されて個別に制御される複数の透過光学要素を備えた透過型の空間光変調器を用いることもできる。
上述の実施形態において、旋光部材30A〜30C等は入射する直線偏光の偏光方向を22.5度単位又は45度単位で回転させるものであったが、偏光方向の回転角は22.5度又は45度単位ではなく、さらに微細な角度単位で設定してもよい。
Furthermore, in the above-described embodiment, the SLM 22 includes a plurality of mirror elements 24 arranged two-dimensionally within a predetermined plane. However, the present invention is not limited to this, and the SLM 22 is arranged within the predetermined plane and individually controlled. It is also possible to use a transmissive spatial light modulator including a plurality of transmissive optical elements.
In the above-described embodiment, the optical rotation members 30A to 30C and the like rotate the polarization direction of incident linearly polarized light in units of 22.5 degrees or 45 degrees, but the rotation angle of the polarization direction is 22.5 degrees or It may be set not in units of 45 degrees but in units of finer angles.

また、上記の実施形態の照明光学系は、照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材としてSLM22を使用している。しかしながら、光強度分布形成部材として例えば回折光学素子(Diffractive Optical Element: DOE) を使用する場合にも、この回折光学素子で設定された光強度分布内の偏光方向の分布を設定するために、上記の実施形態の偏光制御系28(偏光ユニット30A〜30D)を使用することができる。   In the illumination optical system of the above embodiment, the SLM 22 is used as a light intensity distribution forming member that forms a light intensity distribution on the illumination pupil of the illumination optical system. However, even when using, for example, a diffractive optical element (DOE) as a light intensity distribution forming member, in order to set the polarization direction distribution within the light intensity distribution set by this diffractive optical element, The polarization control system 28 (polarization units 30A to 30D) of the embodiment can be used.

また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図11に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウェハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。   Further, when an electronic device (or a micro device) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the electronic device as shown in FIG. Step 221 for performing a step, Step 222 for fabricating a reticle (mask) based on this design step, Step 223 for fabricating a substrate (wafer) as a base material of the device and applying a resist, and the exposure apparatus ( Substrate processing step 224 including a step of exposing a reticle pattern to a substrate (photosensitive substrate) by an exposure method), a step of developing the exposed substrate, a heating (curing) and etching step of the developed substrate, and a device assembly step (dicing) (Including processing processes such as processes, bonding processes, and packaging processes) 22 And an inspection step 226, and the like.

言い換えると、このデバイスの製造方法は、上記の実施形態の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウェハ)に転写することと、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工すること(ステップ224の現像、エッチング等)とを含んでいる。この際に、上記の実施形態によれば、偏光状態を含むレチクルの照明条件を高精度に最適化でき、レチクルのパターンを高精度に基板に露光できるため、電子デバイスを高精度に製造できる。   In other words, the device manufacturing method transfers the reticle pattern image onto the substrate (wafer) using the exposure apparatus EX (exposure method) of the above-described embodiment, and the pattern image transferred to the substrate (wafer). Processing the substrate based on the image of the pattern (development, etching, etc. in step 224). In this case, according to the above-described embodiment, the illumination condition of the reticle including the polarization state can be optimized with high accuracy, and the reticle pattern can be exposed to the substrate with high accuracy, so that the electronic device can be manufactured with high accuracy.

また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。   In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.

また、上述の実施形態では、露光装置においてマスク(ウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(ウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
このように、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
In the above-described embodiment, the present invention is applied to the illumination optical system that illuminates the mask (wafer) in the exposure apparatus. However, the present invention is not limited to this, and the irradiated surface other than the mask (wafer) is used. The present invention can also be applied to a general illumination optical system that illuminates the light.
Thus, the present invention is not limited to the above-described embodiments, and various configurations can be taken without departing from the gist of the present invention.

EX…露光装置、ILS…照明光学系、PL…投影光学系、R…レチクル、10…光源、22…空間光変調器(SLM)、26…リレー光学系、28…偏光制御系、29A〜29D…旋光部材、29F…補正用旋光部材、30A〜30D…偏光ユニット、31A〜31D…複屈折部材、34…マイクロレンズアレイ、36…照明制御部
EX ... exposure apparatus, ILS ... illumination optical system, PL ... projection optical system, R ... reticle, 10 ... light source, 22 ... spatial light modulator (SLM), 26 ... relay optical system, 28 ... polarization control system, 29A to 29D ... Optical rotator, 29F ... Optical rotator for correction, 30A to 30D ... Polarization unit, 31A to 31D ... Birefringent member, 34 ... Microlens array, 36 ... Illumination controller

Claims (40)

光源からの光により被照射面を照明する照明光学系において、
所定面内に配置されて、前記照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材と、
前記所定面と前記被照射面との間に配置され、前記光強度分布形成部材を介して前記被照射面に向かう少なくとも一部の光の偏光状態を変化させる旋光性を有する光学材料より形成された第1旋光部材と、
前記所定面と前記被照射面との間に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸が前記照明光学系の光軸に平行になるように配置される調整部材と、
を備えることを特徴とする照明光学系。
In the illumination optical system that illuminates the illuminated surface with light from the light source,
A light intensity distribution forming member that is disposed within a predetermined plane and forms a light intensity distribution on an illumination pupil of the illumination optical system;
The optical material is disposed between the predetermined surface and the irradiated surface, and is formed of an optical material having optical activity that changes the polarization state of at least a part of the light toward the irradiated surface via the light intensity distribution forming member. A first optical rotation member;
A uniaxial birefringent crystal having no optical rotation and disposed between the predetermined surface and the irradiated surface, the optical axis of which is disposed parallel to the optical axis of the illumination optical system. An adjustment member;
An illumination optical system comprising:
前記調整部材は、前記第1旋光部材を通過した光のうち、少なくとも一部の楕円偏光化した光の偏光状態を直線偏光状態に調整可能であることを特徴とする請求項1に記載の照明光学系。   2. The illumination according to claim 1, wherein the adjustment member is capable of adjusting a polarization state of at least a part of the elliptically polarized light out of the light passing through the first optical rotation member to a linear polarization state. Optical system. 前記調整部材は、前記第1旋光部材を通過する光のうち、少なくとも一部の直線偏光光を楕円偏光状態に調整可能であることを特徴とする請求項1に記載の照明光学系。   2. The illumination optical system according to claim 1, wherein the adjustment member is capable of adjusting at least a part of linearly polarized light out of the light passing through the first optical rotation member into an elliptically polarized state. 前記第1旋光部材と前記調整部材とは、互いに光学的に共役な位置に配置されることを特徴とする請求項1〜3のいずれか一項に記載の照明光学系。   The illumination optical system according to any one of claims 1 to 3, wherein the first optical rotation member and the adjustment member are disposed at optically conjugate positions. 前記調整部材は、前記第1旋光部材に隣接して配置されることを特徴とする請求項1〜3のいずれか一項に記載の照明光学系。   The illumination optical system according to claim 1, wherein the adjustment member is disposed adjacent to the first optical rotation member. 前記一軸性の複屈折結晶は、フッ化マグネシウム又はサファイアの結晶であることを特徴とする請求項1〜5のいずれか一項に記載の照明光学系。   The illumination optical system according to claim 1, wherein the uniaxial birefringent crystal is a magnesium fluoride or sapphire crystal. 前記照明光学系の光軸に対して所定角度で傾斜して前記第1旋光部材を通過する光の偏光状態を直線偏光又は楕円偏光に調整するときの前記調整部材の前記光軸方向の最小の厚さをda、前記所定角度で前記調整部材に入射した光の偏光状態が入射時の状態に戻るときの前記調整部材の前記光軸方向の最小の厚さをdbとして、
前記調整部材の前記光軸方向の厚さは、da+i・db(iは0以上の整数)に設定されることを特徴とする請求項1〜6のいずれか一項に記載の照明光学系。
When the polarization state of light that is inclined at a predetermined angle with respect to the optical axis of the illumination optical system and passes through the first optical rotation member is adjusted to linearly polarized light or elliptically polarized light, the minimum of the adjusting member in the optical axis direction is adjusted. The thickness is da, and the minimum thickness in the optical axis direction of the adjustment member when the polarization state of light incident on the adjustment member at the predetermined angle returns to the incident state is db.
The illumination optical system according to claim 1, wherein a thickness of the adjustment member in the optical axis direction is set to da + i · db (i is an integer of 0 or more).
前記光源から前記光強度分布形成部材に供給される光は直線偏光であり、
前記第1旋光部材は、直線偏光の状態で入射する光の偏光方向を80度〜100度回転させて射出することを特徴とする請求項1〜7のいずれか一項に記載の照明光学系。
The light supplied from the light source to the light intensity distribution forming member is linearly polarized light,
The illumination optical system according to any one of claims 1 to 7, wherein the first optical rotation member emits light by rotating a polarization direction of incident light in a linearly polarized state by 80 degrees to 100 degrees. .
前記第1旋光部材は、前記所定面と光学的に共役な配置面において、前記照明光学系の光軸に垂直な面内の互いに交差する第1及び第2方向のうち少なくとも一方の方向に移動可能に配置されて、前記光強度分布形成部材からの少なくとも一部の光の偏光方向を第1の角度だけ回転させる旋光部材であり、
前記第1旋光部材及び前記調整部材を一体的に前記配置面に沿って移動可能な駆動部を備えることを特徴とする請求項1〜8のいずれか一項に記載の照明光学系。
The first optical rotation member moves in at least one of the first and second directions intersecting each other in a plane perpendicular to the optical axis of the illumination optical system on an arrangement surface optically conjugate with the predetermined surface. An optical rotatory member that is arranged so as to rotate the polarization direction of at least part of the light from the light intensity distribution forming member by a first angle;
The illumination optical system according to any one of claims 1 to 8, further comprising a drive unit that can move the first optical rotation member and the adjustment member integrally along the arrangement surface.
前記第1旋光部材及び前記調整部材を通過した光の偏光方向を調整するための旋光性を有する光学材料より形成された第3旋光部材を備えることを特徴とする請求項1〜9のいずれか一項に記載の照明光学系。   The third optical rotation member formed of an optical material having optical activity for adjusting the polarization direction of the light that has passed through the first optical rotation member and the adjustment member is provided. The illumination optical system according to one item. 前記第1旋光部材及び前記調整部材を通過する光の偏光方向を調整するための旋光性を有する光学材料より形成された第3旋光部材を備えることを特徴とする請求項1〜9のいずれか一項に記載の照明光学系。   The third optical rotation member formed of an optical material having optical activity for adjusting the polarization direction of light passing through the first optical rotation member and the adjustment member is provided. The illumination optical system according to one item. 前記第1旋光部材及び前記第3旋光部材を一体的に移動可能な駆動部を備えることを特徴とする請求項10または11に記載の照明光学系。   12. The illumination optical system according to claim 10, further comprising a drive unit capable of integrally moving the first optical rotation member and the third optical rotation member. 前記第1旋光部材及び前記第3旋光部材は一体化していることを特徴とする請求項10または11に記載の照明光学系。   The illumination optical system according to claim 10 or 11, wherein the first optical rotation member and the third optical rotation member are integrated. 前記所定面と前記第1旋光部材が配置される配置面との間に配置されたリレー光学系を備えることを特徴とする請求項1〜113のいずれか一項に記載の照明光学系。   The illumination optical system according to claim 1, further comprising a relay optical system disposed between the predetermined surface and an arrangement surface on which the first optical rotation member is arranged. オプティカルインテグレータを備え、
前記第1旋光部材及び前記調整部材は、前記光強度分布形成部材と前記オプティカルインテグレータとの間の光路中に配置されることを特徴とする請求項1〜14のいずれか一項に記載の照明光学系。
With an optical integrator,
The illumination according to any one of claims 1 to 14, wherein the first optical rotation member and the adjustment member are disposed in an optical path between the light intensity distribution forming member and the optical integrator. Optical system.
前記光強度分布形成部材は、前記所定面内に二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に駆動制御する駆動部とを有する空間光変調器であることを特徴とする請求項1〜15のいずれか一項に記載の照明光学系。   The light intensity distribution forming member is a spatial light modulator having a plurality of mirror elements that are two-dimensionally arranged in the predetermined plane and a drive unit that individually drives and controls the postures of the plurality of mirror elements. The illumination optical system according to any one of claims 1 to 15, wherein 所定のパターンを照明するための請求項1〜16のいずれか一項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。   An exposure apparatus comprising the illumination optical system according to any one of claims 1 to 16 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a photosensitive substrate. 請求項17に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
Using the exposure apparatus according to claim 17 to expose the predetermined pattern on the photosensitive substrate;
Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
Processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method comprising:
所定面内に配置されて、照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材を介して射出される光束の偏光状態を制御する偏光ユニットであって、
前記光強度分布形成部材から射出される光の光路に配置されて、前記光強度分布形成部材から射出される少なくとも一部の光の偏光状態を変化させる旋光性を有する光学材料より形成された第1旋光部材と、
前記光強度分布形成部材から射出される光の光路に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸が前記照明光学系の光軸に平行になるように配置される調整部材と、
を備えることを特徴とする偏光ユニット。
A polarization unit that is arranged in a predetermined plane and controls a polarization state of a light beam emitted through a light intensity distribution forming member that forms a light intensity distribution on an illumination pupil of an illumination optical system,
A first optical material arranged in the optical path of the light emitted from the light intensity distribution forming member and made of an optical material having optical rotation that changes the polarization state of at least part of the light emitted from the light intensity distribution forming member. 1 optical rotation member,
A uniaxial birefringent crystal without optical rotation arranged in the optical path of the light emitted from the light intensity distribution forming member, and arranged so that its optical axis is parallel to the optical axis of the illumination optical system An adjusting member to be
A polarization unit comprising:
前記調整部材は、前記第1旋光部材を通過した光のうち、少なくとも一部の楕円偏光化した光の偏光状態を直線偏光状態に調整可能であることを特徴とする請求項19に記載の偏光ユニット。   The polarized light according to claim 19, wherein the adjustment member is capable of adjusting a polarization state of at least a part of the elliptically polarized light out of the light passing through the first optical rotation member to a linear polarization state. unit. 前記調整部材は、前記第1旋光部材を通過する光のうち、少なくとも一部の直線偏光光を楕円偏光状態に調整可能であることを特徴とする請求項19に記載の偏光ユニット。   The polarization unit according to claim 19, wherein the adjustment member is capable of adjusting at least a part of linearly polarized light out of the light passing through the first optical rotation member into an elliptically polarized state. 前記第1旋光部材と前記調整部材とは、互いに光学的に共役な位置に配置されることを特徴とする請求項19〜21のいずれか一項に記載の偏光ユニット。   The polarization unit according to any one of claims 19 to 21, wherein the first optical rotation member and the adjustment member are disposed at positions optically conjugate with each other. 前記調整部材は、前記第1旋光部材に隣接して配置されることを特徴とする請求項19〜21のいずれか一項に記載の偏光ユニット。   The polarization unit according to any one of claims 19 to 21, wherein the adjustment member is disposed adjacent to the first optical rotation member. 前記一軸性の複屈折結晶は、フッ化マグネシウム又はサファイアの結晶であることを特徴とする請求項19〜23のいずれか一項に記載の偏光ユニット。   The polarizing unit according to any one of claims 19 to 23, wherein the uniaxial birefringent crystal is a magnesium fluoride or sapphire crystal. 前記第1旋光部材は、直線偏光の状態で入射する光の偏光方向を80度〜100度回転させて射出することを特徴とする請求項19〜24のいずれか一項に記載の偏光ユニット。   The polarization unit according to any one of claims 19 to 24, wherein the first optical rotation member emits light by rotating the polarization direction of incident light in a state of linearly polarized light by 80 degrees to 100 degrees. 前記第1旋光部材は、前記所定面と光学的に共役な配置面において、前記照明光学系の光軸に垂直な面内の互いに交差する第1及び第2方向のうち少なくとも一方の方向に移動可能に配置されて、前記光強度分布形成部材からの少なくとも一部の光の偏光方向を第1の角度だけ回転させる旋光部材であり、
前記第1旋光部材及び前記調整部材を一体的に前記配置面に沿って移動可能な駆動部を備えることを特徴とする請求項19〜25のいずれか一項に記載の偏光ユニット。
The first optical rotation member moves in at least one of the first and second directions intersecting each other in a plane perpendicular to the optical axis of the illumination optical system on an arrangement surface optically conjugate with the predetermined surface. An optical rotatory member that is arranged so as to rotate the polarization direction of at least part of the light from the light intensity distribution forming member by a first angle;
The polarizing unit according to any one of claims 19 to 25, further comprising a drive unit that can move the first optical rotation member and the adjustment member integrally along the arrangement surface.
前記第1旋光部材及び前記調整部材を通過した光の偏光方向を調整するための旋光性を有する光学材料より形成された第3旋光部材を備えることを特徴とする請求項19〜26のいずれか一項に記載の偏光ユニット。   27. A third optical rotation member formed of an optical material having optical activity for adjusting a polarization direction of light that has passed through the first optical rotation member and the adjustment member. The polarizing unit according to one item. 前記第1旋光部材及び前記調整部材を通過する光の偏光方向を調整するための旋光性を有する光学材料より形成された第3旋光部材を備えることを特徴とする請求項19〜26のいずれか一項に記載の偏光ユニット。   27. The third optical rotation member formed of an optical material having optical activity for adjusting a polarization direction of light passing through the first optical rotation member and the adjustment member, 27. The polarizing unit according to one item. 前記第1旋光部材及び前記第3旋光部材を一体的に移動可能な駆動部を備えることを特徴とする請求項27または28に記載の偏光ユニット。   The polarizing unit according to claim 27 or 28, further comprising a drive unit that can move the first optical rotation member and the third optical rotation member integrally. 前記第1旋光部材及び前記第3旋光部材は一体化していることを特徴とする請求項27または28に記載の偏光ユニット。   The polarization unit according to claim 27 or 28, wherein the first optical rotation member and the third optical rotation member are integrated. 光源からの光により被照射面を照明する照明方法において、
所定面内に配置されて、照明光学系の照明瞳に光強度分布を形成する光強度分布形成部材に前記光源からの光を供給することと、
旋光性を有する光学材料より形成された第1旋光部材を用いて、前記光強度分布形成部材を介して前記被照射面に向かう少なくとも一部の光の偏光状態を変化させることと、
前記所定面と前記被照射面との間に配置される、旋光性のない一軸性の複屈折結晶であって、その光学軸が前記照明光学系の光軸に平行になるように配置される調整部材を用いて、前記被照射面に向かう少なくとも一部の光の偏光状態を調整することと、
を含むことを特徴とする照明方法。
In the illumination method of illuminating the illuminated surface with light from the light source,
Supplying light from the light source to a light intensity distribution forming member disposed in a predetermined plane and forming a light intensity distribution on an illumination pupil of the illumination optical system;
Using a first optical rotation member formed of an optical material having optical activity, changing the polarization state of at least a part of the light toward the irradiated surface via the light intensity distribution forming member;
A uniaxial birefringent crystal having no optical rotation and disposed between the predetermined surface and the irradiated surface, the optical axis of which is disposed parallel to the optical axis of the illumination optical system. Using an adjustment member to adjust the polarization state of at least a portion of the light toward the irradiated surface;
The lighting method characterized by including.
前記少なくとも一部の光の偏光状態を調整することは、前記第1旋光部材を通過した光のうち、少なくとも一部の楕円偏光化した光の偏光状態を直線偏光状態に調整することを含むことを特徴とする請求項31に記載の照明方法。   Adjusting the polarization state of the at least part of the light includes adjusting the polarization state of at least a part of the elliptically polarized light out of the light passing through the first optical rotation member to a linear polarization state. The illumination method according to claim 31, wherein: 前記少なくとも一部の光の偏光状態を調整することは、前記第1旋光部材を通過する光のうち、少なくとも一部の直線偏光光を楕円偏光状態に調整することを含むことを特徴とする請求項31に記載の照明方法。   The adjusting the polarization state of the at least part of the light includes adjusting at least a part of the linearly polarized light out of the light passing through the first optical rotation member to an elliptical polarization state. Item 32. The illumination method according to Item 31. 前記第1旋光部材を用いて前記少なくとも一部の光の偏光状態を変化させることは、直線偏光の状態で入射する光の偏光方向を80度〜100度回転させて射出することを含むことを特徴とする請求項31〜33のいずれか一項に記載の照明方法。   Changing the polarization state of the at least part of the light using the first optical rotation member includes rotating the polarization direction of the incident light in the state of linear polarization and emitting it by rotating it by 80 degrees to 100 degrees. The illumination method according to any one of claims 31 to 33, which is characterized by the following. 前記第1旋光部材及び前記調整部材を前記第1旋光部材の配置面に沿って一体的に移動することを含むことを特徴とする請求項31〜34のいずれか一項に記載の照明方法。   The illumination method according to any one of claims 31 to 34, including moving the first optical rotation member and the adjustment member integrally along an arrangement surface of the first optical rotation member. 旋光性を有する光学材料より形成された第3旋光部材を用いて、前記第1旋光部材及び前記調整部材を通過した光の偏光方向を調整することを含むことを特徴とする請求項31〜35のいずれか一項に記載の照明方法。   36. The method includes adjusting a polarization direction of light that has passed through the first optical rotation member and the adjustment member using a third optical rotation member formed of an optical material having optical activity. The illumination method according to any one of the above. 旋光性を有する光学材料より形成された第3旋光部材を用いて、前記第1旋光部材及び前記調整部材を通過する光の偏光方向を調整することを含むことを特徴とする請求項31〜35のいずれか一項に記載の照明方法。   36. The method includes adjusting a polarization direction of light passing through the first optical rotation member and the adjustment member using a third optical rotation member formed of an optical material having optical activity. The illumination method according to any one of the above. 前記第1旋光部材及び前記第3旋光部材を一体的に移動することを含むことを特徴とする請求項36または37に記載の照明方法。   38. The illumination method according to claim 36 or 37, comprising moving the first optical rotation member and the third optical rotation member integrally. 請求項31〜38のいずれか一項に記載の照明方法を用いて所定のパターンを照明し、
前記所定のパターンを感光性基板に露光することを特徴とする露光方法。
A predetermined pattern is illuminated using the illumination method according to any one of claims 31 to 38,
An exposure method comprising exposing the predetermined pattern onto a photosensitive substrate.
請求項39に記載の露光方法を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
Using the exposure method of claim 39 to expose the predetermined pattern to the photosensitive substrate;
Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
Processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method comprising:
JP2013001878A 2013-01-09 2013-01-09 Illumination optical system and illumination method, polarization unit, and light exposure method and device Pending JP2014135357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001878A JP2014135357A (en) 2013-01-09 2013-01-09 Illumination optical system and illumination method, polarization unit, and light exposure method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001878A JP2014135357A (en) 2013-01-09 2013-01-09 Illumination optical system and illumination method, polarization unit, and light exposure method and device

Publications (1)

Publication Number Publication Date
JP2014135357A true JP2014135357A (en) 2014-07-24

Family

ID=51413443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001878A Pending JP2014135357A (en) 2013-01-09 2013-01-09 Illumination optical system and illumination method, polarization unit, and light exposure method and device

Country Status (1)

Country Link
JP (1) JP2014135357A (en)

Similar Documents

Publication Publication Date Title
TWI628698B (en) Optical illumination device, exposure device, exposure method and device manufacturing method
TW200928607A (en) Illuminating optical apparatus, and exposure method and apparatus
JP2014135357A (en) Illumination optical system and illumination method, polarization unit, and light exposure method and device
WO2014077405A1 (en) Illumination optical system and illumination method, and exposure method and device
WO2014077404A1 (en) Illuminating optics, illumination method, and exposure method and device