JP2014134090A - Dispersion for drilling and drilling method using the same - Google Patents

Dispersion for drilling and drilling method using the same Download PDF

Info

Publication number
JP2014134090A
JP2014134090A JP2013160063A JP2013160063A JP2014134090A JP 2014134090 A JP2014134090 A JP 2014134090A JP 2013160063 A JP2013160063 A JP 2013160063A JP 2013160063 A JP2013160063 A JP 2013160063A JP 2014134090 A JP2014134090 A JP 2014134090A
Authority
JP
Japan
Prior art keywords
acid
hydrolyzable
hydrolyzable resin
dispersion
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013160063A
Other languages
Japanese (ja)
Other versions
JP6221475B2 (en
Inventor
Seishi Yoshikawa
成志 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013160063A priority Critical patent/JP6221475B2/en
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to PL13862865T priority patent/PL2933306T3/en
Priority to RU2015128009A priority patent/RU2627060C2/en
Priority to US14/649,947 priority patent/US10040983B2/en
Priority to PCT/JP2013/083305 priority patent/WO2014092146A1/en
Priority to CA2892496A priority patent/CA2892496C/en
Priority to CN201380065362.2A priority patent/CN104854215B/en
Priority to AU2013358061A priority patent/AU2013358061B2/en
Priority to EP13862865.6A priority patent/EP2933306B1/en
Publication of JP2014134090A publication Critical patent/JP2014134090A/en
Application granted granted Critical
Publication of JP6221475B2 publication Critical patent/JP6221475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dispersion for drilling, which is produced by dispersing an inexpensive hydrolyzable resin material that shows high hydrolyzability in an aqueous medium, and is used when underground resources are collected by a well drilling method such as a hydrofracturing technique, a rotary drilling method and a riser-less drilling method.SOLUTION: In the dispersion for drilling, a hydrolyzable resin material containing a hydrolyzable resin that is hard to be hydrolyzed and a hydrolyzable resin that has ester decomposition promoting properties is dispersed in an aqueous medium.

Description

本発明は、石油、天然ガスなどの地下資源を、水圧破砕法、ロータリー式掘削法、ライザーレス掘削法等の坑井掘削法により採取する際に使用される掘削用分散液に関する。   The present invention relates to a dispersion for excavation used when collecting underground resources such as oil and natural gas by a well drilling method such as a hydraulic fracturing method, a rotary drilling method, and a riserless drilling method.

地下資源の採取のために、水圧破砕法、ロータリー式掘削法、ライザーレス掘削法等の坑井掘削法が現在広く採用されている。
ロータリー式掘削法では、泥水を還流しながらドリルにより掘削して坑井が形成され、仕上げ流体として、逸水防止剤が配合されているものが用いられ、坑井の壁面に泥壁と呼ばれるフィルターケーキが形成される。このケーキにより、坑壁を安定的に保って崩壊を防いだり、坑井を流れる流体との摩擦軽減がなされる。
また水圧破砕法は、坑井内を満たした流体を高圧で加圧することにより、坑井近傍に亀裂(フラクチュア)を生成せしめ、坑井近傍の浸透率(流体の流れ易さ)を改善し、坑井へのオイルやガスなどの資源の有効な流入断面を拡大し、坑井の生産性を拡大するというものである。
Currently, well drilling methods such as hydraulic fracturing, rotary drilling, and riserless drilling are widely used to collect underground resources.
In the rotary type drilling method, a well is formed by drilling with a drill while circulating mud water, and a finishing fluid is blended with a water loss prevention agent. A filter called mud wall is used on the wall of the well. A cake is formed. This cake keeps the well wall stable and prevents collapse, and reduces friction with the fluid flowing through the well.
In addition, the hydraulic fracturing method pressurizes the fluid filling the well at high pressure, thereby generating a crack (fracture) in the vicinity of the well, improving the permeability (fluidity of fluid flow) in the vicinity of the well, It expands the effective cross section of resources such as oil and gas into the well, and increases the productivity of the well.

ところで、前述した仕上げ流体に配合される逸水防止剤としては、炭酸カルシウムや各種塩類の顆粒が主に用いられているが、このような逸水防止剤の使用は、これを取り除く際に酸処理を必要とすることや、資源を採掘しようとする地層に根詰まりして生産障害をもたらすという問題がある。
また水圧破砕法で用いられる流体は、フラクチュアリング流体とも呼ばれ、古くはジェル状のガソリンのような粘性流体が使用されていたが、最近では、比較的浅いところに存在する頁岩層から産出するシェールガスなどの開発に伴い、環境に対する影響を考慮し、水にポリマーを溶解乃至分散させた水性分散液が使用されるようになってきた。このようなポリマーとしては、ポリ乳酸が知られている(特許文献1参照)。
By the way, as the water-dissipation inhibitor to be blended in the above-mentioned finishing fluid, calcium carbonate and various types of salt granules are mainly used. There are problems in that it requires processing, and that it is rooted in the formation where resources are to be mined, resulting in production failures.
The fluid used in the hydraulic fracturing method is also called a fracturing fluid. In the past, viscous fluid such as gel-like gasoline was used, but recently it has been produced from a shale layer that exists in a relatively shallow place. With the development of shale gas and the like, an aqueous dispersion in which a polymer is dissolved or dispersed in water has been used in consideration of the influence on the environment. Polylactic acid is known as such a polymer (see Patent Document 1).

即ち、ポリ乳酸は加水分解性と生分解性を示す物質であり、地中に残存したとしても、地中の水分や酵素により分解するため環境に対して悪影響を与えることがない。また、分散媒として用いられている水も、ガソリンなどと比較すれば、環境に対する影響はほとんどないといってよい。
また、このようなポリ乳酸の水分分散液を坑井中に満たし、これを加圧したとき、ポリ乳酸が坑井近傍に浸透していくが、このポリ乳酸は加水分解して樹脂の形態を失っていくこととなり、このポリ乳酸が浸透していた部分に空間(即ち、亀裂)が生成し、従って、坑井への資源の流入空間を増大することが可能となるわけである。
さらに、ポリ乳酸は、逸水防止剤としても機能し、分散媒として使用されている水の地中への過度の浸透を抑制するため、地層に与える環境変化を最小限に抑制するという利点を有する。また、地中で分解するため酸処理も不要となる。
加えるに、ポリ乳酸の分解物である乳酸は有機酸の一種であり、ポリ乳酸が分解後、乳酸が放出され、シェール層を酸浸食することで、シェール層の多孔化を促進する機能もある。
That is, polylactic acid is a substance exhibiting hydrolyzability and biodegradability, and even if it remains in the ground, it does not adversely affect the environment because it is degraded by moisture and enzymes in the ground. In addition, it can be said that water used as a dispersion medium has little influence on the environment as compared with gasoline.
In addition, when such a polylactic acid water dispersion is filled in the well and pressurized, the polylactic acid penetrates into the vicinity of the well, but this polylactic acid is hydrolyzed and loses its resin form. As a result, a space (that is, a crack) is generated in a portion where the polylactic acid has permeated, and therefore, it is possible to increase a space for inflow of resources to the well.
In addition, polylactic acid also functions as a water loss prevention agent and suppresses excessive penetration of water used as a dispersion medium into the ground, thus minimizing environmental changes to the formation. Have. Moreover, since it decomposes in the ground, no acid treatment is required.
In addition, lactic acid, which is a degradation product of polylactic acid, is a kind of organic acid. After polylactic acid is decomposed, lactic acid is released, and it also has a function of promoting porosity of the shale layer by acid erosion of the shale layer. .

しかしながら、ポリ乳酸は、高い温度では比較的早く加水分解するものの、温度が低くなるとともに加水分解速度は遅く、従って、地中温度の低い箇所から産出するシェールガスなどの採取に適用する場合には、その効率が悪く、改善が求められている。   However, polylactic acid hydrolyzes relatively quickly at high temperatures, but the temperature decreases and the hydrolysis rate is slow. Therefore, when applied to the collection of shale gas etc. produced from places with low underground temperatures. , Its efficiency is poor and improvement is required.

一方、ポリ乳酸に代えて、ポリグリコール酸を使用することが提案されている(特許文献2参照)。
ポリグリコール酸も生分解性樹脂として知られており、しかも、ポリ乳酸に比して加水分解性が高く、例えば80℃程度の温度での加水分解速度がポリ乳酸に比してかなり速く、ポリ乳酸の代替えとして効果的である。
しかしながら、ポリグリコール酸は、ポリ乳酸に比してかなり高コストであるという問題があり、これは、多量のフラクチュアリング流体が使用される水圧破砕法では致命的な欠点となっている。また、特定の温度条件下では、十分満足する分解性が得られない。
On the other hand, it has been proposed to use polyglycolic acid instead of polylactic acid (see Patent Document 2).
Polyglycolic acid is also known as a biodegradable resin, and is more hydrolyzable than polylactic acid. For example, the hydrolysis rate at a temperature of about 80 ° C. is considerably faster than polylactic acid. Effective as an alternative to lactic acid.
However, polyglycolic acid has a problem that it is considerably more expensive than polylactic acid, which is a fatal defect in the hydraulic fracturing method in which a large amount of fracturing fluid is used. Also, sufficiently satisfactory decomposability cannot be obtained under specific temperature conditions.

USP7,833,950USP 7,833,950 WO2012−050187WO2012-050187

従って、本発明の課題は、高い加水分解性を示し且つ安価な加水分解性樹脂材料が水性媒体に分散されており、坑井の掘削に際しての仕上げ流体や水圧破砕法に使用されるフラクチュアリング流体として有用な掘削用分散液を提供することにある。   Accordingly, an object of the present invention is to provide a high-hydrolyzable and inexpensive hydrolyzable resin material dispersed in an aqueous medium, and a fracturing used in a finishing fluid or a hydraulic fracturing method when drilling a well. Disclosed is a drilling dispersion useful as a fluid.

本発明によれば、難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む加水分解性樹脂材料が水性媒体中に分散していることを特徴とする掘削用分散液が提供される。
また、地下から天然資源を採掘する際、上記掘削用分散液を地下に圧入し40℃以上の熱水中で生分解性樹脂材料の加水分解を行う工程を含むことを特徴とする採掘方法が提供される。
According to the present invention, a dispersion for excavation characterized in that a hydrolyzable resin material containing a hardly hydrolyzable hydrolyzable resin and an esterolysis-promoting hydrolyzable resin is dispersed in an aqueous medium. Liquid is provided.
Further, when mining natural resources from the underground, a mining method characterized by including a step of hydrolyzing the biodegradable resin material in hot water at 40 ° C. or higher by pressing the dispersion for excavation into the underground Provided.

本発明の掘削用分散液においては、
(1)エステル分解促進性の加水分解性樹脂が酸放出性のものであること、
(2)放出される酸がグリコール酸およびまたはシュウ酸であること、
(3)前記酸放出性の加水分解性樹脂が、ポリオキサレートであること、
(4)前記難加水分解性の加水分解性樹脂がポリ乳酸であること、
(5)前記難加水分解性の加水分解性樹脂100重量部に対して、エステル分解促進性の加水分解性樹脂を30重量部以上含有していること、
が好ましい。
In the drilling dispersion of the present invention,
(1) The ester decomposition-promoting hydrolyzable resin is acid-releasing.
(2) the acid released is glycolic acid and / or oxalic acid,
(3) The acid-releasing hydrolyzable resin is a polyoxalate,
(4) The hardly hydrolyzable hydrolyzable resin is polylactic acid,
(5) Containing 30 parts by weight or more of an esterolysis-promoting hydrolyzable resin with respect to 100 parts by weight of the hardly hydrolyzable hydrolyzable resin,
Is preferred.

本発明の掘削用分散液においては、水性媒体に分散されている加水分解性樹脂材料が、ポリ乳酸に代表される安価な難加水分解性の加水分解性樹脂を主成分としているため、ポリグリコール酸を用いた先行技術と比較して、コスト的なメリットが大きい。   In the excavation dispersion liquid of the present invention, the hydrolyzable resin material dispersed in the aqueous medium is mainly composed of an inexpensive hardly hydrolyzable hydrolyzable resin typified by polylactic acid. Compared with the prior art using acid, the cost advantage is great.

しかも、本発明では、難加水分解性の加水分解性樹脂にエステル分解促進性の加水分解性樹脂(例えばポリオキサレート)が併用されているため、難加水分解性の加水分解性樹脂の加水分解性が著しく改善され、例えば、80℃以下の低温での加水分解速度が著しく高められている。即ち、エステル分解促進性の加水分解性樹脂から放出される酸やアルカリが触媒となって、ポリ乳酸等の加水分解が促進されるわけである。この場合、エステル分解促進性の加水分解性樹脂の代わりに、酸やアルカリを直接添加しておくことも考えられるが、この場合には、坑井に充満させ或いは加圧する前に加水分解性樹脂の加水分解が進行してしまうため、実用に供することができない。   In addition, in the present invention, the hydrolysis of the hardly hydrolyzable hydrolyzable resin is carried out because the hydrolyzable resin that is not easily hydrolyzed and the hydrolyzable resin (for example, polyoxalate) that promotes ester decomposition are used in combination. For example, the hydrolysis rate at a low temperature of 80 ° C. or lower is remarkably increased. That is, hydrolysis of polylactic acid or the like is promoted by the acid or alkali released from the ester decomposition-promoting hydrolyzable resin as a catalyst. In this case, it may be possible to add acid or alkali directly in place of the ester decomposition-promoting hydrolyzable resin. In this case, however, the hydrolyzable resin before filling the well or pressurizing. Since the hydrolysis of the water proceeds, it cannot be put to practical use.

地下資源を採掘する場合、地下資源が存在する地下層の温度は、採掘条件等に大きな影響を与える。加水分解性樹脂を水に分散した採掘用分散液において、加水分解性樹脂には、45℃以上200℃以下の温度域で4日以内に40%程度(或いはそれ以上)の重量減少を示す加水分解性能が求められており、特に現在では、シェール層のように地中の浅い場所に存在している地層からの資源の採取が多く行われ、例えば地層温度が40℃〜80℃、さらには、40℃〜60℃の場所からの採取も行われることが多い。
上述した難加水分解性の加水分解性樹脂(例えばポリ乳酸)とエステル分解促進性の加水分解性樹脂(例えばポリオキサレート)とを組み合わせて加水分解性樹脂材料として用いた本発明の掘削用分散液は、上記のような加水分解性能を十分に満足するものであり、例えば坑井の掘削に際して使用される仕上げ用流体や、水圧破砕法に用いるフラクチュアリング流体として特に好適に使用される。
When mining underground resources, the temperature of the underground layer where the underground resources exist greatly affects the mining conditions. In a mining dispersion in which a hydrolyzable resin is dispersed in water, the hydrolyzable resin has a water loss of about 40% (or more) within 4 days in a temperature range of 45 ° C. to 200 ° C. Decomposition performance is demanded, and at present, resources are often collected from a stratum that exists in a shallow place like the shale layer. For example, the stratum temperature is 40 ° C to 80 ° C, In many cases, the sample is collected from a place of 40 ° C to 60 ° C.
Dispersion for excavation of the present invention using the above-mentioned hardly hydrolyzable hydrolyzable resin (for example, polylactic acid) and ester decomposition-promoting hydrolyzable resin (for example, polyoxalate) as a hydrolyzable resin material The liquid sufficiently satisfies the hydrolysis performance as described above. For example, the liquid is particularly preferably used as a finishing fluid used for drilling a well or a fracturing fluid used for a hydraulic fracturing method.

即ち、本発明の掘削用分散液を仕上げ流体として用いた場合には、坑井の壁面に形成される炭酸カルシウムなどの固形分(逸水防止剤)のフィルターケーキを、加水分解性樹脂材料の加水分解によって生成した酸によって分解させることができるため、その後の酸処理が不要となり、速やかに逸水防止剤を回収することができる。また、この分散液中の加水分解性樹脂材料(固形分)自体が逸水防止剤としての機能をも有するため、この固形分によって形成されたフィルターケーキにより坑井からの水の逸水(地中への水の浸透)を防止することができ、所定期間経過後は、このケーキは加水分解するため、やはり格別の酸処理を行うことなく、回収することができる。   That is, when the excavation dispersion liquid of the present invention is used as a finishing fluid, a filter cake of solid content (an anti-water agent) such as calcium carbonate formed on the wall surface of the well is made of the hydrolyzable resin material. Since it can be made to decompose with the acid produced | generated by hydrolysis, the subsequent acid treatment becomes unnecessary and a water loss prevention agent can be collect | recovered rapidly. In addition, since the hydrolyzable resin material (solid content) itself in this dispersion also has a function as a water loss preventing agent, the water drainage from the well (ground) is formed by the filter cake formed by this solid content. Infiltration of water into the inside can be prevented, and the cake hydrolyzes after a predetermined period of time, so that it can be recovered without any particular acid treatment.

また、この掘削用分散液をフラクチュアリング流体として用いた場合には、この分散液を坑井に充満させて加圧したとき、坑井の近傍に加水分解性樹脂材料が浸透していくが、地中温度が低い場合にも、この加水分解性樹脂材料が短時間で加水分解するため、この樹脂材料が浸透した部分にピラー構造の空間(亀裂)を生成させることができ、例えばシェールガス等の掘削の生産効率を高めることができる。しかも、加水分解性分性樹脂材料の加水分解により生成した酸が、頁岩などの鉱物を溶解するため、亀裂の生成を促進させることができる。
さらに、この分散液中の加水分解性樹脂材料は、坑井中の流路を遮断する目止剤としても機能させ得るが、その後に加水分解するため、目止剤の沈降による目詰まりなどの問題も回避でき、生産効率を高めることができる。
In addition, when this drilling dispersion is used as a fracturing fluid, the hydrolyzable resin material penetrates into the vicinity of the well when the well is filled and pressurized. Even when the underground temperature is low, the hydrolyzable resin material hydrolyzes in a short time, so that a space (crack) with a pillar structure can be generated in the portion where the resin material has penetrated, for example, shale gas Etc. can increase the production efficiency of drilling. In addition, since the acid generated by hydrolysis of the hydrolyzable split resin material dissolves minerals such as shale, the generation of cracks can be promoted.
Furthermore, the hydrolyzable resin material in this dispersion can also function as a sealant that blocks the flow path in the well, but since it hydrolyzes later, problems such as clogging due to sedimentation of the sealant Can be avoided and the production efficiency can be increased.

さらにまた、この分散液に低pH下で溶解するキトサンなどのゲル化剤を配合することにより、上記加水分解性樹脂材料の加水分解により生成する酸によって、坑井中でゲル化を生じせしめて流体の高粘性化を図り、これにより、流体の圧入による液の坑井近傍への浸透を効果的に行うことができると同時に、さらなる加水分解により生成する酸によりゲルの分解(低粘性化)を行うことができ、その後のフラクチュアリング流体の回収も効果的に行うことができる。   Furthermore, by adding a gelling agent such as chitosan that dissolves at low pH to this dispersion, gelation is caused in the well by the acid generated by hydrolysis of the hydrolyzable resin material. This makes it possible to effectively infiltrate the liquid near the well by press-fitting the fluid, and at the same time to decompose the gel (lower viscosity) by the acid generated by further hydrolysis. And the subsequent recovery of the fracturing fluid can be effectively performed.

実験例14における加水分解試験後の試料の分子量分布を示す図。The figure which shows the molecular weight distribution of the sample after the hydrolysis test in Experimental example 14. FIG.

本発明の掘削用分散液は、加水分解性樹脂材料が水性媒体に分散された分散液であり、これには、必要に応じて、坑井掘削や水圧破砕を実施するために配合される公知の添加剤が適宜配合される。   The dispersion for excavation of the present invention is a dispersion in which a hydrolyzable resin material is dispersed in an aqueous medium, and this is blended to perform well drilling or hydraulic fracturing as necessary. These additives are appropriately blended.

<加水分解性樹脂材料>
本発明において、用いる加水分解性樹脂材料は、難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む。
<Hydrolyzable resin material>
In the present invention, the hydrolyzable resin material used includes a hardly hydrolyzable hydrolyzable resin and an ester decomposition-promoting hydrolyzable resin.

1.難加水分解性の加水分解性樹脂;
難加水分解性の加水分解性樹脂は、この樹脂材料の主成分となるものであり、例えば、加水分解性樹脂を凍結粉砕し粉体化した試料で、1mg/1ml濃度の水分散液を作製し、45℃で一週間インキュベート後、残液のTOC(総有機炭素量)が5ppm以下であるものを意味する。さらに水溶性のポリマーは含まない。水溶性のポリマー(例えば、20℃の水に対する溶解度が50g/100g以上)は、地中への浸透性が高すぎ、例えば環境に与える影響が大きく、フラクチュアリング流体に用いる配合剤としては適さない。
1. A hardly hydrolyzable hydrolyzable resin;
The hardly hydrolyzable hydrolyzable resin is the main component of this resin material. For example, a 1 mg / 1 ml aqueous dispersion is prepared with a sample obtained by freeze-pulverizing and pulverizing the hydrolyzable resin. In addition, after incubation at 45 ° C. for one week, the residual solution has a TOC (total organic carbon content) of 5 ppm or less. Further, it does not contain a water-soluble polymer. A water-soluble polymer (for example, solubility in water at 20 ° C. of 50 g / 100 g or more) is too high to penetrate into the ground, for example, has a large impact on the environment, and is suitable as a compounding agent used for a fracturing fluid. Absent.

上記のような難加水分解性の加水分解性樹脂の例としては、ポリ乳酸、ポリヒドロキシアルカノエート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンテレフタレートアジペート、酢酸セルロース、熱可塑性澱粉などを例示することができ、これらは共重合体やブレンド物の形で使用することもできるが、特にコストの点からポリ乳酸が最適である。   Examples of such hardly hydrolyzable hydrolyzable resins include polylactic acid, polyhydroxyalkanoate, polycaprolactone, polybutylene succinate, polybutylene succinate adipate, polybutylene terephthalate adipate, cellulose acetate, thermoplastic Starch and the like can be exemplified, and these can be used in the form of a copolymer or a blend, but polylactic acid is particularly optimal from the viewpoint of cost.

ポリ乳酸は、100%ポリ−L−乳酸或いは100%ポリ−D−乳酸の何れであってもよいし、ポリ−L−乳酸とポリ−D−乳酸の溶融ブレンド物でもよく、また、L−乳酸とD−乳酸とのランダム共重合体やブロック共重合体であってもよい。   The polylactic acid may be 100% poly-L-lactic acid or 100% poly-D-lactic acid, or a melt blend of poly-L-lactic acid and poly-D-lactic acid. It may be a random copolymer or block copolymer of lactic acid and D-lactic acid.

さらに、上記の加水分解性樹脂は、その加水分解性樹脂の特性が損なわれない限り、各種の脂肪族多価アルコール、脂肪族多塩基酸、ヒドロキシカルボン酸、ラクトンなどが共重合された共重合体の形態で使用することもできる。
このような多価アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ポリエチレングリコールなどを例示することができる。
多塩基酸としては、コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキサンジカルボン酸、テレフタル酸を例示することができる。カルボン酸ジエステルを用いてもよい。
ヒドロキシカルボン酸としては、グルコール酸、ヒドロキシプロピオン酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸を挙げることができる。
ラクトンとしては、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトン、グリコリド、マンデライドなどを挙げることができる。
また、このような難加水分解性樹脂には、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤が配合されていてもよい。
Furthermore, the hydrolyzable resin described above is a copolymer obtained by copolymerizing various aliphatic polyhydric alcohols, aliphatic polybasic acids, hydroxycarboxylic acids, lactones, etc., as long as the properties of the hydrolyzable resin are not impaired. It can also be used in the form of a coalescence.
Examples of such polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, and polyethylene glycol.
Examples of the polybasic acid include succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, and terephthalic acid. Carboxylic acid diesters may be used.
Examples of the hydroxycarboxylic acid include glycolic acid, hydroxypropionic acid, hydroxyvaleric acid, hydroxycaproic acid, and mandelic acid.
Examples of the lactone include caprolactone, butyrolactone, valerolactone, poropiolactone, undecalactone, glycolide, and mandelide.
In addition, for such a hardly hydrolyzable resin, known plasticizers, heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments, fillers, fillers, and the like are added as necessary. Additives such as agents, mold release agents, antistatic agents, fragrances, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended.

また、上述した難加水分解の加水分解性樹脂は、フラクチュアリング流体として用いたときの目止材としての機能及び地中への浸透性の点で適宜の分子量を有しているべきであり、一般に、重量平均分子量が5,000乃至1,000,000、特に10,000乃至500,000の範囲にあるのがよい。   Moreover, the above-mentioned hardly hydrolyzable hydrolyzable resin should have an appropriate molecular weight in terms of function as a sealing material when used as a fracturing fluid and penetrability into the ground. In general, the weight average molecular weight should be in the range of 5,000 to 1,000,000, especially 10,000 to 500,000.

2.エステル分解促進性の加水分解性樹脂;
上述した加水分解性樹脂、例えばポリ乳酸は難加水分解性であり、100℃以下の温度、特に80℃以下の低温では、その分解に著しく長期間を要する。このため、本発明では、以下に述べるエステル分解促進性の加水分解性樹脂が配合される。
2. Ester decomposition-promoting hydrolyzable resin;
The above-mentioned hydrolyzable resin, such as polylactic acid, is hardly hydrolyzable, and requires a very long time for its decomposition at a temperature of 100 ° C. or lower, particularly at a low temperature of 80 ° C. or lower. For this reason, in the present invention, an ester decomposition-promoting hydrolyzable resin described below is blended.

このエステル分解促進性の加水分解性樹脂(以下、単に「エステル分解性樹脂」と略すことがある)は、それ単独ではエステル分解能を示さないが、水分と混合したときにエステル分解の触媒として機能する酸或いはアルカリを放出するものである。   This ester decomposition-promoting hydrolyzable resin (hereinafter sometimes simply referred to as “ester-decomposable resin”) does not exhibit ester degradation by itself, but functions as a catalyst for ester decomposition when mixed with moisture. It releases acid or alkali.

このようなエステル分解性樹脂は、通常、上記の難加水分解性の加水分解性樹脂の内部に均一に分散され、このエステル分解性樹脂から放出される酸或いはアルカリによっての加水分解性樹脂の加水分解を迅速に促進するために、例えば、その重量平均分子量が1000乃至200000程度のものが使用される。   Such an ester-decomposable resin is usually uniformly dispersed inside the above-mentioned hardly hydrolyzable hydrolyzable resin, and the hydrolyzable resin is hydrolyzed by an acid or alkali released from the ester-decomposable resin. In order to accelerate the decomposition rapidly, for example, those having a weight average molecular weight of about 1,000 to 200,000 are used.

また、かかるエステル分解性樹脂において、アルカリ放出性のものとしては、アクリル酸ソーダ等のアクリル酸のアルカリ金属塩やアルギン酸ソーダ等を用いることができるが、アルカリ放出による環境への悪影響が大きいため、特に酸放出性のものが好適に使用される。   Further, in such an ester-decomposable resin, as an alkali-releasing resin, an alkali metal salt of acrylic acid such as sodium acrylate or sodium alginate can be used. In particular, an acid releasing agent is preferably used.

酸放出性のエステル分解性樹脂から放出される酸としては、特に、0.005g/ml濃度の水溶液乃至水分散液でのpH(25℃)が4以下、特に3以下を示すものであり、水と混合したときに容易に加水分解して酸を放出するポリマーが好適に使用される。放出される酸としては、シュウ酸やグリコール酸が挙げられる。
上記ポリマーとして、例えば、ポリオキサレート、ポリグリコール酸などが挙げられる。これらはコポリマー、単独での使用、2種以上を組み合わせての使用でもよい。
コポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸やそのジエステル;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
また、このようなエステル分解性樹脂にも、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤が配合されていてもよい。
As the acid released from the acid-releasing ester-decomposable resin, in particular, the pH (25 ° C.) in an aqueous solution or aqueous dispersion having a concentration of 0.005 g / ml is 4 or less, particularly 3 or less, Polymers that readily hydrolyze to release acid when mixed with water are preferably used. Examples of the acid to be released include oxalic acid and glycolic acid.
Examples of the polymer include polyoxalate and polyglycolic acid. These may be copolymers, used alone or in combination of two or more.
Examples of the component forming the copolymer include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol; Acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and other dicarboxylic acids and their diesters; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropion Hydroxycarboxylic acids such as acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide, caprolactone, Examples include lactones such as tyrolactone, valerolactone, poropiolactone, and undecalactone.
Also, for such ester-decomposable resins, known plasticizers, heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments, fillers, fillers, if necessary. Additives such as mold release agents, antistatic agents, perfumes, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended.

なお、本明細書では、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとする。   In the present specification, a polymer obtained by polymerizing oxalic acid as at least one monomer in a homopolymer, copolymer, or blend is referred to as polyoxalate.

特に、上記のポリオキサレートやポリグルコール酸は易加水分解性の加水分解性樹脂であり、速やかに加水分解するため、難加水分解性樹脂の加水分解促進能に優れている。これらの中でも、ポリオキサレート、特にポリエチレンオキサレートは、ポリグリコール酸に比しても著しく高い加水分解促進能を示し、80℃以下の温度でもポリ乳酸等の難加水分解性樹脂の加水分解を著しく促進させることができ、しかもポリグリコール酸に比してもかなり安価であり、コストのメリットも極めて大きい。   In particular, the above-mentioned polyoxalate and polyglycolic acid are easily hydrolyzable hydrolyzable resins and rapidly hydrolyze, so that they are excellent in the ability to promote hydrolysis of hardly hydrolyzable resins. Among these, polyoxalates, particularly polyethylene oxalate, show remarkably high hydrolysis promoting ability compared to polyglycolic acid, and hydrolyze hardly hydrolyzable resins such as polylactic acid even at a temperature of 80 ° C. or lower. It can be remarkably accelerated, and is considerably cheaper than polyglycolic acid, and the merit of cost is extremely large.

また、上述したエステル分解性樹脂は、その種類によっても異なるが、一般に、前記難加水分解性の加水分解性樹脂100重量部当り1重量部以上配合されることが、加水分解促進の点で好ましく、特に加水分解促進性とコストの観点から、30乃至300重量部の量、特に30乃至200重量部の量で使用することが好ましい。エステル分解樹脂の使用量が少なすぎると、難加水分解性の加水分解性樹脂の分解を十分に促進させることが困難となり、例えば80℃程度での温度では、加水分解にかなりの時間を要するようになってしまう。また必要以上に多量に使用すると、コストの点で不満足となってしまうばかりか、加水分解速度が速すぎてフラクチュアリング流体や逸水調整剤としての取り扱いに難を生じるおそれがある。   In addition, the ester-decomposable resin described above varies depending on the type, but in general, 1 part by weight or more per 100 parts by weight of the hardly hydrolyzable hydrolyzable resin is preferable in terms of promoting hydrolysis. In particular, from the viewpoint of hydrolysis promotion and cost, it is preferably used in an amount of 30 to 300 parts by weight, particularly 30 to 200 parts by weight. If the amount of the ester decomposing resin is too small, it becomes difficult to sufficiently promote the decomposition of the hardly hydrolyzable hydrolyzable resin. For example, it takes a considerable time for the hydrolysis at a temperature of about 80 ° C. Become. Further, if it is used in a larger amount than necessary, not only is it unsatisfactory in terms of cost, but the hydrolysis rate is too high, and there is a possibility that it may be difficult to handle as a fracturing fluid or a water loss adjusting agent.

3.加水分解性樹脂材料の形態;
本発明において、上述した難加水分解性の加水分解性樹脂(難加水分解性樹脂)とエステル分解促進性の加水分解性樹脂(エステル分解性樹脂)とを含む生分解樹脂材料は、それ自体公知の成形手段により、ペレット、粒状物、フィルムを破断して得られる破砕物、繊維或いはカプセル等の形態に成形され、水に分散される。
即ち、ポリ乳酸に代表される難加水分解性樹脂とエステル分解性樹脂とを密接した状態で分散液中に存在せしめることにより、エステル分解性樹脂から放出される酸等により、難加水分解性樹脂の加水分解を促進させることができるわけである。
3. Form of hydrolyzable resin material;
In the present invention, a biodegradable resin material containing the above-mentioned hardly hydrolyzable hydrolyzable resin (hardly hydrolyzable resin) and an ester decomposition promoting hydrolyzable resin (ester degradable resin) is known per se. By the above forming means, pellets, granules, crushed material obtained by breaking the film, fibers, capsules and the like are formed and dispersed in water.
That is, by causing a hardly hydrolyzable resin typified by polylactic acid and an ester decomposable resin to be in close contact with each other in a dispersion liquid, an acid etc. released from the ester decomposable resin causes a hardly hydrolyzable resin. It is possible to promote hydrolysis.

また、本発明においては、難加水分解性樹脂とエステル分解性樹脂とを密接した状態で存在しており且つ適度な大きさを有している限り、その形態は、前述した例に限定されるものではないが、特に好ましくは、難加水分解性樹脂をシェルとし、エステル分解性樹脂をコアとするシェルコア構造を有していることが好ましい。例えば、上記の繊維では、難加水分解性樹脂を鞘、エステル分解性樹脂を芯とする芯鞘繊維が好ましい形態である。即ち、このようなシェルコア構造の形態を採用することにより、水がコアの部分に浸透した段階で急速に加水分解が進行することとなり、フラクチュアリング流体としての取り扱い性が高められることとなる。   Further, in the present invention, as long as the hardly hydrolyzable resin and the ester decomposable resin are present in close contact with each other and have an appropriate size, the form is limited to the above-described example. Although it is not a thing, it is particularly preferable to have a shell core structure in which a hardly hydrolyzable resin is a shell and an ester decomposable resin is a core. For example, in the above-described fiber, a core-sheath fiber having a non-hydrolyzable resin as a sheath and an ester-decomposable resin as a core is a preferred form. That is, by adopting such a form of the shell core structure, hydrolysis proceeds rapidly when water penetrates into the core portion, and the handleability as a fracturing fluid is enhanced.

本発明において、このような加水分解性樹脂材料は、通常、水性分散液中に0.01乃至20重量%、特に0.01乃至10重量%の量で存在せしめるのが、坑井掘削や水圧破砕をスムーズに実施するうえで好適である。   In the present invention, such a hydrolyzable resin material is usually present in an aqueous dispersion in an amount of 0.01 to 20% by weight, particularly 0.01 to 10% by weight. It is suitable for carrying out crushing smoothly.

また、本発明においては、上述した難加水分解性樹脂とエステル分解性樹脂に加え、吸水性のポリマー、例えば、ポリビニルアルコールやCMCなどを配合しておくこともできる。このような水溶性ポリマーの配合により、水圧破砕を実施する前の加水分解を抑制し、フラクチュアリング流体としての取り扱い性を高めることができる。
ただし、吸水性ポリマーの使用が多すぎると、エステル分解性樹脂の機能が損なわれるおそれがあるので、通常、その使用量は、難加水分解性樹脂100重量部当り50重量部以下、特に1乃至10重量部の範囲が好ましい。
In the present invention, in addition to the above-mentioned hardly hydrolyzable resin and ester decomposable resin, a water-absorbing polymer such as polyvinyl alcohol or CMC can be blended. By blending such a water-soluble polymer, hydrolysis before hydraulic crushing can be suppressed, and handling as a fracturing fluid can be improved.
However, since the function of the ester-decomposable resin may be impaired if the water-absorbing polymer is used too much, the amount used is usually 50 parts by weight or less, especially 1 to 100 parts by weight per 100 parts by weight of the hardly hydrolyzable resin. A range of 10 parts by weight is preferred.

<その他の添加剤>
本発明において、上述した加水分解性樹脂材料が分散された水分散液には、坑井掘削法や水圧破砕法で配合される公知の添加剤を配合することができる。
例えば、水圧破砕法の場合、増粘剤としてグアガムやキトサンなどの水溶性多糖類(ゲル化剤)、砂(支持剤)を含むプロパントとして配合しておくことにより、水圧破砕で生成した亀裂が閉塞しないように保持しておくことができる。
また、加水分解性樹脂材料を分散させるための界面活性剤を配合しておくこともできるし、さらには、加水分解性樹脂材料の加水分解を適度に促進させるために、適度の量の酸やアルカリ、酵素を添加しておくこともできる。
<Other additives>
In this invention, the well-known additive mix | blended with a well drilling method or a hydraulic crushing method can be mix | blended with the water dispersion liquid in which the hydrolyzable resin material mentioned above was disperse | distributed.
For example, in the case of hydraulic fracturing, cracks generated by hydraulic fracturing can be obtained by blending as a thickener proppant containing water-soluble polysaccharides (gelling agent) such as guar gum and chitosan and sand (supporting agent). It can be held so as not to be blocked.
In addition, a surfactant for dispersing the hydrolyzable resin material can be blended, and furthermore, an appropriate amount of acid or acid can be added to appropriately promote the hydrolysis of the hydrolyzable resin material. Alkaline and enzyme can be added.

何れの添加剤も、加水分解性樹脂材料が前述した量で水分散液中に分散されており且つ加水分解性樹脂の機能を損なわない程度の量で配合されていればよい。   Any additive may be added in such an amount that the hydrolyzable resin material is dispersed in the aqueous dispersion in the amount described above and does not impair the function of the hydrolyzable resin.

上述した本発明の掘削用分散液は、坑井の掘削に際して用いる仕上げ流体や、水圧破砕法により地下資源を採掘する際に使用されるフラクチュアリング流体等として極めて有用である。
以下、これらの用途について説明する。
The above-described dispersion for excavation of the present invention is extremely useful as a finishing fluid used for excavating a well, a fracturing fluid used for mining underground resources by a hydraulic fracturing method, and the like.
Hereinafter, these uses will be described.

<仕上げ流体>
ロータリー式掘削法等により坑井を掘削した際には、坑井の崩壊などを防止するために、この坑井に仕上げ流体を充満させておく必要がある。このような仕上げ流体には、炭酸カルシウムや各種塩類の顆粒などが逸水防止剤として配合されている。即ち、この仕上げ流体を坑井中に圧入することにより、坑井の壁面に逸水防止剤のフィルターケーキを生成させ、このケーキにより坑井からの仕上げ流体の逸水(坑井付近への流体の浸透)を防止するわけである。しかるに、このような逸水防止剤(フィルターケーキ)は、資源の採掘に際しては、目詰まりによる生産性の低下を回避するため、これを回収しておく必要があり、このために酸処理を行う必要がある。
<Finishing fluid>
When a well is excavated by a rotary excavation method or the like, it is necessary to fill the well with a finishing fluid in order to prevent the well from collapsing. In such a finishing fluid, calcium carbonate and various salt granules are blended as an anti-water loss agent. That is, by press-fitting this finishing fluid into the well, a filter cake of the antifouling agent is generated on the wall surface of the well, and the drainage of the finishing fluid from the well (the flow of fluid to the vicinity of the well) is generated by this cake. Penetration). However, such a water loss preventive agent (filter cake) needs to be collected in order to avoid a decrease in productivity due to clogging when mining resources, and for this purpose, an acid treatment is performed. There is a need.

本発明の掘削用分散液を仕上げ用流体として使用する場合には、この分散液中の固形分(即ち、加水分解性樹脂材料)が逸水防止剤として機能し、この固形分のケーキが坑井の壁面に生成することとなるが、このケーキは、所定時間経過後は加水分解して崩壊する。従って、このケーキを回収するための酸処理が不要となるというメリットがある。勿論、この掘削用分散液に炭酸カルシウムなどの逸水防止剤を配合し、ケーキ強度の増大などにより逸水防止性を高め、さらには坑井の崩壊防止機能を高めることもでき、このような場合においても、加水分解性樹脂材料の加水分解によって生成する酸が、炭酸カルシウムなどの逸水防止剤を溶解するため、その後の酸処理が不要であるというメリットは損なわれない。
尚、本発明の掘削用分散液に炭酸カルシウムなどの逸水防止剤を配合する場合、該逸水防止剤の量は、加水分解性樹脂材料100重量部当り10〜150重量部程度が適量である。
When the excavation dispersion of the present invention is used as a finishing fluid, the solid content (that is, the hydrolyzable resin material) in the dispersion functions as a water loss preventing agent, and the solid cake is Although it will form on the wall surface of a well, this cake hydrolyzes and disintegrates after a predetermined time. Therefore, there is an advantage that the acid treatment for recovering the cake is not required. Of course, this drilling dispersion may contain a water-blocking agent such as calcium carbonate to increase the water-blocking prevention property by increasing the cake strength, etc. Even in the case, since the acid generated by hydrolysis of the hydrolyzable resin material dissolves the anti-water loss agent such as calcium carbonate, the merit that the subsequent acid treatment is unnecessary is not impaired.
In addition, when blending a water-dissipation inhibitor such as calcium carbonate into the dispersion for excavation of the present invention, the amount of the water-dissipation inhibitor is about 10 to 150 parts by weight per 100 parts by weight of the hydrolyzable resin material. is there.

<水圧破砕による掘削>
本発明においては、上述した加水分解性樹脂材料が分散されている掘削用分散液は、これを地下に圧入し、40℃以上の温度で該分散液中の加水分解性樹脂を加水分解することができるため、例えばフラクチュアリング流体として用いての水圧破砕により、目的とする地下資源の掘削を行うことができる。
<Drilling by hydraulic fracturing>
In the present invention, the excavation dispersion liquid in which the above-mentioned hydrolyzable resin material is dispersed is pressed into the basement, and the hydrolyzable resin in the dispersion liquid is hydrolyzed at a temperature of 40 ° C. or higher. Therefore, for example, the target underground resource can be excavated by hydraulic fracturing using as a fracturing fluid.

具体的には、目的とする地下資源が存在する地層まで掘削を行って竪穴を形成し、次いで水平方向に掘削を行って水平穴を形成することにより坑井を形成する。
このようにして形成された坑井に、上述したプロパントを含む掘削用分散液を充満させ、加圧することによりフラクチュアリングを行う。即ち、この加圧により、水平穴の近傍に加水分解性樹脂材料とプロパントが浸透していき、該加水分解性樹脂材料が加水分解して消滅し、ピラー構造を形成することとなる。残存する分散液を吸引後、ガスやオイルなどの地下資源の回収が開始される。
Specifically, a well is formed by excavating the formation where the target underground resource exists to form a pit, and then excavating in the horizontal direction to form a horizontal hole.
Fracturing is performed by filling the well formed in this way with the above-described drilling dispersion liquid containing proppant and pressurizing the well. That is, by this pressurization, the hydrolyzable resin material and the proppant penetrate into the vicinity of the horizontal hole, and the hydrolyzable resin material is hydrolyzed and disappears to form a pillar structure. After the remaining dispersion is sucked, recovery of underground resources such as gas and oil is started.

本発明の掘削用分散液をフラクチュアリング流体を用いて水圧破砕を行った場合には、加水分解性樹脂材料が80℃程度の温度でも速やかに分解するため短時間で効率よく行うことができる。フラクチュアリング流体以外として、プラグやブレークダウン材としても利用される。
また、泥水を還流しながらドリルにより掘削する場合には、仕上げ流体中の逸水調整剤として用いることができ後工程の酸処理が不要となる。また目詰まりもなく生産障害が生じない。
仮に樹脂が必要以上に広範囲の領域に浸透し且つ加水分解せずに残存したとしても、係る樹脂は生分解性であり、環境に悪影響を与えるおそれはない。
When the excavation dispersion liquid of the present invention is hydraulically crushed using a fracturing fluid, the hydrolyzable resin material is rapidly decomposed even at a temperature of about 80 ° C., so that it can be efficiently performed in a short time. . Other than fracturing fluid, it is also used as a plug or breakdown material.
Moreover, when excavating with a drill while recirculating muddy water, it can be used as a water loss adjusting agent in the finishing fluid, so that an acid treatment in a subsequent step is not necessary. In addition, there is no clogging and production trouble does not occur.
Even if the resin penetrates a wider area than necessary and remains without being hydrolyzed, the resin is biodegradable and has no risk of adversely affecting the environment.

また、この掘削用分散液をフラクチュアリング流体として用いた場合には、加水分解性樹脂材料が短時間で加水分解するため、この樹脂材料が浸透した部分にピラー構造の空間(亀裂)を生成させるばかりか、加水分解により生成した酸が、頁岩などの鉱物を溶解して亀裂の生成を促進する。この結果、シェールガス等の掘削の生産効率を高めることができる。   Also, when this drilling dispersion is used as a fracturing fluid, the hydrolyzable resin material hydrolyzes in a short time, so that a pillar-structured space (crack) is generated in the portion where the resin material has permeated. In addition, the acid generated by hydrolysis dissolves minerals such as shale and promotes the formation of cracks. As a result, the production efficiency of excavation of shale gas or the like can be increased.

さらに、この分散液中の加水分解性樹脂材料は、坑井中の流路を遮断する目止剤としても機能させ得るが、その後に加水分解するため、目止剤の沈降による目詰まりなどの問題も回避でき、生産効率を高めることができる。   Furthermore, the hydrolyzable resin material in this dispersion can also function as a sealant that blocks the flow path in the well, but since it hydrolyzes later, problems such as clogging due to sedimentation of the sealant Can be avoided and the production efficiency can be increased.

尚、この分散液には、低pH下で溶解するキトサンなどのゲル化剤を配合し、坑井中でゲル化による流体の高粘性化を図ることができる。即ち加水分解性材料の加水分解により酸によってpHが低下し、ゲル化剤が分散液中に溶解し、この結果、ゲル化が生じ増粘することとなる。従って、流体の圧入による液の坑井近傍への浸透を効果的に行い、さらにはプロパント(支持材)の移送も効率よく行うことができる。
さらに、上記のゲルは、その後の加水分解により酸量が増え、さらなるpH低下によって速やかに分解(低粘性化)するため、フラクチュアリング流体の回収も効果的に行うことができ、生産性を高めることができる。
In addition, the dispersion liquid can be mixed with a gelling agent such as chitosan that dissolves at a low pH to increase the viscosity of the fluid by gelation in the well. That is, the pH is lowered by the acid due to hydrolysis of the hydrolyzable material, and the gelling agent is dissolved in the dispersion, resulting in gelation and thickening. Therefore, it is possible to effectively infiltrate the liquid into the vicinity of the well by the press-fitting of the fluid, and also to efficiently transfer the proppant (support material).
Furthermore, since the above gel increases the acid amount due to subsequent hydrolysis and rapidly degrades (lower viscosity) due to further pH reduction, the fracturing fluid can also be collected effectively and productivity can be improved. Can be increased.

本発明を次の例で説明する。
尚、実験例で行った各種測定は、以下の方法による。
The invention is illustrated by the following examples.
The various measurements performed in the experimental examples are based on the following methods.

<融点、ガラス転移温度の測定>
装置:セイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)
試料調整:試料量5〜10mg
測定条件:窒素雰囲気下、10℃/minの昇温速度で0℃〜250℃の範囲で測定。
<Measurement of melting point and glass transition temperature>
Apparatus: DSC 6220 manufactured by Seiko Instruments Inc. (differential scanning calorimetry)
Sample preparation: Sample amount 5-10mg
Measurement conditions: Measured in a range of 0 ° C. to 250 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere.

<分子量の測定>
装置:ゲル浸透クロマトグラフGPC
検出器:示差屈折率検出器RI(Waters製RI-2414型、感度512)
カラム:昭和電工製Shodex HFIP-LG(1本)、HFIP-806M(2本)
溶媒:ヘキサフルオロイソプロパノール(5mM トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約1.5mgに溶媒5mLを加え、室温で緩やかに攪拌した(試料濃度約0.03%)。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した(秤量から繰り返し2回行った)。全ての試料について、調製開始から約1時間以内に測定を行った。
<Measurement of molecular weight>
Apparatus: Gel permeation chromatograph GPC
Detector: Differential refractive index detector RI (RI-2414 manufactured by Waters, sensitivity 512)
Column: Showa Denko Shodex HFIP-LG (1), HFIP-806M (2)
Solvent: hexafluoroisopropanol (5 mM sodium trifluoroacetate added)
Flow rate: 0.5 mL / min
Column temperature: 40 ° C
Sample preparation: 5 mL of a solvent was added to about 1.5 mg of a sample, and the mixture was gently stirred at room temperature (sample concentration: about 0.03%). After confirming that it was dissolved visually, it was filtered with a 0.45 μm filter (repeated twice from weighing). All samples were measured within about 1 hour from the start of preparation.

<ポリエチレンオキサレート(以下「PEOx」と略す)の合成>
マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた1Lのセパラブルフラスコに,
シュウ酸ジメチル 472g(4mol)
エチレングリコール 297g(4.8mol)
テトラブチルチタネート 0.42g
を入れ、窒素気流下フラスコ内温度を120℃からメタノールを留去しながら180℃まで加熱し7時間反応させた。最終的に270mlのメタノールを留去した。
その後、内温170℃〜190℃に段階的に昇温し、0.1kPa〜0.2kPaの減圧度で7時間反応後、粘度が上がり取り出した。
取り出したポリマーをクラッシャーで造粒し、110℃で4時間真空乾燥処理し結晶化させた。
得られたポリマーは重量平均分子量70000、融点180℃、ガラス転移温度35℃であった。
<Synthesis of polyethylene oxalate (hereinafter abbreviated as “PEOx”)>
To a 1 L separable flask equipped with a mantle heater, stirrer, nitrogen inlet tube, and cooling tube,
Dimethyl oxalate 472 g (4 mol)
297 g (4.8 mol) of ethylene glycol
Tetrabutyl titanate 0.42g
The flask was heated to 180 ° C. while distilling off methanol from 120 ° C. under a nitrogen stream, and reacted for 7 hours. Finally, 270 ml of methanol was distilled off.
Thereafter, the temperature was raised stepwise to an internal temperature of 170 ° C. to 190 ° C., and after a reaction for 7 hours at a reduced pressure of 0.1 kPa to 0.2 kPa, the viscosity increased and was taken out.
The taken-out polymer was granulated with a crusher, and crystallized by vacuum drying at 110 ° C. for 4 hours.
The obtained polymer had a weight average molecular weight of 70,000, a melting point of 180 ° C., and a glass transition temperature of 35 ° C.

<エステル分解樹脂含有PLAペレット(加水分解性樹脂材料の作製>
ポリ乳酸(PLA)にPEOxをドライブレンドし、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて200℃で溶融混合し、マスターペレットを作製し、これを加水分解性樹脂材料の試料とした。
<Ester-decomposed resin-containing PLA pellet (production of hydrolyzable resin material>
Polylactic acid (PLA) is dry blended with PEOx and melt mixed at 200 ° C. using a twin screw extruder (Technobel ULT Nano05-20AG) to produce a master pellet, which is a sample of hydrolyzable resin material. It was.

<加水分解試験>
25mlのバイアル瓶に、上記で作製されたペレット一粒を、分散媒10mlに加え、各温度で静置保管した。4日後にペレットを取りだし、60℃の真空乾燥機で4時間乾燥させ、重量を測定し、分解率を測定した。分解率は下記式で算出した。
分解率=(初期重量−分解後重量)×100/初期重量
分解率が40%以下を×、40%を越えたものを○と判定した。
尚、分散媒としては、蒸留水、グアガム水溶液(グアガム0.7wt%水溶液)及びアルカリ水溶液(1wt%の水酸化ナトリウム水溶液)を用いて、加水分解性の評価を行った。
<Hydrolysis test>
In a 25 ml vial, one pellet produced as described above was added to 10 ml of the dispersion medium and stored at each temperature. Four days later, the pellets were taken out, dried in a vacuum dryer at 60 ° C. for 4 hours, the weight was measured, and the decomposition rate was measured. The decomposition rate was calculated by the following formula.
Decomposition rate = (initial weight−post-decomposition weight) × 100 / initial weight A decomposition rate of 40% or less was evaluated as “x”, and a sample exceeding 40% was evaluated as “good”.
As the dispersion medium, hydrolyzability was evaluated using distilled water, a guar gum aqueous solution (a guar gum 0.7 wt% aqueous solution), and an alkali aqueous solution (a 1 wt% sodium hydroxide aqueous solution).

<実験例1〜13、比較例1〜5>
加水分解性樹脂材料のペレットとして、ポリ乳酸(PLA)当りのポリエチレンオキサレート(PEOx)の含有率(重量%)が表1示すものを作製し、表1に示す温度(分解温度)の分散液に該ペレットを分散させ、その加水分解性を評価した。その結果を表1に示す。
<Experimental Examples 1-13, Comparative Examples 1-5>
As the hydrolyzable resin material pellets, polyethylene oxalate (PEOx) content (% by weight) per polylactic acid (PLA) was prepared as shown in Table 1, and a dispersion having the temperature (decomposition temperature) shown in Table 1 was prepared. The pellets were dispersed in and the hydrolyzability was evaluated. The results are shown in Table 1.

Figure 2014134090
Figure 2014134090

<実験例14>
加水分解性樹脂材料として、ポリ乳酸(PLA)のペレットと、PLA当りのポリエチレンオキサレート(PEOx)の含有率が40重量%の混合樹脂(PEOx40%PLA)のペレットとを用意した。
これらの加水分解性樹脂材料のペレットをそれぞれ、120℃で3時間真空乾燥し結晶化させた。
25mlのバイアル瓶に上記ペレット14mg、蒸留水10mlを加えた。そのバイアル瓶を70℃のオーブンに入れ静置状態で保管した。4日後にペレットを回収し、乾燥後重量を測定し分解率を計算した。その結果は、以下の表2のとおりである。
<Experimental Example 14>
As hydrolyzable resin materials, pellets of polylactic acid (PLA) and pellets of mixed resin (PEOx 40% PLA) with a content of polyethylene oxalate (PEOx) per PLA of 40% by weight were prepared.
Each of these hydrolyzable resin material pellets was vacuum-dried at 120 ° C. for 3 hours for crystallization.
14 mg of the above pellets and 10 ml of distilled water were added to a 25 ml vial. The vial was placed in a 70 ° C. oven and stored in a stationary state. After 4 days, the pellets were collected, and after drying, the weight was measured and the decomposition rate was calculated. The results are shown in Table 2 below.

Figure 2014134090
Figure 2014134090

さらに、上記の加水分解試験前後の各ペレットの分子量(Mw)を測定した。その結果は、表3に示した。
また、加水分解試験前と加水分解試験後(4日後)のペレットについてのGPC測定にて分子量分布を図1に示した。サンプル調整はクロロホルムを溶媒として濃度3mg/mlとし、フィルターろ過したものを用いた。
クロロホルム溶媒を用いたGPC測定;
GPCには、東ソー株式会社製HLC−8120を用い、カラムとしてTSKgel SuperHM−H×2及びガードカラムとしてTSKguard column SuperH−Hを用いた。カラムオーブンの温度を40℃とし、溶離液としてクロロホルムを用い、流速を0.5ml/minとした。また、サンプル注入量は20μlとした。スタンダードはクロロホルムにポリスチレンを溶解させたものを用いた。
Furthermore, the molecular weight (Mw) of each pellet before and after the hydrolysis test was measured. The results are shown in Table 3.
Moreover, molecular weight distribution was shown in FIG. 1 by the GPC measurement about the pellet before a hydrolysis test and after a hydrolysis test (after 4 days). For sample preparation, chloroform was used as a solvent to a concentration of 3 mg / ml, and filtered.
GPC measurement using chloroform solvent;
For GPC, HLC-8120 manufactured by Tosoh Corporation was used, TSKgel SuperHM-H × 2 was used as a column, and TSKguard column SuperH-H was used as a guard column. The temperature of the column oven was 40 ° C., chloroform was used as the eluent, and the flow rate was 0.5 ml / min. The sample injection volume was 20 μl. The standard used was chloroform dissolved in chloroform.

Figure 2014134090
Figure 2014134090

さらに、加水易分解試験後の各ペレットを指圧したところ、PLAは崩壊しなかったが、PEOx40%PLAは、加水分解による多孔化及び分子量低下により容易に崩壊した。
このことから、PEOx含有PLAは、目止材として効果的に機能し、これで坑井内を目止めした後、時間とともに加水分解し、坑井内の圧力で容易に崩壊することが判る。
崩壊したPEOx含有PLA分解残物は坑井内の水とともに容易に回収される。
Furthermore, when each pellet after the hydrolysis hydrolysis test was subjected to acupressure, PLA did not collapse, but PEOx 40% PLA easily collapsed due to porosity and molecular weight reduction by hydrolysis.
From this, it can be seen that PEOx-containing PLA effectively functions as a sealing material, and after it has been sealed in the well, it hydrolyzes with time and easily collapses due to the pressure in the well.
The collapsed PEOx-containing PLA decomposition residue is easily recovered along with the well water.

<実験例15>
加水分解性樹脂材料として、ポリ乳酸(PLA)のペレット、PLA当りのポリエチレンオキサレート(PEOx)の含有率が5重量%の混合樹脂(PEOx5%PLA)のペレット及びPEOxの含有率が40重量%の混合樹脂(PEOx40%PLA)のペレットとを用意した。
これらの加水分解性樹脂材料のペレットをそれぞれ、120℃で3時間真空乾燥し結晶化させた。
25mlのバイアル瓶に、上記の結晶化ペレット450mg、炭酸カルシウム250mg、水50μlを加え、120℃、3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCで乳酸カルシウム、シュウ酸量を測定した。その結果を表4に示した。
<Experimental Example 15>
As hydrolyzable resin materials, pellets of polylactic acid (PLA), pellets of mixed resin (PEOx 5% PLA) with a content of polyethylene oxalate (PEOx) per PLA of 5% by weight, and a content of PEOx of 40% by weight And a mixed resin (PEOx40% PLA) pellet.
Each of these hydrolyzable resin material pellets was vacuum-dried at 120 ° C. for 3 hours for crystallization.
To a 25 ml vial, 450 mg of the above crystallized pellets, 250 mg of calcium carbonate and 50 μl of water were added and allowed to stand at 120 ° C. for 3 hours. Thereafter, 10 ml of water was added and the solution was collected after 3 hours, and the amounts of calcium lactate and oxalic acid were measured by HPLC. The results are shown in Table 4.

Figure 2014134090
Figure 2014134090

上記の結果から理解されるように、PEOx含有PLAからの乳酸カルシウムの生成量はPLAと比較して20倍以上である。このことから、PEOx含有PLAは、頁岩等のカルシウム成分を含む鉱物の溶解速度が速く、所謂酸フラクチュアリング(acid fracture)として適用性が高いことが判る。
ところで、上記の結果では、シュウ酸がほとんど溶出していない。このため、シュウ酸カルシウムとして新たに析出した可能性が考えられる。そこで、炭酸カルシウムを除いた実験系を組みシュウ酸の溶出量を測定した。
As understood from the above results, the amount of calcium lactate produced from PEOx-containing PLA is 20 times or more compared to PLA. From this, it can be seen that PEOx-containing PLA has a high dissolution rate of minerals containing calcium components such as shale, and is highly applicable as so-called acid fracture.
By the way, in the above results, oxalic acid is hardly eluted. For this reason, possibility that it newly precipitated as calcium oxalate is considered. Thus, an elution amount of oxalic acid was measured by combining an experimental system excluding calcium carbonate.

25mlのバイアル瓶に、前述した結晶化ペレット450mg、水50μlを加え、120℃3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCでシュウ酸量を測定した。その結果を表5に示した。   To the 25 ml vial, 450 mg of the above-mentioned crystallization pellet and 50 μl of water were added, and the mixture was allowed to stand at 120 ° C. for 3 hours. Thereafter, 10 ml of water was added and the solution was collected after 3 hours, and the amount of oxalic acid was measured by HPLC. The results are shown in Table 5.

Figure 2014134090
Figure 2014134090

上記の結果から、PEOx5%含有PLAでもシュウ酸の溶出が認められた。つまり、炭酸カルシウムを混合した系では、PEOx40%含有PLAでは、その大部分がシュウ酸カルシウムとして析出していることを示している。このことから、Acid fractureとしての性能は、PEOx配合量が40%未満が好ましいことが判る。   From the above results, elution of oxalic acid was observed even in PLA containing 5% PEOx. In other words, in the system in which calcium carbonate is mixed, most of the PEOx 40% PLA is precipitated as calcium oxalate. From this, it can be seen that the performance as Acid fracture is preferably such that the blending amount of PEOx is less than 40%.

<実験例16>
PLAペレットとPEOx5%含有PLAペレットとを、それぞれ、120℃で3時間真空乾燥し結晶化させ、凍結粉砕にて結晶化粉末サンプルを作製した。
<Experimental Example 16>
PLA pellets and PLA pellets containing 5% PEOx were each crystallized by vacuum drying at 120 ° C. for 3 hours, and crystallized powder samples were prepared by freeze pulverization.

25mlのバイアル瓶に、上記の結晶化粉末450mg、水50μlを加え、120℃3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCで乳酸量を測定した。その結果を、表6に示した。   To a 25 ml vial, 450 mg of the above crystallized powder and 50 μl of water were added and allowed to stand at 120 ° C. for 3 hours. Thereafter, 10 ml of water was added and the solution was collected after 3 hours, and the amount of lactic acid was measured by HPLC. The results are shown in Table 6.

Figure 2014134090
Figure 2014134090

上記の結果から理解されるように、PEOx5%含有PLAの結晶化粉末では、PLAと比較し、乳酸の溶出量が20倍(分解速度が20倍)であった、つまり炭酸カルシウムと混合して用いることで、易自己分解性のフィルターケーキへの適性(即ち、逸水防止剤としての特性)に優れ、本発明の掘削分散液は仕上げ流体として好適に使用し得ることが判る。   As can be seen from the above results, the PLA crystallized powder containing 5% PEOx had 20 times the dissolution amount of lactic acid (20 times degradation rate) compared to PLA, that is, mixed with calcium carbonate. It can be seen that the excavation dispersion of the present invention can be suitably used as a finishing fluid because it is excellent in suitability for an easily self-degradable filter cake (that is, characteristics as a water escape inhibitor).

<実験例17>
実験例14と全く同様にして、PLAの結晶化ペレットと、PEOx40%PLAの結晶化ペレットとを用意した。
25mlのバイアル瓶に水5ml、キトサン(ゲル化剤)0.2g、上記の結晶化ペレット1gを加え、70℃のオーブンに入れ静置保管した。経時による流動性の変化を観察した。
ゲル化し流動性を失った液を○、流動性を示すが粘度が水より高い液を△、水と同等な液を×として、その結果を表7に示した。
<Experimental Example 17>
In exactly the same manner as in Experimental Example 14, a crystallization pellet of PLA and a crystallization pellet of PEOx 40% PLA were prepared.
To a 25 ml vial, 5 ml of water, 0.2 g of chitosan (gelling agent) and 1 g of the above crystallization pellets were added, and placed in an oven at 70 ° C. and stored still. The change in fluidity with time was observed.
The results are shown in Table 7, where the liquid that gelled and lost its fluidity was indicated by ◯, the liquid that exhibited fluidity but a viscosity higher than water was indicated by Δ, and the liquid equivalent to water was indicated by x.

Figure 2014134090
Figure 2014134090

PLAは70℃では加水分解性を示さないため、乳酸が放出されない。その結果、液のpHが低下せずキトサンが溶解しないのでゲル化が生じない。
一方でPEOx40%含有PLAは70℃で加水分解し、シュウ酸を放出するためpHが低下し、キトサンが溶解しゲル化する。
さらにシュウ酸の量が多いと、一度ゲル化した後、溶液の流動性が再び増加することが分かっており、PEOxの含有量を増加させるかPEOx含有PLAの投入量を増加せることで、低温域でゲル化可能で、かつゲルブレーカーが不要となるフラクチャリング流体も得られる。
PLA does not exhibit hydrolyzability at 70 ° C, so lactic acid is not released. As a result, gelation does not occur because the pH of the solution does not decrease and chitosan does not dissolve.
On the other hand, PLA containing 40% PEOx hydrolyzes at 70 ° C., releasing oxalic acid, lowering the pH and dissolving chitosan into a gel.
Furthermore, it has been found that when the amount of oxalic acid is large, the fluidity of the solution increases again after gelation.By increasing the PEOx content or increasing the amount of PEOx-containing PLA, A fracturing fluid can be obtained that can gel in the region and eliminates the need for a gel breaker.

Claims (11)

難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む加水分解性樹脂材料が水性媒体中に分散していることを特徴とする掘削用分散液。   A dispersion for excavation, characterized in that a hydrolyzable resin material containing a hardly hydrolyzable hydrolyzable resin and an esterolysis-promoting hydrolyzable resin is dispersed in an aqueous medium. エステル分解促進性の加水分解性樹脂が酸放出性のものである請求項1に記載の掘削用分散液。   The dispersion for excavation according to claim 1, wherein the ester decomposition-promoting hydrolyzable resin is acid-releasing. 放出される酸がグリコール酸およびまたはシュウ酸である請求項2に記載の掘削用分散液。   The dispersion for excavation according to claim 2, wherein the acid released is glycolic acid and / or oxalic acid. 前記酸放出性の加水分解性樹脂が、ポリオキサレートである請求項1に記載の掘削用分散液。   The dispersion for excavation according to claim 1, wherein the acid-releasing hydrolyzable resin is polyoxalate. 前記難加水分解性の加水分解性樹脂がポリ乳酸である請求項1に記載の掘削用分散液。   The dispersion for excavation according to claim 1, wherein the hardly hydrolyzable hydrolyzable resin is polylactic acid. 前記難加水分解性の加水分解性樹脂100重量部に対して、エステル分解促進性の加水分解性樹脂を30重量部以上含有している請求項1に記載の採掘用分散液。   2. The mining dispersion liquid according to claim 1, comprising 30 parts by weight or more of an ester decomposition-promoting hydrolyzable resin with respect to 100 parts by weight of the hardly hydrolyzable hydrolyzable resin. 掘削により形成された坑井から地中の天然資源を採掘する方法において、請求項1に記載の採掘用分散液を坑井に圧入し40℃以上の熱水中で加水分解性樹脂材料の加水分解を行う工程を含む採掘方法。   In a method of mining natural resources underground from a well formed by excavation, the dispersion liquid for mining according to claim 1 is injected into the well and the hydrolyzable resin material is hydrolyzed in hot water at 40 ° C or higher. A mining method including a step of performing decomposition. 前記採掘用分散液の坑井内への圧入により、坑井の壁面に該分散液に含まれる固形分のフィルターケーキを形成させ、前記加水分解性樹脂材料の加水分解により放出された酸によって該フィルターケーキを分解する請求項7に記載の採掘方法。   By press-fitting the mining dispersion into the well, a filter cake of solid content contained in the dispersion is formed on the wall surface of the well, and the filter is released by the acid released by hydrolysis of the hydrolyzable resin material. The mining method according to claim 7, wherein the cake is decomposed. 前記加水分解性樹脂材料の加水分解によって発生した酸により、坑井周囲の鉱物を溶解せしめ、前記坑井周囲に亀裂を発生する請求項7に記載の採掘方法。   The mining method according to claim 7, wherein a mineral around the well is dissolved by an acid generated by hydrolysis of the hydrolyzable resin material, and a crack is generated around the well. 前記加水分解性樹脂材料により、前記坑井の目止めを行う請求項7に記載の採掘方法。   The mining method according to claim 7, wherein the well is sealed with the hydrolyzable resin material. 前記採掘用分散液にゲル化剤を配合しておき、前記前記加水分解性樹脂材料の加水分解により放出された酸によって坑井内にゲルを生成させ、さらに該ゲルを分解する請求項7に記載の採掘方法。   The gelling agent is blended in the mining dispersion, a gel is generated in the well by the acid released by hydrolysis of the hydrolyzable resin material, and the gel is further decomposed. Mining method.
JP2013160063A 2012-12-12 2013-08-01 Dispersion liquid for excavation and excavation method using the same Active JP6221475B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013160063A JP6221475B2 (en) 2012-12-12 2013-08-01 Dispersion liquid for excavation and excavation method using the same
RU2015128009A RU2627060C2 (en) 2012-12-12 2013-12-12 Dispersion liquid for drilling and mineral resources recovery method by means of dispersion liquid
US14/649,947 US10040983B2 (en) 2012-12-12 2013-12-12 Dispersion solution for drilling and method of extracting underground resources using the dispersion solution
PCT/JP2013/083305 WO2014092146A1 (en) 2012-12-12 2013-12-12 Fluid dispersion for drilling, and mining method for underground resources using same
PL13862865T PL2933306T3 (en) 2012-12-12 2013-12-12 Use of fluid dispersion for drilling, and mining method for underground resources using said fluid
CA2892496A CA2892496C (en) 2012-12-12 2013-12-12 Dispersion solution for drilling and method of extracting underground resources using the dispersion solution
CN201380065362.2A CN104854215B (en) 2012-12-12 2013-12-12 Excavation dispersion liquid and the method using dispersion liquid digging subterranean resource
AU2013358061A AU2013358061B2 (en) 2012-12-12 2013-12-12 Dispersion Solution for Drilling and Method of Extracting Underground Resources Using the Dispersion Solution
EP13862865.6A EP2933306B1 (en) 2012-12-12 2013-12-12 Use of fluid dispersion for drilling, and mining method for underground resources using said fluid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012271083 2012-12-12
JP2012271083 2012-12-12
JP2013160063A JP6221475B2 (en) 2012-12-12 2013-08-01 Dispersion liquid for excavation and excavation method using the same

Publications (2)

Publication Number Publication Date
JP2014134090A true JP2014134090A (en) 2014-07-24
JP6221475B2 JP6221475B2 (en) 2017-11-01

Family

ID=51412557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013160063A Active JP6221475B2 (en) 2012-12-12 2013-08-01 Dispersion liquid for excavation and excavation method using the same

Country Status (1)

Country Link
JP (1) JP6221475B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047501A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Composition for well drilling use which comprises reactive metal and degradable resin composition, molded article for well drilling use, and well drilling method
WO2016098642A1 (en) * 2014-12-15 2016-06-23 東洋製罐グループホールディングス株式会社 Polyoxalate copolymer
JP2016147971A (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Hydrolyzable particle
WO2016129501A1 (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Method for mining underground resources using hydrolyzable particles
JP2016148193A (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Mining method using polylactic acid particle, and polylactic acid particle
WO2020013163A1 (en) * 2018-07-10 2020-01-16 東洋製罐グループホールディングス株式会社 Polylactic acid copolymer and method for producing same
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3015699T3 (en) 2014-10-31 2019-03-11 Winterthur Gas & Diesel Ag Gas supply system with a control system and cylinder for a piston combustion engine, piston combustion engine and method of operation of a piston combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286781A (en) * 1989-04-28 1990-11-26 Dainippon Ink & Chem Inc Mud escape preventive, preparation thereof, and construction method for preventing mud escape
JP2005097590A (en) * 2003-08-28 2005-04-14 Ube Ind Ltd Polyoxalate composition and molded product obtained therefrom
JP2008038648A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
WO2010055903A1 (en) * 2008-11-13 2010-05-20 東洋製罐株式会社 Biodegradable resin composition
US7833950B2 (en) * 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
JP2011511871A (en) * 2008-02-13 2011-04-14 ヨツン エーエス Antifouling composition
WO2012050187A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Oil drilling auxiliary dispersion
WO2012121294A1 (en) * 2011-03-08 2012-09-13 株式会社クレハ Polyglycolic acid resin particulate composition for boring, and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286781A (en) * 1989-04-28 1990-11-26 Dainippon Ink & Chem Inc Mud escape preventive, preparation thereof, and construction method for preventing mud escape
JP2005097590A (en) * 2003-08-28 2005-04-14 Ube Ind Ltd Polyoxalate composition and molded product obtained therefrom
US7833950B2 (en) * 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
JP2008038648A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2011511871A (en) * 2008-02-13 2011-04-14 ヨツン エーエス Antifouling composition
WO2010055903A1 (en) * 2008-11-13 2010-05-20 東洋製罐株式会社 Biodegradable resin composition
WO2012050187A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Oil drilling auxiliary dispersion
WO2012121294A1 (en) * 2011-03-08 2012-09-13 株式会社クレハ Polyglycolic acid resin particulate composition for boring, and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047501A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Composition for well drilling use which comprises reactive metal and degradable resin composition, molded article for well drilling use, and well drilling method
JP2016060900A (en) * 2014-09-22 2016-04-25 株式会社クレハ Composition for excavating winze containing reactive metal and degradable resin composition, molded article for excavating winze, and method for excavating winze
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
WO2016098642A1 (en) * 2014-12-15 2016-06-23 東洋製罐グループホールディングス株式会社 Polyoxalate copolymer
JP2016113541A (en) * 2014-12-15 2016-06-23 東洋製罐グループホールディングス株式会社 Polyoxalate copolymer
JP2016148193A (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Mining method using polylactic acid particle, and polylactic acid particle
WO2016129501A1 (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Method for mining underground resources using hydrolyzable particles
CN107208474A (en) * 2015-02-12 2017-09-26 东洋制罐集团控股株式会社 Use the recovery method of the subterranean resource of water-disintegrable particle
US20180010037A1 (en) * 2015-02-12 2018-01-11 Toyo Seikan Group Holdings, Ltd. Method of extracting underground resources by using hydrolysable particles
AU2016217105B2 (en) * 2015-02-12 2019-01-17 Toyo Seikan Group Holdings, Ltd. Method of Extracting Underground Resources by Using Hydrolysable Particles
RU2681170C1 (en) * 2015-02-12 2019-03-04 Тойо Сейкан Груп Холдингз, Лтд. Method for extraction of minerals using hydrolyzing particles
JP2016147971A (en) * 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 Hydrolyzable particle
US11104840B2 (en) 2015-02-12 2021-08-31 Toyo Seikan Group Holdings, Ltd. Method of extracting underground resources by using hydrolysable particles
WO2020013163A1 (en) * 2018-07-10 2020-01-16 東洋製罐グループホールディングス株式会社 Polylactic acid copolymer and method for producing same

Also Published As

Publication number Publication date
JP6221475B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6221475B2 (en) Dispersion liquid for excavation and excavation method using the same
WO2014092146A1 (en) Fluid dispersion for drilling, and mining method for underground resources using same
JP6183039B2 (en) Dispersion liquid for excavation and mining method using the same
CA2872202C (en) Polyglycolic acid resin short fibers for use in well treatment fluid
CA2868977A1 (en) Polyglycolic acid resin short fibers and well treatment fluid
RU2681170C1 (en) Method for extraction of minerals using hydrolyzing particles
CN104619773B (en) Aqueous liquid dispersion and fracturing operation additive
JP6834117B2 (en) Hydrolytic particles
US9926425B2 (en) Method for degrading biodegradable resin
JP6343924B2 (en) Drilling dispersion and drilling method using the dispersion
WO2015182622A1 (en) Method for decomposing ester resin
JP6492611B2 (en) Polyoxalate copolymer
RU2654024C2 (en) Water-based molded polymer product
JP6233566B2 (en) Degradation method of biodegradable resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150