JP2014130751A - Binder resin for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery - Google Patents

Binder resin for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery Download PDF

Info

Publication number
JP2014130751A
JP2014130751A JP2012288089A JP2012288089A JP2014130751A JP 2014130751 A JP2014130751 A JP 2014130751A JP 2012288089 A JP2012288089 A JP 2012288089A JP 2012288089 A JP2012288089 A JP 2012288089A JP 2014130751 A JP2014130751 A JP 2014130751A
Authority
JP
Japan
Prior art keywords
positive electrode
binder resin
mass
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012288089A
Other languages
Japanese (ja)
Other versions
JP6015441B2 (en
Inventor
Fumiko Fujie
史子 藤江
Fumino Momose
扶実乃 百瀬
Mitsufumi Nodono
光史 野殿
Haruki Okada
春樹 岡田
Akikazu Matsumoto
晃和 松本
Hikaru Momose
陽 百瀬
Akihiro Ishii
明宏 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012288089A priority Critical patent/JP6015441B2/en
Publication of JP2014130751A publication Critical patent/JP2014130751A/en
Application granted granted Critical
Publication of JP6015441B2 publication Critical patent/JP6015441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binder resin for a non-aqueous secondary battery positive electrode capable of achieving dispersion stability of electrode slurry for a positive electrode, flexibility of the positive electrode, and adhesion between a positive electrode mixture layer and a current collector, and also to provide a positive electrode of a non-aqueous secondary battery equipped with the binder resin, and a non-aqueous secondary battery equipped with the positive electrode for the non-aqueous secondary battery.SOLUTION: A binder resin for a non-aqueous secondary battery positive electrode contains a (co)polymer including a monomer unit (a) represented by the general formula (1). A positive electrode for a non-aqueous secondary battery is equipped with the binder resin for the non-aqueous secondary battery positive electrode. The non-aqueous secondary battery is equipped with the positive electrode for the non-aqueous secondary battery.

Description

本発明は、非水二次電池正極用バインダ樹脂、非水二次電池用正極、および非水二次電池に関する。   The present invention relates to a binder resin for a non-aqueous secondary battery positive electrode, a positive electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery.

二次電池は、ノート型パソコンや携帯電話等の弱電の民生機器用途、ハイブリッド車や電気自動車等の蓄電池として使用されている。二次電池の中では、リチウムイオン二次電池(以下、単に「電池」ということがある。)が多用されている。一般に、リチウムイオン二次電池用電極としては、電極活物質がバインダ樹脂によって集電体に保持されたものが一般的に用いられている。   Secondary batteries are used for low-power consumer devices such as notebook computers and mobile phones, and as storage batteries for hybrid vehicles and electric vehicles. Among secondary batteries, lithium ion secondary batteries (hereinafter, simply referred to as “batteries”) are frequently used. Generally, as an electrode for a lithium ion secondary battery, an electrode active material held on a current collector by a binder resin is generally used.

従来、電池電極用のバインダ樹脂には、例えば正極用としてポリフッ化ビニリデン(PVDF)等のフッ素系樹脂が用いられている。
電極を作製するに際しては、電極活物質やバインダ樹脂等の混合物を電極スラリーとするための溶媒として、N―メチル−2−ピロリドン(NMP)等の有機溶剤が用いられている。
しかし、NMP等の有機溶剤は、乾燥時の溶剤回収コスト、環境に対して負荷が高いなどの問題があった。
そのため、最近では、有機溶剤を水へ置き換える試みがなされており、例えば負極用のバインダ樹脂としてスチレン−ブタジエンゴム(SBR)ラテックス等の水分散系バインダ樹脂や、増粘剤であるカルボキシメチルセルロース(CMC)が用いられている。
Conventionally, fluorine resin such as polyvinylidene fluoride (PVDF) has been used as a binder resin for battery electrodes, for example, for a positive electrode.
When producing an electrode, an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used as a solvent for making a mixture of an electrode active material, a binder resin, and the like into an electrode slurry.
However, organic solvents such as NMP have problems such as a solvent recovery cost during drying and a high load on the environment.
Therefore, recently, attempts have been made to replace the organic solvent with water. For example, a water-dispersed binder resin such as styrene-butadiene rubber (SBR) latex as a binder resin for a negative electrode, or carboxymethyl cellulose (CMC) as a thickener. ) Is used.

ところで、水分散系バインダ樹脂は、水を含む状態で流通されるため、輸送費が増大するという問題がある。さらに、水分散系バインダ樹脂には、通常、カビ発生抑制を目的として防カビ剤が添加されるため、電池性能が低下するといった問題も懸念されている。
そこで、水分散系バインダ樹脂を粉末状で提供することが望まれているが、ラテックス系の樹脂は低ガラス転移温度の組成であることが多く、一旦粉末化すると高分子鎖が絡み、再度水に分散しにくくなるという問題があった。
そのため、PVDF粉をNMPに溶解して使用できるように、電極作製時に水に溶解または分散して使用することができる粉末状のバインダ樹脂が求められている。
By the way, since water-dispersed binder resin is distribute | circulated in the state containing water, there exists a problem that transportation cost increases. Furthermore, since an antifungal agent is usually added to the water-dispersed binder resin for the purpose of suppressing the generation of mold, there is a concern that the battery performance is degraded.
Therefore, it is desired to provide a water-dispersed binder resin in powder form. However, latex resins often have a low glass transition temperature composition, and once powdered, polymer chains are entangled, and water is added again. There was a problem that it was difficult to disperse in the water.
Therefore, there is a demand for a powdery binder resin that can be used by dissolving or dispersing in water during electrode production so that PVDF powder can be used by dissolving it in NMP.

一方、CMCは水溶性の高分子であるため、電極作製時には水に溶解させて用いることができる。しかし、CMCは天然物由来であるため、供給ロット毎の品質が安定しにくく、その結果、得られる電極の品質も安定しにくい等の問題がある。
そのため、安定品質で供給可能な非天然物で水溶性のバインダ樹脂が望まれている。
加えて、バインダ樹脂を含む電池には、高い電池性能を発揮することも要求されている。
On the other hand, since CMC is a water-soluble polymer, it can be used by dissolving in water at the time of electrode preparation. However, since CMC is derived from a natural product, the quality of each supply lot is difficult to stabilize, and as a result, the quality of the obtained electrode is difficult to stabilize.
Therefore, a non-natural and water-soluble binder resin that can be supplied with stable quality is desired.
In addition, batteries including a binder resin are required to exhibit high battery performance.

こうした問題に対して、水溶性バインダ樹脂として様々な重合体が提案されている。
例えば、特許文献1では、増粘剤と水分散性バインダ樹脂との水分散体が用いられている。
In response to these problems, various polymers have been proposed as water-soluble binder resins.
For example, in Patent Document 1, an aqueous dispersion of a thickener and a water-dispersible binder resin is used.

特開2002−256129号公報JP 2002-256129 A

特許文献1に開示の正極電極では、正極用電極スラリーの分散安定性、正極電極の可とう性、及び正極合剤層と集電体との密着性が十分であるとは言えない。
また、特許文献1で用いられている増粘剤と水分散性バインダ樹脂とを含む水分散体は、粘性を付与する成分と、結着性を付与する成分とを別々に組み合わせて用いる必要があるため、バインダ樹脂を粉末状にして簡便に用いることができず、上述のような要求を満たすことができなかった。
本発明は上記事情に鑑みてなされたものであり、電池性能の向上を図ることができる非水二次電池正極用バインダ樹脂、特に、CMC、ラテックス系バインダ樹脂、添加剤等を用いずとも、正極用電極スラリーの分散安定性、正極電極の可とう性、及び正極合剤層と集電体との密着性の向上を図ることができ、かつ、粉末状にして簡便に用いることができる非水二次電池正極用バインダ樹脂、該バインダ樹脂を備えた非水二次電池用正極、及び該非水二次電池用正極を備えた非水二次電池を提供することを目的とする。
In the positive electrode disclosed in Patent Document 1, it cannot be said that the dispersion stability of the positive electrode slurry, the flexibility of the positive electrode, and the adhesion between the positive electrode mixture layer and the current collector are sufficient.
In addition, the aqueous dispersion containing the thickener and the water-dispersible binder resin used in Patent Document 1 needs to use a component that imparts viscosity and a component that imparts binding properties separately in combination. For this reason, the binder resin cannot be used simply in powder form, and the above-described requirements cannot be satisfied.
The present invention has been made in view of the above circumstances, and without using a binder resin for a non-aqueous secondary battery positive electrode capable of improving battery performance, in particular, CMC, latex binder resin, additives, etc. The dispersion stability of the electrode slurry for the positive electrode, the flexibility of the positive electrode, and the adhesion between the positive electrode mixture layer and the current collector can be improved, and it can be easily used in powder form. It aims at providing the binder resin for water secondary battery positive electrodes, the positive electrode for non-aqueous secondary batteries provided with this binder resin, and the non-aqueous secondary battery provided with this positive electrode for non-aqueous secondary batteries.

本発明者らは、鋭意検討した結果、CMC、ラテックス系バインダ樹脂、添加剤等を用いなくても、非水二次電池正極用バインダ樹脂(以下、単に「バインダ樹脂」ということがある)として下記一般式(1)で表される単量体単位を有する(共)重合体を含有することで、電極スラリーの分散安定性、正極電極の可とう性、及び正極合剤層と集電体との密着性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have determined that as a binder resin for a non-aqueous secondary battery positive electrode (hereinafter, simply referred to as “binder resin”) without using CMC, latex binder resin, additives, or the like. By containing a (co) polymer having a monomer unit represented by the following general formula (1), the dispersion stability of the electrode slurry, the flexibility of the positive electrode, and the positive electrode mixture layer and the current collector As a result, the present invention has been completed.

Figure 2014130751
Figure 2014130751

(式(1)中、RおよびRは、RおよびRの一方が水素原子または炭素数1〜12の直鎖又は分岐のアルキル基であり、他方が炭素数1〜12の直鎖又は分岐のアルキル基である。nは1〜30000000の整数である。) (In the formula (1), R 1 and R 2, one of R 1 and R 2 is a linear or branched alkyl group having 1 to 12 carbon hydrogen or C, straight other is from 1 to 12 carbon atoms (It is a chain or branched alkyl group. N is an integer of 1 to 30000000.)

すなわち、本発明は以下の様態を有する。
〔1〕下記一般式(1)で表される単量体単位(a)を含む(共)重合体を含有する非水二次電池正極用バインダ樹脂。
That is, the present invention has the following aspects.
[1] A binder resin for a nonaqueous secondary battery positive electrode containing a (co) polymer containing a monomer unit (a) represented by the following general formula (1).

Figure 2014130751
Figure 2014130751

(式(1)中、RおよびRは、RおよびRの一方が水素原子または炭素数1〜12の直鎖又は分岐のアルキル基であり、他方が炭素数1〜12の直鎖又は分岐のアルキル基である。nは1〜30000000の整数である。)
〔2〕〔1〕に記載のバインダ樹脂、導電助剤、及び正極活物質を含有する正極合剤層ならびに集電体から構成される非水二次電池用正極。
〔3〕〔2〕に記載の電極を備える、非水二次電池。
(In the formula (1), R 1 and R 2, one of R 1 and R 2 is a linear or branched alkyl group having 1 to 12 carbon hydrogen or C, straight other is from 1 to 12 carbon atoms (It is a chain or branched alkyl group. N is an integer of 1 to 30000000.)
[2] A positive electrode for a non-aqueous secondary battery comprising a positive electrode mixture layer containing the binder resin according to [1], a conductive additive, and a positive electrode active material, and a current collector.
[3] A non-aqueous secondary battery comprising the electrode according to [2].

本発明のバインダ樹脂によれば、正極用電極スラリーの分散安定性の向上を図ることができる。さらには、正極電極の可とう性の向上、及び正極合剤層と集電体との密着性を向上することができる。その結果、これらを備えた非水二次電池、特にリチウムイオン二次電池は、高い電池性能を発揮することができる。   According to the binder resin of the present invention, it is possible to improve the dispersion stability of the positive electrode slurry. Furthermore, the flexibility of the positive electrode and the adhesion between the positive electrode mixture layer and the current collector can be improved. As a result, non-aqueous secondary batteries including these, particularly lithium ion secondary batteries, can exhibit high battery performance.

本発明に係る非水二次電池正極用バインダ樹脂について説明する。
本発明の非水二次電池正極用バインダ樹脂は、下記一般式(1)で表される単量体単位(a)を含む(共)重合体を含有することを特徴とする。
The binder resin for a nonaqueous secondary battery positive electrode according to the present invention will be described.
The binder resin for a nonaqueous secondary battery positive electrode of the present invention is characterized by containing a (co) polymer containing a monomer unit (a) represented by the following general formula (1).

Figure 2014130751
Figure 2014130751

式(1)中、RおよびRは、RおよびRの一方が水素原子または炭素数1〜12の直鎖又は分岐のアルキル基であり、他方が炭素数1〜12の直鎖又は分岐のアルキル基である。RおよびRの少なくともいずれかが炭素数1〜12の直鎖又は分岐のアルキル基であることで、最終的に得られる電極の可とう性が向上する。 In formula (1), R 1 and R 2, one of R 1 and R 2 is a linear or branched alkyl group having 1 to 12 carbon hydrogen or C, straight chain other is from 1 to 12 carbon atoms Or it is a branched alkyl group. When at least one of R 1 and R 2 is a linear or branched alkyl group having 1 to 12 carbon atoms, the flexibility of the finally obtained electrode is improved.

炭素数1〜12の直鎖又は分岐のアルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。このような構造を有する単量体単位(a)としては、N−メチルアクリルアミド、N,N−ジメチルアクリルアミド、N−エチルアクリルアミド、N,N−ジエチルアクリルアミド、N−イソプロピルアクリルアミド等が挙げられる。なお、これらを単独で用いても、2種類以上の複数を組み合わせて用いてもよい。さらにこの中でも、水への溶解性がよく、正極電極の可とう性改善、及び正極合剤層と集電体との密着性向上効果がよい点で、N,N−ジメチルアクリルアミドを含むことが好ましい。   Examples of the linear or branched alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Examples of the monomer unit (a) having such a structure include N-methylacrylamide, N, N-dimethylacrylamide, N-ethylacrylamide, N, N-diethylacrylamide, and N-isopropylacrylamide. Note that these may be used alone or in combination of two or more. Further, among these, N, N-dimethylacrylamide is contained in that the solubility in water is good, the flexibility of the positive electrode is improved, and the effect of improving the adhesion between the positive electrode mixture layer and the current collector is good. preferable.

式(1)中、nは1〜30000000の整数であり、2以上が好ましく、10以上がさらに好ましい。nが大きくなることで、一般式(1)で表される単量体単位(a)由来の好ましい特性が発現しやすくなる。   In formula (1), n is an integer of 1 to 30000000, preferably 2 or more, and more preferably 10 or more. By increasing n, preferable characteristics derived from the monomer unit (a) represented by the general formula (1) are easily developed.

本発明の非水二次電池正極用バインダ樹脂は、一般式(1)で表される単量体単位(a)を必須成分とし、好ましくは、単独重合体が非水電解液に不溶である単量体単位(b)を含む(共)重合体(I)を含む。この(共)重合体(I)から構成されるバインダをバインダ樹脂(I)とする。
単独重合体が非水電解液に不溶である単量体単位とは、その構造単位となる単量体単位(b)を重合して単独重合体としたときに、その重合体が非水電解液に不溶であるものをいう。このような条件を満たす単量体単位(b)としては、例えば、N−ビニルアセトアミド(PNVA)、N−ビニルホルムアミド(PNVF)、アクリルアミド、アクリル酸、アクリル酸エステル類、またはそれらの変性物等が挙げられ、特にPNVF、アクリル酸、アクリルアミドが電気化学特性に優れるため好ましい。これらは、単独で用いても、複数を組み合わせて用いてもよい。
The binder resin for a non-aqueous secondary battery positive electrode of the present invention has the monomer unit (a) represented by the general formula (1) as an essential component, and preferably the homopolymer is insoluble in the non-aqueous electrolyte. The (co) polymer (I) containing the monomer unit (b) is included. The binder composed of this (co) polymer (I) is referred to as binder resin (I).
The monomer unit in which the homopolymer is insoluble in the non-aqueous electrolyte means that when the monomer unit (b) as the structural unit is polymerized to form a homopolymer, the polymer is non-aqueous electrolysis. It is insoluble in the liquid. Examples of the monomer unit (b) satisfying such conditions include N-vinylacetamide (PNVA), N-vinylformamide (PNVF), acrylamide, acrylic acid, acrylate esters, and modified products thereof. In particular, PNVF, acrylic acid, and acrylamide are preferable because of their excellent electrochemical characteristics. These may be used alone or in combination.

一般式(1)で表される単量体単位(a)の量としては、(共)重合体(I)中の5〜100質量%が好ましく、10〜90質量%がより好ましく、15〜80%がさらに好ましく、30〜70%が最も好ましい。5質量%以上含めば、正極合剤層と集電体との密着性、正極電極の可とう性が改善する。   The amount of the monomer unit (a) represented by the general formula (1) is preferably 5 to 100% by mass, more preferably 10 to 90% by mass in the (co) polymer (I). 80% is more preferable, and 30 to 70% is most preferable. If 5 mass% or more is included, the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode are improved.

また、非水電解液に不溶である単量体単位(b)の量としては、(共)重合体(I)中の0〜95質量%が好ましく、10〜90質量%がより好ましく、20〜85%がさらに好ましく、30〜70%が最も好ましい。この単量体単位を含めば、非水電解液に不溶となり、安定的にバインダ樹脂(I)として使用できる。   Further, the amount of the monomer unit (b) insoluble in the non-aqueous electrolyte is preferably 0 to 95% by mass, more preferably 10 to 90% by mass in the (co) polymer (I), and 20 -85% is more preferable, and 30-70% is most preferable. If this monomer unit is included, it becomes insoluble in the non-aqueous electrolyte and can be used stably as the binder resin (I).

また、(共)重合体(I)は、その他の水溶性単量体単位(c)を含んでいてもよい。その他の水溶性単量体単位(c)としては、例えば、ビニルアルコール、エチレングリコール、ビニルピロリドン、またはそれらの変性物等が挙げられ、単独で用いても、複数を組み合わせて用いてもよい。   The (co) polymer (I) may contain other water-soluble monomer units (c). Examples of the other water-soluble monomer unit (c) include vinyl alcohol, ethylene glycol, vinyl pyrrolidone, and modified products thereof, and these may be used alone or in combination.

その他の水溶性単量体単位(c)の好ましい量としては、(共)重合体(I)中の0〜40質量%が好ましく、0〜30質量%がより好ましく、0〜10%が最も好ましい。40質量%以下であれば、単量体単位(a)および単量体単位(b)由来の性能を発揮しやすい。   The preferred amount of the other water-soluble monomer unit (c) is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and most preferably 0 to 10% in the (co) polymer (I). preferable. If it is 40 mass% or less, the performance derived from the monomer unit (a) and the monomer unit (b) is likely to be exhibited.

(共)重合体(I)は、必須成分である一般式(1)で表される単量体単位(a)を重合させることにより、あるいは、単量体単位(a)と、好ましくは非水電解液に不溶である単量体単位(b)、さらに場合によっては水溶性単量体(c)を共重合することにより得られる。重合方法としては、特に限定されず、一般的なラジカル重合、制御ラジカル重合、カチオン重合、アニオン重合が挙げられる。この中でも、ラジカル重合が最も簡便に利用でき、塊状重合、溶液重合、乳化重合、懸濁重合で任意の単独重合体が得られる。中でも、特に、塊状重合、溶液重合は、乳化剤等を使用せず純度の高い重合体を得やすいため好ましい。また、断熱重合、熱重合、光重合等の方法を用いることができる。   The (co) polymer (I) is obtained by polymerizing the monomer unit (a) represented by the general formula (1), which is an essential component, or preferably with the monomer unit (a). It can be obtained by copolymerizing a monomer unit (b) that is insoluble in the water electrolyte and, in some cases, a water-soluble monomer (c). The polymerization method is not particularly limited and includes general radical polymerization, controlled radical polymerization, cationic polymerization, and anionic polymerization. Among these, radical polymerization can be most easily used, and any homopolymer can be obtained by bulk polymerization, solution polymerization, emulsion polymerization, and suspension polymerization. Among these, bulk polymerization and solution polymerization are particularly preferable because a high-purity polymer is easily obtained without using an emulsifier or the like. Moreover, methods such as adiabatic polymerization, thermal polymerization, and photopolymerization can be used.

重合に用いる開始剤は、特に限定されず、水に溶解できればよいが、例えば、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクトライド、2,2’−アゾビス〔N−(2−カルボキシエチル)−2−メチルプロピオンアミジン〕ハイドレート、2,2’−アゾビス{2−〔1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル〕プロパン}ジヒドロクロライド、2,2’−アゾビス〔2−(2−イミダゾリン−2−イル)プロパン〕、2,2’−アゾビス{2−メチル−N−〔1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル〕プロピオンアミド}等の一般的な水溶性アゾ化合物、t−ブチルハイドロパーオキサイド等の水溶性有機過酸化物、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の水溶性無機過酸化物等が挙げられる。なお、過硫酸塩等の酸化剤は、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、ハイドロサルファイト等の還元剤、硫酸鉄等の重合促進剤と組み合わせて、レドックス系開始剤として用いることもできる。   The initiator used for the polymerization is not particularly limited as long as it can be dissolved in water. For example, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2 -Carboxyethyl) -2-methylpropionamidine] hydrate, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2 ' -Azobis [2- (2-imidazolin-2-yl) propane], 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, etc. Common water-soluble azo compounds, water-soluble organic peroxides such as t-butyl hydroperoxide, potassium persulfate, ammonium persulfate, sodium persulfate And the like of the water-soluble inorganic peroxide. An oxidizing agent such as persulfate can also be used as a redox initiator in combination with a reducing agent such as sodium bisulfite, sodium thiosulfate, or hydrosulfite, and a polymerization accelerator such as iron sulfate.

また、たとえば、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、1−ヒドロキシ−シクロヘキシル−フェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド等の一般的な光重合開始剤等のラジカル重合開始剤も好ましく用いられる。   Also, for example, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, bis (2,4 Radical polymerization initiators such as general photopolymerization initiators such as, 6-trimethylbenzoyl) -phenylphosphine oxide are also preferably used.

また、重合には、分子量調整等の目的でメルカプタン化合物、チオグリコール、四塩化炭素、α−メチルスチレンダイマー等の連鎖移動剤、分散剤等を用いてもよい。   In addition, for the purpose of adjusting the molecular weight, a chain transfer agent such as a mercaptan compound, thioglycol, carbon tetrachloride, α-methylstyrene dimer, a dispersing agent or the like may be used for the polymerization.

一般式(1)で表される単量体単位(a)を必須成分とした(共)重合体(I)の質量平均分子量は、1万〜2000万であることが好ましく、50万〜1500万であることがより好ましく、100万〜1000万であることがさらに好ましく、300万〜600万であることが最も好ましい。質量平均分子量が上記範囲内であれば、バインダ樹脂の粘度が適当で、電極スラリーの分散性も安定的となる。質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、測定することができる。   The mass average molecular weight of the (co) polymer (I) having the monomer unit (a) represented by the general formula (1) as an essential component is preferably 10,000 to 20 million, and 500,000 to 1500 More preferably, it is more preferably 1,000,000 to 10,000,000, and most preferably 3 million to 6,000,000. When the mass average molecular weight is within the above range, the viscosity of the binder resin is appropriate and the dispersibility of the electrode slurry becomes stable. The mass average molecular weight can be measured using gel permeation chromatography (GPC).

一般式(1)で表される単量体単位(a)を必須成分とした(共)重合体(I)の量は、バインダ樹脂(I)の総量100質量%のうち、5〜100質量%が好ましく、10〜100質量%がより好ましく、30〜98質量%がさらに好ましく、50〜95質量%が最も好ましい。一般式(1)で表される単量体単位(a)を必須成分とした(共)重合体(I)が30質量%以上含まれれば、電極スラリーの分散性がよくなり、電極の可とう性改善効果と、正極合剤層と集電体との密着性改善効果が得られる。100質量%でもよい効果が得られるが、電極スラリー安定性の改善、耐酸化性向上のためにその他の水溶性樹脂(II)をバインダ樹脂の総量の1〜5質量%を加えることが好ましい場合もある。   The amount of the (co) polymer (I) having the monomer unit (a) represented by the general formula (1) as an essential component is 5 to 100% in a total amount of 100% by mass of the binder resin (I). % Is preferable, 10 to 100% by mass is more preferable, 30 to 98% by mass is further preferable, and 50 to 95% by mass is most preferable. If the (co) polymer (I) containing the monomer unit (a) represented by the general formula (1) as an essential component is contained in an amount of 30% by mass or more, the dispersibility of the electrode slurry is improved, and the electrode can be used. The effect of improving the flexibility and the effect of improving the adhesion between the positive electrode mixture layer and the current collector are obtained. Even if 100% by mass may be obtained, it is preferable to add other water-soluble resin (II) in an amount of 1 to 5% by mass of the total amount of the binder resin in order to improve electrode slurry stability and oxidation resistance. There is also.

その他の水溶性バインダ樹脂(II)とは、前記単量体単位(b)や、水溶性単量体(c)として列挙したものの少なくとも1つ以上を(共)重合したものである。   The other water-soluble binder resin (II) is obtained by (co) polymerizing at least one of the monomer units (b) and those listed as the water-soluble monomer (c).

上述の通り、本発明の非水二次電池正極用バインダ樹脂には、バインダ樹脂(I)のみを含む場合と、バインダ樹脂(I)とバインダ樹脂(II)とをブレンドしたものを含む場合とがある。   As described above, the binder resin for a non-aqueous secondary battery positive electrode according to the present invention includes only the binder resin (I) and includes a blend of the binder resin (I) and the binder resin (II). There is.

本発明のバインダ樹脂は、一般式(1)で表される単量体単位(a)を必須成分として含有する(共)重合体(I)を必須成分として含有し、例えば、リチウムイオン二次電池の正極に好適に用いることができる。   The binder resin of the present invention contains a (co) polymer (I) containing the monomer unit (a) represented by the general formula (1) as an essential component as an essential component, for example, a lithium ion secondary It can use suitably for the positive electrode of a battery.

本発明の非水二次電池用正極は、非水二次電池正極用バインダ樹脂と、正極活物質と、導電助剤とを含有する正極合剤層、および集電体とを備えるものである。
集電体としては、アルミニウム箔、ニッケル箔、金箔、銀箔、チタン箔等が挙げられるが、価格と安定性の観点から、アルミニウム箔が好ましい。
The positive electrode for a nonaqueous secondary battery of the present invention comprises a binder resin for a nonaqueous secondary battery positive electrode, a positive electrode active material, a positive electrode mixture layer containing a conductive additive, and a current collector. .
Examples of the current collector include an aluminum foil, a nickel foil, a gold foil, a silver foil, and a titanium foil, and an aluminum foil is preferred from the viewpoint of price and stability.

正極活物質としては、リチウムイオンを可逆的に脱挿入できるものであればよく、例えば、鉄、コバルト、ニッケル、マンガンから選ばれる少なくとも一種類以上の金属と、リチウムを含有する金属複合酸化物が挙げられ、代表的なものに、LiCoO、LiMnが挙げられる。また、リン酸鉄リチウムやリン酸マンガンリチウム等のオリビン構造を有する化合物を用いてもよい。これらは、一種類を単独で用いても、2種類以上を組み合わせて用いてもよい。 The positive electrode active material may be any material that can reversibly insert and remove lithium ions. For example, at least one metal selected from iron, cobalt, nickel, and manganese, and a metal composite oxide containing lithium may be used. Typical examples include LiCoO 2 and LiMn 2 O 4 . Moreover, you may use the compound which has olivine structures, such as lithium iron phosphate and lithium manganese phosphate. These may be used alone or in combination of two or more.

正極活物質は導電助剤と組み合わせて用いる。導電助剤は、電気を通しやすいものがよく、例えば、黒鉛、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、アセチレンブラック、フラーレン、導電性高分子等が挙げられる。これらは、一種類を単独で用いても、2種類以上を組み合わせて用いてもよい。   The positive electrode active material is used in combination with a conductive additive. The conductive auxiliary agent is preferably one that easily conducts electricity, and examples thereof include graphite, carbon black, carbon nanotube, carbon nanofiber, acetylene black, fullerene, and conductive polymer. These may be used alone or in combination of two or more.

導電助剤の添加量は、正極活物質100質量部に対して1〜20質量部が好ましく、3〜10質量部がより好ましい。導電助剤の含有量が1質量部より少ない場合、電極抵抗が充分に低減できない恐れがある。また、20質量部以上であると、正極活物質の量が少なくなるため容量を確保しにくくなる。   1-20 mass parts is preferable with respect to 100 mass parts of positive electrode active materials, and, as for the addition amount of a conductive support agent, 3-10 mass parts is more preferable. When there is less content of a conductive support agent than 1 mass part, there exists a possibility that electrode resistance cannot fully be reduced. On the other hand, when the amount is 20 parts by mass or more, the amount of the positive electrode active material is reduced, so that it is difficult to ensure the capacity.

バインダ樹脂の添加量は、正極活物質100質量部に対して、0.1〜10質量部が好ましく、0.3〜5質量部がより好ましく、0.5〜3質量部が最も好ましい。バインダ樹脂の含有量が0.1質量部より少ない場合、正極用電極スラリーが安定しないことや、電極合剤層と集電体との密着性が充分に得られないことが懸念される。また、10質量部を超えると、正極活物質の量が少なくなるため容量を確保しにくくなる。   0.1-10 mass parts is preferable with respect to 100 mass parts of positive electrode active materials, and, as for the addition amount of binder resin, 0.3-5 mass parts is more preferable, and 0.5-3 mass parts is the most preferable. When the content of the binder resin is less than 0.1 parts by mass, there is a concern that the electrode slurry for the positive electrode is not stable and the adhesion between the electrode mixture layer and the current collector cannot be obtained sufficiently. On the other hand, when the amount exceeds 10 parts by mass, the amount of the positive electrode active material decreases, so that it is difficult to ensure the capacity.

バインダ樹脂は、乾燥後の粉体や顆粒を用いてもよく、あらかじめ任意の濃度の水溶液として溶解させてから用いてもよい。複数を混合する場合は、順次加えても、あらかじめ混ぜ合わせておいてもよい。   The binder resin may be powder or granules after drying, or may be used after being dissolved in advance as an aqueous solution having an arbitrary concentration. When mixing a plurality, they may be added sequentially or mixed in advance.

正極用電極スラリー調製工程に用いる溶媒としては、人体や環境に無害であり、回収設備の省略や乾燥エネルギーの軽減による低コスト化が可能であるため、水が好ましい。また、影響のない範囲で水に対して少量の有機溶剤を含んでいてもよい。   As the solvent used in the positive electrode electrode slurry preparation step, water is preferable because it is harmless to the human body and the environment, and can be reduced in cost by omitting recovery equipment and reducing drying energy. Moreover, a small amount of an organic solvent may be contained with respect to water as long as there is no influence.

正極用電極スラリーは、溶媒中、正極活物質と、導電助剤と、本発明のバインダ樹脂を混練、分散させて得られる。正極用電極スラリー調製工程は、均一に分散可能な方法であれば特に限定しないが、例えば、スターラー、自公転攪拌機、ミキサー、プラネタリーミキサー、ホモジナイザー、ボールミル、サンドミル、ロールミル等の各種分散機で混練する方法、またその組み合わせが挙げられる。   The electrode slurry for a positive electrode is obtained by kneading and dispersing a positive electrode active material, a conductive additive, and the binder resin of the present invention in a solvent. The electrode slurry preparation step for the positive electrode is not particularly limited as long as it is a uniformly dispersible method. And a combination thereof.

正極用電極スラリーの固形分は、良好に分散していれば特に限定しないが、正極活物質の種類、導電助剤の量、バインダ樹脂の種類、量毎の粘度に応じて、50〜70質量%程度で調整することが好ましい。   The solid content of the electrode slurry for the positive electrode is not particularly limited as long as it is well dispersed. However, depending on the type of the positive electrode active material, the amount of the conductive auxiliary agent, the type of the binder resin, and the viscosity for each amount, 50 to 70 mass. It is preferable to adjust by about%.

電極は、正極用電極スラリーを集電体に塗工、乾燥して得られる。塗工方法は特に限定されず、例えばバーコート法、ドクターブレード法、ナイフ法、ディップ法、転写法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、カーテン法、はけ塗り法等によって電極層の厚みが0.1〜500μmとなるように塗工する。   The electrode is obtained by coating a positive electrode slurry on a current collector and drying. Coating method is not particularly limited, for example, bar coating method, doctor blade method, knife method, dipping method, transfer method, reverse roll method, direct roll method, gravure method, extrusion method, curtain method, brush coating method, etc. Is applied so that the thickness of the electrode layer is 0.1 to 500 μm.

乾燥は、集電体に塗工した電極スラリー中の溶媒を除去することができればよく、自然乾燥、低温風乾燥、加熱乾燥、熱風乾燥、真空乾燥、赤外線乾燥、遠赤外線乾燥、電子線乾燥等が単独、もしくは複数を組み合わせて用いられる。   Drying only needs to be able to remove the solvent in the electrode slurry coated on the current collector, such as natural drying, low temperature air drying, heat drying, hot air drying, vacuum drying, infrared drying, far infrared drying, electron beam drying, etc. Are used alone or in combination.

塗工直後の乾燥温度は、正極用電極スラリー中の含有物が流動しにくい温度であることが好ましく、20〜80度が好ましく、30〜60度がより好ましい。20度以上であれば、乾燥時間が短くなり、60度以下であれば、バインダ樹脂が偏在化による正極合剤層と集電体との密着性低下を抑制できる。   The drying temperature immediately after coating is preferably a temperature at which the content in the positive electrode slurry is less liable to flow, preferably 20 to 80 degrees, and more preferably 30 to 60 degrees. If it is 20 degree | times or more, drying time will become short, and if it is 60 degree | times or less, the binder resin can suppress the adhesive fall of the positive mix layer and an electrical power collector by uneven distribution.

一度乾燥した後の乾燥温度は、正極用電極スラリー中の含有物が変質しない温度であればよく、40〜120度が好ましく、60〜100度がより好ましい。40度以上であれば乾燥時間を短縮でき、120度以下であれば、正極用電極スラリー中の含有物が分解、変質するのを抑制できる。   The drying temperature after drying once may be a temperature at which the content in the positive electrode slurry does not change, and is preferably 40 to 120 degrees, more preferably 60 to 100 degrees. If it is 40 degree | times or more, drying time can be shortened, and if it is 120 degree | times or less, it can suppress that the content in the electrode slurry for positive electrodes decomposes | disassembles and changes in quality.

乾燥後、必要に応じて電極をプレスしてもよい。プレスにより、電極層の面積を広げ、かつ任意の厚みに調整可能である。また、電極表面の平滑性や電極密度を高めることが可能である。プレス方法としては、金型プレス、ロールプレス等が挙げられる。なお、プレスは常温で行っても、加熱して行ってもよく、乾燥と同時に行ってもよい。   After drying, the electrode may be pressed as necessary. By pressing, the area of the electrode layer can be expanded and adjusted to an arbitrary thickness. In addition, the smoothness of the electrode surface and the electrode density can be increased. Examples of the pressing method include a mold press and a roll press. The pressing may be performed at room temperature, may be performed by heating, or may be performed simultaneously with drying.

また、電極は必要に応じて任意の寸法に切断してもよい。切断方法としては、スリット加工、打ち抜き、押し切り等の方法が挙げられる。   Moreover, you may cut | disconnect an electrode to arbitrary dimensions as needed. Examples of the cutting method include slitting, punching, and pressing.

最終的な電極の水分量は、2000ppm以下が好ましく、1000ppmがより好ましい。2000ppm以下であれば、電池にした際に水分が原因となる劣化を抑制できる。   The final water content of the electrode is preferably 2000 ppm or less, and more preferably 1000 ppm. If it is 2000 ppm or less, the deterioration caused by moisture in the battery can be suppressed.

本発明の非水二次電池は、本発明の正極を備える。
以上のようにして作製された正極と、負極を、透液性のセパレータ(例えば、ポリエチレンあるいはポリプロピレン製の多孔性フィルム)を間に介して、配置し、これに非水系の電解液を含浸させることにより非水二次電池(積層型、ラミネート型)が形成される。また、両面に活性層が形成された正極/セパレータ/両面に活性層が形成された負極/セパレータからなる積層体をロール状(渦巻状)に巻回して得られる構造体を有底の金属ケーシングに収容し、負極を負極端子に、正極を正極端子に接続し、電解液を含浸させた後、ケーシングを封止することにより筒状の非水二次電池が得られる。
本発明の非水二次電池としては、例えば、リチウムイオン二次電池が好ましい。
The nonaqueous secondary battery of the present invention includes the positive electrode of the present invention.
The positive electrode and the negative electrode produced as described above are arranged with a liquid-permeable separator (for example, a polyethylene or polypropylene porous film) interposed therebetween, and impregnated with a non-aqueous electrolyte solution. Thus, a non-aqueous secondary battery (laminated type, laminated type) is formed. Also, a bottomed metal casing having a structure obtained by winding a laminate composed of a positive electrode / separator having active layers formed on both sides / a negative electrode / separator having active layers formed on both sides in a roll shape (spiral shape) The cylindrical non-aqueous secondary battery is obtained by sealing the casing after the negative electrode is connected to the negative electrode terminal, the positive electrode is connected to the positive electrode terminal and impregnated with the electrolytic solution.
As the non-aqueous secondary battery of the present invention, for example, a lithium ion secondary battery is preferable.

本発明の非水二次電池に用いられる負極は、一般的に用いられる負極を好適に用いることができる。負極は、負極活物質と、必要に応じて導電助剤と、負極用バインダ樹脂とを含有する負極合剤層、および負極集電体とを備える。負極集電体としては、銅箔、ニッケル箔、金箔、銀箔、チタン箔等が挙げられるが、価格と安定性の観点から、銅箔が好ましい。   As the negative electrode used in the nonaqueous secondary battery of the present invention, a commonly used negative electrode can be suitably used. A negative electrode is equipped with the negative electrode active material, the negative electrode mixture layer containing the conductive support agent as needed, and the binder resin for negative electrodes, and the negative electrode electrical power collector. Examples of the negative electrode current collector include a copper foil, a nickel foil, a gold foil, a silver foil, and a titanium foil. From the viewpoint of price and stability, a copper foil is preferable.

負極活物質としては、リチウムイオンを可逆的に脱挿入できるであればよく、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭等の炭素材料、シリコン、すず、銀等の金属またはこれらの酸化物が好ましく用いられる。これらは、一種類を単独で用いても、2種類以上を組み合わせて用いてもよい。   The negative electrode active material only needs to be able to reversibly remove and insert lithium ions. For example, carbon materials such as graphite, amorphous carbon, carbon fiber, coke and activated carbon, metals such as silicon, tin, and silver, or these The oxide is preferably used. These may be used alone or in combination of two or more.

負極活物質は導電助剤と組み合わせて用いることもできる。導電助剤は、電気を通しやすいものがよく、例えば、黒鉛、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、アセチレンブラック、フラーレン、導電性高分子等が挙げられる。これらは、一種類を単独で用いても、2種類以上を組み合わせて用いてもよい。   The negative electrode active material can also be used in combination with a conductive additive. The conductive auxiliary agent is preferably one that easily conducts electricity, and examples thereof include graphite, carbon black, carbon nanotube, carbon nanofiber, acetylene black, fullerene, and conductive polymer. These may be used alone or in combination of two or more.

導電助剤を添加する場合の添加量は、負極活物質100質量部に対して0.1〜20質量部が好ましく、1〜10質量部がより好ましい。導電助剤の含有量が0.1質量部より少ない場合、電極抵抗の低減効果が充分に得られない恐れがある。また、20質量部以上であると、負極活物質の量が少なくなるため容量を確保しにくくなる。   0.1-20 mass parts is preferable with respect to 100 mass parts of negative electrode active materials, and, as for the addition amount in the case of adding a conductive support agent, 1-10 mass parts is more preferable. When there is less content of a conductive support agent than 0.1 mass part, there exists a possibility that the reduction effect of electrode resistance may not fully be acquired. On the other hand, when the amount is 20 parts by mass or more, the amount of the negative electrode active material is reduced, so that it is difficult to ensure the capacity.

負極用バインダ樹脂は、水系であることが好ましく、例えば、CMCやSBR等の一般的なものや、その他の水溶性バインダ樹脂(II)として挙げたような水溶性バインダを用いることができる。これらは、単独で、もしくは複数を組み合わせて用いることができる。   The negative electrode binder resin is preferably water-based, and for example, general materials such as CMC and SBR, and other water-soluble binders mentioned as other water-soluble binder resins (II) can be used. These can be used alone or in combination.

負極用バインダ樹脂の添加量は、活物質100質量部に対して、0.1〜10質量部が好ましく、0.3〜5質量部がより好ましく、0.5〜3質量部が最も好ましい。負極用バインダ樹脂の含有量が0.1質量部より少ない場合、負極用電極スラリーが安定しないことや、電極合剤層と集電体との密着性が充分に得られないことが懸念される。また、10質量部を超えると、負極活物質の量が少なくなるため容量を確保しにくくなる。   0.1-10 mass parts is preferable with respect to 100 mass parts of active materials, as for the addition amount of binder resin for negative electrodes, 0.3-5 mass parts is more preferable, and 0.5-3 mass parts is the most preferable. When the content of the binder resin for the negative electrode is less than 0.1 parts by mass, there is a concern that the electrode slurry for the negative electrode is not stable and the adhesion between the electrode mixture layer and the current collector cannot be obtained sufficiently. . On the other hand, when the amount exceeds 10 parts by mass, the amount of the negative electrode active material decreases, so that it is difficult to ensure the capacity.

負極用電極スラリー調製工程に用いる溶媒としては、人体や環境に無害であり、回収設備の省略や乾燥エネルギーの軽減による低コスト化が可能であるため、水が好ましい。また、影響のない範囲で水に対して少量の有機溶剤を含んでいてもよい。   As the solvent used in the electrode slurry preparation step for the negative electrode, water is preferable because it is harmless to the human body and the environment and can be reduced in cost by omitting the recovery equipment and reducing the drying energy. Moreover, a small amount of an organic solvent may be contained with respect to water as long as there is no influence.

負極用電極スラリーは、溶媒中、負極活物質と、導電助剤と、負極用バインダ樹脂を混練、分散させて得られる。負極用電極スラリー調製工程は、均一に分散可能な方法であれば特に限定しないが、例えば、スターラー、自公転攪拌機、ミキサー、プラネタリーミキサー、ホモジナイザー、ボールミル、サンドミル、ロールミル等の各種分散機で混練する方法、またその組み合わせが挙げられる。   The electrode slurry for negative electrode is obtained by kneading and dispersing a negative electrode active material, a conductive additive, and a binder resin for negative electrode in a solvent. The electrode slurry preparation step for the negative electrode is not particularly limited as long as it is a uniformly dispersible method. For example, the negative electrode slurry is kneaded by various dispersers such as a stirrer, a revolving stirrer, a mixer, a planetary mixer, a homogenizer, a ball mill, a sand mill, and a roll mill. And a combination thereof.

負極用電極スラリーの固形分は、良好に分散していれば特に限定しないが、負極活物質の種類、導電助剤の量、負極用バインダ樹脂の種類、量毎の粘度に応じて、45〜70質量%程度で調製することが好ましい。   The solid content of the electrode slurry for the negative electrode is not particularly limited as long as it is well dispersed, but depending on the type of the negative electrode active material, the amount of the conductive auxiliary agent, the type of the binder resin for the negative electrode, and the viscosity for each amount. It is preferable to prepare at about 70% by mass.

前記電解液としては、例えば、リチウムイオン二次電池の場合、電解質としてのリチウム塩を1M程度の濃度で非水系有機溶剤に溶解したものが用いられる。
前記リチウム塩としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li〔(COBが挙げられる。
As the electrolytic solution, for example, in the case of a lithium ion secondary battery, a solution obtained by dissolving a lithium salt as an electrolyte in a non-aqueous organic solvent at a concentration of about 1M is used.
Examples of the lithium salt, for example, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li [(CO 2 ) 2 ] 2 B.

前記、非水系有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ−ブチロラクトン等のラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、NMP等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;3−メチル−2−オキサゾリジノン等のオキサゾリジノン類;1,3−プロパンスルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類が挙げられる。前記電解液は、1種を単独で用いても良く、2種以上を併用しても良い。   Examples of the non-aqueous organic solvent include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as γ-butyrolactone; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; acetonitrile, nitromethane , Nitrogen-containing compounds such as NMP; esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester; diglyme, triglyme, Glymes such as traglime; ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone; sulfones such as sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propane sultone, 4-butane sultone, Examples include sultone such as naphtha sultone. The said electrolyte solution may be used individually by 1 type, and may use 2 or more types together.

以下、実施例を挙げて、本発明を更に詳細に説明するが、以下の実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, a following example does not limit the scope of the present invention.

[バインダ樹脂の製造]
<製造例1:N,N’−ジメチルアクリルアミド重合体(I−1)>
脱イオン水40質量部に対し、単量体単位(a)として、N,N’−ジメチルアクリルアミド(興人株式会社製、以下同様)60質量部を混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。得られた重合体の周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてN,N’−ジメチルアクリルアミド重合体(I−1)(PDMA)を得た。
[Manufacture of binder resin]
<Production Example 1: N, N′-dimethylacrylamide polymer (I-1)>
A monomer aqueous solution was prepared by mixing 60 parts by mass of N, N′-dimethylacrylamide (manufactured by Kojin Co., Ltd., hereinafter the same) as the monomer unit (a) with respect to 40 parts by mass of deionized water. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. The periphery of the obtained polymer was cut off, cut into small pieces, dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain N, N′-dimethylacrylamide polymer (I-1) (PDMA). It was.

<製造例2:N,N’−イソプロピルアクリルアミド重合体(I−2)>
脱イオン水74質量部、エタノール4質量部に対し、単量体単位(a)として、N,N’−イソプロピルアクリルアミド(東京化成株式会社製)22質量部を混合した単量体溶液を作製した。これに、0.007質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで3時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてN,N’−ジメチルアクリルアミド重合体(I−2)(PNIPAM)を得た。
<Production Example 2: N, N′-isopropylacrylamide polymer (I-2)>
A monomer solution was prepared by mixing 22 parts by mass of N, N′-isopropylacrylamide (manufactured by Tokyo Chemical Industry Co., Ltd.) as a monomer unit (a) with respect to 74 parts by mass of deionized water and 4 parts by mass of ethanol. . In this, 0.007 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a PET film and polymerized with a chemical lamp of 1 mW / cm 2 for 3 hours. The surroundings were cut off, finely cut, dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain N, N′-dimethylacrylamide polymer (I-2) (PNIPAM).

<製造例3:N−ビニルホルムアミド重合体(II−1)>
脱イオン水70質量部に対し、N−ビニルホルムアミド30質量部を混合した単量体水溶液を、リン酸によりpH=6.3となるよう調節し、単量体調節液を得た。この単量体調節液を5℃まで冷却した後、温度計を取り付けた断熱反応容器に入れ、15分間窒素曝気を行った。その後、4、4’−アゾビス(4−シアノバレリックアシッド)(和光純薬工業株式会社製、「V−501」)12質量%水溶液を0.4質量部添加し、次いで、t−ブチルハイドロパーオキサイド10質量%水溶液および亜硫酸水素ナトリウム10質量%水溶液をそれぞれ0.1質量部添加して重合を行った。内温がピークを超えた後さらに1時間熟成し、ゲルを取り出しミートチョッパーで粉砕した後、60℃で10時間乾燥し、得られた固体を粉砕し、N−ビニルホルムアミド重合体(II−1)(PNVF)を得た。
<Production Example 3: N-vinylformamide polymer (II-1)>
A monomer aqueous solution in which 30 parts by mass of N-vinylformamide was mixed with 70 parts by mass of deionized water was adjusted to pH = 6.3 with phosphoric acid to obtain a monomer adjustment solution. After cooling this monomer control liquid to 5 degreeC, it put into the heat insulation reaction container which attached the thermometer, and nitrogen aeration was performed for 15 minutes. Thereafter, 0.4 part by mass of a 12% by mass aqueous solution of 4,4′-azobis (4-cyanovaleric acid) (manufactured by Wako Pure Chemical Industries, Ltd., “V-501”) was added, and then t-butyl hydro Polymerization was carried out by adding 0.1 parts by weight of a 10% by weight aqueous peroxide solution and a 10% by weight aqueous sodium hydrogen sulfite solution. After the internal temperature exceeded the peak, it was further aged for 1 hour, the gel was taken out and pulverized with a meat chopper, dried at 60 ° C. for 10 hours, the obtained solid was pulverized, and the N-vinylformamide polymer (II-1 ) (PNVF) was obtained.

<製造例4:アクリルアミド重合体(II−2)>
脱イオン水33.7質量部に対し、アクリルアミド(和光株式会社製、以下同様)33.3質量部を混合した単量体水溶液を作製した。これに、0.01質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてアクリルアミド重合体(II−2)(PAAm)を得た。
<Production Example 4: Acrylamide polymer (II-2)>
A monomer aqueous solution was prepared by mixing 33.3 parts by mass of acrylamide (manufactured by Wako Co., Ltd., the same applies hereinafter) with 33.7 parts by mass of deionized water. To this, 0.01 parts by mass of an initiator (Darocur 4265, manufactured by Ciba Japan Co., Ltd.) was dissolved and subjected to nitrogen bubbling for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. The surroundings were cut off, finely cut, dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain acrylamide polymer (II-2) (PAAm).

<製造例5:DMA−NVF共重合体(I−3)>
N,N’−ジメチルアクリルアミド70質量%、N−ビニルホルムアミド30質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−3)を得た。
<Production Example 5: DMA-NVF copolymer (I-3)>
A monomer aqueous solution was prepared by adding 70% by mass of N, N′-dimethylacrylamide and 30% by mass of N-vinylformamide, and mixing it with 40 parts by mass of deionized water. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-3).

<製造例6:DMA−NVF共重合体(I−4)>
N,N’−ジメチルアクリルアミド50質量%、N−ビニルホルムアミド50質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−4)を得た。
<Production Example 6: DMA-NVF copolymer (I-4)>
N, N'-dimethylacrylamide 50 mass% and N-vinylformamide 50 mass% were combined to make 60 mass parts, and a monomer aqueous solution mixed with 40 mass parts of deionized water was prepared. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-4).

<製造例7:DMA−NVF共重合体(I−5)>
N,N’−ジメチルアクリルアミド50質量%、N−ビニルホルムアミド50質量%を合わせて100質量部とし、混合した単量体水溶液を作製した。これに、0.03質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−5)を得た。
<Production Example 7: DMA-NVF copolymer (I-5)>
N, N′-dimethylacrylamide 50 mass% and N-vinylformamide 50 mass% were combined to make 100 parts by mass to prepare a mixed monomer aqueous solution. In this, 0.03 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-5).

<製造例8:DMA−NVF共重合体(I−6)>
N,N’−ジメチルアクリルアミド30質量%、N−ビニルホルムアミド70質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−6)を得た。
<Production Example 8: DMA-NVF copolymer (I-6)>
A monomer aqueous solution was prepared by mixing 30 parts by mass of N, N′-dimethylacrylamide and 70% by mass of N-vinylformamide to 60 parts by mass and mixing with 40 parts by mass of deionized water. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-6).

<製造例9:DMA−NVF共重合体(I−7)>
N,N’−ジメチルアクリルアミド10質量%、N−ビニルホルムアミド90質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−7)を得た。
<Production Example 9: DMA-NVF copolymer (I-7)>
A monomer aqueous solution was prepared by adding 10% by mass of N, N′-dimethylacrylamide and 90% by mass of N-vinylformamide to 60 parts by mass and mixing with 40 parts by mass of deionized water. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-7).

<製造例10:DMA−NVF共重合体(I−8)>
N,N’−ジメチルアクリルアミド5質量%、N−ビニルホルムアミド95質量%を合わせて100質量部とし、単量体水溶液を作製した。これに、0.1質量部の開始剤(パーヘキシルPV)を溶解し、30分窒素バブリングした。これを、ポリエチレンフィルムを貼ったガラス板で作製した1mm厚さのセルに流しいれ、60度の湯浴で1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−NVF重合体(I−8)を得た。
<Production Example 10: DMA-NVF copolymer (I-8)>
N, N′-dimethylacrylamide 5 mass% and N-vinylformamide 95 mass% were combined to make 100 mass parts to prepare an aqueous monomer solution. 0.1 parts by mass of initiator (perhexyl PV) was dissolved in this, and nitrogen bubbling was performed for 30 minutes. This was poured into a 1 mm-thick cell made of a glass plate with a polyethylene film attached, and polymerized in a 60-degree hot water bath for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-NVF polymer (I-8).

<製造例11:DMA−AAm共重合体(I−9)>
N,N’−ジメチルアクリルアミド70質量%、アクリルアミド30質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−AAm重合体(I−9)を得た。
<Production Example 11: DMA-AAm copolymer (I-9)>
N, N'-dimethylacrylamide 70 mass% and acrylamide 30 mass% were made into 60 mass parts, and the monomer aqueous solution mixed with 40 mass parts of deionized water was produced. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-AAm polymer (I-9).

<製造例12:DMA−AAm共重合体(I−10)>
N,N’−ジメチルアクリルアミド50質量%、アクリルアミド50質量%を合わせて10質量部とし、脱イオン水100質量部に混合した単量体水溶液を作製した。これに、0.01質量部の開始剤(パーヘキシルPV)を溶解し、30分窒素バブリングした。これを、ポリエチレンフィルムを貼ったガラス板で作製した1mm厚さのセルに流しいれ、60度の湯浴で1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDMA−AAm重合体(I−10)を得た。
<Production Example 12: DMA-AAm copolymer (I-10)>
N, N'-dimethylacrylamide 50 mass% and acrylamide 50 mass% were combined to make 10 mass parts, and a monomer aqueous solution mixed with 100 mass parts of deionized water was prepared. To this, 0.01 parts by mass of initiator (perhexyl PV) was dissolved and nitrogen bubbling was performed for 30 minutes. This was poured into a 1 mm-thick cell made of a glass plate with a polyethylene film attached, and polymerized in a 60-degree hot water bath for 1 hour. This was cut off at the periphery, finely cut and dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DMA-AAm polymer (I-10).

<製造例13:DMA−AA共重合体(I−11)>
四つ口丸底フラスコに、N,N’−ジメチルアクリルアミド58質量%、アクリル酸42質量%を合わせて10質量部とし、脱イオン水90質量部に混合した単量体水溶液を作製し、攪拌翼、冷却管を接続した。これに、0.4質量部のギ酸ナトリウムを溶解し、攪拌しながら30分窒素バブリングした。50度に昇温し、0.8質量部の10%開始剤(V−50、和光製薬株式会社製)水溶液を添加して3時間重合し、再度、0.8質量部の10%開始剤(V−50)水溶液を添加して3時間重合した。得られた重合溶液は冷却し、大量のメチルエチルケトンに沈殿させた。これを、40度真空乾燥機で一晩乾燥させてDMA−AAm重合体(I−11)を得た。
<Production Example 13: DMA-AA copolymer (I-11)>
In a four-necked round bottom flask, a monomer aqueous solution in which 58 parts by mass of N, N'-dimethylacrylamide and 42 parts by mass of acrylic acid are combined to make 10 parts by mass and mixed with 90 parts by mass of deionized water is prepared and stirred. Wings and cooling pipes were connected. 0.4 mass part sodium formate was melt | dissolved in this, and nitrogen bubbling was carried out for 30 minutes, stirring. The temperature was raised to 50 degrees, 0.8 parts by mass of a 10% initiator (V-50, manufactured by Wako Pharmaceutical Co., Ltd.) aqueous solution was added and polymerized for 3 hours, and again 0.8 parts by mass of a 10% initiator. (V-50) Aqueous solution was added and polymerized for 3 hours. The resulting polymerization solution was cooled and precipitated into a large amount of methyl ethyl ketone. This was dried overnight in a 40 degree vacuum drier to obtain a DMA-AAm polymer (I-11).

<製造例14:DMA−AA共重合体(I−12)>
四つ口丸底フラスコに、N,N’−ジメチルアクリルアミド26質量%、アクリル酸74質量%を合わせて10質量部とし、脱イオン水90質量部に混合した単量体水溶液を作製し、攪拌翼、冷却管を接続した。これに、0.4質量部のギ酸ナトリウムを溶解し、攪拌しながら30分窒素バブリングした。50度に昇温し、0.8質量部の10%開始剤(V−50、和光製薬株式会社製)水溶液を添加して3時間重合し、再度、0.8質量部の10%開始剤(V−50)水溶液を添加して3時間重合した。得られた重合溶液は冷却し、大量のメチルエチルケトンに沈殿させた。これを、40度真空乾燥機で一晩乾燥させてDMA−AAm重合体(I−12)を得た。
<Production Example 14: DMA-AA copolymer (I-12)>
In a four-necked round bottom flask, a monomer aqueous solution prepared by mixing 26 parts by mass of N, N′-dimethylacrylamide and 74 parts by mass of acrylic acid to 10 parts by mass and mixing with 90 parts by mass of deionized water is prepared and stirred. Wings and cooling pipes were connected. 0.4 mass part sodium formate was melt | dissolved in this, and nitrogen bubbling was carried out for 30 minutes, stirring. The temperature was raised to 50 degrees, 0.8 parts by mass of a 10% initiator (V-50, manufactured by Wako Pharmaceutical Co., Ltd.) aqueous solution was added and polymerized for 3 hours, and again 0.8 parts by mass of a 10% initiator. (V-50) Aqueous solution was added and polymerized for 3 hours. The resulting polymerization solution was cooled and precipitated into a large amount of methyl ethyl ketone. This was dried overnight in a 40 degree vacuum drier to obtain a DMA-AAm polymer (I-12).

<製造例15:DEA−NVF共重合体(I−13)>
N,N’−ジエチルアクリルアミド30質量%、N−ビニルホルムアミド70質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDEA−NVF重合体(I−13)を得た。
<Production Example 15: DEA-NVF copolymer (I-13)>
N, N′-diethylacrylamide 30 mass% and N-vinylformamide 70 mass% were combined to make 60 mass parts, and a monomer aqueous solution mixed with 40 mass parts of deionized water was prepared. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut, dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DEA-NVF polymer (I-13).

<製造例16:DEA−NVF共重合体(I−14)>
N,N’−ジエチルアクリルアミド70質量%、N−ビニルホルムアミド30質量%を合わせて60質量部とし、脱イオン水40質量部に混合した単量体水溶液を作製した。これに、0.018質量部の開始剤(ダロキュア4265、チバ・ジャパン株式会社製)を溶解し、30分窒素バブリングした。これを、ペットフィルムにシリコンゴムで作製した1mm厚さのセルに流しいれ、1mW/cmのケミカルランプで1時間重合した。これを、周囲を切り除き、細かく裁断して室温で乾燥後、40度真空乾燥機で一晩乾燥させてDEA−NVF重合体(I−14)を得た。
<Production Example 16: DEA-NVF copolymer (I-14)>
A monomer aqueous solution was prepared by adding 70% by mass of N, N′-diethylacrylamide and 30% by mass of N-vinylformamide, and mixing it with 40 parts by mass of deionized water. In this, 0.018 mass part initiator (Darocur 4265, Ciba Japan Co., Ltd. product) was melt | dissolved, and nitrogen bubbling was carried out for 30 minutes. This was poured into a 1 mm-thick cell made of silicon rubber on a pet film, and polymerized with a chemical lamp of 1 mW / cm 2 for 1 hour. This was cut off at the periphery, finely cut, dried at room temperature, and then dried overnight in a 40 degree vacuum drier to obtain a DEA-NVF polymer (I-14).

(重合体の分子量測定)
作製した(共)重合体の分子量は、以下の方法で測定した。
Waters社製GPC、カラムにShodex OHpac SB−807HQを使用し、溶媒としてアセトニトリル/水=10/90(0.1N硝酸ナトリウム含有)、流速0.5ml/分、40度で測定。IR検出器にて検出し、粘度換算分子量で基準化したポリN−ビニルホルムアミド換算の分子量を算出した。
(Measurement of molecular weight of polymer)
The molecular weight of the produced (co) polymer was measured by the following method.
GPC manufactured by Waters, Shodex OHpac SB-807HQ was used for the column, acetonitrile / water = 10/90 (containing 0.1N sodium nitrate) as a solvent, measurement at 40 ° C., flow rate 0.5 ml / min. The molecular weight in terms of poly N-vinylformamide detected by an IR detector and normalized by the molecular weight in terms of viscosity was calculated.

[実施例1]
<正極電極用の電極スラリーの調製>
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.2gと、3.56gの水とを自公転ミキサー(Thinky社製、「泡とり練太郎」、以下同様)を用い、自転1000rpm、公転2000rpmの条件にて混練し溶解した。これに、コバルト酸リチウム(日本化学工業株式会社製、「セルシードC−5H」、以下同様)10.0g、アセチレンブラック(電気化学工業株式会社製、以下同様)0.5gをさらに加え混練した後、塗工可能な粘度まで水を加えて混練することにより、正極用電極スラリーを得た。
[Example 1]
<Preparation of electrode slurry for positive electrode>
As a binder resin, 0.2 g of N, N′-dimethylacrylamide polymer (I-1) and 3.56 g of water were mixed with a self-revolving mixer (manufactured by Thinky, “Awatori Netaro”, the same applies hereinafter). The mixture was kneaded and dissolved under the conditions of rotation at 1000 rpm and revolution at 2000 rpm. After further adding 10.0 g of lithium cobaltate (Nippon Kagaku Kogyo Co., Ltd., “Cellseed C-5H”, the same applies below) and 0.5 g of acetylene black (Electrochemical Co., Ltd., the same applies below) and kneading. Then, by adding water and kneading to a coatable viscosity, a positive electrode slurry was obtained.

<正極電極の作製>
得られた正極用電極スラリーを集電体(アルミニウム箔、厚さ20μm)にドクターブレード法によって均一に塗布し、室温で2時間乾燥した。さらに真空乾燥機にて0.6kPa、60℃で12時間減圧乾燥して、膜厚80μmの合剤層が集電体(アルミニウム箔)上に形成された正極電極を得た。
得られた電極は以下の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
<Preparation of positive electrode>
The obtained electrode slurry for positive electrode was uniformly applied to a current collector (aluminum foil, thickness 20 μm) by a doctor blade method and dried at room temperature for 2 hours. Furthermore, it dried under reduced pressure at 0.6 kPa and 60 degreeC with the vacuum dryer for 12 hours, and obtained the positive electrode with which the 80-micrometer-thick mixture layer was formed on the electrical power collector (aluminum foil).
The obtained electrode was evaluated for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode by the following methods. The results are shown in Table 1.

(電極密着性評価)
正極合剤層と集電体との密着性(電極密着性)は、以下の条件にて行う剥離試験により測定される剥離強度により評価した。
電極を20mm幅の試験片にし、ニップロールを通して粘着剤付きポリカーボネート板と貼り合せた。テンシロン引張強度試験にて、10Nロードセルを用い、引張速度1cm/分で180度剥離試験を行った。
電極と集電体の剥離強度を5つの試験片で測定し、剥離し始める部分を除いた後半の剥離強度の平均を求め、これより180度剥離強度(N/cm)を算出した。
(Electrode adhesion evaluation)
The adhesion (electrode adhesion) between the positive electrode mixture layer and the current collector was evaluated by the peel strength measured by a peel test performed under the following conditions.
The electrode was made into a 20 mm wide test piece and bonded to a polycarbonate plate with an adhesive through a nip roll. In the Tensilon tensile strength test, a 180 ° peel test was performed using a 10N load cell at a tensile speed of 1 cm / min.
The peel strength between the electrode and the current collector was measured with five test pieces, the average of the peel strength in the latter half excluding the portion where peeling started was determined, and the 180 ° peel strength (N / cm) was calculated from this.

(正極電極の可とう性評価)
正極電極の可とう性は、JIS K−5600−5−1(塗料一般試験方法耐屈曲性(円筒形マンドレル法))を参考にして、以下の条件にて行う耐屈曲性(プレス後の可とう性)により評価した。
電極を3cm×5cmに切り出し、プレスロールでプレスして電極密度を3g/cmに合わせて試験片とした。試験片のアルミ箔面をマンドレル側になるように、設置し、試験片の片側をテープで固定して、折り曲げて、塗膜の状態を目視で観察した。マンドレルの直径を以下の通り小さくしながら評価した。
マンドレルの直径:32mm、25mm、16mm、10mm、8mm、6mm、5mm、3mm、2mm
○:折り曲げ面にて、電極の変化が見られない
△:折り曲げ面にて、電極に横筋がみられた
×:折り曲げ面にて、電極のワレ、欠け等が見られた
試験片3つについて試験し、○を2、△を1、×を0として、結果の合計値が4以上となるマンドレルの最小径を可とう性(mm)とした。
(Flexibility evaluation of positive electrode)
The flexibility of the positive electrode is determined according to JIS K-5600-5-1 (Paint General Test Method Bending Resistance (Cylindrical Mandrel Method)) under the following conditions. It was evaluated by the flexibility.
The electrode was cut into 3 cm × 5 cm and pressed with a press roll to adjust the electrode density to 3 g / cm 3 to obtain a test piece. The test piece was placed so that the aluminum foil surface was on the mandrel side, one side of the test piece was fixed with tape, bent, and the state of the coating film was visually observed. Evaluation was made while reducing the diameter of the mandrel as follows.
Mandrel diameter: 32mm, 25mm, 16mm, 10mm, 8mm, 6mm, 5mm, 3mm, 2mm
○: No change in electrode on the bent surface Δ: Horizontal streaks were observed on the electrode on the bent surface ×: Cracks and cracks in the electrode were observed on the bent surface About three test pieces The minimum diameter of the mandrel with which the total value of the result was 4 or more was defined as flexibility (mm), where ◯ was 2, 1 was 1, and x was 0.

[実施例2]
容器に、コバルト酸リチウム10.0g、アセチレンブラック0.5gを計量し、自公転ミキサーで攪拌した。これに、バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を脱イオン水に溶解して作製した3質量%の水溶液6.67gを数回に分けて加えながら自公転ミキサーで攪拌した。さらに、塗工可能な粘度まで水を加えて混練することにより、正極用電極スラリーを得た。塗布直後の乾燥条件を40℃、30分とした以外は実施例1と同様にして、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 2]
In a container, 10.0 g of lithium cobaltate and 0.5 g of acetylene black were weighed and stirred with a self-revolving mixer. While adding 6.67 g of 3% by weight aqueous solution prepared by dissolving N, N′-dimethylacrylamide polymer (I-1) in deionized water as a binder resin in several portions, a revolving mixer And stirred. Furthermore, the electrode slurry for positive electrodes was obtained by adding water and kneading to the viscosity which can be applied. A positive electrode was obtained in the same manner as in Example 1 except that the drying conditions immediately after application were 40 ° C. and 30 minutes.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例3]
塗布直後の乾燥条件を80℃、30分とした以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 3]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that the drying conditions immediately after application were 80 ° C. and 30 minutes.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例4]
バインダ樹脂の量を0.15gとした以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 4]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that the amount of the binder resin was changed to 0.15 g.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例5]
バインダ樹脂の量を0.15gとし、塗布直後の乾燥条件を40℃、30分とした以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 5]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that the amount of the binder resin was 0.15 g and the drying conditions immediately after coating were 40 ° C. and 30 minutes.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例6]
バインダ樹脂の量を0.1gとした以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 6]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that the amount of the binder resin was 0.1 g.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例7]
バインダ樹脂の量を0.1gとし、塗布直後の乾燥条件を40℃、30分とした以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 7]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that the amount of the binder resin was 0.1 g, and the drying conditions immediately after coating were 40 ° C. and 30 minutes.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例8]
バインダ樹脂として、N,N’−イソプロピルアクリルアミド重合体(I−2)の3質量%水溶液を6.67g用い、塗布直後の乾燥条件を室温2時間とした以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 8]
As binder resin, the same procedure as in Example 2 was performed except that 6.67 g of a 3% by mass aqueous solution of N, N′-isopropylacrylamide polymer (I-2) was used and the drying condition immediately after coating was set at room temperature for 2 hours. A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例9]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.18g、N−ビニルホルムアミド重合体(II−1)を0.02g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 9]
Except that 0.18 g of N, N′-dimethylacrylamide polymer (I-1) and 0.02 g of N-vinylformamide polymer (II-1) were used as the binder resin, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例10]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.15g、N−ビニルホルムアミド重合体(II−1)を0.05g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 10]
Except for using 0.15 g of N, N′-dimethylacrylamide polymer (I-1) and 0.05 g of N-vinylformamide polymer (II-1) as the binder resin, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例11]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.1g、N−ビニルホルムアミド重合体(II−1)を0.1g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 11]
As the binder resin, in the same manner as in Example 1, except that 0.1 g of N, N′-dimethylacrylamide polymer (I-1) and 0.1 g of N-vinylformamide polymer (II-1) were used, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例12]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.05g、N−ビニルホルムアミド重合体(II−1)を0.15g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 12]
Except that 0.05 g of N, N′-dimethylacrylamide polymer (I-1) and 0.15 g of N-vinylformamide polymer (II-1) were used as the binder resin, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例13]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.02g、N−ビニルホルムアミド重合体(II−1)を0.18g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 13]
Except that 0.02 g of N, N′-dimethylacrylamide polymer (I-1) and 0.18 g of N-vinylformamide polymer (II-1) were used as the binder resin, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例14]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)を0.01g、N−ビニルホルムアミド重合体(II−1)を0.19g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 14]
Except for using 0.01 g of N, N′-dimethylacrylamide polymer (I-1) and 0.19 g of N-vinylformamide polymer (II-1) as the binder resin, the same as in Example 1, A positive electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例15]
バインダ樹脂として、N,N’−ジメチルアクリルアミド重合体(I−1)の3質量%水溶液を4.67g、N−ビニルホルムアミド重合体(II−2)の3質量%水溶液を2.0g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 15]
As the binder resin, 4.67 g of a 3% by mass aqueous solution of N, N′-dimethylacrylamide polymer (I-1) and 2.0 g of a 3% by mass aqueous solution of N-vinylformamide polymer (II-2) were used. A positive electrode slurry and a positive electrode were obtained in the same manner as Example 2 except for the above.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例16]
バインダ樹脂として、DMA−NVF共重合体(I−3)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 16]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-3) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例17]
バインダ樹脂として、DMA−NVF共重合体(I−3)の3質量%水溶液を5.0g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 17]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 5.0 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-3) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例18]
バインダ樹脂として、DMA−NVF共重合体(I−3)の3質量%水溶液を3.33g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 18]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 3.33 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-3) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例19]
バインダ樹脂として、DMA−NVF共重合体(I−4)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 19]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-4) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例20]
バインダ樹脂として、DMA−NVF共重合体(I−4)の3質量%水溶液を5.0g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 20]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 5.0 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-4) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例21]
バインダ樹脂として、DMA−NVF共重合体(I−4)の3質量%水溶液を3.33g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 21]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 3.33 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-4) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例22]
バインダ樹脂として、DMA−NVF共重合体(I−5)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 22]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-5) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例23]
バインダ樹脂として、DMA−NVF共重合体(I−5)の3質量%水溶液を5.0g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 23]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 5.0 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-5) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例24]
バインダ樹脂として、DMA−NVF共重合体(I−5)の3質量%水溶液を3.33g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 24]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 3.33 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-5) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例25]
バインダ樹脂として、DMA−NVF共重合体(I−6)を0.2g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 25]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that 0.2 g of DMA-NVF copolymer (I-6) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例26]
バインダ樹脂として、DMA−NVF共重合体(I−7)を0.2g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 26]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that 0.2 g of DMA-NVF copolymer (I-7) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例27]
バインダ樹脂として、DMA−NVF共重合体(I−8)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 27]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-NVF copolymer (I-8) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例28]
バインダ樹脂として、DMA−AAm共重合体(I−9)を0.2g用いた以外は実施例1と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 28]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 1 except that 0.2 g of DMA-AAm copolymer (I-9) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例29]
バインダ樹脂として、DMA−AAm共重合体(I−10)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 29]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-AAm copolymer (I-10) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例30]
バインダ樹脂として、DMA−AA共重合体(I−11)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 30]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-AA copolymer (I-11) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例31]
バインダ樹脂として、DMA−AA共重合体(I−12)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 31]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DMA-AA copolymer (I-12) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例32]
バインダ樹脂として、DEA−NVF共重合体(I−13)の3質量%水溶液を6.67g用いた以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 32]
A positive electrode slurry and a positive electrode were obtained in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DEA-NVF copolymer (I-13) was used as the binder resin.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

[実施例33]
バインダ樹脂として、DEA−NVF共重合体(I−14)の3質量%水溶液を6.67g用い、塗布直後の乾燥条件を80℃、30分とした以外は実施例2と同様にして、正極用電極スラリー、正極電極を得た。
得られた電極は実施例1と同様の方法により正極合剤層と集電体との密着性、正極電極の可とう性の評価を行った。結果を表1に示した。
[Example 33]
As a binder resin, a positive electrode was used in the same manner as in Example 2 except that 6.67 g of a 3% by mass aqueous solution of DEA-NVF copolymer (I-14) was used and the drying conditions immediately after coating were set at 80 ° C. for 30 minutes. An electrode slurry and a positive electrode were obtained.
The obtained electrode was evaluated in the same manner as in Example 1 for the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. The results are shown in Table 1.

Figure 2014130751
Figure 2014130751

表1中の略号は、以下を意味する。
LCO:コバルト酸リチウム
AB:アセチレンブラック
BP:バインダ樹脂
The abbreviations in Table 1 mean the following.
LCO: Lithium cobaltate AB: Acetylene black BP: Binder resin

表1から明らかなように、上記一般式(1)で表される単量体単位(a)を有する重合体を含有するバインダ樹脂(I−1〜2)を用いると、正極合剤層と集電体との密着性、正極電極の可とう性に優れた正極電極が得られた(実施例1〜15)。特に、上記一般式(1)で表される単量体単位(a)を有する重合体を含むバインダ樹脂(I−1〜2)を、バインダ樹脂中の10質量%以上用いた実施例1〜13、15は、正極合剤層と集電体との密着性を保ちつつ、正極電極の可とう性が優れていた。
中でも、バインダ樹脂(I−1)を用いた実施例1〜7、9〜15で得られた正極電極は、正極合剤層と集電体との密着性、正極電極の可とう性に特に優れていた。
また、上記一般式(1)で表される単量体単位(a)を有する(共)重合体を含有するバインダ樹脂(I−3〜14)を用いると、正極合剤層と集電体との密着性、正極電極の可とう性に優れた正極電極が得られた。さらに、正極用電極スラリーの分散安定性もよく、正極合剤層と集電体との密着性が高いため、正極電極中のバインダ樹脂の量を削減することができた(実施例4、5、6、7、17、18、20、21、23、24)。これにより、正極活物質の密度を高めることができた。
また、本発明のバインダ樹脂を使用することで、品質安定性に不安のあるCMCや、保存・運搬に不利で耐酸化性が低いラテックス系バインダ樹脂を使用することなく、密着性・可とう性に優れる正極電極を作製することができた。
As apparent from Table 1, when the binder resin (I-1 to 2) containing the polymer having the monomer unit (a) represented by the general formula (1) is used, the positive electrode mixture layer and The positive electrode excellent in the adhesiveness with a collector and the flexibility of a positive electrode was obtained (Examples 1-15). In particular, Examples 1 to 1 using 10% by mass or more of the binder resin (I-1 to 2) containing the polymer having the monomer unit (a) represented by the general formula (1) in the binder resin. Nos. 13 and 15 were excellent in the flexibility of the positive electrode while maintaining the adhesion between the positive electrode mixture layer and the current collector.
Among these, the positive electrodes obtained in Examples 1 to 7 and 9 to 15 using the binder resin (I-1) are particularly excellent in the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode. It was excellent.
Moreover, when binder resin (I-3-14) containing the (co) polymer which has the monomer unit (a) represented by the said General formula (1) is used, a positive mix layer and an electrical power collector A positive electrode having excellent adhesion with the electrode and flexibility of the positive electrode was obtained. Furthermore, since the dispersion stability of the positive electrode slurry is good and the adhesion between the positive electrode mixture layer and the current collector is high, the amount of the binder resin in the positive electrode can be reduced (Examples 4 and 5). 6, 7, 17, 18, 20, 21, 23, 24). Thereby, the density of the positive electrode active material could be increased.
In addition, by using the binder resin of the present invention, adhesion and flexibility without using CMC that is uneasy about quality stability and latex binder resin that is disadvantageous for storage and transportation and low in oxidation resistance. The positive electrode which was excellent in this was able to be produced.

本発明は、環境、人体に無害である水のみを用いて、正極合剤層と集電体との密着性、正極電極の可とう性共に優れた正極電極を作製することのできるバインダ樹脂であって、少量の利用で正極合剤層と集電体との密着性を発現でき、さらに正極電極の可とう性にも優れているため、高容量の正極を作製する際にも非常に有用である。また、作製された正極電極は、非水二次電池、特に、リチウムイオン二次電池に好適に用いることができ、工業的に極めて有用である。   The present invention is a binder resin capable of producing a positive electrode excellent in both the adhesion between the positive electrode mixture layer and the current collector and the flexibility of the positive electrode using only water that is harmless to the environment and the human body. In addition, the adhesion between the positive electrode mixture layer and the current collector can be expressed with a small amount of use, and the flexibility of the positive electrode is also excellent, so it is very useful when producing high capacity positive electrodes. It is. Moreover, the produced positive electrode can be used suitably for a non-aqueous secondary battery, especially a lithium ion secondary battery, and is extremely useful industrially.

Claims (3)

下記一般式(1)で表される単量体単位(a)を含む(共)重合体を含有する非水二次電池正極用バインダ樹脂。
Figure 2014130751
(式(1)中、RおよびRは、RおよびRの一方が水素原子または炭素数1〜12の直鎖又は分岐のアルキル基であり、他方が炭素数1〜12の直鎖又は分岐のアルキル基である。nは1〜30000000の整数である。)
Binder resin for non-aqueous secondary battery positive electrode containing the (co) polymer containing the monomer unit (a) represented by following General formula (1).
Figure 2014130751
(In the formula (1), R 1 and R 2, one of R 1 and R 2 is a linear or branched alkyl group having 1 to 12 carbon hydrogen or C, straight other is from 1 to 12 carbon atoms (It is a chain or branched alkyl group. N is an integer of 1 to 30000000.)
請求項1に記載のバインダ樹脂、導電助剤、及び正極活物質を含有する正極合剤層ならびに集電体から構成される非水二次電池用正極。   The positive electrode for non-aqueous secondary batteries comprised from the binder resin of Claim 1, the conductive support agent, the positive mix layer containing a positive electrode active material, and a collector. 請求項2に記載の非水二次電池用正極を備える、非水二次電池。   A non-aqueous secondary battery comprising the positive electrode for a non-aqueous secondary battery according to claim 2.
JP2012288089A 2012-12-28 2012-12-28 Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery Expired - Fee Related JP6015441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288089A JP6015441B2 (en) 2012-12-28 2012-12-28 Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288089A JP6015441B2 (en) 2012-12-28 2012-12-28 Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2014130751A true JP2014130751A (en) 2014-07-10
JP6015441B2 JP6015441B2 (en) 2016-10-26

Family

ID=51408975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288089A Expired - Fee Related JP6015441B2 (en) 2012-12-28 2012-12-28 Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6015441B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022956A (en) * 2013-07-22 2015-02-02 Jsr株式会社 Slurry for power storage device, power storage device electrode, separator and power storage device
WO2019065471A1 (en) 2017-09-28 2019-04-04 日本ゼオン株式会社 Electrochemical-element binder composition, electrochemical-element slurry composition, electrochemical-element functional layer, and electrochemical element
JP2022103904A (en) * 2020-12-28 2022-07-08 プライムプラネットエナジー&ソリューションズ株式会社 Method and device for manufacturing electrode for nonaqueous electrolyte secondary battery
CN110998935B (en) * 2017-09-28 2024-07-09 日本瑞翁株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2010182548A (en) * 2009-02-06 2010-08-19 Hymo Corp Negative electrode for lithium ion secondary battery, and its forming method
WO2011016563A1 (en) * 2009-08-07 2011-02-10 Jsr株式会社 Electrochemical device and binder composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2010182548A (en) * 2009-02-06 2010-08-19 Hymo Corp Negative electrode for lithium ion secondary battery, and its forming method
WO2011016563A1 (en) * 2009-08-07 2011-02-10 Jsr株式会社 Electrochemical device and binder composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022956A (en) * 2013-07-22 2015-02-02 Jsr株式会社 Slurry for power storage device, power storage device electrode, separator and power storage device
WO2019065471A1 (en) 2017-09-28 2019-04-04 日本ゼオン株式会社 Electrochemical-element binder composition, electrochemical-element slurry composition, electrochemical-element functional layer, and electrochemical element
CN110998935A (en) * 2017-09-28 2020-04-10 日本瑞翁株式会社 Binder composition for electrochemical device, slurry composition for electrochemical device, functional layer for electrochemical device, and electrochemical device
JPWO2019065471A1 (en) * 2017-09-28 2020-09-10 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element and electrochemical element
EP3691004A4 (en) * 2017-09-28 2021-06-16 Zeon Corporation Electrochemical-element binder composition, electrochemical-element slurry composition, electrochemical-element functional layer, and electrochemical element
JP7268600B2 (en) 2017-09-28 2023-05-08 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
CN110998935B (en) * 2017-09-28 2024-07-09 日本瑞翁株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
JP2022103904A (en) * 2020-12-28 2022-07-08 プライムプラネットエナジー&ソリューションズ株式会社 Method and device for manufacturing electrode for nonaqueous electrolyte secondary battery
JP7328954B2 (en) 2020-12-28 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 METHOD AND APPARATUS FOR MANUFACTURING ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Also Published As

Publication number Publication date
JP6015441B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
KR101654448B1 (en) Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
JP5381974B2 (en) Non-aqueous electrolyte secondary battery electrode binder composition and non-aqueous electrolyte secondary battery
JP6145693B2 (en) Electrode element electrode binder, electrochemical element electrode composition, electrochemical element electrode and electrochemical element
JP6665857B2 (en) Composition for non-aqueous electrolyte secondary battery electrode mixture layer, method for producing the same, and use thereof
JPWO2017150200A1 (en) Non-aqueous battery electrode binder copolymer, non-aqueous battery electrode slurry, non-aqueous battery electrode, and non-aqueous battery
JP5499951B2 (en) Secondary battery binder, production method, secondary battery negative electrode composition, and secondary battery
CN107735472B (en) Composition for adhesive, adhesive film, composition for electricity storage device, slurry for electricity storage device electrode, slurry for protective film, and electricity storage device
US10541423B2 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
WO2014115802A1 (en) Method for producing binder for lithium secondary battery electrodes, and binder for lithium secondary battery electrodes
JP2013149396A (en) Positive electrode slurry for secondary battery, method for manufacturing the same, method for manufacturing positive electrode for secondary battery, and lithium ion secondary battery
JP6015441B2 (en) Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery
JPWO2019107187A1 (en) Method for manufacturing slurry for non-aqueous battery electrodes
JP2014222601A (en) Binder resin for nonaqueous secondary battery negative electrode, slurry composition for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP2013164972A (en) Polymer for secondary battery electrode binder and manufacturing method thereof, electrode for secondary battery, and lithium ion secondary battery
JP2016009647A (en) Binder resin and slurry for secondary battery electrode, secondary battery electrode, and nonaqueous secondary battery
JP2014229400A (en) Method for producing negative electrode slurry for secondary battery, negative electrode for secondary battery, and lithium ion secondary battery
JP6145638B2 (en) Water-soluble binder composition for secondary battery, mixture for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP6217460B2 (en) Non-aqueous secondary battery electrode binder resin, non-aqueous secondary battery electrode binder resin composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP6394027B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6244798B2 (en) Binder resin composition for secondary battery electrode, slurry for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP2014086161A (en) Slurry composition for secondary battery negative electrode, secondary battery negative electrode, and lithium ion secondary battery
WO2017064811A1 (en) Binder resin for secondary battery electrodes, binder resin composition for secondary battery electrodes using same, slurry for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JP2013149395A (en) Negative electrode for secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6015441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees