JP2014130184A - Forceps for surgery simulator - Google Patents

Forceps for surgery simulator Download PDF

Info

Publication number
JP2014130184A
JP2014130184A JP2012286773A JP2012286773A JP2014130184A JP 2014130184 A JP2014130184 A JP 2014130184A JP 2012286773 A JP2012286773 A JP 2012286773A JP 2012286773 A JP2012286773 A JP 2012286773A JP 2014130184 A JP2014130184 A JP 2014130184A
Authority
JP
Japan
Prior art keywords
forceps
contact
gripping
force
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012286773A
Other languages
Japanese (ja)
Other versions
JP6192932B2 (en
Inventor
Yoshinobu Kubota
吉信 窪田
Kazuhide Makiyama
和秀 槙山
Masato Ogata
正人 緒方
Manabu Nagasaka
学 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP2012286773A priority Critical patent/JP6192932B2/en
Publication of JP2014130184A publication Critical patent/JP2014130184A/en
Application granted granted Critical
Publication of JP6192932B2 publication Critical patent/JP6192932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve, with a simple, small, and light-weight mechanism, a holding reaction force of forceps as a simulation tool in an endoscope surgery simulation by computer graphics, and to present a surgery simulation without causing discomfort.SOLUTION: An internal member is disposed in a long-sized cylindrical member movably in the lengthwise direction. Moving/driving force transmitting means connected to the internal member is disposed at the rear end of the cylindrical member, and moves the internal member in the lengthwise direction in the cylindrical member. A holding mechanism can bring a contact member into contact with the internal member through openings formed in both facing side surfaces in an intermediate part of the cylindrical member. The contact force of the contact member is controlled in response to the holding state of the forceps in a surgery simulation, thereby simulating the holding reaction force of the forceps.

Description

本発明は、手術をする事前訓練のための手術シミュレーションに用いる鉗子に関するものである。   The present invention relates to a forceps used for an operation simulation for pre-training for an operation.

医療技術と医療機器の進歩により、腹部手術の多くが腹腔鏡下に行われるようになってきた。腹腔鏡下手術は、3次元のものを2次元の画像表示装置を見ながら操作するので、その習得にはトレーニングが不可欠である。
近年、医療関係者が行う手術の訓練のために、仮想現実技術を用いた訓練装置が用いられる。この装置は、臓器、血管、リンパ管等をモデルデータとして構成し、仮想現実として表現した臓器、血管、リンパ管等を表示装置に表示できるようにし、表示装置に映し出された施術部分を見ながら模擬術具を用いて、模擬術具の操作移動に応じて臓器、血管、リンパ管等の移動変化の表示をバーチャルリアリティとして体験訓練できる装置である。
内視鏡下手術を行う場合、模擬患者の体表に穴を設置し、内視鏡・術具を、そこから挿入する。術具には、鉗子があり、操作者の操作に応じてその位置が移動変化するとともに先端が臓器に接触して挟むようにし、牽引したり圧迫したりするため、先端を例えば開閉する機構を有する。
With advances in medical technology and medical equipment, many abdominal operations have been performed laparoscopically. In laparoscopic surgery, a three-dimensional operation is performed while looking at a two-dimensional image display device, so training is essential for learning.
In recent years, training apparatuses using virtual reality technology are used for surgical training performed by medical personnel. This device is composed of organs, blood vessels, lymphatic vessels, etc. as model data, so that the organs, blood vessels, lymphatic vessels, etc. expressed as virtual reality can be displayed on the display device, while watching the operation part projected on the display device This is a device that can be used as a virtual reality to experience the display of movement changes of organs, blood vessels, lymphatic vessels, etc. according to the operation movement of the simulated surgical tool.
When performing endoscopic surgery, a hole is placed in the body surface of the simulated patient, and an endoscope / surgical instrument is inserted from there. The surgical instrument has forceps, the position of which moves and changes according to the operation of the operator, and the tip is in contact with the organ so that it is pinched and pulled or pressed. Have.

内視鏡手術での鉗子操作は、微細な感覚によるところが大きいが、手術訓練シミュレータで、把持・開閉操作での把持対象の臓器に応じた反力を提示するものは存在しない。これは、術具(鉗子)の3次元空間上での移動に加え、把持の力覚を提示するための機構を術具に持たせるためには、小型・軽量でないと、実際の手術操作との間に生じる違和感が大きくなるためである。   The forceps operation in endoscopic surgery is largely based on fine sensations, but there is no surgical training simulator that presents a reaction force according to the organ to be grasped in the grasping / opening / closing operation. In addition to the movement of the surgical instrument (forceps) in the three-dimensional space, in order to have the surgical instrument have a mechanism for presenting a grasping force sensation, it is necessary to use actual surgical operations. This is because the uncomfortable feeling that occurs during the period increases.

特開2011−133830号公報JP 2011-133830 A

解決しようとする問題点は、コンピュータグラフィックスによる内視鏡手術シミュレーションにおける模擬術具である鉗子の把持反力と回転による反力を簡単で小型・軽量な機構により実現し、違和感なく手術シミュレーションを提示することである。   The problem to be solved is to realize a simple and small and lightweight mechanism for grasping reaction force and force reaction of forceps, which is a simulation tool in endoscopic surgery simulation by computer graphics, and to perform surgical simulation without any sense of incongruity. Is to present.

請求項1に係る手術シミュレータに用いる鉗子は、コンピュータ制御による手術シミュレータに用いる鉗子であって、長尺状の筒状部材と、前記筒状部材の内部にその長さ方向に移動可能に配置した内部部材と、前記筒状部材後端に前記内部部材と連結して内部部材を筒状部材内の長さ方向に移動する移動駆動力伝達手段と、前記筒状部材の中間部の対する両側面に形成した開口部を通して前記内部部材に接触可能に接触部材を配置し、手術シミュレーションにおける鉗子の把持の状況に応じて当該接触部材の接触力を制御して鉗子の把持反力を模擬する把持機構と、を有することを特徴とするものである。   The forceps used in the surgery simulator according to claim 1 is a forceps used in a computer-controlled surgery simulator, and is arranged in a long cylindrical member and movably in the length direction inside the cylindrical member. Inner member, movement driving force transmitting means for moving the inner member in the longitudinal direction in the tubular member by connecting the inner member to the rear end of the tubular member, and opposite side surfaces of the intermediate portion of the tubular member A gripping mechanism that arranges a contact member so as to be able to contact the internal member through an opening formed in the sensor, and controls a contact force of the contact member according to a gripping situation of the forceps in a surgical simulation to simulate a gripping reaction force It is characterized by having.

請求項2に係る手術シミュレータに用いる鉗子は、コンピュータ制御による手術シミュレータに用いる鉗子であって、長尺状の筒状部材と、前記筒状部材の内部にその長さ方向に移動可能に配置した内部部材と、前記筒状部材後端に前記内部部材と連結して内部部材を筒状部材内の長さ方向に移動する移動駆動力伝達手段と、前記筒状部材の中間部の対する両側面に接触可能に接触部材を配置し、手術シミュレーションにおける鉗子の回転の状況に応じて当該接触部材の接触力を制御して鉗子の回転反力を模擬する把持機構と、を有することを特徴とするものである。   The forceps used in the surgery simulator according to claim 2 is a forceps used in a computer-controlled surgery simulator, and is arranged in a long cylindrical member and inside the cylindrical member so as to be movable in the length direction thereof. Inner member, movement driving force transmitting means for moving the inner member in the longitudinal direction in the tubular member by connecting the inner member to the rear end of the tubular member, and opposite side surfaces of the intermediate portion of the tubular member And a gripping mechanism for simulating the rotational reaction force of the forceps by controlling the contact force of the contact member in accordance with the rotation state of the forceps in a surgical simulation. Is.

請求項1に係る手術シミュレータに用いる鉗子によると、移動駆動力伝達手段により筒状部材の内部に配置した内部部材が鉗子の把持状態に応じて筒状部材内を移動する。把持機構は、把持の反力を模擬するために、内部部材に接触する接触力を制御し、内部部材の筒状部材内の移動を制限することで、鉗子の把持反力を模擬することができる。   According to the forceps used in the surgery simulator according to the first aspect, the internal member arranged inside the cylindrical member by the moving driving force transmitting means moves in the cylindrical member according to the gripping state of the forceps. The gripping mechanism simulates the gripping reaction force of the forceps by controlling the contact force that contacts the internal member in order to simulate the gripping reaction force and restricting the movement of the internal member in the cylindrical member. it can.

請求項2に係る手術シミュレータに用いる鉗子によると、筒状部材を回転させると、把持機構は、回転による反力を模擬するために、筒状部材の外面に接触する接触力を制御し、筒状部材の回転を制御することで、鉗子の回転による反力を模擬することができる。   According to the forceps used in the surgical simulator according to claim 2, when the cylindrical member is rotated, the gripping mechanism controls the contact force that contacts the outer surface of the cylindrical member in order to simulate the reaction force caused by the rotation. The reaction force due to the rotation of the forceps can be simulated by controlling the rotation of the member.

模擬術具の一実施例を示した説明図である。It is explanatory drawing which showed one Example of the simulation tool. シミュレータの機能ブロック図である。It is a functional block diagram of a simulator. 模擬術具の一例を説明する図である。It is a figure explaining an example of a simulation tool. 回転に対する反力を提示する模擬術具の一例を説明する図である。It is a figure explaining an example of the simulation tool which presents the reaction force with respect to rotation.

鉗子の把持反力の感覚を与えるため、鉗子本体を形成する長尺状の筒状部材の側面に開口部を形成し、把持機構の接触部材により、筒状部材内を移動する内部部材の移動速度を制限制御するようにし、また、鉗子の回転反力の感覚を与えるため、筒状部材の側面に前記把持機構とは異なる把持機構の接触部材により、鉗子の回転移動を制御するように制限制御するようにし、これらをコンピュータで構成するシミュレータで制御することで、簡単で小型・軽量な機構により実現した。   In order to give a sense of the gripping reaction force of the forceps, an opening is formed on the side surface of the long cylindrical member forming the forceps body, and the internal member moves within the cylindrical member by the contact member of the gripping mechanism. In order to limit the speed, and to give a sense of the rotational reaction force of the forceps, the side surface of the cylindrical member is limited to control the rotational movement of the forceps by a contact member of a gripping mechanism different from the gripping mechanism. It was realized by a simple, small, and lightweight mechanism by controlling them with a simulator composed of a computer.

図1は、本発明の術具の一実施例の構成図であって、術具として鉗子を一例にして説明する。101は鉗子の主要部分を構成する長尺状の筒状部材、102は前記筒状部材101の内部にその長さ方向に移動可能に配置した内部部材として金属棒で形成したロッド、102aは係止部材、103は模擬する鉗子の把持感覚を実現する第1の把持機構、104は移動駆動力伝達手段としてのハンドル、104aはハンドル桿、104bは案内部材、104cは軸、105は前記筒状部材101の中間部の対する両側面に形成した開口部、106は前記開口部105を通して前記ロッド102の両側面に接触可能に配置し第1の把持機構103を構成する接触部材、107は第1の把持機構103を構成し前記接触部材106を開閉制御するネジ、108は第1の把持機構103を構成し模擬する鉗子の把持の状況に応じて前記ネジ107に回転力を与える傘歯車、109は第1の把持機構103を構成し前記傘歯車108を駆動するモータ、モータ109は図示しない手術シミュレータにより制御される。第1の把持機構103の要部を図1(b)に示す。
係止部材102aはロッド102の端部に形成され例えばピン状に形成する。ハンドル104は、ハンドル桿104aと、案内部材104bと、軸104cとを備える。案内部材104bは細長く変形され内部が空間部を有する長円状に形成され、長尺のハンドル桿104aを介してハンドル104に固着されるとともに、ハンドル桿104aの1箇所が軸104cを介して模擬術具本体例えば筒状部材101が延長した部材に取り付けられる。案内部材104bの長円状の内部空間部には前記ロッド102の係止部材102aが配置され、ハンドル104とロッド102とが連結される。ハンドル104の操作により、係止部材102aは案内部材104bの長円状の内部空間部を形成する側面を摺動移動することができる。図1(c)にハンドル104を軸104c中心に回転させるように操作した状態を示す。
図2は、本発明に用いるシミュレータの機能ブロック図である。201は模擬術具、202は把持機構、203は術具位置姿勢機構であり、模擬術具201の位置姿勢を示す。204は把持機構202が模擬する鉗子の位置(開閉状態)を検出する第1の検出部、205は術具位置姿勢機構203を構成する各部分の位置を検出する第2の検出部、206は術具の操作に対する応答を計算するシミュレーション計算部、207は第1の検出部205と第2の検出部207との位置情報により手術模擬計算をする手術模擬計算部、208は手術模擬計算部207の計算に基づき、模擬手術の操作者が見ることができるように画像を生成計算する表示計算部、209は把持機構202が模擬する鉗子の把持反力を計算する把持力計算部、210は把持反力以外の模擬術具201への反力を計算する反力計算部、211は表示計算部208が生成した画像を表示する表示部、212は把持力計算部209の計算による把持力を発生するように把持機構202を制御する第1の制御部、213は反力計算部210の計算による反力を発生するように術具位置姿勢機構203を制御する第2の制御部である。
FIG. 1 is a configuration diagram of an embodiment of the surgical instrument of the present invention, and a forceps will be described as an example of the surgical instrument. 101 is a long cylindrical member constituting the main part of the forceps, 102 is a rod formed of a metal rod as an internal member disposed inside the cylindrical member 101 so as to be movable in its length direction, and 102a is an engagement member. A stop member, 103 is a first gripping mechanism that realizes the gripping force of the forceps to be simulated, 104 is a handle as a movement driving force transmission means, 104a is a handle rod, 104b is a guide member, 104c is a shaft, and 105 is the cylindrical shape Opening portions 106 formed on both side surfaces of the intermediate portion of the member 101 are arranged so as to be able to contact both side surfaces of the rod 102 through the opening portion 105, and a contact member constituting the first gripping mechanism 103, 107 is a first member. The screw 107 is configured to control the opening and closing of the contact member 106, and the screw 107 is configured according to the gripping force of the forceps that configures the first gripping mechanism 103 and simulates it. Bevel gears giving rotation force, 109 is controlled motor, by surgery simulator motor 109 (not shown) which drives the bevel gear 108 constitute a first gripping mechanism 103. The principal part of the first gripping mechanism 103 is shown in FIG.
The locking member 102a is formed at the end of the rod 102, for example, in a pin shape. The handle 104 includes a handle rod 104a, a guide member 104b, and a shaft 104c. The guide member 104b is elongated and formed in an oval shape having a space inside. The guide member 104b is fixed to the handle 104 via a long handle rod 104a, and one portion of the handle rod 104a is simulated via a shaft 104c. A surgical instrument body, for example, a tubular member 101 is attached to an extended member. A locking member 102a of the rod 102 is disposed in the oval inner space of the guide member 104b, and the handle 104 and the rod 102 are connected. By operating the handle 104, the locking member 102a can slide along the side surface of the guide member 104b forming the oval inner space. FIG. 1C shows a state where the handle 104 is operated to rotate about the shaft 104c.
FIG. 2 is a functional block diagram of the simulator used in the present invention. Reference numeral 201 denotes a simulated surgical tool, 202 denotes a gripping mechanism, and 203 denotes a surgical tool position / posture mechanism, which indicate the position and orientation of the simulated surgical tool 201. 204 is a first detection unit that detects the position (opening / closing state) of a forceps simulated by the gripping mechanism 202, 205 is a second detection unit that detects the position of each part of the surgical instrument position / posture mechanism 203, and 206 is A simulation calculation unit that calculates a response to the operation of the surgical instrument, 207 is a surgical simulation calculation unit that performs a surgical simulation calculation based on positional information of the first detection unit 205 and the second detection unit 207, and 208 is a surgical simulation calculation unit 207. Based on the above calculation, a display calculation unit that generates and calculates an image so that an operator of the simulated operation can see, 209 is a gripping force calculation unit that calculates the gripping reaction force of the forceps simulated by the gripping mechanism 202, and 210 is a grip A reaction force calculation unit that calculates a reaction force to the simulated surgical instrument 201 other than the reaction force, 211 a display unit that displays an image generated by the display calculation unit 208, and 212 a gripping force calculated by the gripping force calculation unit 209 First control unit for controlling the gripping mechanism 202 so as to generate, 213 denotes a second control unit for controlling the surgical instrument position and orientation mechanism 203 so as to generate a reaction force due to the calculation of the reaction force calculation unit 210.

ロッド102の一端方向の部分には第1の把持機構103が設けてあり、他端にはハンドル104が連結されている。ハンドル104を駆動してロッド102を移動させたとき、一端方向の部分に第1の把持機構103が設けていることにより、実際のハンドル104の操作を模擬する。第1の把持機構103は臓器の一部を挟むような“開閉操作による感覚を模擬”するものであるが、実際の鉗子のように挟み状の形態を持つ必要はなく、挟み状形態物の開閉の感覚をロッド102を介してハンドル104に伝えるように模擬するものであればよい。ロッド102が移動可能として、ロッド102の一端は後述する円板301(図3)にユニバーサルジョイントで構成する第1の連結部材302により連結する。
筒状部材101はハンドル104とは反対方向の先端が術具位置姿勢機構203を介してシミュレータ装置の一部に連結される。術具位置姿勢機構203は、円板301、第1の連結部材302および3個の支持部材303,304,305で構成する。各支持部材303,304,305の各下方部分はモータ等の駆動装置を介してシミュレータ装置に設置され、各駆動装置の制御により円板301を所定の領域で自在に移動制御することができる。そして、鉗子本体を模擬する筒状部材101が円板301により移動が制御され、反力を受ける。
A first gripping mechanism 103 is provided at a portion of the rod 102 in one end direction, and a handle 104 is connected to the other end. When the handle 104 is driven and the rod 102 is moved, the actual operation of the handle 104 is simulated because the first gripping mechanism 103 is provided in a portion in one end direction. The first gripping mechanism 103 “simulates the sensation of opening and closing operations” that sandwiches a part of an organ, but does not need to have a sandwiched form like an actual forceps. What is necessary is just to simulate opening / closing sensation to the handle 104 via the rod 102. The rod 102 is movable, and one end of the rod 102 is connected to a disc 301 (FIG. 3) described later by a first connecting member 302 formed of a universal joint.
The cylindrical member 101 has a distal end opposite to the handle 104 connected to a part of the simulator device via a surgical instrument position / posture mechanism 203. The surgical instrument position / posture mechanism 203 includes a disc 301, a first connecting member 302, and three support members 303, 304, and 305. The lower portions of the support members 303, 304, and 305 are installed in the simulator device via a driving device such as a motor, and the disc 301 can be freely moved and controlled in a predetermined region by the control of each driving device. Then, the movement of the cylindrical member 101 simulating the forceps body is controlled by the disc 301 and receives a reaction force.

操作者は模擬術具を用いて、表示部211に表示されている手術状況に応じて、手術操作を行う。術具は手術操作によりその位置・姿勢を変化し、変化の状態は術具位置姿勢機構203の変化に現れ、その位置・姿勢変化を計測した第2の検出部205を介して手術模擬計算部207に送られ、表示計算部208でその変化が画像生成され、表示部211に表示される。
操作者が例えば、臓器として血管を鉗子により把持するとき、ハンドル104を握ると、ロッド102が引かれ移動する。ロッド102の移動量は第1の検出部204で検出される。第1の検出部204で検出された移動量は、前述の第2の検出部205からの術具の位置・姿勢の変化量とともに、手術模擬計算部207に取り込まれる。手術模擬計算部207は手術状況に応じた模擬計算をする。表示計算部208は、鉗子が血管を把持する状況の画像を生成し、表示部211に表示する。把持力計算部209は、把持物がない場合は少ない力で把持部が閉まり、把持部が血管にあたると把持を模擬して、血管の弾性に応じて、ハンドル104を握るときのロッド102の移動を接触部材106が制限するように第1の制御部212を制御する。操作者はハンドル104にかける力に抗してロッド102の移動が制限されることで血管を把持する感覚をハンドル104の操作を通じて体感することができる。ロッド102の移動の制限制御は接触部材106をモータ109の駆動により閉制御して行う。反力計算部210は、術具位置姿勢機構203の移動に応じて円板301を移動させ、支持部材303,304,305にフィードバックし、支持部材303,304,305を駆動して、円板301の位置・姿勢を制御して模擬術具201に反力に応じた力を発生させる。
The operator uses the simulated surgical tool to perform a surgical operation in accordance with the surgical situation displayed on the display unit 211. The surgical tool changes its position / posture by a surgical operation, and the state of the change appears in the change of the surgical tool position / posture mechanism 203, and the operation simulation calculation unit via the second detection unit 205 that measures the change of the position / posture The change is sent to 207, and the change is generated by the display calculation unit 208 and displayed on the display unit 211.
For example, when an operator grasps a blood vessel as an organ with forceps, when the operator grasps the handle 104, the rod 102 is pulled and moved. The amount of movement of the rod 102 is detected by the first detection unit 204. The movement amount detected by the first detection unit 204 is taken into the surgical simulation calculation unit 207 together with the change amount of the position / posture of the surgical tool from the second detection unit 205 described above. The operation simulation calculation unit 207 performs simulation calculation according to the operation situation. The display calculation unit 208 generates an image of the situation in which the forceps grips the blood vessel and displays the image on the display unit 211. The gripping force calculation unit 209 simulates gripping when the gripping part closes with a small force when there is no gripped object, and the gripping part hits the blood vessel, and moves the rod 102 when gripping the handle 104 according to the elasticity of the blood vessel. The first control unit 212 is controlled so that the contact member 106 limits the above. The operator can experience the feeling of grasping the blood vessel through the operation of the handle 104 by restricting the movement of the rod 102 against the force applied to the handle 104. Restriction control of the movement of the rod 102 is performed by closing the contact member 106 by driving a motor 109. The reaction force calculation unit 210 moves the disc 301 according to the movement of the surgical instrument position / posture mechanism 203, feeds back to the support members 303, 304, and 305, drives the support members 303, 304, and 305, and The position / posture 301 is controlled to cause the simulated surgical tool 201 to generate a force corresponding to the reaction force.

図4は、第2の把持機構401を筒状部材101と円板301との間に介在させ、筒状部材101の長さ方向を軸とする回転に対する反力を提示する実施例を説明する図である。
図4において、401は第2の把持機構、402は搭載部材、403は筒状部材101の外側面に接触可能に配置し第2の把持機構401を構成する第2の接触部材、404は第2の把持機構401を構成し前記接触部材403を開閉制御するネジ、405は第2の把持機構401を構成し筒状部材101の長さ方向を軸とする回転操作の状況に応じて前記ネジ404に回転力を与える傘歯車、406は第2の把持機構401を構成し前記搭載部材402に搭載され前記傘歯車405を駆動するモータ、モータ406は図示しない手術シミュレータにより制御される。407は、前記搭載部材402を筒状部材101の周囲に回転可能にベアリングを内蔵して連結する第2の連結部材、408は、ユニバーサルジョイントで構成し、前記搭載部材402を円板301に連結する第3の連結部材である。したがって、図2における術具位置姿勢機構203は、実施例2において図4に示すように、円板301、第1の連結部材302、第3の連結部材408および3個の支持部材303,304,305で構成する。第2の把持機構401の要部を図4(b)に示す。
FIG. 4 illustrates an embodiment in which a second gripping mechanism 401 is interposed between the tubular member 101 and the disc 301 to present a reaction force against rotation about the length direction of the tubular member 101. FIG.
In FIG. 4, 401 is a second gripping mechanism, 402 is a mounting member, 403 is disposed so as to be able to contact the outer surface of the cylindrical member 101, and a second contact member constituting the second gripping mechanism 401, 404 is a first A screw 405 constitutes the second gripping mechanism 401 and controls the opening and closing of the contact member 403, and 405 constitutes the second gripping mechanism 401, and the screw according to the state of the rotation operation about the length direction of the tubular member 101. A bevel gear 406 for applying a rotational force to 404, a motor 406 constituting the second gripping mechanism 401 and mounted on the mounting member 402 to drive the bevel gear 405, and a motor 406 are controlled by a surgical simulator (not shown). Reference numeral 407 denotes a second connecting member for connecting the mounting member 402 with a built-in bearing rotatably around the cylindrical member 101. Reference numeral 408 denotes a universal joint, and the mounting member 402 is connected to the disc 301. It is the 3rd connecting member to do. Therefore, the surgical instrument position / posture mechanism 203 in FIG. 2 includes a disc 301, a first connecting member 302, a third connecting member 408, and three support members 303 and 304 as shown in FIG. , 305. The principal part of the second gripping mechanism 401 is shown in FIG.

操作者が例えば、臓器として血管を鉗子により把持して鉗子を回転すると、筒状部材101の回転量は第2の検出部205で検出される。第2の検出部205で検出された回転量は、前述の第1の検出部204からのロッド102の移動量とともに、手術模擬計算部207に取り込まれる。手術模擬計算部207は手術状況に応じた模擬計算をする。表示計算部208は、鉗子が血管を把持回転する状況の画像を生成し、表示部211に表示する。把持物がない場合は少ない力で把持部が閉まり、抵抗なく筒状部材101を第2の連結部材407により搭載部材402上を滑らかに回転することができる。把持力計算部209は、把持部が血管にあたると把持を模擬して、血管の弾性に応じて、ハンドル104を握るときのロッド102の移動を接触部材106が制限するように第1の制御部212を制御する。このとき、把持力計算部209は、筒状部材101を回転すると、血管の弾性に応じて、筒状部材101の回転を第2の接触部材403が制限するように第1の制御部を制御する。操作者はハンドル104にかける力に抗して鉗子の回転すなわち筒状部材101の回転が制限されることで血管を回転変形する感覚をハンドル104の操作による筒状部材101の回転を通じて体感することができる。筒状部材101の回転の制限制御は第2の接触部材403をモータ406の駆動により閉制御して行う。回転制御の場合、反力計算部210は、術具位置姿勢機構203の回転移動に応じて円板301を移動させ、支持部材303,304,305にフィードバックし、支持部材303,304,305を駆動して、円板301の位置・姿勢を制御して模擬術具201に回転反力に応じた力を発生させる。   For example, when the operator grips a blood vessel as an organ with forceps and rotates the forceps, the rotation amount of the cylindrical member 101 is detected by the second detection unit 205. The rotation amount detected by the second detection unit 205 is taken into the surgical simulation calculation unit 207 together with the movement amount of the rod 102 from the first detection unit 204 described above. The operation simulation calculation unit 207 performs simulation calculation according to the operation situation. The display calculation unit 208 generates an image of a situation in which the forceps grips and rotates the blood vessel and displays the image on the display unit 211. When there is no gripping object, the gripping portion is closed with a small force, and the cylindrical member 101 can be smoothly rotated on the mounting member 402 by the second connecting member 407 without resistance. The gripping force calculation unit 209 simulates gripping when the gripping part hits a blood vessel, and controls the first control unit so that the contact member 106 restricts the movement of the rod 102 when gripping the handle 104 according to the elasticity of the blood vessel. 212 is controlled. At this time, when the cylindrical member 101 is rotated, the gripping force calculation unit 209 controls the first control unit so that the second contact member 403 restricts the rotation of the cylindrical member 101 according to the elasticity of the blood vessel. To do. The operator senses the feeling of rotating and deforming the blood vessel by rotating the cylindrical member 101 by operating the handle 104 by restricting the rotation of the forceps, that is, the rotation of the cylindrical member 101 against the force applied to the handle 104. Can do. Restriction control of the rotation of the cylindrical member 101 is performed by closing the second contact member 403 by driving the motor 406. In the case of rotation control, the reaction force calculation unit 210 moves the disc 301 in accordance with the rotational movement of the surgical instrument position / posture mechanism 203, feeds back to the support members 303, 304, and 305, and causes the support members 303, 304, and 305 to move. By driving, the position / posture of the disc 301 is controlled to cause the simulated surgical instrument 201 to generate a force corresponding to the rotational reaction force.

101 筒状部材
102 ロッド
103 第1の把持機構
104 ンドル(移動駆動力伝達手段)
105 開口部
106 第1の接触部材
107 ネジ
108 傘歯車
109 モータ
DESCRIPTION OF SYMBOLS 101 Cylindrical member 102 Rod 103 1st holding | grip mechanism 104 Dollar (movement drive force transmission means)
105 opening 106 first contact member 107 screw 108 bevel gear 109 motor

Claims (2)

コンピュータ制御による手術シミュレータに用いる鉗子であって、
長尺状の筒状部材と、前記筒状部材の内部にその長さ方向に移動可能に配置した内部部材と、
前記筒状部材後端に前記内部部材と連結して内部部材を筒状部材内の長さ方向に移動する移動駆動力伝達手段と、
前記筒状部材の中間部の対する両側面に形成した開口部を通して前記内部部材に接触可能に接触部材を配置し、手術シミュレーションにおける鉗子の把持の状況に応じて当該接触部材の接触力を制御して鉗子の把持反力を模擬する把持機構と、を
有することを特徴とする手術シミュレータに用いる鉗子。
A forceps used in a computer-controlled surgery simulator,
An elongated tubular member, and an internal member disposed inside the tubular member so as to be movable in the length direction thereof;
Moving driving force transmission means connected to the inner member at the rear end of the tubular member to move the inner member in the longitudinal direction in the tubular member;
A contact member is disposed so as to be able to contact the inner member through openings formed on both side surfaces of the intermediate portion of the cylindrical member, and the contact force of the contact member is controlled according to the forceps gripping situation in the surgical simulation. And a grasping mechanism that simulates a grasping reaction force of the forceps.
コンピュータ制御による手術シミュレータに用いる鉗子であって、
長尺状の筒状部材と、前記筒状部材の内部にその長さ方向に移動可能に配置した内部部材と、
前記筒状部材後端に前記内部部材と連結して内部部材を筒状部材内の長さ方向に移動する移動駆動力伝達手段と、
前記筒状部材の中間部の対する両側面に接触可能に接触部材を配置し、手術シミュレーションにおける鉗子の回転の状況に応じて当該接触部材の接触力を制御して鉗子の回転反力を模擬する把持機構と、を
有することを特徴とする手術シミュレータに用いる鉗子。
A forceps used in a computer-controlled surgery simulator,
An elongated tubular member, and an internal member disposed inside the tubular member so as to be movable in the length direction thereof;
Moving driving force transmission means connected to the inner member at the rear end of the tubular member to move the inner member in the longitudinal direction in the tubular member;
The contact members are arranged so as to be able to contact both side surfaces of the intermediate portion of the cylindrical member, and the contact force of the contact members is controlled according to the rotation state of the forceps in the surgical simulation to simulate the rotational reaction force of the forceps. A forceps used in a surgical simulator characterized by having a gripping mechanism.
JP2012286773A 2012-12-28 2012-12-28 Surgical simulator forceps Expired - Fee Related JP6192932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286773A JP6192932B2 (en) 2012-12-28 2012-12-28 Surgical simulator forceps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286773A JP6192932B2 (en) 2012-12-28 2012-12-28 Surgical simulator forceps

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016215023A Division JP6214742B2 (en) 2016-11-02 2016-11-02 Surgical simulator forceps

Publications (2)

Publication Number Publication Date
JP2014130184A true JP2014130184A (en) 2014-07-10
JP6192932B2 JP6192932B2 (en) 2017-09-06

Family

ID=51408641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286773A Expired - Fee Related JP6192932B2 (en) 2012-12-28 2012-12-28 Surgical simulator forceps

Country Status (1)

Country Link
JP (1) JP6192932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134710A (en) * 2019-02-20 2020-08-31 国立大学法人大阪大学 Surgical operation training device
CN111681490A (en) * 2020-07-20 2020-09-18 秦喜顺 Real operation panel of instructing of integrated form mechatronic
JP2021517989A (en) * 2018-03-09 2021-07-29 ラパロ エスペー・ゾオLaparo Sp. Z O.O. Laparoscopic trainer work tools and operation / measurement set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704791A (en) * 1995-03-29 1998-01-06 Gillio; Robert G. Virtual surgery system instrument
US20050069854A1 (en) * 2001-09-03 2005-03-31 Michael Maier Device for simulating a rod-shaped surgical instrument for generating a feedback signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704791A (en) * 1995-03-29 1998-01-06 Gillio; Robert G. Virtual surgery system instrument
US20050069854A1 (en) * 2001-09-03 2005-03-31 Michael Maier Device for simulating a rod-shaped surgical instrument for generating a feedback signal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517989A (en) * 2018-03-09 2021-07-29 ラパロ エスペー・ゾオLaparo Sp. Z O.O. Laparoscopic trainer work tools and operation / measurement set
JP7349159B2 (en) 2018-03-09 2023-09-22 ラパロ エスペー・ゾオ Laparoscopic trainer work tools and operation/measurement set
JP2020134710A (en) * 2019-02-20 2020-08-31 国立大学法人大阪大学 Surgical operation training device
JP7201998B2 (en) 2019-02-20 2023-01-11 国立大学法人大阪大学 surgical training device
CN111681490A (en) * 2020-07-20 2020-09-18 秦喜顺 Real operation panel of instructing of integrated form mechatronic
CN111681490B (en) * 2020-07-20 2021-11-16 桂林拓达机电工程有限公司 Real operation panel of instructing of integrated form mechatronic

Also Published As

Publication number Publication date
JP6192932B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
US10238461B2 (en) Methods, systems, and devices for control of surgical tools in a robotic surgical system
Talasaz et al. The role of direct and visual force feedback in suturing using a 7-DOF dual-arm teleoperated system
CN107111682B (en) Integrated user environment
US20070018958A1 (en) Force reflective robotic control system and minimally invasive surgical device
Zahraee et al. Toward the development of a hand-held surgical robot for laparoscopy
JP6886976B2 (en) Robotic surgical system with independent roll, pitch, and yaw scaling
KR100934265B1 (en) Circular Haptic Device and Haptic Interface for Gastrointestinal Endoscopy
JP6762280B2 (en) Forceps system
GB2589458A (en) A virtual reality surgical system including a surgical tool assembly with haptic feedback
Coad et al. Training in divergent and convergent force fields during 6-DOF teleoperation with a robot-assisted surgical system
Talasaz et al. Effect of force feedback on performance of robotics-assisted suturing
JP6192932B2 (en) Surgical simulator forceps
KR100457927B1 (en) Endoscopy Training System Using Haptic Interface and Virtual Reality
Sivananthan et al. A novel gaze-controlled flexible robotized endoscope; preliminary trial and report
Shi et al. A shape memory alloy‐actuated surgical instrument with compact volume
CN113993669A (en) Estimating joint friction and tracking error of a robotic end effector
JP6214742B2 (en) Surgical simulator forceps
Santos-Carreras et al. Influence of Force and Torque Feedback on Operator Performance in a VR‐Based Suturing Task
Wortman Design, analysis, and testing of in vivo surgical robots
KR100802136B1 (en) Haptic interface for gastrointestinal endoscopy simulators
KR101231526B1 (en) Reaction supplying apparatus for endoscope simulator
Oquendo et al. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment
Dargar et al. Development of a haptic interface for natural orifice translumenal endoscopic surgery simulation
Dargar et al. A Decoupled 2 DOF Force Feedback Mechanism for the Virtual Translumenal Endoscopic Surgical Trainer (VTEST TM)
Zahraee Dexterous Serial Comanipulation for Minimally Invasive Surgery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6192932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees