JP2014128900A - Polyurethane resin integrally-molded metal heat insulation long material - Google Patents

Polyurethane resin integrally-molded metal heat insulation long material Download PDF

Info

Publication number
JP2014128900A
JP2014128900A JP2012287215A JP2012287215A JP2014128900A JP 2014128900 A JP2014128900 A JP 2014128900A JP 2012287215 A JP2012287215 A JP 2012287215A JP 2012287215 A JP2012287215 A JP 2012287215A JP 2014128900 A JP2014128900 A JP 2014128900A
Authority
JP
Japan
Prior art keywords
long
polyurethane resin
metal
solid
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287215A
Other languages
Japanese (ja)
Inventor
Yukiko Arima
由紀子 有馬
Hiroshi Ikuta
広志 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Covestro Urethane Co Ltd
Original Assignee
Sumika Bayer Urethane Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Bayer Urethane Co Ltd filed Critical Sumika Bayer Urethane Co Ltd
Priority to JP2012287215A priority Critical patent/JP2014128900A/en
Publication of JP2014128900A publication Critical patent/JP2014128900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic resin filled metal-made long material which is used majorly in window frame building materials and molded integrally with a polyurethane resin and does not undergo shrinkage of the polyurethane resin after integral molding without use of a primer on the metal side, filling with an inorganic filler or after repetition of high temperature/low temperature thermal hysteresis.SOLUTION: A metal long material comprises a metal-made long tub-like frame filled with a polyurethane resin, and the polyurethane resin layer includes a solid long linear product along the longitudinal direction of the polyurethane resin layer. The metal long material is produced by a method of producing the metal long material, the method comprising: arranging the solid linear product along the central vicinity, in the longitudinal direction, of the metal long material; pouring a polyurethane resin molding composition at a time; and hardening for integral molding, in a step of injecting the polyurethane resin molding composition in a metal-made long tub-like frame.

Description

本発明は窓枠などに用いられる断熱性を有する金属長尺形材、特に一体成形される金属長尺形材に関する。 The present invention relates to a long metal material having heat insulation used for a window frame or the like, and more particularly to a long metal material integrally formed.

従来、金属長尺形材と断熱材として用いられるポリウレタン樹脂の一体成形による断熱サッシが知られている。しかし、金属長尺形材(電着塗装されたアルミニウム型材など)とポリウレタン樹脂の接着性が悪いことや、成形したポリウレタン樹脂が自己収縮すること、またアルミニウム等の金属製形材とポリウレタン樹脂の線膨張率が大きく異なるため、一体成形後に金属長尺形材とポリウレタン樹脂間で剥離やその結果、空間部分が生じることがある。その結果、窓枠として使用した場合、ズレにより断熱性能が低下するばかりでなく、ズレから雨水が浸入したり、その結果カビ等が発生する問題が生じることになり、窓枠用の断熱サッシとして満足できるものではない。 Conventionally, a heat insulating sash by integrally molding a long metal material and a polyurethane resin used as a heat insulating material is known. However, the adhesion of polyurethane long resin (such as electrodeposited aluminum mold) and polyurethane resin is poor, the molded polyurethane resin is self-shrinking, and aluminum metal and polyurethane resin Since the linear expansion coefficients are greatly different, separation may occur between the long metal material and the polyurethane resin after integral molding, and as a result, a space portion may occur. As a result, when used as a window frame, not only does the heat insulation performance deteriorate due to the displacement, but also the problem that rainwater enters from the displacement, and as a result, mold, etc. occurs, as a heat insulation sash for the window frame. It is not satisfactory.

その対策として、アルミニウム型材の電着塗装表面にプライマーを塗布し、型材とポリウレタン樹脂の接着性を改良する方法(特許文献1:特開2007-045976)が提案されている。しかしこの方法は、複雑な形状の窓枠材に効果的に均一にプライマーを塗布することが困難であることや、その結果長期間断熱サッシが寒冷下や高温下に繰り返し置かれ収縮と膨張を繰り返した時、プライマーの効果が十分でなければ、金属長尺形材とポリウレタン樹脂が剥離し、剥離による隙間(以後「ズレ」と記述する)が生じることがある。 As a countermeasure, a method has been proposed in which a primer is applied to the electrodeposited surface of an aluminum mold material to improve the adhesion between the mold material and the polyurethane resin (Patent Document 1: Japanese Patent Application Laid-Open No. 2007-045976). However, this method makes it difficult to apply a primer effectively and uniformly to a window frame material having a complicated shape, and as a result, the thermal insulation sash is repeatedly placed under cold or high temperature for a long time, and shrinks and expands. If the effect of the primer is not sufficient when it is repeated, the long metal material and the polyurethane resin may peel off, and a gap (hereinafter referred to as “deviation”) due to peeling may occur.

またポリウレタン樹脂に繊維状無機フィラーを混合し収縮率を小さくする方法(特許文献2:特開2007-332212)が提案されている。しかしこの方法では、ポリウレタン原料材の粘度がかなり高くなることや、無機フィラーに対応するために特殊な成形機が必要とされ、設備やコスト面での問題があった。 Further, a method has been proposed in which a fibrous inorganic filler is mixed with polyurethane resin to reduce the shrinkage (Patent Document 2: Japanese Patent Application Laid-Open No. 2007-332212). However, in this method, the viscosity of the polyurethane raw material is considerably increased, and a special molding machine is required to cope with the inorganic filler, which causes problems in equipment and cost.

また特許文献3(特開2007-291617)では、ポリウレタン樹脂原料を2回に分けて注入し、樹脂の中央付近にガラスロービングを入れて一体成形する方法が示されている。しかしこの方法では、原料を2回に分けて注入しなければならない工程の複雑さや、ガラスロービングから比較的大きな気泡が発生しそれが成形樹脂中に残るため、強度低下や雨水の浸入が問題になる場合があった。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-291617) discloses a method in which a polyurethane resin raw material is injected in two portions and glass roving is put in the vicinity of the center of the resin so as to be integrally formed. However, with this method, the complexity of the process in which the raw material must be injected in two steps, and relatively large bubbles are generated from the glass roving and remain in the molding resin. There was a case.

特開2007-045976JP2007-045976 特開2007-332212JP2007-332212 特開2007-291617JP2007-291617

本発明は、主に窓枠建材に用いられる、ポリウレタン樹脂により一体成形する金属製長尺形材において、金属側にプライマーを使用しなくとも、また無機フィラーを充填しなくとも、一体成形後にポリウレタン樹脂が収縮しない、また高温-低温の繰り返し熱履歴を繰り返しても、収縮変化を生じない合成樹脂充填型金属長尺形材を提供することを目的とする。 The present invention is a long metal material integrally molded with a polyurethane resin, which is mainly used for window frame building materials, and it is polyurethane after integral molding without using a primer on the metal side or filling with an inorganic filler. It is an object of the present invention to provide a synthetic resin-filled metal long shape material that does not shrink and does not change in shrinkage even when repeated high-temperature and low-temperature thermal history is repeated.

かかる問題を解決するために検討を重ねた結果、ポリウレタン樹脂が充填された金属長尺形材およびその製造方法を完成するに至った。
本発明は、金属製の長尺桶状枠にポリウレタン樹脂が充填された金属長尺形材であって、ポリウレタン樹脂層が固形長尺直線状物をポリウレタン樹脂層の長手方向に沿って内包する金属長尺形材を提供する。
本発明は、ポリウレタン樹脂形成性組成物を金属製の長尺桶状枠に注入する工程において、金属長尺形材の長手方向の中央付近にそって、固形線状物を配置したのち、ポリウレタン樹脂形成性組成物を一度に流し込み、硬化させて一体成形する、金属長尺形材の製造方法をも提供する。
As a result of repeated studies to solve such problems, a metal long shape material filled with polyurethane resin and a manufacturing method thereof have been completed.
The present invention relates to a long metal material in which a polyurethane long resin frame is filled with a polyurethane resin, and the polyurethane resin layer encloses a solid long linear object along the longitudinal direction of the polyurethane resin layer. Providing long metal materials.
In the process of injecting the polyurethane resin-forming composition into a long metal frame made of metal, the present invention arranges a solid linear material along the vicinity of the center in the longitudinal direction of the long metal material, and then polyurethane. The present invention also provides a method for producing a long metal material, in which a resin-forming composition is poured at once and cured and integrally formed.

このようにして得られる断熱サッシは、樹脂部分の収縮変化が抑制されるため、成形後の収縮 あるいは 環境温度変化による収縮変化が小さく、窓枠用の断熱サッシとして使用した場合、窓枠型材とウレタン樹脂との間のズレが発生しなくなり、本来の性能を発揮できる。 The heat-insulating sash obtained in this way is less susceptible to shrinkage after molding or due to changes in ambient temperature because the shrinkage change of the resin part is suppressed, and when used as a heat-insulating sash for window frames, Deviation from the urethane resin does not occur and the original performance can be exhibited.

本発明の合成樹脂充填型金属長尺形材の斜視図を示す。The perspective view of the synthetic resin filling type | mold metal long shape material of this invention is shown. 本発明の合成樹脂充填型金属長尺形材の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the synthetic resin filling type | mold metal long shape material of this invention.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。
図1は、本発明の合成樹脂充填型金属長尺形材の斜視図を示す。また金属長尺形材の枠内部の構成をも示している。
Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.
FIG. 1 shows a perspective view of a synthetic resin-filled long metal material of the present invention. Moreover, the structure inside the frame of a metal long shape material is also shown.

図1に示されるように、金属長尺形材は、金属製の桶状の枠材1に非発泡性のポリウレタン樹脂3が充填されている。さらに枠内のポリウレタン樹脂3には固形長尺直線状物2が枠材1の長手方向に沿って埋入されている。このように固形長尺直線状物2がポリウレタン樹脂3の長手方向に沿って内包されることにより、ポリウレタン樹脂3の収縮が抑制される。 As shown in FIG. 1, in the long metal material, a non-foaming polyurethane resin 3 is filled in a metal bowl-like frame material 1. Furthermore, a solid long linear object 2 is embedded in the polyurethane resin 3 in the frame along the longitudinal direction of the frame member 1. Thus, the shrinkage | contraction of the polyurethane resin 3 is suppressed because the solid elongate linear object 2 is included along the longitudinal direction of the polyurethane resin 3. FIG.

図2は、本発明の合成樹脂充填型金属長尺形材の製造方法を示す断面図である。
図2のAは、工程(1)を始める前の枠材1の断面を示す。
図2のBは、工程(1)において、枠材1に固形長尺直線状物2を配置した状態(断面)を示す。図2のBにおいて、1つの固形長尺直線状物2を示す。しかし、固形長尺直線状物2の数は、複数であってよく、固形長尺直線状物2およびポリウレタン樹脂3が配置される枠材1の空間の断面1cm当たり、0.3〜10、例えば1〜3であってよい。
図2のCは、工程(2)により、枠材1中で固形長尺直線状物2のまわりにウレタン樹脂が硬化された状態(断面)を示す。
図2のDは、工程(2)の後に、枠材1の底面の一部分を切り欠いた状態を示す図である。枠材の底面の一部分を切り欠いてポリウレタン樹脂を露出させることにより、長尺形材が良好な断熱性能を発揮する。
FIG. 2 is a cross-sectional view illustrating a method for producing a synthetic resin-filled long metal material of the present invention.
FIG. 2A shows a cross section of the frame member 1 before starting the step (1).
B of FIG. 2 shows the state (cross section) which has arrange | positioned the solid elongate linear object 2 to the frame material 1 in a process (1). In FIG. 2B, one solid long linear object 2 is shown. However, the number of the solid long linear object 2 may be plural, and 0.3 to 10 per 1 cm 2 of the cross section of the space of the frame member 1 in which the solid long linear object 2 and the polyurethane resin 3 are arranged. For example, it may be 1-3.
FIG. 2C shows a state (cross section) in which the urethane resin is cured around the solid long linear object 2 in the frame member 1 by the step (2).
FIG. 2D is a diagram illustrating a state in which a part of the bottom surface of the frame member 1 is cut out after the step (2). By cutting out a part of the bottom surface of the frame material to expose the polyurethane resin, the long material exhibits good heat insulation performance.

ポリウレタン樹脂は、金属長尺形材が窓枠などの建材として用いられた場合に、該建材に好適な剛性を付与しうるように所定の値以上の硬度を有していることが好ましい。本発明においては、ポリウレタン樹脂は非発泡性であり、密度1.05〜1.18g/cm3であることが好ましい。また測定法JIS K 6911において曲げ強度60〜90MPa、曲げモジュラス1000〜2000MPa、引張強度35〜60MPaであることが好ましい。ショアーD硬度は60以上であることが好ましい。 The polyurethane resin preferably has a hardness equal to or higher than a predetermined value so that when the long metal material is used as a building material such as a window frame, a suitable rigidity can be imparted to the building material. In the present invention, the polyurethane resin is non-foaming and preferably has a density of 1.05 to 1.18 g / cm 3 . Further, in the measuring method JIS K 6911, it is preferable that the bending strength is 60 to 90 MPa, the bending modulus is 1000 to 2000 MPa, and the tensile strength is 35 to 60 MPa. The Shore D hardness is preferably 60 or more.

金属製の長尺桶状枠は、一般に、アルミニウムからできていることが好ましいが、他の金属、例えば、鉄、ステンレス鋼などからできていてもよい。 In general, the metal long frame-like frame is preferably made of aluminum, but may be made of other metals such as iron and stainless steel.

固形長尺直線状物は、断面の最大寸法が、0.1〜2mm、好ましくは0.2〜1.5mmである線状物であることが好ましい。固形長尺直線状物の断面は、気泡を発生させる要因を有しないのであれば、円状であっても角状であってもよい。断面の形状は、例えば、円、楕円、または三角形および四角形を含む多角形であってよい。断面の形状が円形である場合には、断面の最大寸法は直径(または径)になる。固形長尺直線状物の線膨張係数が0.5〜30x10-6/Kの無機物であることが好ましい。固形長尺直線状物は一体成形時に気泡を発生させる要因を有しないことが重要であり、そのためには固形長尺直線状物の表面または内部に空間を有しないことが好ましい。また固形長尺直線状物の直径も重要であり、直径が2mm以上の場合は注入するポリウレタン樹脂原料(粘度を示す必要あり)と一体成形する際に空気を巻き込み易くなり、硬化後の樹脂中に気泡が残ることがあり好ましくない。 The solid long linear object is preferably a linear object having a maximum cross-sectional dimension of 0.1 to 2 mm, preferably 0.2 to 1.5 mm. The cross section of the solid long linear object may be circular or angular as long as it does not have a factor for generating bubbles. The cross-sectional shape may be, for example, a circle, an ellipse, or a polygon including a triangle and a rectangle. When the cross-sectional shape is circular, the maximum cross-sectional dimension is the diameter (or diameter). The solid long linear material is preferably an inorganic material having a linear expansion coefficient of 0.5 to 30 × 10 −6 / K. It is important that the solid long linear object does not have a factor that generates bubbles at the time of integral molding. For this purpose, it is preferable that there is no space on the surface or inside of the solid long linear object. The diameter of the solid long linear material is also important. When the diameter is 2 mm or more, it becomes easy to entrain air when integrally molded with the polyurethane resin raw material to be injected (need to show viscosity), and in the cured resin Air bubbles may remain in the surface, which is not preferable.

固形長尺直線状物を構成する無機物としては金属(例えば、鉄、ステンレス鋼、アルミ、銅、青銅、黄銅、ニッケル)またはガラスが好ましい。
固形長尺直線状物としては、例えば、直径0.1〜1.5mmの鉄線、ガラス線などが使用できる。
ポリウレタン樹脂100重量部に対し固形長尺直線状物を重量比において0.5重量部〜10重量部の割合で使用することが好ましい。固形長尺直線状物の量がポリウレタン樹脂100重量部に対して0.5重量部〜10重量部であることによって、断熱性能の低下を招いたり、一体成形時にエアの巻き込みが生じることなく、固形長尺直線状物がポリウレタン樹脂の収縮を抑えることが良好にできる。
As the inorganic substance constituting the solid long linear object, metal (for example, iron, stainless steel, aluminum, copper, bronze, brass, nickel) or glass is preferable.
As the solid long linear object, for example, an iron wire or a glass wire having a diameter of 0.1 to 1.5 mm can be used.
It is preferable to use a solid long linear material in a weight ratio of 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin. When the amount of the solid long linear material is 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin, the heat insulation performance is not lowered, or air entrainment does not occur at the time of integral molding, The solid long linear material can satisfactorily suppress the shrinkage of the polyurethane resin.

充填するポリウレタン樹脂は、水酸基を有するポリオール成分とイソシアネート成分から構成される2液反応型システムが好ましい。さらに、種々の性能、例えば断熱性や樹脂強度(硬度)が良好であるポリウレタン樹脂であることが好ましい。 The polyurethane resin to be filled is preferably a two-component reaction system composed of a polyol component having a hydroxyl group and an isocyanate component. Furthermore, it is preferable that it is a polyurethane resin with various performance, for example, heat insulation and resin strength (hardness).

ポリウレタン樹脂は、一般的なポリエーテルポリオールを単独または組み合わせて用いるポリオール成分、架橋剤、触媒、必要に応じて整泡剤を含んでなる主剤と、イソシアネート成分(有機ポリイソシアネート化合物)を硬化剤として、主剤と硬化剤の2液を混合させ室温で反応硬化させるものなどであって良い。 The polyurethane resin is a polyol component using a general polyether polyol alone or in combination, a crosslinking agent, a catalyst, and a main agent containing a foam stabilizer as necessary, and an isocyanate component (organic polyisocyanate compound) as a curing agent. In addition, a mixture of two liquids of a main agent and a curing agent may be used for reaction curing at room temperature.

ポリオール成分は、ポリエーテルポリオールのみからなっていてもよく、あるいはポリエーテルポリオールと他のポリオールの混合物、例えば、ポリエーテルポリオールとポリエステルポリオールの混合物からなっていてもよい。他のポリオールの量は、ポリオール成分に対して、50重量%以下、例えば40〜0.5重量%であってよい。
ポリエーテルポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、蔗糖などの水酸基含有化合物、ジエタノールアミン、トリエタノールアミンなどのアミノ基や水酸基を含有する化合物、あるいはエチレンジアミン、ジエチレントリアミン、ジアミノトルエンなどのアミノ基含有化合物を開始剤として、エチレンオキシド、プロピレンオキシドなどのアルキレンオキシドを付加した分子中に2〜8個の水酸基を含有し、平均水酸基当量が100〜5000のポリエーテルポリオールなどが用いられる。
また上述のポリエーテルポリオールをもとにしてポリビニルフィラーをグラフト化したポリマーポリオールや、ポリ尿素成分を分散させたPHDポリオールも同様に使用可能である。
本発明の目的のための樹脂物性を得るためには、平均官能度2.5〜4.0のポリエーテルポリオールを使用することが特に好ましい。これは1種類のポリエーテルポリオールを用いてもよいし、複数のポリエーテルポリオールを混合して用いてもよい。
ポリオールの粘度は、25℃で、100〜10000mPa・s、特に300〜5000mPa・sであることが好ましい。
The polyol component may consist solely of polyether polyol, or may comprise a mixture of polyether polyol and other polyols, such as a mixture of polyether polyol and polyester polyol. The amount of other polyols may be up to 50% by weight, for example 40-0.5% by weight, based on the polyol component.
Polyether polyols include hydroxyl group-containing compounds such as ethylene glycol, propylene glycol, diethylene glycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol and sucrose, compounds containing amino groups and hydroxyl groups such as diethanolamine and triethanolamine, or ethylenediamine. Polyether having 2 to 8 hydroxyl groups in the molecule to which an alkylene oxide such as ethylene oxide or propylene oxide has been added, and an average hydroxyl group equivalent of 100 to 5000, using an amino group-containing compound such as diethylenetriamine or diaminotoluene as an initiator A polyol or the like is used.
In addition, a polymer polyol obtained by grafting a polyvinyl filler based on the above-described polyether polyol and a PHD polyol in which a polyurea component is dispersed can also be used.
In order to obtain the resin physical properties for the purpose of the present invention, it is particularly preferable to use a polyether polyol having an average functionality of 2.5 to 4.0. For this, one kind of polyether polyol may be used, or a plurality of polyether polyols may be mixed and used.
The viscosity of the polyol is preferably 100 to 10,000 mPa · s, particularly 300 to 5000 mPa · s at 25 ° C.

硬化剤である有機ポリイソシアネート化合物としては、4,4’−ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’−ジフェニルメタンジイソシアネート(2,4’-MDI)、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)、またはこれらをウレタン変性やカルボジイミド変性したものが単独または混合したものを用いることが好ましい。 Examples of organic polyisocyanate compounds that are curing agents include 4,4′-diphenylmethane diisocyanate (4,4′-MDI), 2,4′-diphenylmethane diisocyanate (2,4′-MDI), polymethylene polyphenyl polyisocyanate ( (Polymeric MDI) or those obtained by urethane modification or carbodiimide modification thereof alone or in combination are preferably used.

架橋剤としては、ポリエーテルポリオールの開始剤等が使用できる。またこれらにアルキレンオキシドを付加した平均水酸基当量が100以下のポリエーテルポリオールなども架橋剤として用いられる。また芳香族系アミン系化合物、例えばジエチルトルエンジアミンなども使用できる。架橋剤の量は、ポリオール成分100重量部に対して、0.5〜10重量部であることが好ましい。 As the crosslinking agent, an initiator of polyether polyol or the like can be used. In addition, polyether polyols having an average hydroxyl equivalent weight of 100 or less obtained by adding alkylene oxide to these may also be used as a crosslinking agent. Aromatic amine compounds such as diethyltoluenediamine can also be used. The amount of the crosslinking agent is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyol component.

触媒としては、アミン触媒や金属触媒が単独あるいは併用して用いられる。
アミン触媒の例としては、トリエチレンジアミン、ペンタメチルジエチレントリアミン、1,8-ジアザビシクロ−5,4,0−ウンデセン−7、ジメチルアミノエタノール、テトラメチルエチレンジアミン、ジメチルベンジルアミン、テトラメチルヘキサメチレンジアミン、ビス(2−ジメチルアミノエチル)エーテル、N,N'−ジメチルアミノプロピルアミン、N,N'−ジメチルエタノールアミン、1−イソブチル−2−メチルイミダゾールなどの第3級アミンが使われる。
As the catalyst, an amine catalyst or a metal catalyst is used alone or in combination.
Examples of amine catalysts include triethylenediamine, pentamethyldiethylenetriamine, 1,8-diazabicyclo-5,4,0-undecene-7, dimethylaminoethanol, tetramethylethylenediamine, dimethylbenzylamine, tetramethylhexamethylenediamine, bis ( Tertiary amines such as 2-dimethylaminoethyl) ether, N, N′-dimethylaminopropylamine, N, N′-dimethylethanolamine, 1-isobutyl-2-methylimidazole are used.

金属触媒の例としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、オクタン酸錫などの有機錫化合物、カリウムアセテート等の金属化合物が用いられる。
触媒の量は、ポリオール成分100重量部に対して0.01〜3重量部が好ましい。
Examples of the metal catalyst include organic tin compounds such as dibutyltin dilaurate, dibutyltin diacetate and tin octoate, and metal compounds such as potassium acetate.
The amount of the catalyst is preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of the polyol component.

必要に応じて使用できる整泡剤としては、例えばシリコーン系整泡剤等があり、主剤と硬化剤の2液を混合する際に混入する空気によって生じる泡を安定微細化する時に用いるのが良い。整泡剤の量は、ポリオール成分100重量部に対して、0.01〜3重量であることが好ましい。 Examples of foam stabilizers that can be used as needed include silicone foam stabilizers, which are preferably used to stably refine the foam produced by the air mixed when mixing the two liquids of the main agent and the curing agent. . The amount of the foam stabilizer is preferably 0.01 to 3 weights with respect to 100 parts by weight of the polyol component.

主剤は、他の添加剤(例えば、着色剤、紫外線吸収剤、酸化防止剤)を含んでもよい。他の添加剤の量は、ポリオール成分100重量部に対して、5重量部以下、例えば0.1〜3重量部であることが好ましい。
主剤と硬化剤の2液を混合させ室温で反応硬化させる際には、イソシアネート基/水酸基=0.7〜1.4(当量比、NCOインデックス)、特に0.8〜1.2の範囲で反応硬化させるように主剤と硬化剤の量を選択することが好ましい。
主剤における水分については、ポリオール、架橋剤、触媒、整泡剤等の原料に、当初から含まれる水分またこれらを配合する時に混入する水分(一般に、主剤に対して0.2重量%以下、例えば0.005〜0.15重量%)以外は、意図的に添加しないのが好ましい。
The main agent may contain other additives (for example, a colorant, an ultraviolet absorber, and an antioxidant). The amount of the other additive is preferably 5 parts by weight or less, for example, 0.1 to 3 parts by weight with respect to 100 parts by weight of the polyol component.
When mixing two liquids of the main agent and curing agent and reaction curing at room temperature, isocyanate group / hydroxyl group = 0.7 to 1.4 (equivalent ratio, NCO index), especially in the range of 0.8 to 1.2. It is preferable to select the amounts of the main agent and the curing agent so as to cause reaction curing.
About the water | moisture content in a main ingredient, the water | moisture content mixed at the time of mix | blending the water | moisture content initially contained in these, such as a polyol, a crosslinking agent, a catalyst, and a foam stabilizer (generally 0.2 weight% or less with respect to a main ingredient, for example, Except for 0.005 to 0.15% by weight, it is preferable not to add intentionally.

ポリウレタン樹脂は非発泡(意図的に主剤に水を添加して発泡させない)であることが好ましい。主剤に用いる各原料の当初から含まれる水分またこれらを配合する時に混入する水分から考慮すると、1.0g/cm以上、例えば、1.02〜1.25g/cm3、特に1.05〜1.18g/cm3の密度が好ましい。
ポリウレタン樹脂が非発泡であると、電着塗装されたアルミニウム型材の形状維持のためのポリウレタン樹脂の強度が得られ易く、用途である断熱サッシの変形を防止することが出来る。
2液反応硬化型ポリウレタン樹脂(主剤と硬化剤)の反応性は、原料温度25℃のときゲルタイムで10〜100秒にするのが好ましい。特に好ましくは15〜60秒である。更に好ましいのは20〜50秒である。ゲルタイムとは、主剤と硬化剤の混合後、反応硬化が始まって樹脂がゲル化する時間を言う。
The polyurethane resin is preferably non-foamed (does not foam by intentionally adding water to the main agent). Considering the moisture contained from the beginning of each raw material used for the main agent or the moisture mixed when blending these, 1.0 g / cm 3 or more, for example, 1.02 to 1.25 g / cm 3 , particularly 1.05 to A density of 1.18 g / cm 3 is preferred.
When the polyurethane resin is non-foamed, the strength of the polyurethane resin for maintaining the shape of the electrodeposited aluminum mold can be easily obtained, and deformation of the heat-insulating sash that is used can be prevented.
The reactivity of the two-component reaction curable polyurethane resin (main agent and curing agent) is preferably 10 to 100 seconds in gel time when the raw material temperature is 25 ° C. Particularly preferred is 15 to 60 seconds. More preferred is 20 to 50 seconds. The gel time refers to the time for reaction hardening to start and the resin to gel after mixing of the main agent and the curing agent.

本発明の金属長尺形材の製造法は、
(1)金属製の長尺桶状枠に、固形長尺直線状物をセットする工程と、
(2)その後、長尺桶状枠にポリウレタン樹脂形成性組成物を一度に流し込み、ポリウレタン樹脂形成性組成物を硬化させ、それらを一体成形する工程
を含む。
The method for producing the long metal material of the present invention is as follows.
(1) a step of setting a solid long linear object on a metal long bowl-shaped frame;
(2) Thereafter, the process includes pouring the polyurethane resin-forming composition into a long bowl-shaped frame at a time, curing the polyurethane resin-forming composition, and integrally molding them.

工程(1)
金属製の長尺桶状枠の長尺方向断面中央に固形長尺直線状物をセットする。必要に応じて固形長尺直線状物を支える。長尺桶状枠の両端は樹脂原料液が漏れないように、テープや発泡物などでシールしておく。
Process (1)
A solid long linear object is set in the center of the cross section in the longitudinal direction of the metal long bowl-shaped frame. Supports solid long straight objects as needed. Both ends of the long bowl-shaped frame are sealed with tape or foam so that the resin raw material liquid does not leak.

工程(2)
金属製の長尺桶状枠にポリウレタン樹脂を一度で(短時間に)流し込む。すなわち、ポリオール成分とイソシアネート成分を混合した後に、混合物を長尺桶状枠に流し込む。長尺桶状枠に沿って連続的に流し込むこむ方法が好ましい。(原料の反応が速すぎると樹脂が均一に分散しない。反応が遅すぎると生産性が低下することになり、前述のように反応性を調整することが重要となる。)
Process (2)
A polyurethane resin is poured into a long metal frame at once (in a short time). That is, after mixing the polyol component and the isocyanate component, the mixture is poured into a long bowl-shaped frame. A method of pouring continuously along the long bowl-like frame is preferable. (If the reaction of the raw material is too fast, the resin will not be uniformly dispersed. If the reaction is too slow, the productivity will be lowered, and it will be important to adjust the reactivity as described above.)

次いで、樹脂を硬化させる。ポリオール成分とイソシアネート成分が反応して、ポリウレタン樹脂が硬化して、非発泡であることが好ましい硬化ポリウレタン樹脂が形成する。
25℃での反応開始時間(ポリオール成分とイソシアネート成分を混合してから反応(発熱)が開始するまでの時間)は、1〜60秒、特に2〜20秒であることが好ましい。
ポリウレタン樹脂と一体成形される金属長尺形材は上記のように製造されるが、このままでは金属枠を通して熱が伝導してしまうので、断熱性サッシとして使用する場合には、金属製長尺桶状枠の底面の一部分を切り欠いてポリウレタン樹脂を露出させる(図2 D を参照)ことにより、断熱性能を発揮するようにして使用される。
The resin is then cured. The polyol component and the isocyanate component react to cure the polyurethane resin to form a cured polyurethane resin that is preferably non-foamed.
The reaction start time at 25 ° C. (the time from the mixing of the polyol component and the isocyanate component to the start of the reaction (exotherm)) is preferably 1 to 60 seconds, particularly 2 to 20 seconds.
The long metal material molded integrally with the polyurethane resin is manufactured as described above. However, since heat is conducted through the metal frame as it is, when using it as a heat insulating sash, A part of the bottom surface of the frame is cut away to expose the polyurethane resin (see FIG. 2D), so that the heat insulating performance is exhibited.

以下、本発明の金属長尺形材について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。尚、実施例において、特記しない限り、「部」は「重量部」、「%」は「重量%」を示す。 Hereinafter, although the metal long shape material of this invention is demonstrated more concretely using an Example, this invention is not limited to the Example mentioned later. In Examples, “parts” means “parts by weight” and “%” means “% by weight” unless otherwise specified.

[各材料の準備]
アルミチャンネル
光社製 AC12141 を長さ500mmにカットしたものを用意した。
12(外寸高さ)x14(外寸幅)x500(長さ)mm、 アルミ厚 1mm
内側の容積 1.1x1.3x50cm=71.5cm
[Preparation of each material]
Aluminum channel :
An AC12141 manufactured by Kogyo Co., Ltd. cut to a length of 500 mm was prepared.
12 (outside dimension height) x 14 (outside dimension width) x 500 (length) mm, aluminum thickness 1 mm
Inner volume 1.1x1.3x50cm = 71.5cm 3

アルミチャンネルの前処理として、アセトンを含ませた脱脂綿を用い、アルミチャンネル内側に付着している油分を拭き取った。
後述する成形収縮率(%)を測定する場合には、アルミチャンネルとポリウレタン樹脂が接着して成形収縮を小さくする要因を排除するために、アルミチャンネル内側に離型剤を塗布し、アルミチャンネルとポリウレタン樹脂が接着しないようにした。
As pretreatment of the aluminum channel, absorbent cotton soaked with acetone was used to wipe off oil adhering to the inside of the aluminum channel.
When measuring the molding shrinkage rate (%), which will be described later, in order to eliminate the factors that cause the aluminum channel and polyurethane resin to adhere and reduce molding shrinkage, a release agent is applied inside the aluminum channel, The polyurethane resin was prevented from adhering.

固形長尺直線状物:
鉄線(1本使用)
1. ツチノ社製 ピアノ線 重量0.018g/cm 径0.52〜0.55mm
2. ツチノ社製 ユニクロワイヤー 重量0.088g/cm 径1.1〜1.2mm
アルミ線(1本使用)
1. ダイソー社製 アルミワイヤー 重量0.185g/cm 径3mm
ガラス棒(1本使用)
1. 富士理化工業社製 パイレックス(登録商標)ガラス棒 重量0.074g/cm 径2mm
ロービングガラス(比較用)
セントラル硝子社製 ERS1150-811 重量0.0115g/cm
(径10〜24μmのガラス繊維を200〜300本程度集束したストランドを10本程度巻き取ったもの)
Solid long straight line:
Iron wire (use one)
1. Piano wire manufactured by Tsuchino Co., Ltd.Weight 0.018 g / cm Diameter 0.52 to 0.55 mm
2. UNIQLO WIRE manufactured by Tsuchino Co., Ltd. Weight 0.088g / cm Diameter 1.1 ~ 1.2mm
Aluminum wire (use one)
1. Daiso Aluminum Wire Weight 0.185g / cm Diameter 3mm
Glass rod (use one)
1. Pyrex (registered trademark) glass rod manufactured by Fuji Rika Kogyo Co., Ltd. Weight 0.074g / cm Diameter 2mm
Roving glass (for comparison)
ERS1150-811 manufactured by Central Glass Co., Ltd.Weight 0.0115g / cm
(Wound about 10 strands of about 200-300 glass fibers with a diameter of 10-24μm)

ポリウレタン樹脂用原料配合
次の2液反応硬化型ポリウレタン樹脂を使用した。
(1)主剤
ポリオキシプロピレントリオール(3f、MW 450) 100部
[住化バイエルウレタン(株)社製・スミフェンTM]
トリエチレンジアミンの33%ジプロピレングリコール溶液 2.0 部
ジブチル錫ジラウレート 0.1 部
(2)硬化剤
ポリメチレンポリフェニルポリイソシアネート
[住化バイエルウレタン(株)社製・スミジュール44V20]
(3)主剤と硬化剤の混合比
主剤/硬化剤=53/47部 (NCO Index 100)
原料温度 各40℃
吐出量(主剤+硬化剤) 19.1g/sec
(4)反応性(25℃原料温度)
ゲルタイム 25秒
(5)密度 1.1g/cm
Blending raw materials for polyurethane resin The following two-component reaction-curable polyurethane resin was used.
(1) Main agent
100 parts of polyoxypropylene triol (3f, MW 450) [Sumiphen TM manufactured by Sumika Bayer Urethane Co., Ltd.]
Triethylenediamine 33% dipropylene glycol solution 2.0 parts Dibutyltin dilaurate 0.1 part (2) Curing agent Polymethylene polyphenyl polyisocyanate [Sumika Bayer Urethane Co., Ltd., Sumidur 44V20]
(3) Mixing ratio of main agent and hardener Main agent / hardener = 53/47 parts (NCO Index 100)
Raw material temperature 40 ℃ each
Discharge rate (main agent + curing agent) 19.1g / sec
(4) Reactivity (25 ° C raw material temperature)
Gel time 25 seconds (5) Density 1.1 g / cm 3

成形機 mixing head : Unipre (GSP 20)
Mixing head: Unipre (GSP 20)

評価方法は次のとおりである。
外観:
1日養生後の硬化したポリウレタン樹脂中の気泡の有無を目視により観察した。
The evaluation method is as follows.
appearance:
The presence or absence of bubbles in the cured polyurethane resin after curing for 1 day was visually observed.

成形収縮率(%)の測定:
アルミチャンネルの長さ500mmに対する、1日養生後の硬化したポリウレタン樹脂の成形収縮率(%)を以下の計算式により求めた。
(500−注入したポリウレタン樹脂の長さ(mm))÷500×100
Measurement of molding shrinkage (%):
The molding shrinkage (%) of the cured polyurethane resin after curing for one day with respect to the length of 500 mm of the aluminum channel was determined by the following formula.
(500-length of injected polyurethane resin (mm)) / 500 × 100

実施例1
(アルミチャンネルと固形長尺直線状物のセット)
上記のアルミチャンネルを用意しその長さ方向断面中央に、鉄線1.(ピアノ線(径0.55~0.52mm)) 1本が配置されるよう、アルミチャンネルの両端からピアノ線を支えてセットした。アルミチャンネルの両端は樹脂原料液が漏れないようにテープでシールした。
(アルミ枠材への注型工程)
室温20℃の雰囲気下でアルミチャンネルの開放された上部から、成形機で混合されたポリウレタン樹脂組成物72g(約65cm,注入時間約3.8秒)を、成形機ヘッドをアルミチャンネルに沿って平行移動させながら連続的に流し込んだ。
(硬化)
その後ポリウレタン樹脂組成物が硬化してから、さらに室温で1日養生させた。
(評価)
一体成形されたポリウレタン樹脂は、気泡もなくきれいな外観を有し、収縮もなく成形収縮率は0%であった。
Example 1
(Aluminum channel and solid long linear set)
Prepare the above aluminum channel and in the center of its longitudinal section, (Piano wire (diameter 0.55 to 0.52 mm)) The piano wire was supported and set from both ends of the aluminum channel so that one could be placed. Both ends of the aluminum channel were sealed with tape so that the resin raw material liquid did not leak.
(Casting process for aluminum frame material)
72 g of polyurethane resin composition (about 65 cm 3 , injection time of about 3.8 seconds) mixed with a molding machine from the open top of the aluminum channel in an atmosphere of room temperature 20 ° C., the molding machine head along the aluminum channel Then, it was poured continuously while moving in parallel.
(Curing)
Then, after the polyurethane resin composition was cured, it was further cured at room temperature for 1 day.
(Evaluation)
The integrally molded polyurethane resin had a clean appearance with no air bubbles, no shrinkage, and the molding shrinkage was 0%.

実施例2
固形長尺直線状物を鉄線2.とした以外は実施例1と同様に操作を行った。
評価結果を表1に示す。
Example 2
1. Solid long linear object is iron wire The operation was performed in the same manner as in Example 1 except that.
The evaluation results are shown in Table 1.

比較例1〜4
表1に示すそれぞれの固形長尺直線状物を使用し、固形長尺直線状物の体積に応じ注入量を若干調整した以外は実施例1と同様に操作を行った。
評価結果を表1に示す。
Comparative Examples 1-4
The operations were performed in the same manner as in Example 1 except that each solid long linear product shown in Table 1 was used and the injection amount was slightly adjusted according to the volume of the solid long linear product.
The evaluation results are shown in Table 1.

比較例5
ポリウレタン樹脂用原料として、アスペクト比約12.5〜20の線状フィラーであるワラストナイト(平均繊維長100μm、平均径5〜8μm、主成分:メタケイ酸カルシウム)をポリオール中20重量%含有する配合(樹脂中10重量%)を用意し、実施例1に準じて操作し一体成形されたポリウレタン樹脂を得た。評価結果を表1に示す。
Comparative Example 5
As a raw material for polyurethane resin, wollastonite (average fiber length of 100 μm, average diameter of 5 to 8 μm, main component: calcium metasilicate) which is a linear filler having an aspect ratio of about 12.5 to 20 is contained in a polyol by 20% by weight. A blend (10% by weight in the resin) was prepared and operated according to Example 1 to obtain an integrally molded polyurethane resin. The evaluation results are shown in Table 1.

Figure 2014128900
Figure 2014128900

本発明の金属長尺形材は、種々の建築部品、例えば、窓枠材や補強材などとして使用することができる。   The long metal material of the present invention can be used as various building parts such as window frame materials and reinforcing materials.

1 枠材
2 固形長尺直線状物
3 ポリウレタン樹脂
1 Frame material 2 Solid long linear material 3 Polyurethane resin

Claims (5)

金属製の長尺桶状枠にポリウレタン樹脂が充填された金属長尺形材であって、ポリウレタン樹脂層が断面の最大寸法0.1〜2mmの固形長尺直線状物をポリウレタン樹脂層の長手方向に沿って内包する金属長尺形材。   A metal long shape material in which a polyurethane long resin-like frame is filled with a polyurethane long resin frame, and the polyurethane resin layer is a solid long linear material having a maximum cross-sectional dimension of 0.1 to 2 mm. A long metal material encased along the direction. 固形長尺直線状物が、線膨張係数0.5〜30x10-6/Kであり、金属またはガラスからできている請求項1に記載の金属長尺形材。 2. The long metal shape according to claim 1, wherein the solid long linear material has a linear expansion coefficient of 0.5 to 30 × 10 −6 / K and is made of metal or glass. 前記のポリウレタン樹脂の原料が、
ポリオール成分として平均官能度2.5〜4.0のポリエーテルポリオール、
イソシアネート成分として、4,4’−ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’−ジフェニルメタンジイソシアネート(2,4’-MDI)、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)、またはこれらをウレタン変性やカルボジイミド変性したものが単独または混合したもの、
である請求項1または2に記載の金属長尺形材。
The raw material of the polyurethane resin is
A polyether polyol having an average functionality of 2.5 to 4.0 as a polyol component;
As the isocyanate component, 4,4′-diphenylmethane diisocyanate (4,4′-MDI), 2,4′-diphenylmethane diisocyanate (2,4′-MDI), polymethylene polyphenyl polyisocyanate (polymeric MDI), or these Urethane modified or carbodiimide modified single or mixed,
The metal long profile according to claim 1 or 2.
ポリウレタン樹脂100重量部に対し固形長尺直線状物を0.5重量部〜10重量部で使用する請求項1〜3のいずれか1項に記載の金属長尺形材。 The long metal shape material according to any one of claims 1 to 3, wherein the solid long linear material is used in an amount of 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin. (1)金属製の長尺桶状枠に、断面の最大寸法0.1〜2mmの固形長尺直線状物をセットする工程と、
(2)その後、長尺桶状枠にポリウレタン樹脂形成性組成物を一度に流し込み、ポリウレタン樹脂形成性組成物を硬化させ、それらを一体成形する工程を含む
請求項1〜4のいずれか1項に記載の金属長尺形材を製造する方法。
(1) A step of setting a solid long linear object having a maximum cross-sectional dimension of 0.1 to 2 mm on a metal long saddle-shaped frame;
(2) After that, a polyurethane resin-forming composition is poured into a long bowl-shaped frame at a time, and the polyurethane resin-forming composition is cured and integrally molded. A method for producing the long metal material described in 1.
JP2012287215A 2012-12-28 2012-12-28 Polyurethane resin integrally-molded metal heat insulation long material Pending JP2014128900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287215A JP2014128900A (en) 2012-12-28 2012-12-28 Polyurethane resin integrally-molded metal heat insulation long material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287215A JP2014128900A (en) 2012-12-28 2012-12-28 Polyurethane resin integrally-molded metal heat insulation long material

Publications (1)

Publication Number Publication Date
JP2014128900A true JP2014128900A (en) 2014-07-10

Family

ID=51407765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287215A Pending JP2014128900A (en) 2012-12-28 2012-12-28 Polyurethane resin integrally-molded metal heat insulation long material

Country Status (1)

Country Link
JP (1) JP2014128900A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112140A (en) * 1995-10-19 1997-04-28 Showa Electric Wire & Cable Co Ltd Reinforcing material and resin molded material using the same
JPH1096371A (en) * 1996-08-01 1998-04-14 Yokohama Rubber Co Ltd:The Manufacture of heat insulating aluminum shape for building material
JPH112072A (en) * 1997-06-11 1999-01-06 Ykk Corp Resin-composite aluminum structural angle, heat insulating structural angle their manufacture and device for use in it
JP2001098847A (en) * 1999-09-28 2001-04-10 Shin Nikkei Co Ltd Heat insulation structural angle
JP2005200931A (en) * 2004-01-15 2005-07-28 Ykk Ap株式会社 Sash window
JP2007045976A (en) * 2005-08-11 2007-02-22 Sumika Bayer Urethane Kk Aqueous primer composition for polyurethane resin and molded product given by using the same
JP2007291617A (en) * 2006-04-21 2007-11-08 Nippon Polyurethane Ind Co Ltd Synthetic resin-filled type long metal section, and its manufacturing method
US20070287785A1 (en) * 2006-06-13 2007-12-13 Takashi Ishida Polyurethane resin for heat-insulating sash

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112140A (en) * 1995-10-19 1997-04-28 Showa Electric Wire & Cable Co Ltd Reinforcing material and resin molded material using the same
JPH1096371A (en) * 1996-08-01 1998-04-14 Yokohama Rubber Co Ltd:The Manufacture of heat insulating aluminum shape for building material
JPH112072A (en) * 1997-06-11 1999-01-06 Ykk Corp Resin-composite aluminum structural angle, heat insulating structural angle their manufacture and device for use in it
JP2001098847A (en) * 1999-09-28 2001-04-10 Shin Nikkei Co Ltd Heat insulation structural angle
JP2005200931A (en) * 2004-01-15 2005-07-28 Ykk Ap株式会社 Sash window
JP2007045976A (en) * 2005-08-11 2007-02-22 Sumika Bayer Urethane Kk Aqueous primer composition for polyurethane resin and molded product given by using the same
JP2007291617A (en) * 2006-04-21 2007-11-08 Nippon Polyurethane Ind Co Ltd Synthetic resin-filled type long metal section, and its manufacturing method
US20070287785A1 (en) * 2006-06-13 2007-12-13 Takashi Ishida Polyurethane resin for heat-insulating sash
JP2007332212A (en) * 2006-06-13 2007-12-27 Sumika Bayer Urethane Kk Polyurethane resin for heat insulation sash

Similar Documents

Publication Publication Date Title
CN103201304B (en) Fiber composite component and preparation method thereof
JP2010515795A5 (en)
EP1894956A1 (en) Low density rigid reinforced polyurethanes and a process for their production
CN103619895B (en) Fiber composite component and preparation method thereof
CN104603173A (en) Fibre-reinforced composite components and production thereof
JP2015529264A5 (en)
US4444704A (en) Process for producing integral skin polyurethane foam
KR101275967B1 (en) A Resin Molded Article for Constructing a Rail and a Method for Manufacturing the Same
CN107771193B (en) Polyurethane system for a layer structure in a wind turbine
KR20130048057A (en) Highly comport automotive polyurethane seat resin
EP3710506A1 (en) Polyurethane foam composite panel
RU2015115715A (en) BENDING RIGIDITY POLYURETHANE ELEMENT
US9371410B2 (en) Polyurethane elastomers for use in subsea pipeline insulation
JP2014128900A (en) Polyurethane resin integrally-molded metal heat insulation long material
JP6706445B2 (en) Vehicle seat cushion manufacturing method
JP4185115B2 (en) Polyurethane resin for thermal insulation sash
EP3521331A1 (en) Polyurethane foam composite panel
JP4441146B2 (en) Method for producing polyurethane or polyurea moldings reinforced with natural fibers
CN105377934A (en) Shaped parts made of reinforced polyurethane urea elastomers and use thereof
JP2008081555A (en) Polyol composition for rigid polyurethane foam, method for producing rigid polyurethane foam, and method for applying heat insulation to low-temperature tank
AU2014342769B2 (en) Syntactic polyurethane elastomers based on low unsaturation polyols for use in subsea pipeline insulation
EP3046943B1 (en) Polyurethane elastomer for use in subsea pipeline insulation
JP6411077B2 (en) Method for manufacturing ceiling interior material for vehicle
JP2019085546A (en) Effective manufacturing method and manufacturing system of carbon fiber reinforced polyurethane composite material
CN111757787B (en) Method for producing composite materials at low temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620