JP2014127362A - Alkaline battery and method for manufacturing alkaline battery - Google Patents

Alkaline battery and method for manufacturing alkaline battery Download PDF

Info

Publication number
JP2014127362A
JP2014127362A JP2012283559A JP2012283559A JP2014127362A JP 2014127362 A JP2014127362 A JP 2014127362A JP 2012283559 A JP2012283559 A JP 2012283559A JP 2012283559 A JP2012283559 A JP 2012283559A JP 2014127362 A JP2014127362 A JP 2014127362A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
alkaline battery
battery
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283559A
Other languages
Japanese (ja)
Other versions
JP6078333B2 (en
Inventor
Takeo Nogami
武男 野上
Shusuke Tsuzuki
秀典 都築
Yuki Natsume
祐紀 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2012283559A priority Critical patent/JP6078333B2/en
Publication of JP2014127362A publication Critical patent/JP2014127362A/en
Application granted granted Critical
Publication of JP6078333B2 publication Critical patent/JP6078333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery excellent in discharge performance and liquid leakage resistance performance during overdischarge.SOLUTION: In an alkaline battery 1a, a plurality of positive electrode mixtures 3 (31-33) formed in an annular shape are inserted into a bottomed cylindrical metal-made battery can 2 serving also as a positive electrode. The positive electrode mixture contains electrolytic manganese dioxide as a positive electrode active material, the electrolytic manganese dioxide has a specific surface area measured by a BET method of 20 m/g or more 30 m/g or less, and the annular positive electrode mixtures are arranged to be laminated in a state where the positive electrode mixtures are separated from one another in a vertical direction coaxially with a cylindrical axis 10, when the extension direction of the cylindrical axis of the hollow cylindrical battery can is set to the vertical direction.

Description

この発明は、電解二酸化マンガンを正極活物質として含む環状の正極合剤を備えたアルカリ電池に関する。   The present invention relates to an alkaline battery including a cyclic positive electrode mixture containing electrolytic manganese dioxide as a positive electrode active material.

図1に本発明の対象となるアルカリ電池の一般的な構造を示した。当該図に示したアルカリ電池は、LR6型の円筒形アルカリ電池1であり、当該図1では、円筒軸10の延長方向を上下(縦)方向としたときのアルカリ電池1の縦断面図を示している。このアルカリ電池1は、有底筒状の金属製電池缶(正極缶)2内に、環状に成形された正極合剤3、この正極合剤3の内側に配設された有底円筒状のセパレーター4、亜鉛合金を含んでセパレーター4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された負極集電子6、および電解液が発電要素として収納されたものである。そして、正極缶2の開口には、負極端子板7が封口ガスケット8を介して嵌着されて、発電要素の収納空間が密閉されている。   FIG. 1 shows a general structure of an alkaline battery which is an object of the present invention. The alkaline battery shown in the figure is an LR6 type cylindrical alkaline battery 1, and FIG. 1 shows a vertical sectional view of the alkaline battery 1 when the extending direction of the cylindrical shaft 10 is the vertical (vertical) direction. ing. The alkaline battery 1 includes a bottomed cylindrical metal battery can (positive electrode can) 2, a positive electrode mixture 3 formed in an annular shape, and a bottomed cylindrical shape disposed inside the positive electrode mixture 3. The separator 4, the negative electrode gel 5 containing zinc alloy and filled inside the separator 4, the negative electrode current collector 6 inserted into the negative electrode gel 5, and the electrolytic solution are housed as power generation elements. A negative electrode terminal plate 7 is fitted into the opening of the positive electrode can 2 via a sealing gasket 8 so that the storage space for the power generation element is sealed.

正極合剤3は、正極活物質となる電解二酸化マンガン(EMD)、導電材となる黒鉛、および電解液をポリアクリル酸などのバインダーとともに混合し、その混合物を圧延、解砕、造粒、分級等の工程で処理した後、圧縮されて環状に成形されたものである。正極缶2内には、複数の環状の正極合剤3が、正極缶2の円筒軸10と同軸となるように、その正極缶2内に上下方向に積層された状態で圧入されている。図1に示した例では、3個の正極合剤3が積層されている。   The positive electrode mixture 3 is prepared by mixing electrolytic manganese dioxide (EMD) serving as a positive electrode active material, graphite serving as a conductive material, and an electrolytic solution together with a binder such as polyacrylic acid, and rolling, crushing, granulating, and classifying the mixture. After being processed in such a process, it is compressed and formed into an annular shape. A plurality of annular positive electrode mixtures 3 are press-fitted in the positive electrode can 2 so as to be coaxial with the cylindrical shaft 10 of the positive electrode can 2 while being stacked in the vertical direction in the positive electrode can 2. In the example shown in FIG. 1, three positive electrode mixtures 3 are stacked.

そして、正極合剤側の改良によりアルカリ電池の放電性能を向上させるためには、正極合剤や、正極合剤中の活物質の量を増やしたり、正極活物質の利用効率を向上させたりすることが考えられる。なお、以下の特許文献1には、アルカリ電池の性能を向上させるために、正極活物質であるEMDの比表面積を最適化することが記載されている。また、以下の特許文献2には、正極合剤の製造方法や、比表面積を含むEMDの各種物性とその物性の測定方法などについて詳しく記載されている。   And in order to improve the discharge performance of an alkaline battery by improving the positive electrode mixture side, the amount of the positive electrode mixture and the active material in the positive electrode mixture is increased, or the utilization efficiency of the positive electrode active material is improved. It is possible. Patent Document 1 below describes optimizing the specific surface area of EMD, which is a positive electrode active material, in order to improve the performance of an alkaline battery. Patent Document 2 below describes in detail a method for producing a positive electrode mixture, various physical properties of EMD including a specific surface area, and a method for measuring the physical properties.

特開平10−302793号公報JP-A-10-302793 特開平10−228899号公報JP-A-10-228899

正極合剤側の改良によってアルカリ電池の性能を向上させるため、正極合剤や正極活物質の量を増やすと、放電容量の向上が期待される。しかし、その増量は電池の規格サイズ内で行う必要があるため、正極合剤中の正極活物質の配合割合を多くするか、あるいは正極合剤の成形密度を高くすることになる。ところが、正極活物質の配合割合を多くすると、導電剤の配合割合が減って内部抵抗が増大し、高負荷放電性能(大電流放電特性)が低下してしまうという問題が生じる。成形密度を上げる場合は、成形体を高密度化した分、成形体内部の空隙体積が減少して電解液の吸液含浸量が少なくなり、これにより正極活物質の利用率が低下するとともに、高負荷放電性能が低下してしまうという問題が生じる。   In order to improve the performance of the alkaline battery by improving the positive electrode mixture side, an increase in the amount of the positive electrode mixture and the positive electrode active material is expected to improve the discharge capacity. However, since it is necessary to increase the amount within the standard size of the battery, the proportion of the positive electrode active material in the positive electrode mixture is increased or the molding density of the positive electrode mixture is increased. However, when the blending ratio of the positive electrode active material is increased, the blending ratio of the conductive agent is decreased, the internal resistance is increased, and there is a problem that the high load discharge performance (large current discharge characteristics) is deteriorated. When increasing the molding density, the volume of the molded body is increased, the void volume inside the molded body is reduced, and the amount of liquid electrolyte impregnation is reduced, thereby reducing the utilization rate of the positive electrode active material, There arises a problem that the high-load discharge performance is deteriorated.

そこで、正極活物質の利用率を高め、正極合剤成形体に吸液含浸させる電解液の量を多くするために、正極合剤内の微細空隙体積を大きくしようとすれば、自ずと、その成形密度を低くすることになる。しかし、上記の微細空隙体積を大きくした分、活物質量が目減りして放電容量が低下してしまうという問題が生じる。   Therefore, in order to increase the utilization rate of the positive electrode active material and increase the amount of the electrolyte to be impregnated into the positive electrode mixture molded body, if the fine void volume in the positive electrode mixture is increased, the molding is naturally performed. The density will be lowered. However, as the fine void volume is increased, the amount of the active material is reduced and the discharge capacity is reduced.

このように、正極合剤側の改良によってアルカリ電池の放電性能を劇的に向上させることは難しい。そこで、上記特許文献1に記載の発明では、活物質の利用率を高める、という観点から、EMDの比表面積を最適化しているが、実際のところ、正極合剤側の改良にって放電性能を劇的に向上させることは難しい。   Thus, it is difficult to dramatically improve the discharge performance of the alkaline battery by improving the positive electrode mixture side. Therefore, in the invention described in Patent Document 1, the specific surface area of the EMD is optimized from the viewpoint of increasing the utilization factor of the active material, but actually, the discharge performance is improved by improving the positive electrode mixture side. It is difficult to improve dramatically.

一方、アルカリ電池に求められる性能は、放電性能だけではない。高い安全性も求められている。例えば、過放電時における耐漏液性能である。そして、放電性能と耐漏液性能は背反する。概略的には、放電性能を向上させるためには、正極缶内に電解液を介して化学反応を起こす物質をより多く充填することである。換言すれば、正極缶内に、正極活物質と負極活物質との化学反応の量に対して十分量の電解液を注入することである。しかし、化学反応がほとんど起こらない状態で放電させる過放電時には、電解液が余った状態となり、その余剰分の電解液が分解し、内圧の上昇とその後の漏液の原因となるガスが発生する。   On the other hand, the performance required for alkaline batteries is not limited to discharge performance. High safety is also required. For example, leakage resistance performance during overdischarge. And discharge performance and leak-proof performance are contradictory. In general, in order to improve the discharge performance, the positive electrode can is filled with a larger amount of a substance that causes a chemical reaction via the electrolytic solution. In other words, a sufficient amount of electrolyte solution is injected into the positive electrode can with respect to the amount of chemical reaction between the positive electrode active material and the negative electrode active material. However, at the time of overdischarge that discharges in a state where almost no chemical reaction occurs, the electrolyte solution is left in excess, and the excess electrolyte solution is decomposed, generating a gas that causes an increase in internal pressure and subsequent leakage. .

そこで、本発明は、従来のアルカリ電池と同等以上の放電性能を備えつつ、耐漏液性能に優れたアルカリ電池を提供することを目的としている。   Therefore, an object of the present invention is to provide an alkaline battery that has a discharge performance equal to or higher than that of a conventional alkaline battery and is excellent in leakage resistance.

上記目的を達成するための本発明は、正極を兼ねる有底円筒状の金属製電池缶内に環状に成形された複数の正極合剤が挿入されてなるアルカリ電池であって、
前記正極合剤は電解二酸化マンガンを正極活物質として含み、当該電解二酸化マンガンは、BET法によって測定された比表面積が20m/g以上30m/g以下であり、
前記中空円筒状の電池缶の円筒軸の延長方向を上下方向として、前記環状の複数の正極合剤は、前記円筒軸と同軸に上下方向に互いに離間した状態で積層配置されている、
ことを特徴とするアルカリ電池としている。
The present invention for achieving the above object is an alkaline battery in which a plurality of positive electrode mixtures formed in an annular shape are inserted into a bottomed cylindrical metal battery can also serving as a positive electrode,
The positive electrode mixture includes electrolytic manganese dioxide as a positive electrode active material, and the electrolytic manganese dioxide has a specific surface area measured by a BET method of 20 m 2 / g to 30 m 2 / g,
With the extending direction of the cylindrical axis of the hollow cylindrical battery can as the vertical direction, the plurality of annular positive electrode mixtures are arranged in a stacked manner in a state of being spaced apart from each other in the vertical direction coaxially with the cylindrical axis.
The alkaline battery is characterized by this.

また、本発明は、正極を兼ねる有底円筒状の金属製電池缶内に環状に成形された複数の正極合剤が挿入されてなるアルカリ電池の製造方法にも及んでおり、当該製造方法に係る発明は、
BET法によって測定された比表面積が20m/g以上30m/g以下の二酸化マンガンを正極活物質として含んだ正極合剤を環状に成形するステップと、
前記中空円筒状の電池缶の円筒軸の延長方向を上下方向として、前記環状に成形された複数の正極合剤を、前記円筒軸と同軸に上下方向に互いに離間した状態で積層配置するステップと、
を含むことを特徴としている。
The present invention also extends to a manufacturing method of an alkaline battery in which a plurality of positive electrode mixtures formed in a ring shape are inserted into a bottomed cylindrical metal battery can also serving as a positive electrode. The invention concerned
Forming a positive electrode mixture containing manganese dioxide having a specific surface area of 20 m 2 / g or more and 30 m 2 / g or less as a positive electrode active material measured by the BET method in an annular shape;
A step of stacking and arranging the plurality of annularly formed positive electrode mixtures coaxially with the cylindrical shaft and spaced apart from each other in the vertical direction, with the extending direction of the cylindrical shaft of the hollow cylindrical battery can as the vertical direction ,
It is characterized by including.

本発明に係るアルカリ電池によれば、従来と同等以上の放電性能と、優れた耐漏液性能を備えている。   The alkaline battery according to the present invention has a discharge performance equal to or higher than that of the conventional battery and excellent leakage resistance.

一般的な円筒形アルカリ電池の構造を示す図である。It is a figure which shows the structure of a general cylindrical alkaline battery. 本発明の一実施形態であるアルカリ電池の構造を示す図である。It is a figure which shows the structure of the alkaline battery which is one Embodiment of this invention. 上記実施形態に係るアルカリ電池を構成する正極缶内における正極合剤の配置状態を示す図である。It is a figure which shows the arrangement | positioning state of the positive mix in the positive electrode can which comprises the alkaline battery which concerns on the said embodiment.

===アルカリ電池の構造===
図2は、本発明の一実施形態に係るアルカリ電池1aの概略構造を示す図である。このアルカリ電池1aを構成する個々の要素(2〜8)は、基本的に図1に示した従来のアルカリ電池1と同様である。しかし、本実施形態に係るアルカリ電池1aでは、正極缶2内で上下方向に積層されている複数(ここでは3個)の正極合剤3が相互に密着せずに、間隙Dを有して互いに離間するように配置されている。さらに、正極合剤3を構成する正極活物質であるEMDの比表面積が、離間配置される正極合剤3用に最適化されている。それによって、本実施形態に係るアルカリ電池1aは、従来のアルカリ電池1と同等以上の放電性能と、優れた耐漏液性能を備えている。
=== Structure of alkaline battery ===
FIG. 2 is a diagram showing a schematic structure of an alkaline battery 1a according to an embodiment of the present invention. The individual elements (2 to 8) constituting the alkaline battery 1a are basically the same as those of the conventional alkaline battery 1 shown in FIG. However, in the alkaline battery 1a according to the present embodiment, a plurality of (here, three) positive electrode mixtures 3 stacked in the vertical direction in the positive electrode can 2 do not adhere to each other and have a gap D. It arrange | positions so that it may mutually space apart. Furthermore, the specific surface area of EMD which is a positive electrode active material constituting the positive electrode mixture 3 is optimized for the positive electrode mixture 3 that is spaced apart. Thereby, the alkaline battery 1a according to the present embodiment has a discharge performance equal to or higher than that of the conventional alkaline battery 1 and excellent leakage resistance.

===性能評価===
ここで、図2に示した本実施形態に係るアルカリ電池1aの放電性能と耐漏液性能を評価するため、また、正極合剤中のEMDの比表面積の適正数値範囲を規定するために、製造条件が異なる各種正極合剤を作製し、その正極合剤を正極缶2に組み込んで図1に示した従来の構造のLR6型のアルカリ電池1、および図2に示した本実施形態と同様の構造のLR6型のアルカリ電池1aをサンプルとして作製した。
=== Performance evaluation ===
Here, in order to evaluate the discharge performance and leakage resistance performance of the alkaline battery 1a according to the present embodiment shown in FIG. 2 and to define an appropriate numerical range of the specific surface area of the EMD in the positive electrode mixture, Various positive electrode mixtures having different conditions are prepared, and the positive electrode mixture is assembled into the positive electrode can 2 and the LR6 type alkaline battery 1 having the conventional structure shown in FIG. 1 and the present embodiment shown in FIG. An LR6 type alkaline battery 1a having a structure was prepared as a sample.

各サンプルにおいて、正極合剤3は、外形13.5mm、内径9.0mmの環状であり、その高さ方向のサイズは、サンプルに応じた正極合剤3の質量、EMDの比表面積、成形圧力によって増減させている。また、負極ゲル5は、亜鉛の濃度が66%で、その質量は、正極合剤3の質量に比例するように増減させている。なお、EMDの比表面積は周知のBET法によって測定されたものである。そして、各サンプルに対し、放電試験と漏液試験とを行い、放電性能と耐漏液性能を評価した。   In each sample, the positive electrode mixture 3 has an annular shape with an outer diameter of 13.5 mm and an inner diameter of 9.0 mm, and the size in the height direction is the mass of the positive electrode mixture 3 according to the sample, the EMD specific surface area, and the molding pressure. It is increased or decreased by. Further, the negative electrode gel 5 has a zinc concentration of 66%, and the mass thereof is increased or decreased so as to be proportional to the mass of the positive electrode mixture 3. The specific surface area of EMD is measured by the well-known BET method. Then, each sample was subjected to a discharge test and a leak test to evaluate discharge performance and leak resistance.

<正極合剤の配置について>
各サンプルは、図1または図2に示したように、サンプルに応じて上下方向に積層される正極合剤3同士が密着、あるいは離間するように配置されている。図3に、封口前の正極缶2に複数の正極合剤3(31〜33)を挿入したときの状態を示した。一つの正極缶2には同じ条件で製造された3個の正極合剤3(31〜33)が挿入されており、図1に示した従来の構造のアルカリ電池1に相当するサンプルでは、3個の正極合剤3(31〜33)が、正極缶2の開口22から底面21方向に向かって同じ圧力で押圧されて順次挿入されて正極缶2内に配置されたものであり、上下方向で隣接する正極合剤(31−32、32−33)同士が離間することなく密着した状態で配置されている。すなわち、図3における正極合剤間(31−32、32−33)の離間距離(D3、D4)が0となる。
<About the arrangement of the positive electrode mixture>
As shown in FIG. 1 or FIG. 2, each sample is arranged such that the positive electrode mixture 3 stacked in the vertical direction according to the sample is in close contact with or separated from each other. FIG. 3 shows a state when a plurality of positive electrode mixtures 3 (31 to 33) are inserted into the positive electrode can 2 before sealing. Three positive electrode mixtures 3 (31 to 33) manufactured under the same conditions are inserted in one positive electrode can 2, and in the sample corresponding to the alkaline battery 1 having the conventional structure shown in FIG. Each positive electrode mixture 3 (31 to 33) is pressed in the same direction from the opening 22 of the positive electrode can 2 toward the bottom surface 21 and sequentially inserted into the positive electrode can 2 and is arranged in the vertical direction. The adjacent positive electrode mixtures (31-32, 32-33) are arranged in close contact with each other without being separated from each other. That is, the separation distance (D3, D4) between the positive electrode mixture (31-32, 32-33) in FIG.

一方、図2に示したアルカリ電池1aのように、正極合剤3(31〜33)を離間して配置する場合、最初に正極缶2に挿入する正極合剤33については、従来のアルカリ電池1と同様に一定の圧力で挿入して、当該正極合剤33の下面34を正極缶2の底面21に当接させた状態で配置する。2個目以降に挿入される正極合剤(32、31)については、図3に示したように、正極缶2の開口端22から正極合剤(32、31)の上面(36、35)までの距離(D2、D1)を測定しながら挿入している。そして、正極合剤3(31〜33)の高さhに応じてこれらの距離(D1、D2)を調整することで、各正極合剤間(31−32、32−33)を距離(D3、D4)だけ離間させて、空隙Dを設けている。   On the other hand, when the positive electrode mixture 3 (31 to 33) is arranged apart like the alkaline battery 1a shown in FIG. 2, the positive electrode mixture 33 that is first inserted into the positive electrode can 2 is the conventional alkaline battery. 1 is inserted with a constant pressure, and the lower surface 34 of the positive electrode mixture 33 is disposed in contact with the bottom surface 21 of the positive electrode can 2. For the positive electrode mixture (32, 31) to be inserted after the second one, as shown in FIG. 3, the upper surface (36, 35) of the positive electrode mixture (32, 31) from the opening end 22 of the positive electrode can 2 Until the distance (D2, D1) is measured. And by adjusting these distances (D1, D2) according to the height h of the positive electrode mixture 3 (31-33), the distance (D3) between each positive electrode mixture (31-32, 32-33) is adjusted. , D4) are provided apart from each other.

<性能評価試験>
つぎに、作製した各サンプルに対し、放電性能と耐漏液性能とを評価した。放電性能については、軽負荷放電試験と重負荷放電試験を行い、それぞれの放電試験結果に基づいて軽負荷放電性能と重負荷放電性能の双方の放電性能を評価した。軽負荷放電試験は、43Ωの負荷で一日4時間放電することで行い、終止電圧0.9Vとなるまでの時間(日数)によって軽負荷放電性能を評価した。重負荷放電試験は、1500mWの電気容量を2秒間で放電させた後、650mWの電気容量を28秒間で放電させる1サイクル分のパルス放電動作を1時間に10サイクル行い、終止電圧1.05Vとなるまでの時間(サイクル数)によって重負荷放電性能を評価した。なお、軽負荷と重負荷のそれぞれの放電性能については、各サンプルについて同じ条件で5個の個体を作製し、その5個の個体の平均値によって各サンプルの放電性能を評価した。
<Performance evaluation test>
Next, discharge performance and leakage resistance performance were evaluated for each of the produced samples. About discharge performance, the light load discharge test and the heavy load discharge test were done, and the discharge performance of both light load discharge performance and heavy load discharge performance was evaluated based on each discharge test result. The light load discharge test was performed by discharging for 4 hours a day with a load of 43Ω, and the light load discharge performance was evaluated according to the time (days) until the final voltage became 0.9V. In the heavy load discharge test, an electric capacity of 1500 mW was discharged in 2 seconds, and then a pulse discharge operation for 1 cycle in which the electric capacity of 650 mW was discharged in 28 seconds was performed 10 times in 1 hour, and the end voltage was 1.05 V. The heavy load discharge performance was evaluated according to the time (number of cycles) required. In addition, about each discharge performance of light load and heavy load, 5 individual | organism | solids were produced on the same conditions about each sample, and the discharge performance of each sample was evaluated by the average value of the 5 individual | organism | solid.

一方、耐漏液性能については、各サンプルを10Ωの負荷で48時間連続放電させた後、60℃の温度下で10日間保存する漏液試験を行い、その漏液試験後に漏液の有無によって評価した。なお、漏液試験は、各サンプルについて10個の個体を用い、その10個の内、漏液した個体の割合(%)によって各サンプルの耐漏液性能を評価した。   On the other hand, the leakage resistance performance is evaluated based on the presence or absence of leakage after the leakage test, in which each sample is continuously discharged for 48 hours at a load of 10Ω and then stored at a temperature of 60 ° C. for 10 days. did. In the liquid leakage test, 10 individuals were used for each sample, and the leakage resistance performance of each sample was evaluated based on the proportion (%) of the individual individuals that leaked.

表1に各サンプルの製造条件と評価結果を示した。

Figure 2014127362
Table 1 shows the manufacturing conditions and evaluation results for each sample.
Figure 2014127362

表1には、9種類のサンプル1〜9における正極合剤3(31〜33)の製造条件と正極缶2内での配置状態、および放電試験と漏液試験の結果が示されている。この表1において、サンプル1と2は、図1に示した従来例に係るアルカリ電池1と同じ構造を有しており、サンプル3〜9は、図2に示した本実施形態に係るアルカリ電池1aと同じ構造を有している。そして、表1における各サンプルの放電性能は、サンプル1の性能を基準(100%)としたときの相対値となっている。   Table 1 shows the manufacturing conditions of the positive electrode mixture 3 (31 to 33) in nine types of samples 1 to 9, the arrangement state in the positive electrode can 2, and the results of the discharge test and the liquid leakage test. In Table 1, Samples 1 and 2 have the same structure as the alkaline battery 1 according to the conventional example shown in FIG. 1, and Samples 3 to 9 are alkaline batteries according to this embodiment shown in FIG. It has the same structure as 1a. The discharge performance of each sample in Table 1 is a relative value when the performance of sample 1 is set as a reference (100%).

<正極合剤の配置と高さについて>
サンプル3〜9では、3個の正極合剤3(31〜33)を上下方向で密着配置させたサンプル1や2に対し、3個分の正極合剤3(31〜33)を積層したときの高さが高くなる。そのため、正極缶2の開口端面22から一番上の正極合剤31の上面35までの距離D1が、自ずと小さくなる。しかし、正極缶2における開口端面22近傍の領域には、負極端子板7と封口ガスケット8による封口体が嵌着されるため、この距離D1の下限には限度がある。
<About the arrangement and height of the positive electrode mixture>
In Samples 3 to 9, when three positive electrode mixtures 3 (31 to 33) were stacked on the samples 1 and 2 in which the three positive electrode mixtures 3 (31 to 33) were closely arranged in the vertical direction, The height of becomes higher. Therefore, the distance D1 from the opening end surface 22 of the positive electrode can 2 to the upper surface 35 of the uppermost positive electrode mixture 31 is naturally reduced. However, since the sealing body by the negative electrode terminal plate 7 and the sealing gasket 8 is fitted in the area near the opening end face 22 in the positive electrode can 2, there is a limit to the lower limit of the distance D1.

そこで、正極合剤3(31〜33)が増量されて、その高さhが高いサンプル2における距離D1=5.9mmに対し、二箇所の間隙Dの高さに相当するD3+D4の高さ分を加味し、サンプル3〜9では、一律にD1=5.4mmと規定した。したがって、サンプル3〜9では、正極合剤間(31−32、32−33)が確実に離間配置されるように、正極合剤3(31〜33)の高さhは、サンプル2の正極合剤3(31〜33)の高さh=14.3mmと同等以下となるように調整している。   Therefore, the amount of the positive electrode mixture 3 (31 to 33) is increased, and the distance D1 = 5.9 mm in the sample 2 having a high height h is equal to the height of D3 + D4 corresponding to the height of the gap D at two locations. In Samples 3 to 9, it was uniformly defined as D1 = 5.4 mm. Therefore, in Samples 3 to 9, the height h of the positive electrode mixture 3 (31 to 33) is positive of the sample 2 so that the positive electrode mixtures (31-32, 32-33) are reliably spaced from each other. The height is adjusted to be equal to or less than the height h of mixture 3 (31 to 33) = 14.3 mm.

さらに、正極缶2内の3個の正極合剤3(31〜33)が確実に離間して配置されるようにするためには、上述したように、正極合剤3(31〜33)の高さhに上限(h≒14.3mm)を設けつつ、その上で、その高さhに応じ、上下方向で中央に配置される二番目の正極合剤32の上面36から正極缶2の開口端面22までの距離D2も適切に設定する必要がある。ここでは、サンプル2におけるD2=20.2mmに間隙Dを考慮して一律にD2=19.8mmに設定した。   Further, in order to ensure that the three positive electrode mixtures 3 (31 to 33) in the positive electrode can 2 are spaced apart from each other, as described above, the positive electrode mixture 3 (31 to 33) An upper limit (h≈14.3 mm) is provided for the height h, and then the upper surface 36 of the second positive electrode mixture 32 disposed in the center in the vertical direction according to the height h of the positive electrode can 2. It is necessary to set the distance D2 to the opening end face 22 appropriately. Here, D2 = 10.2 mm in sample 2 was set to D2 = 19.8 mm in consideration of the gap D.

また、サンプル5〜9は、正極合剤3(31〜33)中のEMDの比表面積と放電性能や耐漏液性能との関係を評価するために作製したものであるが、正極合剤3(31〜33)は、同じ圧力でプレス成形した場合、その密度は、EMDの比表面積に反比例することから、内外の径が同じ環状の正極合剤3(31〜33)では、EMDの比表面積が大きいほどその高さhが高くなる。そこで、比表面積が最も大きなEMDを用いたサンプル5における正極合剤3(31〜33)の高さhがサンプル2や4とほぼ同様となるように正極合剤3(31〜33)をプレス成形するときの圧力をサンプル1〜4よりも高くした。ここでは、サンプル5における正極合剤3(31〜33)の高さhがh=14.4mmとなるように、プレス圧力を調整し、サンプル6〜9もサンプル5の正極合剤3(31〜33)と同じプレス圧力で正極合剤3(31〜33)を成形した。例えば、正極合剤3(31〜33)の質量と比表面積がサンプル2、4と同じサンプル6では、サンプル2、4の正極合剤間3(31〜33)の高さh=14.3mmであったのに対し、サンプル6では、h=13.6mmとなっている。   Samples 5 to 9 were prepared for evaluating the relationship between the specific surface area of the EMD in the positive electrode mixture 3 (31 to 33) and the discharge performance and leakage resistance performance. 31 to 33), when pressed at the same pressure, the density is inversely proportional to the specific surface area of the EMD. Therefore, in the case of the annular positive electrode mixture 3 (31 to 33) having the same inner and outer diameters, the specific surface area of the EMD The greater the is, the higher the height h is. Therefore, the positive electrode mixture 3 (31 to 33) is pressed so that the height h of the positive electrode mixture 3 (31 to 33) in the sample 5 using the EMD having the largest specific surface area is substantially the same as that of the samples 2 and 4. The pressure at the time of molding was higher than those of Samples 1 to 4. Here, the press pressure is adjusted so that the height h of the positive electrode mixture 3 (31 to 33) in the sample 5 is h = 14.4 mm, and the samples 6 to 9 are also the positive electrode mixture 3 (31 in the sample 5). To 33) at the same press pressure as the positive electrode mixture 3 (31 to 33). For example, in the sample 6 in which the mass and the specific surface area of the positive electrode mixture 3 (31 to 33) are the same as those of the samples 2 and 4, the height h between the positive electrode mixture 3 (31 to 33) of the samples 2 and 4 is h = 14.3 mm. In contrast, in sample 6, h = 13.6 mm.

<評価結果>
表1に示したように、基準となるサンプル1に対し、正極合剤3(31〜33)が増量されている以外は製造条件が同じサンプル2では、軽負荷、重負荷の放電性能がともに10%程度向上していた。しかし、耐漏液性能では、サンプル1では、漏液試験後に漏液したサンプルが半数の50%であったのに対し、サンプル2では全数に漏液が発生し、従来のアルカリ電池1では、放電性能と耐漏液性能とが相反する性能であることが確認できた。
<Evaluation results>
As shown in Table 1, sample 2 with the same manufacturing conditions except that the positive electrode mixture 3 (31 to 33) is increased with respect to the reference sample 1 has both light and heavy load discharge performance. It was improved by about 10%. However, with respect to the leakage resistance performance, in Sample 1, half of the samples leaked after the leakage test were 50%, whereas in Sample 2, all the leaks occurred. It was confirmed that the performance and the leak-proof performance were contradictory.

サンプル3〜9は、正極合剤3(31〜33)を離間配置したサンプルであり、この内、サンプル3と4は、それぞれ、サンプル1と2に対し、正極合剤3(31〜33)の配置状態のみを変えたものである。そして、サンプル3では、軽負荷放電性能についてはサンプル1に対して性能が向上していなかったが、重負荷放電性能については、正極合剤3(31〜33)が増量されているサンプル2と同等の性能を示した。さらに、漏液試験によって漏液したサンプルは10個中1個であり、サンプル1や2に対して耐漏液性能が格段に向上することが確認できた。また、サンプル3に対して正極合剤3(31〜33)を増量して、正極合剤3(31〜33)の質量をサンプル2と同じ11.55gにしたサンプル4では、軽負荷放電性能がサンプル2と同等で、重負荷放電性能がサンプル2よりもさらに向上し、サンプル1に対して20%の性能向上が認められた。そして、漏液試験後では、サンプル3には劣ったものの、正極合剤3(31〜33)の質量が同じサンプル2に対し、漏液の発生数が1/5になった。基準となるサンプル1に対しても漏液した個体数が30%も減少した。   Samples 3 to 9 are samples in which the positive electrode mixture 3 (31 to 33) is spaced apart, and among these, the samples 3 and 4 are the positive electrode mixture 3 (31 to 33) with respect to the samples 1 and 2, respectively. Only the arrangement state of is changed. And in sample 3, although the performance was not improving with respect to sample 1 about light load discharge performance, about heavy load discharge performance, the sample 2 with which positive mix 3 (31-33) is increased and Equivalent performance was shown. Furthermore, the number of samples leaked by the leak test was 1 in 10 and it was confirmed that the leak-proof performance was significantly improved with respect to Samples 1 and 2. Further, in Sample 4 in which the positive electrode mixture 3 (31 to 33) is increased with respect to the sample 3 and the mass of the positive electrode mixture 3 (31 to 33) is set to 11.55 g as in the sample 2, the light load discharge performance Is equivalent to Sample 2, the heavy load discharge performance is further improved than Sample 2, and a 20% improvement in performance over Sample 1 was observed. And after the liquid leakage test, although it was inferior to the sample 3, with respect to the sample 2 with the same mass of the positive electrode mixture 3 (31-33), the number of occurrences of liquid leakage became 1/5. The number of individuals leaking from the reference sample 1 was also reduced by 30%.

サンプル5〜9は、正極合剤3(31〜33)を離間配置しつつ、EMDの比表面積を変えたサンプルである。正極合剤3(31〜33)の質量は、サンプル2および3と同じ11.55gとしている。ここで、表1に示したサンプル5〜9についての評価結果を見ると、軽負荷放電性能については、サンプル4と同様に、正極合剤3(31〜33)の質量に依存し、サンプル2やサンプル4と同じ性能を示した。重負荷放電性能については、比表面積が大きいほど向上する傾向が見られた。しかし、比表面積が30m/gより大きいサンプル5では、耐漏液性能が劣化し、漏液試験によって漏液が発生した個体の割合が50%となり、サンプル1と同じ結果となった。また、比表面積が20m/gより小さいサンプル9では、正極合剤3(31〜33)の質量が同じサンプル2よりも重負荷放電性能が低下していた。したがって、比表面積の最適数値範囲は、20m/g以上、30m/g以下と規定することができる。 Samples 5 to 9 are samples in which the specific surface area of the EMD was changed while the positive electrode mixture 3 (31 to 33) was spaced apart. The mass of the positive electrode mixture 3 (31 to 33) is 11.55 g which is the same as that of the samples 2 and 3. Here, when the evaluation result about the samples 5-9 shown in Table 1 is seen, about the light load discharge performance, like the sample 4, it depends on the mass of the positive electrode mixture 3 (31-33), and the sample 2 And the same performance as sample 4. About heavy load discharge performance, the tendency which improved, so that the specific surface area was large was seen. However, in Sample 5 having a specific surface area of greater than 30 m 2 / g, the leakage resistance performance deteriorated, and the ratio of individuals in which leakage occurred due to the leakage test was 50%, which is the same result as Sample 1. Moreover, in the sample 9 whose specific surface area is smaller than 20 m < 2 > / g, the heavy load discharge performance was falling rather than the sample 2 with the same mass of the positive electrode mixture 3 (31-33). Therefore, the optimum numerical range of the specific surface area can be defined as 20 m 2 / g or more and 30 m 2 / g or less.

===作用、効果===
以上に示した評価結果より、図2に示した本実施形態に係るアルカリ電池では、正極合剤3(31〜33)が電解液を吸収して膨潤しようとするとき、正極合剤間(31−32、32−33)にその膨潤による体積の増加分を吸収するための空間が存在するため、正極合剤3(31〜33)が十分に膨潤でき、その結果、重負荷放電性能が向上したものと考えることができる。すなわち、従来では、正極合剤3(31〜33)の電解液の吸収に伴う体積増加分に見合う空間が存在しなかったために電解液の吸収量が制限されていたが、正極合剤間(31−32、32−33)に空隙Dを設けたため、電解液がより効率的に吸収された、と考えることができる。
=== Action, Effect ===
From the evaluation results shown above, in the alkaline battery according to this embodiment shown in FIG. 2, when the positive electrode mixture 3 (31 to 33) absorbs the electrolytic solution and swells, the positive electrode mixture 3 (31 -32, 32-33) has a space for absorbing the increase in volume due to the swelling, so that the positive electrode mixture 3 (31-33) can swell sufficiently, and as a result, the heavy load discharge performance is improved. Can be considered. That is, conventionally, the amount of electrolyte absorption was limited because there was no space commensurate with the volume increase associated with the absorption of the electrolyte of the positive electrode mixture 3 (31 to 33). 31-32, 32-33), since the gap D is provided, it can be considered that the electrolyte was absorbed more efficiently.

しかし、比表面積が小さすぎると、EMDが不活性、すなわち発電反応に寄与する表面積が減少し、正極合剤3(31〜33)を離間配置することによる重負荷放電性能の向上効果を相殺させてしまうこともわかった。また、正極合剤3(31〜33)は、同じ圧力でプレス成形する場合、含有するEMDの比表面積が大きいと密度が小さくなり、比表面積が小さいと密度が大きくなることから、EMDの比表面積が大きすぎると、正極合剤3(31〜33)の充填効率が低下し、それに伴って電解液の吸収効率が低下し、耐漏液性能が劣化する、ということもわかった。したがって、正極合剤3(31〜33)を離間して配置することによる効果を得るためには、正極合剤3(31〜33)中のEMDの比表面積を適切に調整することが必要となる。また、電解液が効率的に吸収される、ということは、余剰の電解液が減少することでもあり、それによって過放電による耐漏液性能も向上した、と考えることができる。   However, if the specific surface area is too small, the EMD is inactive, that is, the surface area that contributes to the power generation reaction is reduced, and the effect of improving the heavy load discharge performance by disposing the positive electrode mixture 3 (31 to 33) is offset. I also found out. Further, when the positive electrode mixture 3 (31 to 33) is press-molded at the same pressure, the density decreases when the specific surface area of the contained EMD is large, and the density increases when the specific surface area is small. It was also found that when the surface area is too large, the filling efficiency of the positive electrode mixture 3 (31 to 33) is lowered, and the absorption efficiency of the electrolytic solution is lowered accordingly, and the leakage resistance performance is deteriorated. Therefore, in order to acquire the effect by arranging positive electrode mixture 3 (31-33) apart, it is necessary to adjust the specific surface area of EMD in positive electrode mixture 3 (31-33) appropriately. Become. In addition, the fact that the electrolytic solution is efficiently absorbed also means that the excess electrolytic solution is reduced, thereby improving the leakage resistance performance due to overdischarge.

なお、表1におけるサンプル3〜9では、上下方向で中央に配置される正極合剤32の上面36から正極缶2の開口端面22までの距離D2が一定であったため、正極合剤3(31〜33)の高さhに応じた正極合剤間(31−32、32−33)の距離(D3、D4)が一律ではなかった。しかしながら、表1に示した、正極合剤間(31−32、32−33)が離間しているサンプル1、2と離間しているサンプル3〜9との性能を比較する限り、また、正極合剤間(31−32、32−33)を離間しつつ、EMDの比表面積を変えたサンプル5〜9における性能試験結果を見る限り、正極合剤間(31−32、32−33)の距離(D3、D4)と、放電性能や耐漏液性能との相関性は無い、あるいは極めて小さい、と考えた方がよい。すなわち、放電性能や耐漏液性能は、正極合剤間(31−32、32−33)の距離(D3、D4)の違いによる効果よりも、EMDの比表面積の違いによる効果の方が支配的である、と言える。いずれにしても、正極缶2の高さには限りがあるので、その高さ制限を満たした上で正極合剤3(31〜33)を離間させた状態で正極缶2内に積層配置することになり、EMDの比表面積が大きすぎれば、正極合剤3(31〜33)の高さhが高くなり、結局、間隙Dを設けることができなくなる。したがって、正極合剤3(31〜33)を離間配置する際にEMDの比表面積を規定することには大きな技術的意義がある。   In Samples 3 to 9 in Table 1, since the distance D2 from the upper surface 36 of the positive electrode mixture 32 arranged in the center in the vertical direction to the open end surface 22 of the positive electrode can 2 was constant, the positive electrode mixture 3 (31 The distances (D3, D4) between the positive electrode mixtures (31-32, 32-33) corresponding to the height h of (33) to (33) were not uniform. However, as long as the performances of Samples 1 and 2 in which the positive electrode mixture (31-32, 32-33) are separated and Samples 3 to 9 shown in Table 1 are separated, As long as the performance test results in Samples 5 to 9 in which the specific surface area of the EMD was changed while separating the mixture (31-32, 32-33) were observed, the positive electrode mixture (31-32, 32-33) It is better to consider that there is no correlation between the distance (D3, D4) and the discharge performance or leakage resistance performance, or it is extremely small. That is, in the discharge performance and leakage resistance performance, the effect due to the difference in specific surface area of EMD is more dominant than the effect due to the difference in distance (D3, D4) between the positive electrode mixture (31-32, 32-33). It can be said that. In any case, since the height of the positive electrode can 2 is limited, the positive electrode mixture 3 (31 to 33) is stacked and disposed in the positive electrode can 2 in a state where the height restriction is satisfied and the positive electrode mixture 3 (31 to 33) is separated. In other words, if the specific surface area of the EMD is too large, the height h of the positive electrode mixture 3 (31 to 33) is increased, and eventually the gap D cannot be provided. Therefore, there is a great technical significance in defining the specific surface area of the EMD when the positive electrode mixture 3 (31 to 33) is spaced apart.

===その他の実施形態===
本実施形態に係るアルカリ電池 1aでは、正極缶2内に同じサイズの正極合剤3(31〜33)を3個挿入していたが、正極缶内に挿入される正極合剤は、複数個であればよく、また、環状の内径と外形が同じであれば、高さが異なる複数の正極合剤を一つの正極缶内に混在させて挿入してもよい。いずれにしても、有底円筒状の正極缶の円筒軸方向法を上下方向として、複数の環状の正極合剤が上下方向で離間した状態で挿入されていればよい。
=== Other Embodiments ===
In the alkaline battery 1a according to the present embodiment, three positive electrode mixtures 3 (31 to 33) of the same size are inserted into the positive electrode can 2, but there are a plurality of positive electrode mixtures inserted into the positive electrode can. As long as the inner diameter and the outer shape of the ring are the same, a plurality of positive electrode mixtures having different heights may be mixed and inserted into one positive electrode can. In any case, the cylindrical axial direction method of the bottomed cylindrical positive electrode can may be the vertical direction, and a plurality of annular positive electrode mixtures may be inserted in a state separated in the vertical direction.

また、上記実施形態に係るアルカリ電池1aでは、正極合剤3(31〜33)は、環状にプレス成形された上で正極缶2内に挿入されていたが、正極合剤の成形方法としては、周知のごとく、粉末状の正極合剤を正極缶内に充填させた後、その正極缶自体をプレス型として粉体を押圧して環状に成形する方法もある。このように成形方法を採用した場合でも、例えば、複数の正極合剤を正極缶内で順次成形し、一つの正極合剤を成形するごとに、図2における間隙Dに相当するリング状のスペーサ部材を挿入するようにしてもよい。なお、スペーサ部材には、吸液した正極合剤の膨潤を阻害せず、かつ成形時にはある程度の硬度を有する素材を用いればよい。電解液(液体)を吸収して軟化する素材や、電解液によって分解するとともに、分解後は、電池内における化学反応を阻害したり、性能を劣化させない素材としたりすることも考えられる。   Moreover, in the alkaline battery 1a which concerns on the said embodiment, although the positive mix 3 (31-33) was inserted in the positive electrode can 2 after being cyclically press-molded, as a shaping | molding method of a positive mix, As is well known, there is a method in which a powdered positive electrode mixture is filled in a positive electrode can, and then the positive electrode can itself is used as a press mold to press the powder to form an annular shape. Even when such a forming method is adopted, for example, a plurality of positive electrode mixtures are sequentially formed in a positive electrode can, and each time one positive electrode mixture is formed, a ring-shaped spacer corresponding to the gap D in FIG. A member may be inserted. The spacer member may be made of a material that does not inhibit swelling of the absorbed positive electrode mixture and has a certain degree of hardness during molding. It is conceivable that a material that absorbs and softens the electrolytic solution (liquid) or decomposes with the electrolytic solution, and after the decomposition, a material that does not hinder a chemical reaction in the battery or does not deteriorate the performance.

1,1a アルカリ電池、2 正極缶、3,31〜33 正極合剤、4 セパレーター、5 負極ゲル、6 負極集電子、7 負極端子板、8 ガスケット、9 正極端子 DESCRIPTION OF SYMBOLS 1,1a Alkaline battery, 2 positive electrode can, 3,31-33 positive electrode mixture, 4 separator, 5 negative electrode gel, 6 negative electrode current collector, 7 negative electrode terminal board, 8 gasket, 9 positive electrode terminal

Claims (2)

正極を兼ねる有底円筒状の金属製電池缶内に環状に成形された複数の正極合剤が挿入されてなるアルカリ電池であって、
前記正極合剤は電解二酸化マンガンを正極活物質として含み、当該電解二酸化マンガンは、BET法によって測定された比表面積が20m/g以上30m/g以下であり、
前記中空円筒状の電池缶の円筒軸の延長方向を上下方向として、前記環状の複数の正極合剤は、前記円筒軸と同軸に上下方向に互いに離間した状態で積層配置されている、
ことを特徴とするアルカリ電池。
An alkaline battery in which a plurality of positive electrode mixtures formed in an annular shape is inserted into a bottomed cylindrical metal battery can also serving as a positive electrode,
The positive electrode mixture includes electrolytic manganese dioxide as a positive electrode active material, and the electrolytic manganese dioxide has a specific surface area measured by a BET method of 20 m 2 / g to 30 m 2 / g,
With the extending direction of the cylindrical axis of the hollow cylindrical battery can as the vertical direction, the plurality of annular positive electrode mixtures are arranged in a stacked manner in a state of being spaced apart from each other in the vertical direction coaxially with the cylindrical axis.
An alkaline battery characterized by that.
正極を兼ねる有底円筒状の金属製電池缶内に環状に成形された複数の正極合剤が挿入されてなるアルカリ電池の製造方法であって、
BET法によって測定された比表面積が20m/g以上30m/g以下の二酸化マンガンを正極活物質として含んだ正極合剤を環状に成形するステップと、
前記中空円筒状の電池缶の円筒軸の延長方向を上下方向として、前記環状に成形された複数の正極合剤を、前記円筒軸と同軸に上下方向に互いに離間した状態で積層配置するステップと、
を含むことを特徴とするアルカリ電池の製造方法。
A method for producing an alkaline battery in which a plurality of positive electrode mixtures formed in a ring shape are inserted into a cylindrical metal battery can with a bottom that also serves as a positive electrode,
Forming a positive electrode mixture containing manganese dioxide having a specific surface area of 20 m 2 / g or more and 30 m 2 / g or less as a positive electrode active material measured by the BET method in an annular shape;
A step of stacking and arranging the plurality of annularly formed positive electrode mixtures coaxially with the cylindrical shaft and spaced apart from each other in the vertical direction, with the extending direction of the cylindrical shaft of the hollow cylindrical battery can as the vertical direction ,
The manufacturing method of the alkaline battery characterized by including.
JP2012283559A 2012-12-26 2012-12-26 Alkaline battery and method for producing alkaline battery Active JP6078333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283559A JP6078333B2 (en) 2012-12-26 2012-12-26 Alkaline battery and method for producing alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283559A JP6078333B2 (en) 2012-12-26 2012-12-26 Alkaline battery and method for producing alkaline battery

Publications (2)

Publication Number Publication Date
JP2014127362A true JP2014127362A (en) 2014-07-07
JP6078333B2 JP6078333B2 (en) 2017-02-08

Family

ID=51406695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283559A Active JP6078333B2 (en) 2012-12-26 2012-12-26 Alkaline battery and method for producing alkaline battery

Country Status (1)

Country Link
JP (1) JP6078333B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173977A (en) * 2015-03-18 2016-09-29 Fdkエナジー株式会社 Alkali battery
WO2017110024A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017110023A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017119018A1 (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Alkaline dry battery
CN107946609A (en) * 2017-12-15 2018-04-20 中银(宁波)电池有限公司 Cylindrical alkaline battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595880U (en) * 1982-07-01 1984-01-14 三洋電機株式会社 battery
JPS6324559A (en) * 1986-07-17 1988-02-01 Fuji Elelctrochem Co Ltd Cylindrical alkaline cell
JP2000036301A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Alkaline dry cell
JP2005322613A (en) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd Alkaline battery
JP2009135067A (en) * 2007-02-14 2009-06-18 Tosoh Corp Electrolytic manganese dioxide, and production method and application therefor
US20090253040A1 (en) * 2008-04-08 2009-10-08 Tadaya Okada Alkaline dry battery and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595880U (en) * 1982-07-01 1984-01-14 三洋電機株式会社 battery
JPS6324559A (en) * 1986-07-17 1988-02-01 Fuji Elelctrochem Co Ltd Cylindrical alkaline cell
JP2000036301A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Alkaline dry cell
JP2005322613A (en) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd Alkaline battery
JP2009135067A (en) * 2007-02-14 2009-06-18 Tosoh Corp Electrolytic manganese dioxide, and production method and application therefor
US20090253040A1 (en) * 2008-04-08 2009-10-08 Tadaya Okada Alkaline dry battery and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173977A (en) * 2015-03-18 2016-09-29 Fdkエナジー株式会社 Alkali battery
WO2017110024A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017110023A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
JPWO2017110023A1 (en) * 2015-12-21 2018-05-10 パナソニックIpマネジメント株式会社 Alkaline battery
CN108140849A (en) * 2015-12-21 2018-06-08 松下知识产权经营株式会社 Alkaline dry battery
CN108140849B (en) * 2015-12-21 2020-10-13 松下知识产权经营株式会社 Alkaline dry cell
WO2017119018A1 (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Alkaline dry battery
JPWO2017119018A1 (en) * 2016-01-08 2018-05-10 パナソニックIpマネジメント株式会社 Alkaline battery
CN107946609A (en) * 2017-12-15 2018-04-20 中银(宁波)电池有限公司 Cylindrical alkaline battery

Also Published As

Publication number Publication date
JP6078333B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6078333B2 (en) Alkaline battery and method for producing alkaline battery
CA2566658C (en) Embedded electrode conformations for balanced energy, power, and cost in an alkaline cell
JP2017525124A (en) battery
CA2537690C (en) Battery cells having improved power characteristics and methods of manufacturing same
US8338023B2 (en) AA alkaline battery
US7264903B2 (en) Battery cells having improved power characteristics and methods of manufacturing same
CN1581558A (en) Drum shape alkali accumulator
EP2479824A1 (en) Cylindrical alkaline battery
EP2348565B1 (en) Alkaline battery
CA2537684C (en) Cylindrical battery cell having improved power characteristics and methods of manufacturing same
JP2005276698A (en) Alkaline battery
EP1968138A1 (en) Flat alkaline primary battery
JP2016162646A (en) Flat alkaline primary battery and method of manufacturing the same
JP2001068121A (en) Cylindrical alkaline battery
JP2019160672A (en) Flat type alkaline primary battery
JP2007220373A (en) Sealed alkaline zinc primary cell
CN2570999Y (en) Alkaline secondary cell
JP2004095475A (en) Cylindrical battery
JP2023136835A (en) Nickel hydrogen secondary battery
JPH02210757A (en) Lithium battery
JP2009295307A (en) Cathode mixture formed object for lithium cell and lithium cell
JP2008103111A (en) Zinc alkaline battery
JP2004311117A (en) Current collector for electrode and flat battery using it
JP2007115566A (en) Zinc alkaline battery
JP2006221891A (en) Coin type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170116

R150 Certificate of patent or registration of utility model

Ref document number: 6078333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250