JP2014125519A - Prefoamed particle and foamed molded article - Google Patents

Prefoamed particle and foamed molded article Download PDF

Info

Publication number
JP2014125519A
JP2014125519A JP2012282397A JP2012282397A JP2014125519A JP 2014125519 A JP2014125519 A JP 2014125519A JP 2012282397 A JP2012282397 A JP 2012282397A JP 2012282397 A JP2012282397 A JP 2012282397A JP 2014125519 A JP2014125519 A JP 2014125519A
Authority
JP
Japan
Prior art keywords
acid amide
fatty acid
expanded particles
particles
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012282397A
Other languages
Japanese (ja)
Other versions
JP5978984B2 (en
Inventor
Hiroshi Nakakuki
弘 中岫
Kazuo Asano
一生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2012282397A priority Critical patent/JP5978984B2/en
Publication of JP2014125519A publication Critical patent/JP2014125519A/en
Application granted granted Critical
Publication of JP5978984B2 publication Critical patent/JP5978984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acrylonitrile-styrene resin prefoamed particle which has resistance to blocking, can shorten the cooling time of the molding in a mold and can produce a foamed molded article excellent in weldability, and to provide a molded article thereof.SOLUTION: A prefoamed particle is obtained by adhering paraffin-based wax and a fatty acid amide to the surface of the prefoamed particle using an acrylonitrile-styrene resin as a base material. In the prefoamed particle, the adhesion amount of the paraffin-based wax is 1 to 20 pts.mass based on 100 pts.mass of the prefoamed particle, and the adhesion amount of the fatty acid amide is 2 pts.mass or less (excluding 0) based on 100 pts.mass of the prefoamed particle.

Description

本発明は、アクリロニトリル・スチレン樹脂予備発泡粒子、及びこれらを型内成形してなる発泡粒子成形体に関する。   The present invention relates to acrylonitrile / styrene resin pre-foamed particles and a foamed particle molded body obtained by molding these in-mold.

アクリロニトリル・スチレン樹脂(以下、適宜「AS樹脂」という)は、ポリスチレンと比較して、耐油性、耐薬品性、耐熱性等に優れることが知られている。そこで、この特徴を活かし、ポリスチレン樹脂予備発泡粒子の成形体では使用が困難であった、耐油性、耐薬品性、耐熱性等が要求される用途にAS樹脂予備発泡粒子の成形体が使用されている。   It is known that acrylonitrile / styrene resin (hereinafter referred to as “AS resin” as appropriate) is superior in oil resistance, chemical resistance, heat resistance and the like as compared with polystyrene. Therefore, taking advantage of this feature, AS resin pre-expanded particles are used for applications that require oil resistance, chemical resistance, heat resistance, etc., which were difficult to use with polystyrene resin pre-expanded particles. ing.

AS樹脂予備発泡粒子の成形加工は、ポリスチレン樹脂予備発泡粒子と同様の装置で行われる。成形加工工程においては、冷却時間が成形時間の50%以上を占めるため、冷却時間を短くすることが成形時間を短縮することになり、生産性の向上につながる。しかし、一般に、AS樹脂予備発泡粒子は、ポリスチレン樹脂予備発泡粒子と比較して発泡剤の保持性に優れ、発泡粒子中に残存する発泡剤が多くなるため、成形加工において発泡圧力が高くなり、冷却時間が長くなる傾向にある。   The AS resin pre-expanded particles are molded by the same apparatus as the polystyrene resin pre-expanded particles. In the molding process, the cooling time occupies 50% or more of the molding time. Therefore, shortening the cooling time shortens the molding time, leading to an improvement in productivity. However, in general, the AS resin pre-foamed particles are superior to the polystyrene resin pre-foamed particles in the retention of the foaming agent, and the foaming agent remaining in the foamed particles is increased. The cooling time tends to be longer.

冷却時間を短くする方法としては、樹脂粒子の表面にある種の添加剤を被覆する方法が提案されている。例えば、脂肪酸グリセライドを発泡性スチレン系樹脂粒子に被覆する方法(特許文献1参照)や、アセチル化モノグリセライドを発泡性AS樹脂粒子に被覆する方法(特許文献2参照)などが知られている。   As a method of shortening the cooling time, a method of coating a certain additive on the surface of the resin particles has been proposed. For example, a method of coating fatty acid glyceride on expandable styrene resin particles (see Patent Document 1) and a method of coating acetylated monoglyceride on expandable AS resin particles (see Patent Document 2) are known.

特開昭52−127968号公報JP 52-127968 A 特開2002−161163号公報JP 2002-161163 A

しかしながら、脂肪酸グリセライドは、ポリスチレンを基材とする予備発泡粒子に被覆した場合には、十分な冷却短縮効果が得られるが、耐油性に優れるAS樹脂予備発泡粒子においては、冷却時間の短縮効果が非常に小さくなる。そのため、脂肪酸グリセライドを用いた上記従来の方法は、AS樹脂を基材とする予備発泡粒子の型内成形の冷却時間を充分に短縮化させることができない。
一方、アセチル化モノグリセライドは、AS樹脂を基材とする予備発泡粒子においても冷却時間を短縮する効果はある。しかし、アセチル化モノグリセライドを用いると、発泡性樹脂粒子の発泡時に発泡粒子同士が互着してしまうブロッキングが発生しやすくなる。ブロッキングが増大すると、発泡粒子の金型への充填性が低下し、良好な成形体が得られなくなるおそれがある。
However, when fatty acid glyceride is coated on polystyrene-based pre-expanded particles, a sufficient cooling shortening effect can be obtained. However, AS resin pre-expanded particles having excellent oil resistance have a cooling time shortening effect. Very small. Therefore, the conventional method using fatty acid glyceride cannot sufficiently shorten the cooling time for in-mold molding of pre-expanded particles based on AS resin.
On the other hand, acetylated monoglyceride has an effect of shortening the cooling time even in the pre-expanded particles based on AS resin. However, when acetylated monoglyceride is used, blocking that causes foamed particles to adhere to each other at the time of foaming of foamable resin particles tends to occur. When the blocking increases, the filling property of the expanded particles into the mold may be lowered, and a good molded article may not be obtained.

本発明はかかる背景に鑑みてなされたものであって、耐ブロッキング性に優れ、型内成形における冷却時間を短縮することができると共に、融着性に優れた発泡粒子成形体を製造することができるアクリロニトリル・スチレン樹脂予備発泡粒子、及びその成形体を提供しようとするものである。   The present invention has been made in view of such a background, and is capable of producing a foamed particle molded body having excellent anti-blocking property, reducing the cooling time in in-mold molding, and excellent in fusion property. An object of the present invention is to provide pre-expanded acrylonitrile / styrene resin particles, and molded articles thereof.

本発明の一態様は、アクリロニトリル・スチレン樹脂を基材とする予備発泡粒子の表面に、パラフィン系ワックス及び脂肪酸アマイドが付着してなり、
上記パラフィン系ワックスの付着量は、上記予備発泡粒子100質量部に対して1〜20質量部であり、
上記脂肪酸アマイドの付着量は、上記予備発泡粒子100質量部に対して2質量部以下(但し、0を除く)であることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子にある(請求項1)。
One aspect of the present invention comprises a paraffin wax and a fatty acid amide attached to the surface of pre-expanded particles based on acrylonitrile / styrene resin.
The amount of the paraffin wax attached is 1 to 20 parts by mass with respect to 100 parts by mass of the pre-expanded particles,
The amount of the fatty acid amide attached is 2 parts by mass or less (excluding 0) based on 100 parts by mass of the pre-expanded particles (excluding 0). .

本発明の他の態様は、上記アクリロニトリル・スチレン樹脂予備発泡粒子を型内成形してなることを特徴とする発泡粒子成形体にある(請求項7)。   Another aspect of the present invention lies in a foamed particle molded body obtained by molding the acrylonitrile / styrene resin pre-foamed particles in a mold (Claim 7).

上記AS樹脂予備発泡粒子においては、上記AS樹脂を基材とする予備発泡粒子の表面にパラフィン系ワックス及び脂肪酸アマイドが上記特定量で付着している。そのため、上記AS樹脂予備発泡粒子を型内成形する際に、冷却時間を短縮できる。その結果、成形時間を大幅に短縮することができ、発泡粒子成形体の生産性を向上させることができる。   In the AS resin pre-expanded particles, paraffinic wax and fatty acid amide adhere to the surface of the pre-expanded particles based on the AS resin in the specific amounts. Therefore, the cooling time can be shortened when the AS resin pre-expanded particles are molded in the mold. As a result, the molding time can be greatly shortened, and the productivity of the foamed particle molded body can be improved.

また、一般に、冷却時間をより短縮しようと冷却短縮効果のある添加剤を多量に予備発泡粒子の表面に付着させた場合には、上述のごとく発泡時のブロックングが増大し、成形型内への予備発泡粒子の充填性が低下してしまう傾向にある。
これに対し、上記予備発泡粒子においては、上記パラフィン系ワックスと共に、上記脂肪酸アマイドが予備発泡粒子の表面に特定量付着している。そのため、上記予備発泡粒子同士のブロッキングの発生を抑制することができ、上記予備発泡粒子は取扱い性に優れている。また、上記予備発泡粒子においては、型内成形時の予備発泡粒子同士の融着性を阻害することなく、予備発泡粒子が本来有する優れた融着性を発揮することができる。そのため、曲げ強さ等の機械的強度を損ねることなく、機械的強度に優れた発泡粒子成形体を得ることができる。
即ち、上記予備発泡粒子においては、ブロッキングを抑制し、融着性を損ねることなく機械的強度に優れた発泡粒子成形体を得ることができ、成形時の冷却時間の短縮化を図ることができる。
In general, when a large amount of an additive having a cooling shortening effect is adhered to the surface of the pre-foamed particles in order to shorten the cooling time, the blocking during foaming increases as described above, and into the mold. There is a tendency that the filling property of the pre-expanded particles is lowered.
On the other hand, in the said pre-expanded particle, the said fatty acid amide has adhered to the surface of the pre-expanded particle with the said paraffinic wax. Therefore, the occurrence of blocking between the pre-expanded particles can be suppressed, and the pre-expanded particles are excellent in handleability. Moreover, in the said pre-expanded particle, the outstanding meltability which the pre-expanded particle originally has can be exhibited, without inhibiting the melt property of the pre-expanded particle at the time of in-mold shaping | molding. Therefore, a foamed particle molded article having excellent mechanical strength can be obtained without impairing mechanical strength such as bending strength.
That is, in the pre-expanded particles, it is possible to obtain a foamed particle molded article having excellent mechanical strength without inhibiting blocking and impairing the fusibility, and shortening the cooling time during molding. .

また、上記発泡粒子成形体は、上記パラフィン系ワックス及び脂肪酸アマイドが表面に特定量付着したAS樹脂予備発泡粒子を型内成形することにより製造できる。そして、上記発泡粒子成形体は、上記AS樹脂予備発泡粒子の上述の優れた融着性等をいかして、優れた機械的強度を発揮することができる。   The foamed particle molded body can be produced by in-mold molding of AS resin pre-foamed particles having a specific amount of the paraffinic wax and fatty acid amide adhered to the surface. And the said expanded particle molded object can exhibit the outstanding mechanical strength using the above-mentioned outstanding fusion property of the said AS resin pre-expanded particle.

次に、上記予備発泡粒子及び上記発泡粒子成形体の好ましい実施形態について説明する。
上記予備発泡粒子は、AS樹脂を基材とする予備発泡粒子と、その表面に付着したパラフィン系ワックス及び脂肪酸アマイドとからなる。
Next, preferred embodiments of the pre-expanded particles and the expanded particle molded body will be described.
The said pre-expanded particle consists of the pre-expanded particle which uses AS resin as a base material, and the paraffin wax and fatty acid amide adhering to the surface.

AS樹脂は、アクリロニトリルとスチレンとの共重合体(コポリマー)であり、別名スチレンアクリロニトリルコポリマー(SAN)とも言う。
上記AS樹脂予備発泡粒子は、発泡性AS樹脂粒子を発泡させて得ることができる。その発泡倍率は、所望の物性に応じて適宜調整することができる。
AS resin is a copolymer (copolymer) of acrylonitrile and styrene, and is also called styrene acrylonitrile copolymer (SAN).
The AS resin pre-foamed particles can be obtained by foaming expandable AS resin particles. The expansion ratio can be appropriately adjusted according to desired physical properties.

上記パラフィン系ワックス及び脂肪酸アマイドは、上記AS樹脂予備発泡粒子の表面に付着しているだけでなく、その一部が粒子の表面付近の内部に含浸されていてもよい。   The paraffinic wax and the fatty acid amide are not only attached to the surface of the AS resin pre-foamed particles, but a part thereof may be impregnated in the vicinity of the surface of the particles.

上記AS樹脂予備発泡粒子にパラフィン系ワックスを付着させる方法としては、予備発泡時に発泡性AS樹脂粒子にパラフィン系ワックスを添加し、パラフィン系ワックスの共存下で予備発泡を行なう方法がある。また、パラフィン系ワックスを融点以上に加熱し液体状態とし、これを発泡後のAS樹脂予備発泡粒子に塗布する方法等でもよい。   As a method of attaching paraffin wax to the AS resin pre-expanded particles, there is a method in which paraffin wax is added to the expandable AS resin particles at the time of pre-foaming and pre-foaming is performed in the presence of paraffin wax. Alternatively, the paraffin wax may be heated to the melting point or higher to be in a liquid state, and this may be applied to the pre-foamed AS resin pre-expanded particles.

これらの方法の中でも、特に製造工程が簡便で、かつより優れた冷却短縮効果、融着性が得られるという観点から、予備発泡時にパラフィン系ワックスを添加し、パラフィン系ワックスの共存下で発泡性AS樹脂粒子を予備発泡させる方法が好ましい。   Among these methods, paraffin wax is added at the time of pre-foaming, and foaming is performed in the presence of paraffin wax, particularly from the viewpoint that the manufacturing process is simple, and that a superior cooling shortening effect and fusion property can be obtained. A method of pre-foaming AS resin particles is preferred.

また、上記AS樹脂予備発泡粒子の表面に脂肪酸アマイドを付着させる方法としては、予め発泡性AS樹脂粒子に脂肪酸アマイドを付着させ、次いで発泡性AS樹脂粒子を予備発泡させる方法がある。また、その他にも、予備発泡時に発泡性AS樹脂粒子に脂肪酸アマイドを添加し、脂肪酸アマイドの共存下で予備発泡を行なう方法がある。さらに、発泡後のAS樹脂予備発泡粒子に脂肪酸アマイドを塗布する方法等でもよい。   Moreover, as a method for attaching fatty acid amide to the surface of the AS resin pre-expanded particles, there is a method in which fatty acid amide is previously attached to expandable AS resin particles and then expandable AS resin particles are pre-expanded. In addition, there is a method in which fatty acid amide is added to expandable AS resin particles at the time of preliminary foaming, and preliminary foaming is performed in the presence of fatty acid amide. Furthermore, the method etc. of apply | coating a fatty acid amide to the AS resin pre-expanded particle after foaming may be used.

これらの方法の中でも、特に製造工程が簡便で、かつより優れた冷却時間短縮効果が得られるという観点から、予め発泡性AS樹脂粒子に脂肪酸アマイドを付着させ発泡性AS樹脂粒子を予備発泡させる方法や、予備発泡時に脂肪酸アマイドを添加して脂肪酸アマイドの共存下で発泡性AS樹脂粒子を予備発泡させる方法が好ましい。   Among these methods, a method of preliminarily foaming expandable AS resin particles by attaching fatty acid amide to expandable AS resin particles in advance from the viewpoint that the production process is particularly simple and a more excellent cooling time shortening effect can be obtained. Alternatively, a method in which fatty acid amide is added at the time of preliminary foaming and foamable AS resin particles are pre-foamed in the presence of fatty acid amide is preferable.

上記予備発泡粒子を作製する際に、上述のように脂肪酸アマイド及びパラフィンワックスの共存下で発泡性AS樹脂粒子を予備発泡させる方法を採用する場合には、発泡槽へ供給する前段階で、発泡性AS樹脂粒子と脂肪酸アマイド及びパラフィン系ワックスとを共存させた後、これらを発泡槽内に供給する方法を採用することができる。また、発泡槽内に発泡性樹脂粒子を供給した後に脂肪酸アマイド及びパラフィンワックスを同時又は別々に供給する方法を採用することもできる。なお、脂肪酸アマイドとパラフィンワックスとを別々に供給する場合には、どちらを先に供給してもよい。   When the pre-foamed particles are prepared, when the method of pre-foaming the foamable AS resin particles in the coexistence of the fatty acid amide and the paraffin wax as described above is adopted, foaming is performed at a stage before being supplied to the foaming tank. It is possible to employ a method in which the functional AS resin particles, the fatty acid amide and the paraffinic wax are allowed to coexist and then supplied into the foaming tank. Alternatively, a method of supplying the fatty acid amide and the paraffin wax simultaneously or separately after supplying the foamable resin particles into the foaming tank may be employed. In addition, when supplying fatty acid amide and paraffin wax separately, which may be supplied first.

上記パラフィン系ワックスとしては、単一の種類を使用してもよいし、複数の種類を混合して使用してもよい。
上記パラフィン系ワックスの融点が低すぎると、パラフィン系ワックスのべたつきが大きくなり、その取り扱いが困難になる。一方、融点が高すぎると、パラフィン系ワックスの共存下で発泡性AS樹脂粒子を予備発泡させて上記予備発泡粒子を作製する際に、パラフィン系ワックスが溶融し難くなり、予備発泡粒子に付着させることが困難になるおそれがある。また、パラフィン系ワックスの融点が高すぎると、発泡機内でパラフィン系ワックスをAS樹脂予備発泡粒子に付着させる際に、発泡機の槽内を著しく汚染させてしまうおそれがある。したがって、パラフィン系ワックスの融点は40〜100℃であることが好ましく(請求項2)、50℃〜80℃であることがより好ましい。
As the paraffin wax, a single type may be used, or a plurality of types may be mixed and used.
If the melting point of the paraffin wax is too low, the stickiness of the paraffin wax becomes large and its handling becomes difficult. On the other hand, if the melting point is too high, when the pre-foamed particles are prepared by pre-foaming the expandable AS resin particles in the presence of paraffin-based wax, the paraffin-based wax becomes difficult to melt and adheres to the pre-foamed particles. Can be difficult. Further, if the melting point of the paraffin wax is too high, the inside of the tank of the foaming machine may be significantly contaminated when the paraffin wax adheres to the AS resin pre-expanded particles in the foaming machine. Therefore, the melting point of the paraffin wax is preferably 40 to 100 ° C. (Claim 2), and more preferably 50 to 80 ° C.

上記予備発泡粒子において、パラフィン系ワックスの付着量は、パラフィン系ワックス及び脂肪酸アマイドを除くAS樹脂予備発泡粒子100質量部に対して1質量部以上かつ20質量部以下である。この範囲を下回る場合には、上記予備発泡粒子の融着性が低下し、この範囲を上回る場合には、ブロッキングが増大する。同様の観点から、パラフィン系ワックスの付着量は、好ましくは5質量部以上かつ18質量部以下がよく、さらに好ましくは10質量部以上かつ18質量部以下がよい。   In the pre-expanded particles, the adhesion amount of the paraffin wax is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the AS resin pre-expanded particles excluding the paraffin wax and the fatty acid amide. When it falls below this range, the fusibility of the pre-expanded particles decreases, and when it exceeds this range, blocking increases. From the same viewpoint, the adhesion amount of the paraffinic wax is preferably 5 parts by mass or more and 18 parts by mass or less, more preferably 10 parts by mass or more and 18 parts by mass or less.

また、上記脂肪酸アマイドとしては、例えばオレイン酸アマイド、エルカ酸アマイド、ステアリン酸アマイドなどの炭素数12〜24の脂肪酸アマイドを用いることができる。脂肪酸アマイドとしては、単一の種類を使用してもよいし、複数の種類を混合して使用してもよい。
好ましくは、上記脂肪酸アマイドは、炭素数14〜24の不飽和脂肪酸アマイドであることがよい(請求項3)。
この場合には、予備発泡粒子の融着性を損ねることなく、冷却時間の短縮効果が得られるという上述の作用効果がより顕著になる。より好ましくは、脂肪酸アマイドとしては、オレイン酸アマイド及び/又はエルカ酸アマイドがよい(請求項4)。
Moreover, as said fatty acid amide, C12-24 fatty acid amides, such as an oleic acid amide, an erucic acid amide, a stearic acid amide, can be used, for example. As the fatty acid amide, a single type may be used, or a plurality of types may be mixed and used.
Preferably, the fatty acid amide is an unsaturated fatty acid amide having 14 to 24 carbon atoms (Claim 3).
In this case, the above-described operation and effect that the effect of shortening the cooling time can be obtained without impairing the fusibility of the pre-expanded particles becomes more remarkable. More preferably, the fatty acid amide is oleic acid amide and / or erucic acid amide (claim 4).

上記予備発泡粒子において、脂肪酸アマイドの付着量は、パラフィン系ワックス及び脂肪酸アマイドを除くAS樹脂予備発泡粒子100質量部に対して2質量部以下(但し、0を除く)である。この範囲を上回る場合には、融着性が低下し、予備発泡粒子を型内成形してなる発泡粒子成形体の外観が悪くなると共に、強度が低下する。同様の観点から、脂肪酸アマイドの付着量は、好ましくは1質量部以下がよく、さらに好ましくは0.5質量部以下がよい。また、冷却時間短縮効果をより向上させるという観点から、脂肪酸アマイドの付着量は、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.2質量部以上がさらに好ましい。   In the pre-expanded particles, the adhesion amount of fatty acid amide is 2 parts by mass or less (excluding 0) with respect to 100 parts by mass of AS resin pre-expanded particles excluding paraffinic wax and fatty acid amide. When exceeding this range, the meltability is lowered, the appearance of the foamed particle molded body obtained by molding the pre-foamed particles in the mold is deteriorated, and the strength is lowered. From the same viewpoint, the adhesion amount of fatty acid amide is preferably 1 part by mass or less, more preferably 0.5 part by mass or less. Moreover, from the viewpoint of further improving the cooling time shortening effect, the fatty acid amide adhesion amount is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and further preferably 0.2 parts by mass or more.

上記予備発泡粒子に付着しているパラフィン系ワックス及び脂肪酸アマイドの付着量は次のようにして測定することができる。
即ち、まず、任意の量のパラフィン系ワックス及び脂肪酸アマイドが付着した予備発泡粒子群の重量を計測する。次いで、該予備発泡粒子群を十分量のテトラヒドロフランなどの溶媒にて溶解し、予備発泡粒子表面に付着するパラフィン系ワックス及び脂肪酸アマイドを抽出し、ガスクロマトグラフ測定によりパラフィン系ワックス及び脂肪酸アマイドの付着量を求めることができる。
The amount of paraffinic wax and fatty acid amide adhering to the pre-expanded particles can be measured as follows.
That is, first, the weight of the pre-expanded particle group to which an arbitrary amount of paraffinic wax and fatty acid amide are attached is measured. Next, the pre-expanded particles are dissolved in a sufficient amount of a solvent such as tetrahydrofuran, and the paraffin wax and fatty acid amide adhering to the surface of the pre-expanded particles are extracted, and the amount of paraffin wax and fatty acid amide attached is determined by gas chromatography. Can be requested.

上記AS樹脂予備発泡粒子を構成するAS樹脂のアクリロニトリル成分の含有量は10〜50質量%であることが好ましい(請求項5)。
アクリロニトリルの含有量が上記範囲内にある場合には、パラフィン系樹脂と脂肪酸アマイドとを特定量付着させることによる冷却時間短縮効果がより顕著になる。より好ましくは、アクリロニトリルの含有量は20〜35質量%であることがよい。
The content of the acrylonitrile component of the AS resin constituting the AS resin pre-expanded particles is preferably 10 to 50% by mass (Claim 5).
When the content of acrylonitrile is within the above range, the cooling time shortening effect by attaching a specific amount of paraffinic resin and fatty acid amide becomes more remarkable. More preferably, the content of acrylonitrile is 20 to 35% by mass.

上記AS樹脂予備発泡粒子は、上述のように発泡性AS樹脂粒子を発泡させて得ることができるが、発泡性AS樹脂粒子は、AS樹脂粒子に発泡剤を含浸させることにより得ることができる。上記AS樹脂粒子には、本発明の効果を損なわない限り、気泡調整剤、顔料、スリップ剤、帯電防止剤、難燃剤等の添加剤を含有させておくことができる。   The AS resin pre-foamed particles can be obtained by foaming the foamable AS resin particles as described above, but the foamable AS resin particles can be obtained by impregnating the AS resin particles with a foaming agent. The AS resin particles may contain additives such as a bubble regulator, a pigment, a slip agent, an antistatic agent, and a flame retardant, as long as the effects of the present invention are not impaired.

上記AS樹脂粒子は、アクリロニトリル単量体及びスチレン単量体を懸濁重合することにより製造することができる。また、上記AS樹脂粒子は、市販の樹脂ペレットを押出機で溶融混練した後、ストランドカット方式、ホットカット方式、水中カット方式等により細粒化することにより製造することができる。AS樹脂粒子の粒子径は、懸濁重合の場合には懸濁剤の添加量や攪拌動力を調整することにより適宜調整することができる。また、押出機を使用する場合には溶融混練物と吐出量とそれをカットする速度とを調整することにより適宜調整することができる。所望の粒子径が得られる方法であれば他の方法により行うこともできる。   The AS resin particles can be produced by suspension polymerization of an acrylonitrile monomer and a styrene monomer. The AS resin particles can be produced by melt-kneading commercially available resin pellets with an extruder and then finely pulverizing them by a strand cut method, a hot cut method, an underwater cut method, or the like. In the case of suspension polymerization, the particle diameter of AS resin particles can be adjusted as appropriate by adjusting the amount of suspending agent added and the stirring power. Moreover, when using an extruder, it can adjust suitably by adjusting melt kneaded material, discharge amount, and the speed which cuts it. Any other method can be used as long as the desired particle size can be obtained.

次に、上記予備発泡粒子においては、その平均粒子径が1.5〜6.0mmで、かつ嵩発泡倍率が5〜70倍であることが好ましい(請求項6)。
上記予備発泡粒子の平均粒径が小さすぎる場合には、ブロッキングや融着性に悪影響を及ぼすおそれがある。かかる観点から、予備発泡粒子の平均粒子径は上述のごとく1.5mm以上が好ましい。より好ましくは2.0mm以上がよい。一方、予備発泡粒子の平均粒子径が大きすぎる場合には、型内成形により上記発泡粒子成形体を作製する際に金型への充填性が悪くなる。かかる観点から、予備発泡粒子の平均粒径は上述のごとく6.0mm以下が好ましい。より好ましくは4.0mm以下がよく、さらに好ましくは3.0mm以下がよい。
上記予備発泡粒子の平均粒子径は、発泡性AS樹脂粒子の粒子径及びその発泡倍率を調整することにより制御することができる。
Next, the pre-expanded particles preferably have an average particle diameter of 1.5 to 6.0 mm and a bulk expansion ratio of 5 to 70 times (Claim 6).
When the average particle diameter of the pre-expanded particles is too small, there is a risk of adversely affecting blocking and fusion properties. From this viewpoint, the average particle diameter of the pre-expanded particles is preferably 1.5 mm or more as described above. More preferably, it is 2.0 mm or more. On the other hand, when the average particle diameter of the pre-expanded particles is too large, the filling property into the mold is deteriorated when the expanded particle molded body is produced by in-mold molding. From this viewpoint, the average particle size of the pre-expanded particles is preferably 6.0 mm or less as described above. More preferably, it is 4.0 mm or less, and more preferably 3.0 mm or less.
The average particle diameter of the pre-expanded particles can be controlled by adjusting the particle diameter of the expandable AS resin particles and the expansion ratio.

また、予備発泡粒子の嵩発泡倍率が低すぎる場合には、上記予備発泡粒子を型内成形してなる発泡粒子成形体が本来有する軽量性を充分に発揮することができなくなるおそれがある。かかる観点から、予備発泡粒子の嵩倍率は上述のごとく5倍以上が好ましい。より好ましくは20倍以上がよく、さらに好ましくは30倍以上がよい。一方、予備発泡粒子の嵩発泡倍率が大きすぎる場合には、所望の機械的強度が得られなくなるおそれがある。かかる観点から、予備発泡粒子の嵩発泡倍率は上述のごとく70倍以下が好ましい。より好ましくは50倍以下がよく、さらに好ましくは40倍以下がよい。
予備発泡粒子の嵩発泡倍率は、主として発泡性樹脂粒子中の発泡剤の含有量の増減により調整することができ、発泡時の温度や時間によって微調整することができる。発泡性樹脂粒子中の発泡剤の含有量は、樹脂粒子へ含浸させる発泡剤の量や、発泡剤含浸後の熟成時間などにより調整する。
Moreover, when the bulk foaming ratio of the pre-foamed particles is too low, there is a possibility that the light weight inherently possessed by the foamed-particle molded body formed by in-mold molding of the pre-foamed particles may not be sufficiently exhibited. From this viewpoint, the bulk magnification of the pre-expanded particles is preferably 5 times or more as described above. More preferably, it is 20 times or more, and more preferably 30 times or more. On the other hand, if the bulk foaming ratio of the pre-expanded particles is too large, there is a possibility that desired mechanical strength cannot be obtained. From this viewpoint, the bulk expansion ratio of the pre-expanded particles is preferably 70 times or less as described above. More preferably, it is 50 times or less, and more preferably 40 times or less.
The bulk expansion ratio of the pre-expanded particles can be adjusted mainly by increasing / decreasing the content of the foaming agent in the expandable resin particles, and can be finely adjusted by the temperature and time at the time of foaming. The content of the foaming agent in the foamable resin particles is adjusted by the amount of the foaming agent impregnated into the resin particles, the aging time after impregnation with the foaming agent, and the like.

上記パラフィン系ワックス及び脂肪酸アマイドの付着した予備発泡粒子の平均粒子径は、次のようにして測定することができる。
即ち、まず、温度23℃の水の入ったメスシリンダーを用意し、相対湿度50%、温度23℃、1atmの条件にて2日放置した任意の量の予備発泡粒子群(予備発泡粒子群の質量W1)を上記メスシリンダー内の水中に金網などの道具を使用して沈める。そして、金網などの道具の体積を考慮し、水位上昇分より読みとられる予備発泡粒子群の容積V1[L]を測定し、この容積V1をメスシリンダーに入れた予備発泡粒子の個数(N)にて割り算(V1/N)することにより、予備発泡粒子1個あたりの平均体積を算出する。そして、得られた平均体積と同じ体積を有する仮想真球の直径をもって予備発泡粒子の平均粒子径[mm]とする。
The average particle diameter of the pre-expanded particles to which the paraffinic wax and the fatty acid amide are attached can be measured as follows.
That is, first, a graduated cylinder containing water at a temperature of 23 ° C. was prepared, and an arbitrary amount of pre-expanded particle group (pre-expanded particle group of the pre-expanded particle group) left for 2 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm. The mass W1) is submerged in water in the graduated cylinder using a tool such as a wire mesh. Then, taking into account the volume of a tool such as a wire mesh, the volume V1 [L] of the pre-expanded particle group read from the rise in the water level is measured, and the number of pre-expanded particles (N) in which this volume V1 is placed in the measuring cylinder. The average volume per pre-expanded particle is calculated by dividing by (V1 / N). And let the diameter of the virtual sphere which has the same volume as the obtained average volume be the average particle diameter [mm] of the pre-expanded particles.

また、上記パラフィン系ワックス及び脂肪酸アマイドの付着した予備発泡粒子の嵩発泡倍率は例えば次のようにして測定することができる。
即ち、まず、温度23℃の水の入ったメスシリンダーを用意し、相対湿度50%、温度23℃、1atmの条件にて2日放置した任意の量の予備発泡粒子群(予備発泡粒子群の質量W1)を金網などの道具を使用してメスシリンダー内の水中に沈める。そして、金網等の道具の体積を考慮して、水位上昇分より読みとられる予備発泡粒子群の容積V1[L]を測定し、メスシリンダーに入れた樹脂予備発泡粒子群の質量W1[g]を容積V1で割り算(W1/V1)することにより、予備発泡粒子の見掛け密度ρ1を求める。この密度ρ1を、予備発泡粒子を構成するAS樹脂の密度で除算し、さらに1.6倍することにより予備発泡粒子の嵩発泡倍率を求めることができる。
The bulk expansion ratio of the pre-expanded particles to which the paraffin wax and the fatty acid amide are attached can be measured, for example, as follows.
That is, first, a graduated cylinder containing water at a temperature of 23 ° C. was prepared, and an arbitrary amount of pre-expanded particle group (pre-expanded particle group of the pre-expanded particle group) left for 2 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm. The mass W1) is submerged in water in the graduated cylinder using a tool such as a wire mesh. Then, taking into account the volume of a tool such as a wire mesh, the volume V1 [L] of the pre-expanded particle group read from the rise in the water level is measured, and the mass W1 [g] of the resin pre-expanded particle group placed in the measuring cylinder Is divided by the volume V1 (W1 / V1) to obtain the apparent density ρ1 of the pre-expanded particles. By dividing this density ρ1 by the density of the AS resin constituting the pre-expanded particles and further multiplying by 1.6, the bulk expansion ratio of the pre-expanded particles can be determined.

上記パラフィン系ワックス及び脂肪酸アマイドの付着した予備発泡粒子を型内成形することにより発泡粒子成形体(アクリロニトリル・スチレン樹脂発泡粒子成形体)を得ることができる。即ち、上記予備発泡粒子を成形型内に充填し、加熱媒体を成形型内に導入するなどして予備発泡粒子を相互に融着させることにより上記熱予備発泡粒子成形体を得ることができる。
型内成形は、金型内に発泡粒子を充填し均一な密度分布で発泡成形品(発泡粒子成形体)を得ることができる好適な方法である。
A foamed particle molded body (acrylonitrile / styrene resin foamed particle molded body) can be obtained by in-mold molding of the pre-expanded particles to which the paraffinic wax and the fatty acid amide are attached. In other words, the pre-expanded particles can be obtained by filling the pre-expanded particles into a mold and introducing the heating medium into the mold to fuse the pre-expanded particles to each other.
In-mold molding is a suitable method for filling foam particles in a mold and obtaining a foam molded product (foamed particle molded body) with a uniform density distribution.

発泡粒子成形体を得る際の加熱媒体としては、例えば飽和蒸気、無機ガス、及びこれらの混合ガスなどを用いることができる。
また、無機ガスとしては、空気、窒素、炭酸ガス、アルゴン、ヘリウム、酸素、ネオンなどを用いることができる。経済的な観点からは無機ガスとしては空気を用いることが最も好ましい。
As a heating medium for obtaining the foamed particle molded body, for example, saturated steam, inorganic gas, and a mixed gas thereof can be used.
As the inorganic gas, air, nitrogen, carbon dioxide, argon, helium, oxygen, neon, or the like can be used. From an economical viewpoint, it is most preferable to use air as the inorganic gas.

上記発泡粒子成形体は、自動車の内装材、梱包材、電化製品の断熱部材等のように、耐熱性、耐油性、耐薬品性が必要な用途に用いることがよい。   The foamed particle molded body is preferably used for applications that require heat resistance, oil resistance, and chemical resistance, such as automobile interior materials, packaging materials, and heat insulating members for electrical appliances.

以下、予備発泡粒子及び発泡粒子成形体の実施例及び比較例について説明する。
(実施例1〜11)
実施例に係る予備発泡粒子は、AS樹脂を基材とする予備発泡粒子の少なくとも表面にパラフィン系ワックス及び脂肪酸アマイドが付着してなり、パラフィン系ワックスの付着量は、該予備発泡粒子100質量部に対して1質量部以上かつ20質量部以下であり、脂肪酸アマイドの付着量は、該予備発泡粒子100質量部に対して2質量部以下(但し、0を除く)である予備発泡粒子である。また、発泡粒子成形体は、予備発泡粒子を型内成形してなる。なお、パラフィン系ワックス及び脂肪酸アマイドの付着量は、これらのパラフィン系ワックス及び脂肪酸アマイドが付着した予備発泡粒子の質量からパラフィン系ワックス及び脂肪酸アマイドの付着量分を差し引いて求めた質量100質量部に対する値である。
Hereinafter, examples and comparative examples of the pre-foamed particles and the foamed particle molded body will be described.
(Examples 1 to 11)
The pre-expanded particles according to the examples are obtained by attaching paraffin wax and fatty acid amide to at least the surface of the pre-expanded particles based on AS resin, and the amount of paraffin wax attached is 100 parts by mass of the pre-expanded particles. The pre-expanded particles are 1 part by mass or more and 20 parts by mass or less, and the adhesion amount of the fatty acid amide is 2 parts by mass or less (excluding 0) with respect to 100 parts by mass of the pre-expanded particles. . The foamed particle molded body is formed by in-mold molding of prefoamed particles. In addition, the adhesion amount of paraffinic wax and fatty acid amide is based on the mass of 100 parts by mass obtained by subtracting the adhesion amount of paraffinic wax and fatty acid amide from the mass of the pre-expanded particles to which these paraffinic wax and fatty acid amide are adhered. Value.

本例の予備発泡粒子は、発泡性AS樹脂粒子をワックス及び脂肪酸アマイド存在下で発泡させて作製することができる。以下、その製造方法について具体的に説明する。
まず、発泡性AS樹脂粒子として、(株)JSP製の「HA300」を準備した。この発泡性AS樹脂粒子のAS樹脂を構成する単量体成分は、アクリロニトリル28質量%、及びスチレン72質量%であり、発泡性AS樹脂粒子の平均粒子径は1mmである。発泡性AS樹脂粒子の平均粒子径は、測定試料として発泡性AS樹脂粒子を用いた以外は、上述の予備発泡粒子の平均粒子径の測定方法と同様の方法により測定した。なお、測定には約500ccの発泡性樹脂粒子群を用いた。
The pre-expanded particles of this example can be prepared by expanding expandable AS resin particles in the presence of wax and fatty acid amide. Hereinafter, the manufacturing method will be specifically described.
First, “HA300” manufactured by JSP Co., Ltd. was prepared as expandable AS resin particles. The monomer component constituting the AS resin of the expandable AS resin particles is 28% by mass of acrylonitrile and 72% by mass of styrene, and the average particle diameter of the expandable AS resin particles is 1 mm. The average particle diameter of the expandable AS resin particles was measured by the same method as the above-described method for measuring the average particle diameter of the pre-expanded particles, except that the expandable AS resin particles were used as a measurement sample. In addition, about 500 cc foamable resin particle group was used for the measurement.

また、パラフィン系ワックスとしては、後述の表1及び表2に示すように、日本精蝋株式会社製のパラフィンワックス「PALVAX1230」(融点65℃)、「PALVAX1330」(融点64℃)、「POLYCOTE3030」(融点75℃)を用いた。また、脂肪酸アマイドとしては、大日化学株式会社製のオレイン酸アマイド(ダイワックスOA、融点75℃)、花王株式会社製のエルカ酸アマイド(アマイドE、融点80℃)、大日化学株式会社製のステアリン酸アマイド(ダイワックスSA−200、融点100℃)を用いた。   As the paraffin wax, as shown in Table 1 and Table 2 described later, paraffin wax “PALVAX 1230” (melting point 65 ° C.), “PALVAX 1330” (melting point 64 ° C.), “POLYCOTE 3030” manufactured by Nippon Seiwa Co., Ltd. (Melting point 75 ° C.) was used. As fatty acid amides, oleic acid amide (die wax OA, melting point 75 ° C.) manufactured by Dainichi Chemical Co., Ltd., erucic acid amide (amide E, melting point 80 ° C.) manufactured by Kao Corporation, manufactured by Dainichi Chemical Co., Ltd. Of stearic acid amide (die wax SA-200, melting point 100 ° C.) was used.

次に、発泡性AS樹脂粒子100質量部に対して表1及び表2に示す各配合割合でパラフィン系ワックス及び脂肪酸マイドを添加して混合した。そして、容積60Lのバッチ式発泡機により、発泡性AS樹脂粒子をパラフィン系ワックス及び脂肪酸アマイドを含まない嵩発泡倍率で40倍に発泡させ、表面にパラフィン系ワックス及び脂肪酸アマイドが付着した予備発泡粒子を得た。次いで、得られた予備発泡粒子をサイロ内で1日間室温放置することにより熟成させた。このようにして、実施例1〜11の11種類の予備発泡粒子を得た。   Next, paraffin wax and fatty acid amide were added to and mixed with each blending ratio shown in Tables 1 and 2 with respect to 100 parts by mass of expandable AS resin particles. And by a batch type foaming machine with a volume of 60 L, the expandable AS resin particles were expanded 40 times with a bulk expansion ratio not containing paraffinic wax and fatty acid amide, and the pre-expanded particles with paraffinic wax and fatty acid amide adhered to the surface Got. Next, the pre-expanded particles obtained were aged by allowing them to stand at room temperature in a silo for 1 day. Thus, 11 types of pre-expanded particles of Examples 1 to 11 were obtained.

各実施例にかかる予備発泡粒子について、作製時に使用した発泡性AS樹脂粒子、パラフィン系ワックス、及び脂肪酸アマイドの種類及び配合量を表1及び表2に示す。
各予備発泡粒子について、平均粒子径[mm]、嵩発泡倍率[倍]を上述の方法により測定した。その結果を表1及び表2に示す。なお、平均粒子径および嵩発泡倍率の測定には約500ccの予備発泡粒子群を用い、嵩発泡倍率の計算にはAS樹脂の密度として1g/cm3を採用した。さらに、表1及び表2には、参考までにパラフィン系ワックス及び脂肪酸アマイドを除いた部分の予備発泡粒子の嵩発泡倍率(嵩倍率)を示す。
Tables 1 and 2 show the types and blending amounts of the expandable AS resin particles, the paraffinic wax, and the fatty acid amide used in the preparation of the pre-expanded particles according to each example.
About each pre-expanded particle, the average particle diameter [mm] and the bulk expansion ratio [times] were measured by the method described above. The results are shown in Tables 1 and 2. In addition, the pre-expanded particle group of about 500cc was used for the measurement of an average particle diameter and a bulk expansion ratio, and 1 g / cm < 3 > was employ | adopted as the density of AS resin for calculation of a bulk expansion ratio. Further, Tables 1 and 2 show the bulk expansion ratio (bulk ratio) of the pre-expanded particles in a portion excluding the paraffinic wax and the fatty acid amide for reference.

また、各予備発泡粒子について、パラフィン系ワックス及び脂肪酸アマイドの付着量を以下のようにガスクロマトグラフィにより測定した。そして、その結果をAS樹脂予備発泡粒子100質量部に対する、パラフィン系ワックス及び脂肪酸アマイドの付着量[質量部]として後述の表1及び表2に示す。   Moreover, about each pre-expanded particle, the adhesion amount of paraffin wax and fatty acid amide was measured by the gas chromatography as follows. Then, the results are shown in Tables 1 and 2 described later as adhesion amounts [parts by mass] of paraffinic wax and fatty acid amide to 100 parts by mass of AS resin pre-expanded particles.

[前処理条件]
パラフィン系ワックス及び脂肪酸アマイドが付着している予備発泡粒子約100mgをテトラヒドロフラン3mlで希釈し、これをガスクロマトグラフィ用試料とする。
[ガスクロマトグラフィ条件]
装置 :(株)島津製作所製のGC−2010
注入量 :1.0μL
気化室温度 :280℃
カラム :アジレント・テクノロジー(株)製のHP−5MS(30m×0.25mm×0.25μm)
カラム槽 :100℃(5min保持)から280℃まで、15℃/minで昇温
カラム流量 :He 1.0ml/min(スプリット比1/50)
検出器 :FID
[Pre-processing conditions]
About 100 mg of pre-expanded particles to which paraffin wax and fatty acid amide are attached are diluted with 3 ml of tetrahydrofuran, and this is used as a sample for gas chromatography.
[Gas chromatography conditions]
Apparatus: GC-2010 manufactured by Shimadzu Corporation
Injection volume: 1.0 μL
Vaporization chamber temperature: 280 ° C
Column: HP-5MS (30 m × 0.25 mm × 0.25 μm) manufactured by Agilent Technologies
Column tank: 100 ° C. (5 min hold) to 280 ° C., heated at 15 ° C./min Column flow rate: He 1.0 ml / min (split ratio 1/50)
Detector: FID

次に、各予備発泡粒子について、以下のようにして耐ブロッキング性の評価を行った。
「耐ブロッキング性」
パラフィン系ワックス及び脂肪酸アマイドが付着した予備発泡粒子同士がサイロ内で互いに融着し、パラフィン系ワックス及び脂肪酸アマイドを付着させていない予備発泡粒子に比べて流動性が著しく悪くなったものを「×」、流動性に問題がなかったものを「○」として評価した。その結果を表1及び表2に示す。
Next, each pre-expanded particle was evaluated for blocking resistance as follows.
"Blocking resistance"
Pre-expanded particles with paraffinic wax and fatty acid amide adhered to each other in a silo, and the fluidity of the pre-expanded particles with no paraffinic wax and fatty acid amide adhered to each other was marked as “×” ”, Those with no problems in fluidity were evaluated as“ ◯ ”. The results are shown in Tables 1 and 2.

次に、MDX−10VS自動成型機(日立化成工業株式会社製)を用いて各実施例の予備発泡粒子をそれぞれ成形し、発泡粒子成形体(AS樹脂発泡粒子成形体)を作製した。
具体的には、予備発泡粒子を寸法700mm×500mm×25mmの金型に充填した。そして、元圧0.08MPa(G)の蒸気を金型内に導入して15秒間加熱して予備発泡粒子を二次発泡及び融着させた。次いで、水冷を8秒行った後、発泡体圧力が0.01MPaになるまで真空冷却し、発泡粒子成形体を得た。なお、上記(G)はゲージ圧を意味する。この時の真空冷却時間を冷却時間[秒]とし、その結果を表1及び表2に示す。また、パラフィン系ワックス及び脂肪酸アマイドを付着させていない予備発泡粒子を型内成形して得られた発泡粒子成形体(後述の比較例1)の冷却時間に対する各実施例の発泡粒子成形体の冷却時間の短縮率(冷却時間短縮率;%)を算出した。その結果を表1及び表2に示す。また、蒸気の元圧を0.08MPa(G)から、0.07MPa(G)、0.09MPa(G)に変更し、上記と同様の条件にてそれぞれ発泡粒子成形体を得た。
Next, each of the pre-expanded particles of each example was molded using an MDX-10VS automatic molding machine (manufactured by Hitachi Chemical Co., Ltd.) to prepare a foamed particle molded body (AS resin foamed particle molded body).
Specifically, the pre-expanded particles were filled in a mold having dimensions of 700 mm × 500 mm × 25 mm. And the vapor | steam of 0.08 Mpa (G) of original pressure was introduce | transduced in the metal mold | die, and it heated for 15 second, and the secondary foaming particle was secondary-foamed and fused. Subsequently, water cooling was performed for 8 seconds, and then vacuum cooling was performed until the foam pressure became 0.01 MPa to obtain a foamed particle molded body. In addition, said (G) means a gauge pressure. The vacuum cooling time at this time was set as the cooling time [second], and the results are shown in Tables 1 and 2. Further, cooling of the foamed particle molded body of each Example with respect to the cooling time of the foamed particle molded body (Comparative Example 1 described later) obtained by in-mold molding of pre-foamed particles to which paraffinic wax and fatty acid amide are not attached. The time reduction rate (cooling time reduction rate;%) was calculated. The results are shown in Tables 1 and 2. Moreover, the original pressure of the steam was changed from 0.08 MPa (G) to 0.07 MPa (G) and 0.09 MPa (G), and expanded particle molded bodies were obtained under the same conditions as above.

次に、得られた発泡粒子成形体について、以下のようにして融着率、曲げ強さを測定し、さらに曲げ強さ保持率を求めた。
「融着率」
各発泡粒子成形体を長手方向(700mmの方向)の中央部(350mmの位置)付近で割り、その破断面を目視により観察した。そして、破断面における全発泡粒子数に対する、発泡粒子内部から破断した発泡粒子数の比率(百分率)を算出し、これを融着率(%)とした。なお、融着率は、成形圧(元圧)0.07MPa(G)、0.08MPa(G)、0.09MPa(G)の蒸気を用いて作製した各発泡粒子成形体について、それぞれ算出した。その結果を表1及び表2に示す。
Next, for the obtained foamed particle molded body, the fusion rate and the bending strength were measured as follows, and the bending strength retention rate was further determined.
"Fusion rate"
Each foamed particle molded body was divided in the vicinity of the center (350 mm position) in the longitudinal direction (700 mm direction), and the fracture surface thereof was visually observed. Then, the ratio (percentage) of the number of expanded particles broken from the inside of the expanded particles to the total number of expanded particles in the fracture surface was calculated, and this was defined as the fusion rate (%). The fusion rate was calculated for each foamed particle molded body produced using steam at a molding pressure (original pressure) of 0.07 MPa (G), 0.08 MPa (G), and 0.09 MPa (G). . The results are shown in Tables 1 and 2.

「曲げ強さ及び曲げ強さ保持率」
曲げ強さは、JIS K7221−2:2006に準拠して測定した。測定にあたっては、成形圧(元圧)0.08MPa(G)の蒸気にて作製した発泡粒子成形体から成形スキンを除去せず(25mm)に、得られた発泡粒子成形体を100×350mmにカットして試験片を作製した。支点間距離は300mm、加圧くさびの速度は20mm/min、試験温度は23℃、試験湿度は相対湿度で50%とした。
また、曲げ強さ保持率は、パラフィン系ワックス及び脂肪酸アマイドを用いずに倍率40倍で作製した発泡粒子成形体の曲げ強さを測定してこれを基準値とし、この基準値に対する100分率で示した。具体的には、後述の比較例1の発泡粒子成形体の曲げ強さを基準値とした。基準値に対する比較は、パラフィン系ワックス及び脂肪酸アマイドを含まない倍率に換算した発泡倍率が同じものを用いて行なった。発泡粒子の融着性が低下しているほど曲げ強さ保持率の値が低くなる。その結果を表1及び表2に示す。
"Bending strength and bending strength retention"
The bending strength was measured according to JIS K7221-2: 2006. In the measurement, without removing the molding skin (25 mm) from the foamed particle molded body produced with steam having a molding pressure (original pressure) of 0.08 MPa (G), the obtained foamed particle molded body was adjusted to 100 × 350 mm. A test piece was prepared by cutting. The distance between fulcrums was 300 mm, the speed of the pressure wedge was 20 mm / min, the test temperature was 23 ° C., and the test humidity was 50% relative humidity.
In addition, the bending strength retention rate was determined by measuring the bending strength of a foamed particle molded body prepared at a magnification of 40 times without using paraffin wax and fatty acid amide, and using this as a reference value. It showed in. Specifically, the bending strength of the foamed particle molded body of Comparative Example 1 described later was used as a reference value. The comparison with respect to the reference value was performed using the same foaming magnification in terms of the magnification not including paraffinic wax and fatty acid amide. The lower the fusion property of the expanded particles, the lower the value of bending strength retention. The results are shown in Tables 1 and 2.

Figure 2014125519
Figure 2014125519

Figure 2014125519
Figure 2014125519

(比較例1〜10)
次に、実施例1〜11との比較用の予備発泡粒子及び発泡粒子成形体を作製した。
比較例1は、後述の表3に示すごとく、パラフィン系ワックス及び脂肪酸アマイドを用いずに作製した点を除いては、上述の実施例と同様に作製した。
(Comparative Examples 1-10)
Next, pre-expanded particles and expanded particle molded bodies for comparison with Examples 1 to 11 were produced.
Comparative Example 1 was prepared in the same manner as in the above Example except that it was prepared without using paraffin wax and fatty acid amide, as shown in Table 3 below.

比較例2及び3は、後述の表3に示すごとく、脂肪酸アマイドを用いずにパラフィン系ワックスのみを用いて作製した点を除いては、実施例と同様にして作製した。比較例2及び3は、それぞれ互いにパラフィン系ワックスの添加量を変更して予備発泡粒子におけるパラフィン系ワックスの付着量を変えた例である。   Comparative Examples 2 and 3 were produced in the same manner as in the Examples, except that, as shown in Table 3 described later, only the paraffin wax was used without using the fatty acid amide. Comparative Examples 2 and 3 are examples in which the amount of paraffin wax adhered to the pre-expanded particles was changed by changing the amount of paraffin wax added to each other.

比較例4及び5は、後述の表3に示すごとく、パラフィン系ワックスを用いずに脂肪酸アマイドのみを用いて作製した点を除いては、実施例と同様にして作製した。比較例4及び5は、それぞれ互いに脂肪酸アマイドの種類を変更した例である。   Comparative Examples 4 and 5 were produced in the same manner as in the Examples except that, as shown in Table 3 described later, only the fatty acid amide was used without using paraffin wax. Comparative Examples 4 and 5 are examples in which the type of fatty acid amide was changed.

比較例6〜9は、後述の表4に示すごとく、実施例と同様にパラフィン系ワックスと脂肪酸アマイドの両方を用いて作製した予備発泡粒子及び発泡粒子成形体の例である。比較例6〜9は、パラフィン系ワックス及び脂肪酸アマイドの添加量を変更して予備発泡粒子のワックス及び脂肪酸アマイドの付着量を変えた点を除いては、実施例と同様にして作製した。比較例6及び7においては、パラフィン系ワックスの量を実施例に比べて多くし、比較例8及び9においては、脂肪酸アマイドの量を実施例に比べて多くして予備発泡粒子及び発泡粒子成形体を作製した。   Comparative Examples 6 to 9 are examples of pre-foamed particles and foamed particle molded bodies produced using both paraffinic wax and fatty acid amide as in Examples, as shown in Table 4 below. Comparative Examples 6 to 9 were prepared in the same manner as in Examples except that the addition amount of the paraffin wax and the fatty acid amide was changed to change the adhesion amount of the wax and the fatty acid amide of the pre-expanded particles. In Comparative Examples 6 and 7, the amount of paraffinic wax is increased as compared with the Examples, and in Comparative Examples 8 and 9, the amount of fatty acid amide is increased as compared with the Examples, so that the pre-expanded particles and the expanded particle molding are formed. The body was made.

比較例10は、後述の表4に示すごとく、発泡性AS樹脂粒子の代わりに発泡性ポリスチレン粒子(株式会社JSP製 FB250 平均粒子径0.9mm)を用いた点を除いては、実施例と同様にして予備発泡粒子を作製した例である。   As shown in Table 4 to be described later, Comparative Example 10 was the same as in Example except that expandable polystyrene particles (FB250 average particle diameter 0.9 mm manufactured by JSP Corporation) were used instead of expandable AS resin particles. In this example, pre-expanded particles are produced.

上記のようにして得られた比較例1〜9の予備発泡粒子について、AS樹脂予備発泡粒子100質量部に対するパラフィン系ワックス及び脂肪酸アマイドの付着量[質量部]、平均粒子径[mm]、及び嵩発泡倍率[倍]を上述の実施例と同様にして測定し、さらに耐ブロッキング性を上述の実施例と同様にして評価した。その結果を表3及び4に示す。
また、比較例1〜9の発泡粒子成形体について、上述の実施例と同様にして、冷却時間[秒]を測定し、冷却時間の短縮率[%]を求めた。また、比較例1〜9の発泡粒子成形体について、曲げ強さ[kPa]を測定し、曲げ強さ保持率[%]を求めた。その結果を表3及び表4に示す。
なお、比較例10については、発泡性AS樹脂粒子が発泡途中で収縮し、所定の発泡倍率に到達させることができなかった。そのため、比較例10については、予備発泡粒子及び発泡粒子成形体に関する各種測定を行うことができなかった。
About the pre-expanded particles of Comparative Examples 1 to 9 obtained as described above, the adhesion amount [parts by mass] of paraffinic wax and fatty acid amide to 100 parts by mass of AS resin pre-expanded particles, the average particle diameter [mm], and The bulk foaming ratio [times] was measured in the same manner as in the above examples, and the blocking resistance was evaluated in the same manner as in the above examples. The results are shown in Tables 3 and 4.
Moreover, about the foamed particle molded object of Comparative Examples 1-9, it carried out similarly to the above-mentioned Example, measured cooling time [second], and calculated | required the shortening rate [%] of cooling time. Moreover, about the foamed particle molded object of Comparative Examples 1-9, bending strength [kPa] was measured and bending strength retention [%] was calculated | required. The results are shown in Tables 3 and 4.
In Comparative Example 10, the foamable AS resin particles contracted during foaming and could not reach a predetermined foaming ratio. Therefore, in Comparative Example 10, various measurements relating to the pre-expanded particles and the expanded particle molded body could not be performed.

Figure 2014125519
Figure 2014125519

Figure 2014125519
Figure 2014125519

表1及び表2より知られるごとく、パラフィン系ワックス1質量部以上かつ20質量部以下、及び脂肪酸アマイド2質量部以下(但し、0を除く)がAS樹脂発泡粒子の表面に付着した予備発泡粒子(実施例1〜11)は耐ブロッキング性に優れることがわかる。また、かかる予備発泡粒子は、成形の際の冷却時間が短いことがわかる。さらに、これらの予備発泡粒子を用いて作製した発泡粒子成形体は、発泡粒子相互の融着性に優れ、曲げ強さに優れていることがわかる。   As known from Tables 1 and 2, pre-expanded particles in which 1 to 20 parts by mass of paraffin wax and 2 to less than 2 parts by mass of fatty acid amide (except 0) are attached to the surface of AS resin expanded particles. It turns out that (Examples 1-11) is excellent in blocking resistance. It can also be seen that such pre-expanded particles have a short cooling time during molding. Furthermore, it can be seen that the foamed particle molded body produced using these pre-expanded particles is excellent in the fusion property between the expanded particles and in the bending strength.

これに対し、表3より知られるごとく、パラフィン系ワックス及び脂肪酸アマイドの両方を付着していない比較例1、パラフィン系ワックスのみを付着した比較例2及び3は、成形の際の冷却時間が長くなった。   On the other hand, as is known from Table 3, Comparative Example 1 in which both the paraffinic wax and the fatty acid amide are not adhered, and Comparative Examples 2 and 3 in which only the paraffinic wax is adhered, have a long cooling time during molding. became.

また、表3より知られるごとく、脂肪酸アマイドのみを用いた比較例4及び5の予備発泡粒子を用いて作製した発泡粒子成形体は、発泡粒子相互の融着性が低下し、曲げ強さが不十分であった。   Further, as is known from Table 3, the foamed particle molded body produced using the pre-expanded particles of Comparative Examples 4 and 5 using only fatty acid amide has a lower fusion strength between the expanded particles, and has a bending strength. It was insufficient.

また、表4より知られるごとく、パラフィン系ワックスの付着量が多すぎる比較例6及び7の予備発泡粒子は、耐ブロッキング性が劣っていた。   Further, as is known from Table 4, the pre-expanded particles of Comparative Examples 6 and 7 in which the amount of the paraffin wax attached was too large were inferior in blocking resistance.

また、表4より知られるごとく、脂肪酸アマイドの付着量が多すぎる比較例8及び9の予備発泡粒子を用いて作製した発泡粒子成形体は、発泡粒子相互の融着性が低下し、曲げ強さが不十分であった。   Moreover, as is known from Table 4, the foamed particle molded body produced using the pre-expanded particles of Comparative Examples 8 and 9 having too much fatty acid amide attached has reduced the fusibility between the expanded particles, and has a bending strength. Was insufficient.

また、表4より知られるごとく、発泡性ポリスチレン粒子を用いた比較例10は、パラフィン系ワックス及び脂肪酸アマイドを付着させると、予備発泡工程において、粒子が収縮し、所定の発泡倍率に到達しなかった。   Further, as is known from Table 4, in Comparative Example 10 using expandable polystyrene particles, when paraffin wax and fatty acid amide were adhered, the particles contracted in the preliminary foaming step, and the predetermined expansion ratio was not reached. It was.

このように、本例によれば、AS樹脂を基材とする予備発泡粒子の表面にパラフィン系ワックス1質量部以上かつ20質量部以下、及び脂肪酸アマイド2質量部以下(但し、0を除く)が付着してなる予備発泡粒子は、耐ブロッキング性に優れ、取り扱い性に優れていることがわかる。さらにこれらの予備発泡粒子を用いると、成形時の冷却時間を短くすることができ、曲げ強さ等の機械的強度に優れた発泡粒子成形体を製造できることがわかる。   Thus, according to this example, the surface of the pre-expanded particles based on AS resin is 1 part by mass or more and 20 parts by mass or less of paraffinic wax and 2 parts by mass or less of fatty acid amide (except 0). It can be seen that the pre-expanded particles to which are attached have excellent blocking resistance and handleability. Furthermore, it can be seen that when these pre-expanded particles are used, the cooling time at the time of molding can be shortened, and a foamed particle molded body having excellent mechanical strength such as bending strength can be produced.

Claims (7)

アクリロニトリル・スチレン樹脂を基材とする予備発泡粒子の表面に、パラフィン系ワックス及び脂肪酸アマイドが付着してなり、
上記パラフィン系ワックスの付着量は、上記予備発泡粒子100質量部に対して1〜20質量部であり、
上記脂肪酸アマイドの付着量は、上記予備発泡粒子100質量部に対して2質量部以下(但し、0を除く)であることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。
Paraffin wax and fatty acid amide adhere to the surface of pre-expanded particles based on acrylonitrile / styrene resin,
The amount of the paraffin wax attached is 1 to 20 parts by mass with respect to 100 parts by mass of the pre-expanded particles,
The acrylonitrile / styrene resin pre-expanded particles, wherein the adhesion amount of the fatty acid amide is 2 parts by mass or less (excluding 0) with respect to 100 parts by mass of the pre-expanded particles.
請求項1に記載のアクリロニトリル・スチレン樹脂予備発泡粒子において、上記パラフィン系ワックスの融点が40℃〜100℃であることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。   The acrylonitrile / styrene resin pre-expanded particles according to claim 1, wherein the paraffin wax has a melting point of 40 ° C. to 100 ° C. 請求項1又は2に記載のアクリロニトリル・スチレン樹脂予備発泡粒子において、上記脂肪酸アマイドは、炭素数14〜24の不飽和脂肪酸アマイドであることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。   The acrylonitrile / styrene resin pre-expanded particles according to claim 1 or 2, wherein the fatty acid amide is an unsaturated fatty acid amide having 14 to 24 carbon atoms. 請求項1〜3のいずれか1項に記載のアクリロニトリル・スチレン樹脂予備発泡粒子において、上記脂肪酸アマイドは、エルカ酸アマイド及び/又はオレイン酸アマイドであることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。   The pre-expanded acrylonitrile / styrene resin pre-expanded particle according to claim 1, wherein the fatty acid amide is erucic acid amide and / or oleic acid amide. . 請求項1〜4のいずれか1項に記載のアクリロニトリル・スチレン樹脂予備発泡粒子において、アクリロニトリル・スチレン樹脂中のアクリロニトリル成分の含有量が10〜50質量%であることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。   5. The acrylonitrile / styrene resin pre-expanded particles according to claim 1, wherein the content of the acrylonitrile component in the acrylonitrile / styrene resin is from 10 to 50% by mass. Pre-expanded particles. 請求項1〜5のいずれか1項に記載のアクリロニトリル・スチレン樹脂予備発泡粒子において、該予備発泡粒子の平均粒子径が1.5〜6.0mmで、かつ嵩発泡倍率が5〜70倍であることを特徴とするアクリロニトリル・スチレン樹脂予備発泡粒子。   The pre-expanded acrylonitrile styrene resin particles according to any one of claims 1 to 5, wherein the pre-expanded particles have an average particle size of 1.5 to 6.0 mm and a bulk expansion ratio of 5 to 70 times. Pre-expanded particles of acrylonitrile / styrene resin, 請求項1〜6のいずれか1項に記載のアクリロニトリル・スチレン樹脂予備発泡粒子を型内成形してなることを特徴とする発泡粒子成形体。   A foamed particle molded body obtained by molding the acrylonitrile / styrene resin pre-foamed particles according to any one of claims 1 to 6 in a mold.
JP2012282397A 2012-12-26 2012-12-26 Pre-expanded particles and expanded particles Active JP5978984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282397A JP5978984B2 (en) 2012-12-26 2012-12-26 Pre-expanded particles and expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282397A JP5978984B2 (en) 2012-12-26 2012-12-26 Pre-expanded particles and expanded particles

Publications (2)

Publication Number Publication Date
JP2014125519A true JP2014125519A (en) 2014-07-07
JP5978984B2 JP5978984B2 (en) 2016-08-24

Family

ID=51405288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282397A Active JP5978984B2 (en) 2012-12-26 2012-12-26 Pre-expanded particles and expanded particles

Country Status (1)

Country Link
JP (1) JP5978984B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015593A (en) * 2003-06-25 2005-01-20 Jsp Corp Expandable styrenic resin particle
JP2005187715A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Foamed resin molded article and method for producing the same
JP2007144969A (en) * 2005-10-25 2007-06-14 Hitachi Chem Co Ltd Mold cleaning resin for in-mold foaming and method of removing lump of preliminarily foamed particles of thermoplastic resin using the cleaning resin
JP2008231175A (en) * 2007-03-19 2008-10-02 Kaneka Corp Foamable polystyrenic resin particle and polystyrenic resin foam molded product composed of the foamable polystyrenic resin particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015593A (en) * 2003-06-25 2005-01-20 Jsp Corp Expandable styrenic resin particle
JP2005187715A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Foamed resin molded article and method for producing the same
JP2007144969A (en) * 2005-10-25 2007-06-14 Hitachi Chem Co Ltd Mold cleaning resin for in-mold foaming and method of removing lump of preliminarily foamed particles of thermoplastic resin using the cleaning resin
JP2008231175A (en) * 2007-03-19 2008-10-02 Kaneka Corp Foamable polystyrenic resin particle and polystyrenic resin foam molded product composed of the foamable polystyrenic resin particle

Also Published As

Publication number Publication date
JP5978984B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5664143B2 (en) Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
JP5453923B2 (en) Modified resin foam particles and molded articles thereof
EP2826813A1 (en) Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP6101624B2 (en) Expandable polystyrene resin particles for noise prevention, method for producing the same, pre-expanded particles, and expanded molded article
JP5978984B2 (en) Pre-expanded particles and expanded particles
KR20110120929A (en) Expandable polystyrene resin particles for low-ratio expansion molding and method for producing same, low-ratio expanded particles, low-ratio expanded molded article, cushion material for hume pipe, and method for producing low-ratio expanded molded article and cushion material for hume pipe
JP2009161738A (en) Method for producing thermoplastic resin foamed particles
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP5811864B2 (en) Thermoplastic resin pre-expanded particles and thermoplastic resin expanded particle molded body
JP7454476B2 (en) Styrenic resin foam particles, styrenic resin foam molded products, and expandable styrenic resin particles
JP5338364B2 (en) Styrene resin particle foam molding
JP2018104550A (en) Composite resin foamable particles, method for producing the same, composite resin foam particles, method for producing the same, composite resin foam molding, and method for producing the same
JP5703935B2 (en) Thermoplastic resin pre-expanded particles and thermoplastic resin expanded particle molded body
JP6102584B2 (en) Thermoplastic resin pre-foamed particles and foamed particle molded body
JP6600541B2 (en) Method for producing expandable polystyrene resin particles
JP4129951B2 (en) Polypropylene surface modified resin particles
JP2016160400A (en) Polycarbonate resin foamed molding
JP5666796B2 (en) Method for producing styrenic polymer particles
JP3347776B2 (en) Non-crosslinked polyethylene resin pre-expanded particles and method for producing the same
JP2013023565A (en) Foamable polystyrene resin particle for middle-low ratio expansion molding, foamed particle, expansion molded product and manufacturing method for expansion molded product
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP4001669B2 (en) Olefinic resin foamable particles and method for producing the same
JP7445480B2 (en) Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250