JP2014124028A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2014124028A
JP2014124028A JP2012278277A JP2012278277A JP2014124028A JP 2014124028 A JP2014124028 A JP 2014124028A JP 2012278277 A JP2012278277 A JP 2012278277A JP 2012278277 A JP2012278277 A JP 2012278277A JP 2014124028 A JP2014124028 A JP 2014124028A
Authority
JP
Japan
Prior art keywords
phase
series
compensation circuit
parallel
circuit unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012278277A
Other languages
Japanese (ja)
Other versions
JP5992317B2 (en
Inventor
Yosuke Nakazawa
洋介 中沢
Ryuta Hasegawa
隆太 長谷川
Shunsuke Tamada
俊介 玉田
Takeshi Murao
武 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012278277A priority Critical patent/JP5992317B2/en
Publication of JP2014124028A publication Critical patent/JP2014124028A/en
Application granted granted Critical
Publication of JP5992317B2 publication Critical patent/JP5992317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC/DC conversion power converter which, while achieving the objective of DC voltage level conversion, is highly efficient and low cost due to a reduced facility capacity and a reduced loss.SOLUTION: The power converter comprises: a series compensation circuit unit 11 composed of a first phase leg and a second phase leg mutually connected in parallel, each configured with two series-connected circuits of phase arms 3b having one or more H bridge units 3 connected in series; a parallel compensation circuit unit 12 composed of a third phase leg and a fourth phase leg mutually connected in parallel, each configured with two series-connected circuits of phase arms 4b having one or more chopper units 4 connected in series; and a single-phase high-frequency insulation transformer TR1. DC terminals of the series compensation circuit unit 11 are connected to a non-grounded-side line between two DC power transmission networks, and DC terminals of the parallel compensation circuit unit 12 are connected to a non-grounded-side line of one of the DC power transmission networks, and to a common ground-side line. The primary side of the single-phase high-frequency insulation transformer TR1 is connected to UV AC terminals of the series compensation circuit unit 11, and the secondary side is connected to uv AC terminals of the parallel compensation circuit unit 12.

Description

本発明は、2つの直流送電網を電圧レベルを変換して接続する電力変換装置に関する。   The present invention relates to a power conversion device that connects two DC power transmission networks by converting voltage levels.

近年、風力発電や太陽光発電、太陽熱発電などの再生可能エネルギーの普及が促進されているが、より大電力を再生可能エネルギーでまかなうために、洋上風力発電や、砂漠地帯での太陽光、太陽熱発電が検討され始めている。洋上風力発電においては、発電された電力を消費地である都市まで海底ケーブルで大電力送電したり、アフリカや中国奥部の砂漠地帯から、ヨーロッパや沿岸地帯の大都市まで大電力を長距離にわたって高効率に送電することが必要になる。このような要求には、従来の3相交流による電力送電よりも、直流送電のほうが効率が高く、コストを抑えながら設置することが可能になるため、直流送電網の構築が検討され始めている。   In recent years, the spread of renewable energy such as wind power generation, solar power generation, and solar thermal power generation has been promoted, but in order to supply higher power with renewable energy, offshore wind power generation, sunlight in the desert area, solar heat Power generation is being considered. In offshore wind power generation, the generated power is transmitted to the city where it is consumed using a submarine cable, or the power is generated over a long distance from the desert area in the back of Africa or China to a large city in Europe or the coastal area. It is necessary to transmit electricity with high efficiency. In order to meet such demands, direct current power transmission is more efficient than conventional three-phase alternating current power transmission, and it is possible to install it while suppressing costs. Therefore, construction of a direct current power transmission network has begun to be studied.

直流送電においては、発電された交流電力を直流送電用の直流に変換するコンバータや、送電されてきた直流を都市内の交流に変換するインバータなどの電力変換装置が必要になる。交流系統にコンバータ、インバータのスイッチングに伴う高調波が流出しないように、正弦波に近い電圧波形を出力することができるモジュラーマルチレベル変換器回路などの検討・実用化が進められている。   In direct current power transmission, a power converter such as a converter that converts the generated alternating current power into direct current direct current power and an inverter that converts the transmitted direct current into alternating current in the city is required. A modular multilevel converter circuit that can output a voltage waveform close to a sine wave is being studied and put into practical use so that harmonics associated with switching of the converter and inverter do not flow into the AC system.

直流送電システムは、長距離大電力送電に適用した場合、従来の交流送電システムに比べて、低コストで設置可能で、送電損失が少ない高効率システムを構築することが可能であるが、電圧の大きさを自由に変換できない制約がある。交流システムにおいてはトランスの巻き数比およびタップ制御により電圧を自由に変換することができるのに対して、直流ではトランスを用いることができないからである。   When applied to long-distance high-power transmission, the DC power transmission system can be installed at a lower cost than the conventional AC power transmission system, and a high-efficiency system with less transmission loss can be constructed. There is a restriction that the size cannot be changed freely. This is because in an AC system, the voltage can be freely converted by the turns ratio of the transformer and tap control, whereas a transformer cannot be used in DC.

電力送電網を構築する場合、送電容量や絶縁設置スペースの制約で決まる最適電圧レベルを、送電網の中で適材適所で決めることが有効であると想定されるが、上記のとおり、電圧の大きさが自由に変換できない制約があると、このような最適電圧レベルでの送電網構築ができなくなってしまう。   When constructing a power transmission network, it is assumed that it is effective to determine the optimal voltage level determined by restrictions on the transmission capacity and insulation installation space at the right place in the transmission network. If there is a restriction that cannot be freely converted, it becomes impossible to construct a power transmission network at such an optimum voltage level.

これに対して、従来においては、図8に示すように、直流を一旦高周波交流にモジュラーマルチレベルインバータで変換し、高周波絶縁トランスを介して交流直流変換コンバータで直流に変換することで、直流電圧の大きさを自由に変更するシステムが提案されている。このシステムでは高周波絶縁トランスの巻き数比の設定や、コンバータ、インバータの電圧制御により、電圧を自由に変更することが可能になり、将来の直流送電電力網においても自由に電圧レベルの最適化を図ることが可能になる。   On the other hand, in the prior art, as shown in FIG. 8, direct current is once converted into high frequency alternating current by a modular multilevel inverter and then converted into direct current by an alternating current direct current conversion converter via a high frequency insulation transformer. There has been proposed a system for freely changing the size of. In this system, the voltage can be changed freely by setting the turns ratio of the high-frequency isolation transformer and the voltage control of the converter and inverter, and the voltage level can be freely optimized in the future DC transmission power network. It becomes possible.

非特許文献2009年cigre論文予稿集Paper401:Multilevel Voltage-Sourced Converters for HVDC and FACTS Applications:Siemens AGNon-Patent Literature 2009 Cigre Paper Proceedings Paper 401: Multilevel Voltage-Sourced Converters for HVDC and FACTS Applications: Siemens AG

しかしながら、図8のような従来の回路方式は、送電する電力全てを、直流から交流に変換し、トランスを介して再度交流から直流に変換するため、電力変換器およびトランスの設備容量増大、損失増加に伴う送電効率の低下を招くため、高コスト、装置大型化の問題があった。   However, the conventional circuit system as shown in FIG. 8 converts all the electric power to be transmitted from direct current to alternating current, and again converts from alternating current to direct current through the transformer. Since the power transmission efficiency is reduced due to the increase, there is a problem of high cost and large equipment.

実施形態は、直流の電圧レベル変換の目的を達成しながら、設備容量の低減、損失低減による、高効率で低コストな直流/直流変換電力変換器を提供することを目的とする。   An object of the embodiment is to provide a high-efficiency and low-cost DC / DC conversion power converter that achieves the object of DC voltage level conversion while reducing facility capacity and loss.

一実施形態は、2つの直流送電網を電圧レベルを変換して接続する電力変換装置であって、自己消弧能力を持つスイッチング素子がそれぞれ2個直列接続された第1レグ及び第2レグと、コンデンサとを並列に接続してなる構成要素をHブリッジユニットとしたとき、1以上の前記Hブリッジユニットを直列に接続した相アームをそれぞれ2回路直列に接続した第1相レグ及び第2相レグが、互いに並列に接続された直列補償回路部と、前記直列補償回路部の一方の直流端子は一方の前記直流送電網の非接地側ラインに接続され、他方の直流端子は他方の直流送電網の非接地側ラインに接続され、自己消弧能力を持つスイッチング素子を直列に2個接続した第3レグと、該第3レグに並列に接続されたコンデンサからなる構成要素をチョッパユニットとしたとき、1以上の前記チョッパユニットを直列に接続した相アームがそれぞれ2回路直列接続された第3相レグ及び第4相レグが互いに並列に接続された並列補償回路部と、前記並列補償回路部の一方の直流端子は前記他方の直流送電網の非接地側ラインに接続され、他方の直流端子が前記2つの直流送電網の共通接地側ラインに接続され、前記直列補償回路部の前記第1及び第2相レグの相アーム相互接続点に接続される一次巻線と、前記並列補償回路部の前記第3及び第4相レグの相アーム相互接続点に接続される二次巻線とを有する単相高周波絶縁トランスと、を具備する。   One embodiment is a power conversion device that connects two DC power transmission networks by converting voltage levels, and includes a first leg and a second leg each having two switching elements each having a self-extinguishing capability connected in series. When a component formed by connecting capacitors in parallel is an H bridge unit, a first phase leg and a second phase in which two or more phase arms in which one or more of the H bridge units are connected in series are connected in series A series compensation circuit unit in which legs are connected in parallel to each other, one DC terminal of the series compensation circuit unit is connected to a non-ground side line of one DC transmission network, and the other DC terminal is the other DC transmission A chopper comprising a third leg connected to the ungrounded line of the network and having two switching elements having a self-extinguishing capability connected in series, and a capacitor connected in parallel to the third leg A parallel compensation circuit unit in which a third phase leg and a fourth phase leg are connected in parallel with each other, each of which is connected in series with two or more phase arms each having one or more chopper units connected in series; One DC terminal of the compensation circuit unit is connected to a non-ground side line of the other DC transmission network, and the other DC terminal is connected to a common ground side line of the two DC transmission networks. A primary winding connected to the phase arm interconnection point of the first and second phase legs, and a secondary winding connected to the phase arm interconnection point of the third and fourth phase legs of the parallel compensation circuit unit And a single-phase high-frequency insulating transformer having a wire.

第1実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 1st Embodiment. 第1実施形態において制御される電圧電流の関係を説明するための図である。It is a figure for demonstrating the relationship of the voltage current controlled in 1st Embodiment. 第1実施形態の制御方式を説明するための図である。It is a figure for demonstrating the control system of 1st Embodiment. 第1実施形態の他の制御方式を説明するための図である。It is a figure for demonstrating the other control system of 1st Embodiment. 第2実施形態の回路構成を示す図である。It is a figure which shows the circuit structure of 2nd Embodiment. 第3実施形態の回路構成を示す図である。It is a figure which shows the circuit structure of 3rd Embodiment. 図6の回路構成に対応した制御方式を説明するための図である。It is a figure for demonstrating the control system corresponding to the circuit structure of FIG. 従来の電力変換装置の構成を示す図である。It is a figure which shows the structure of the conventional power converter device.

以下、実施形態を図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

[第1実施形態]
先ず、実施形態が適用される状況について説明する。互いに異なる電力会社から電力供給を受け、系統直流電圧が互いに異なる2つの電力系統において、一方の電力系統で電力が不足しており、他方の電力系統で電力に十分余裕があるときに、他方の電力系統から一方の電力系統に電力を伝送する場合、あるいは逆に、一方の電力系統で電力に十分余裕があり、他方の電力系統で電力に余裕が不足しているときに、他方の電力系統から一方の電力系統に電力を伝送する場合がある。実施形態に係る電力変換装置は、このような状況において適用される装置である。
[First embodiment]
First, a situation where the embodiment is applied will be described. In two power systems that receive power supply from different power companies and have different system DC voltages, when one power system has insufficient power and the other power system has sufficient power, When power is transmitted from one power system to one power system, or conversely, when one power system has sufficient power and the other power system has insufficient power, the other power system In some cases, power is transmitted from one to the other power system. The power conversion device according to the embodiment is a device applied in such a situation.

図1は、第1実施形態に係る電力変換装置の構成を示す図である。   FIG. 1 is a diagram illustrating a configuration of the power conversion device according to the first embodiment.

第1実施形態に係る電力変換装置は、第1の直流送電網であるDC電力網1から第2の直流送電網であるDC電力網2へ直流電圧変換を伴いながら電力を送電するシステムであり、直列補償回路部11と、並列補償回路部12と、高周波絶縁トランス部TR1とで構成される。   The power conversion device according to the first embodiment is a system that transmits power from a DC power network 1 that is a first DC power transmission network to a DC power network 2 that is a second DC power transmission network, accompanied by DC voltage conversion. The compensation circuit unit 11, the parallel compensation circuit unit 12, and the high-frequency insulating transformer unit TR1 are included.

直列補償回路部11は、自己消弧能力を持つスイッチング素子Q1を直列に2個接続したレグ3aの2回路と、コンデンサC1とを並列に接続してなるHブリッジ変換器3を変換器ユニットとして、N個(本例ではN=2)の変換器ユニットを直列に接続した相アーム3bを構成する。   The series compensation circuit unit 11 uses, as a converter unit, an H-bridge converter 3 formed by connecting two circuits of a leg 3a in which two switching elements Q1 having self-extinguishing capability are connected in series and a capacitor C1 in parallel. The phase arm 3b is formed by connecting N (N = 2 in this example) converter units in series.

2つの相アームを直列に接続したものを相レグ3cと呼び、U相レグとV相レグの両端をそれぞれ相互に接続したうえで、一方の端をDC電力網1の正側端子(非接地側ライン)に接続し、他方の端をDC電力網2の正側端子(非接地側ライン)に接続する。   A structure in which two phase arms are connected in series is called a phase leg 3c, and both ends of a U-phase leg and a V-phase leg are connected to each other, and one end is connected to the positive terminal (ungrounded side) of the DC power network 1. Line) and the other end is connected to the positive terminal (non-grounded line) of the DC power network 2.

直列補償回路部11の交流出力U相、V相は高周波絶縁トランスTR1の一次巻線のUV相にそれぞれ接続される。DC電力網1とDC電力網2の負側端子(接地側ライン)は相互に接続する。   The AC output U-phase and V-phase of the series compensation circuit unit 11 are connected to the UV phase of the primary winding of the high-frequency insulation transformer TR1, respectively. The negative terminals (ground side lines) of the DC power network 1 and the DC power network 2 are connected to each other.

並列補償回路部12は、自己消弧能力を持つスイッチング素子Q2を直列に2個接続したレグ4aを1回路と、コンデンサとを並列に接続してなるチョッパブリッジ変換器4を変換器ユニットとして、M個(本例ではM=4)の変換器ユニットを直列に接続した相アーム4bを構成する。   The parallel compensation circuit unit 12 includes a leg 4a in which two switching elements Q2 having a self-extinguishing capability are connected in series as one leg and a chopper bridge converter 4 formed by connecting a capacitor in parallel as a converter unit. A phase arm 4b in which M (M = 4 in this example) converter units are connected in series is configured.

2つの相アーム4bを直列に接続したものを相レグ4cと呼び、u相レグとv相レグの両端をそれぞれ相互に接続したうえで、一方の端をDC電力網2の正側端子に接続し、他方の端をDC電力網2の負側端子に接続する。並列補償回路部12の交流出力u相、v相は高周波絶縁トランスTR1の二次巻線のuv相にそれぞれ接続される。   Two phase arms 4b connected in series are called a phase leg 4c. Both ends of the u-phase leg and the v-phase leg are connected to each other, and then one end is connected to the positive terminal of the DC power network 2. The other end is connected to the negative terminal of the DC power network 2. The AC output u phase and v phase of the parallel compensation circuit unit 12 are connected to the uv phase of the secondary winding of the high frequency insulation transformer TR1, respectively.

次に、第1実施形態において制御される電圧電流の関係を図2を用いて説明する。図2では、説明を簡単にするため、直列補償回路部11の相アームが1つのHブリッジ変換器(変換器ユニット)で構成されている。   Next, the relationship between the voltage and current controlled in the first embodiment will be described with reference to FIG. In FIG. 2, for simplicity of explanation, the phase arm of the series compensation circuit unit 11 is configured by one H-bridge converter (converter unit).

図2においては、DC送電網1の直流電圧Vdc1は100kV、DC送電網の直流電圧Vdc2は80kVであるとする。DC送電網1からDC送電網2への送電電力(Power1、Power2)が100MWの場合を例に説明する。   In FIG. 2, it is assumed that the DC voltage Vdc1 of the DC power transmission network 1 is 100 kV and the DC voltage Vdc2 of the DC power transmission network is 80 kV. An example will be described in which the transmission power (Power1, Power2) from the DC power transmission network 1 to the DC power transmission network 2 is 100 MW.

DC送電網1の直流電流Idc1は、以下の式により演算される。   The direct current Idc1 of the DC power transmission network 1 is calculated by the following equation.

Idc1=Power1/Vdc1=1kA
DC送電網2の直流電流Idc2は、以下の式により演算される。
Idc1 = Power1 / Vdc1 = 1 kA
The direct current Idc2 of the DC power transmission network 2 is calculated by the following equation.

Idc2=Power2/Vdc2=1.25kA
並列補償回路部12から出力される直流電流ΔIpcは、電流におけるキルヒホッフの法則により、以下で求められる。
Idc2 = Power2 / Vdc2 = 1.25 kA
The direct current ΔIpc output from the parallel compensation circuit unit 12 is obtained as follows according to Kirchhoff's law in current.

ΔIpc=Idc2−Idc1=0.25kA
並列補償回路部12からはΔIpcが出力され、電圧はVdc2であることから以下の電力ΔPowerPCが定常的に流出する。
ΔIpc = Idc2-Idc1 = 0.25 kA
Since the parallel compensation circuit unit 12 outputs ΔIpc and the voltage is Vdc2, the following power ΔPowerPC constantly flows out.

ΔPowerPC=Vdc2×ΔIpc=20MW
直列補償回路部11の両端直流電圧ΔVscは、定常状態においてVdc1とVdc2の差分電圧が出力される。
ΔPowerPC = Vdc2 × ΔIpc = 20 MW
The DC voltage ΔVsc across the series compensation circuit unit 11 is the difference voltage between Vdc1 and Vdc2 in a steady state.

ΔVsc=Vdc1−Vdc2=20kV
直列補償回路部11には、電力100MWが定常的に流れ込み、UV交流端子から以下の電力ΔPowerSCが流出する。
ΔVsc = Vdc1−Vdc2 = 20 kV
The power 100 MW constantly flows into the series compensation circuit unit 11, and the following power ΔPowerSC flows out from the UV AC terminal.

ΔPowerSC=ΔVsc×Idc1=20MW
直列補償回路部11は、UV間交流電圧として、12.5kVrms、500Hzの交流を出力し、これに同期して電力として20MWを流出させるように交流電流制御を行う。また直列補償回路部11は、直流80MWを変換せずにそのまま直流電力網2に伝送する。
ΔPowerSC = ΔVsc × Idc1 = 20 MW
The series compensation circuit unit 11 outputs an alternating current of 12.5 kV rms and 500 Hz as an alternating voltage between UVs, and performs alternating current control so that 20 MW flows out in synchronization with this. The series compensation circuit unit 11 transmits the direct current 80 MW to the direct current power network 2 without conversion.

高周波絶縁トランスTR1は、並列補償回路部12が接続された二次巻線と、直列補償回路部11が接続された一次巻線とが、4:1の電圧比となるように巻き数比設計されている。すなわち一次、二次の巻線比は1:4である。   The high-frequency isolation transformer TR1 is designed with a turn ratio such that the secondary winding connected to the parallel compensation circuit unit 12 and the primary winding connected to the series compensation circuit unit 11 have a voltage ratio of 4: 1. Has been. That is, the primary and secondary winding ratio is 1: 4.

並列補償回路部12は、uv間交流電圧として、50kVrms(=(50/4)×12.5)、500Hzの交流が印加される。結果として交流電圧制御を行っている並列補償回路部12には20MWの電力が流入することになり、直流への出力電力とつりあって全体が定常安定運転することができるようになる。   The parallel compensation circuit unit 12 is applied with an AC voltage of 50 kVrms (= (50/4) × 12.5) and 500 Hz as an inter-uv AC voltage. As a result, 20 MW of electric power flows into the parallel compensation circuit unit 12 performing the AC voltage control, and the entire output can be stably operated in balance with the output power to the DC.

以上の構成の電力変換器を用いると、並列補償回路部、直列補償回路部、高周波絶縁トランスとも20MWの電力容量ですむ。一方、図8に示す従来の回路構成においては、直流交流変換部、交流直流変換部、高周波絶縁トランス部とも送電容量である100MWの電力容量が必要である。従って従来と比較して本実施形態では、1/5の電力容量の装置で電力変化でき、低コスト化と低損失高効率化を達成することが可能になる。   When the power converter having the above-described configuration is used, the parallel compensation circuit unit, the series compensation circuit unit, and the high-frequency insulation transformer need only have a power capacity of 20 MW. On the other hand, in the conventional circuit configuration shown in FIG. 8, the DC / AC converter, the AC / DC converter, and the high-frequency insulation transformer all require a power capacity of 100 MW, which is a power transmission capacity. Therefore, in the present embodiment, the power can be changed by a device having a power capacity of 1/5 as compared with the prior art, and it is possible to achieve a reduction in cost and a reduction in loss and efficiency.

次に、本実施形態の電力変換装置を制御する制御部について説明する。先ず、並列補償回路部12が交流電圧制御、直列補償回路部11が交流電流制御を行う構成での制御方式を図2、図3を用いて説明する。   Next, the control part which controls the power converter device of this embodiment is demonstrated. First, a control method in a configuration in which the parallel compensation circuit unit 12 performs AC voltage control and the series compensation circuit unit 11 performs AC current control will be described with reference to FIGS.

並列補償部コンデンサ電圧一定制御部30は、並列補償部コンデンサ電圧指令VdcCPrefと、u相v相の正負相アームのそれぞれの4直列の合計16個の並列補償部変換器ユニットのコンデンサ電圧の平均値VdcCP_AVEとを入力として、以下演算により並列補償部直流電流指令値ΔIpcRefを求めて出力する。   The parallel compensation unit capacitor voltage constant control unit 30 is an average value of the capacitor voltage of a total of 16 parallel compensation unit converter units of the 4 series of the parallel compensation unit capacitor voltage command VdcCPref and the positive and negative phase arms of the u phase and the v phase. Using VdcCP_AVE as an input, a parallel compensator DC current command value ΔIpcRef is obtained and output by the following calculation.

ΔIpcRef=−G(s)×(VdcCPref−VdcCP_AVE)
sはラプラス演算子、G(s)は比例積分制御を表す。
ΔIpcRef = −G (s) × (VdcCPref−VdcCP_AVE)
s represents a Laplace operator, and G (s) represents proportional-integral control.

並列補償部直流電流制御部31は、並列補償部直流電流指令値ΔIpcRefと、検出した並列補償部直流電流実際値ΔIpcを入力として、次の演算により並列補償部直流電圧指令VdcPRefを求めて出力する。   The parallel compensator DC current controller 31 receives the parallel compensator DC current command value ΔIpcRef and the detected parallel compensator DC current actual value ΔIpc as input, and calculates and outputs the parallel compensator DC voltage command VdcPRef by the following calculation. .

VdcPRef=G(s)×(ΔIpcRef−ΔIpc)+Vdc2
(Vdc2は第2の直流電力網の直流電圧検出値)
並列補償部交流電圧指令VacPrefは500Hz、50kVrmsの交流電圧指令で、並列補償部各変換器ユニット出力電圧指令(u相正側直流電圧指令VcpUP、u相負側直流電圧指令VcpUN、v相正側直流電圧指令VcpVP、v相負側直流電圧指令VcpVN)を次の演算により求めて出力する。
VdcPRef = G (s) × (ΔIpcRef−ΔIpc) + Vdc2
(Vdc2 is the DC voltage detection value of the second DC power network)
The parallel compensator AC voltage command VacPref is an AC voltage command of 500 Hz, 50 kVrms, and each parallel compensation unit converter unit output voltage command (u-phase positive DC voltage command VcpUP, u-phase negative DC voltage command VcpUN, v-phase positive side) DC voltage command VcpVP, v-phase negative DC voltage command VcpVN) is obtained by the following calculation and output.

VcpUP=VdcPref/2−VacPref/2
VcpUN=VdcPref/2+VacPref/2
VcpVP=VdcPref/2+VacPref/2
VcpVN=VdcPref/2−VacPref/2
直列補償部直流電流制御部32においては、直列補償部直流電流指令Idc1Refと直列補償部直流電流検出値Idc1と、第1の直流電力網の直流電圧検出値Vdc1と、第2の直流電力網の直流電圧検出値Vdc2とを入力として次の演算により、直列補償部直流電圧出力指令ΔVscRefを求めて出力する。
VcpUP = VdcPref / 2−VacPref / 2
VcpUN = VdcPref / 2 + VacPref / 2
VcpVP = VdcPref / 2 + VacPref / 2
VcpVN = VdcPref / 2−VacPref / 2
In the series compensation unit DC current control unit 32, the series compensation unit DC current command Idc1Ref, the series compensation unit DC current detection value Idc1, the DC voltage detection value Vdc1 of the first DC power network, and the DC voltage of the second DC power network. With the detection value Vdc2 as an input, the series compensation unit DC voltage output command ΔVscRef is obtained and output by the following calculation.

ΔVscRef=−H(s)×(Idc1Ref−Idc1)
+Vdc1−Vdc2
(sはラプラス演算子でH(s)は比例積分制御)
直列補償部コンデンサ電圧一定制御部33においては、直列補償部コンデンサ電圧指令値VdcCSrefと、U相V相の正負相アームのそれぞれ1直列の合計4個の直列補償部Hブリッジユニットのコンデンサ電圧の平均値VdcCS_AVEと、交流電圧検出値VacSを入力として、以下演算により直列補償部交流電流指令値Iac1Refを求めて出力する。
ΔVscRef = −H (s) × (Idc1Ref−Idc1)
+ Vdc1-Vdc2
(S is Laplace operator and H (s) is proportional integral control)
In the series compensation unit capacitor voltage constant control unit 33, the series compensation unit capacitor voltage command value VdcCSref and the average of the capacitor voltages of the four series compensation units H bridge units in series of the positive and negative phase arms of the U phase and V phase, respectively. With the value VdcCS_AVE and the AC voltage detection value VacS as inputs, the series compensation unit AC current command value Iac1Ref is obtained and output by the following calculation.

直列補償部交流電流指令振幅|Iac1Ref|をまず求める。   First, the series compensation unit AC current command amplitude | Iac1Ref | is obtained.

|Iac1Ref|=J(s)×(VdcCSref−VdcCS_AVE)
交流電圧検出値VacSと位相が同一で振幅が1となる交流正弦波sin_VacSを求める。
| Iac1Ref | = J (s) × (VdcCSref−VdcCS_AVE)
An AC sine wave sin_VacS having the same phase as the AC voltage detection value VacS and an amplitude of 1 is obtained.

sin_VacS=VacS/|VacS|
(|VacS|は、VacSの正弦波振幅)
Iac1Ref=|Iac1Ref|×sin_VacS
交流電流制御部34は、交流電流指令値Iac1Refと、交流電流検出値Iac1と、交流電圧検出値VacSを入力として次の演算により交流電圧指令値VacSrefを求めて出力する。
sin_VacS = VacS / | VacS |
(| VacS | is the amplitude of the sine wave of VacS)
Iac1Ref = | Iac1Ref | × sin_VacS
The AC current control unit 34 receives the AC current command value Iac1Ref, the AC current detection value Iac1, and the AC voltage detection value VacS as input and obtains and outputs the AC voltage command value VacSref by the following calculation.

VacSref=K(s)×(Iac1Ref−Iac1)+VacS
直列補償部各変換器ユニット出力電圧指令(U相正側直流電圧指令VcsUP、U相負側直流電圧指令VcsUN、V相正側直流電圧指令VcsVP、V相負側直流電圧指令VcsVN)を次の演算により求めて出力する。
VcsUP=ΔVscRef/2−VacSref/2
VcsUN=ΔVscRef/2+VacSref/2
VcsVP=ΔVscRef/2+VacSref/2
VcsVN=ΔVscRef/2−VacSref/2
次に、直列補償回路部11が交流電圧制御、並列補償回路部12が交流電流制御を行う構成での制御方式を図2、図4を用いて説明する。
VacSref = K (s) × (Iac1Ref−Iac1) + VacS
Series Compensator Each converter unit output voltage command (U phase positive DC voltage command VcsUP, U phase negative DC voltage command VcsUN, V phase positive DC voltage command VcsVP, V phase negative DC voltage command VcsVN) Obtained by calculation and output.
VcsUP = ΔVscRef / 2−VacSref / 2
VcsUN = ΔVscRef / 2 + VacSref / 2
VcsVP = ΔVscRef / 2 + VacSref / 2
VcsVN = ΔVscRef / 2−VacSref / 2
Next, a control method in a configuration in which the series compensation circuit unit 11 performs AC voltage control and the parallel compensation circuit unit 12 performs AC current control will be described with reference to FIGS.

直列補償部直流電流制御部50においては、直列補償部直流電流指令Idc1Refと直列補償部直流電流検出値Idc1と、第1の直流電力網の直流電圧検出値Vdc1と、第2の直流電力網の直流電圧検出値Vdc2とを入力として次の演算により、直列補償部直流電圧出力指令ΔVscRefを求めて出力する。   In the series compensation unit DC current control unit 50, the series compensation unit DC current command Idc1Ref, the series compensation unit DC current detection value Idc1, the DC voltage detection value Vdc1 of the first DC power network, and the DC voltage of the second DC power network. With the detection value Vdc2 as an input, the series compensation unit DC voltage output command ΔVscRef is obtained and output by the following calculation.

ΔVscRef=−H(s)×(Idc1Ref−Idc1)
+Vdc1−Vdc2
(sはラプラス演算子でH(s)は比例積分制御)
直列補償部交流電圧指令VacSrefは500Hz、12.5kVrmsの交流電圧指令で、直列補償部各変換器ユニット出力電圧指令(U相正側直流電圧指令VcsUP、U相負側直流電圧指令VcsUN、V相正側直流電圧指令VcsVP、V相負側直流電圧指令VcsVN)を次の演算により求めて出力する。
ΔVscRef = −H (s) × (Idc1Ref−Idc1)
+ Vdc1-Vdc2
(S is Laplace operator and H (s) is proportional integral control)
The series compensator AC voltage command VacSref is an AC voltage command of 500 Hz and 12.5 kVrms, and each converter unit output voltage command (U phase positive DC voltage command VcsUP, U phase negative DC voltage command VcsUN, V phase) The positive side DC voltage command VcsVP and the V phase negative side DC voltage command VcsVN) are obtained by the following calculation and output.

VcsUP=ΔVscRef/2−VacSref/2
VcsUN=ΔVscRef/2+VacSref/2
VcsVP=ΔVscRef/2+VacSref/2
VcsVN=ΔVscRef/2−VacSref/2
並列補償部コンデンサ電圧一定制御部51は、並列補償部コンデンサ電圧指令VdcCPrefと、u相v相の正負相アームのそれぞれの4直列の合計16個の並列補償部変換器ユニットのコンデンサ電圧の平均値VdcCP_AVEとを入力として、以下演算により並列補償部直流電流指令値ΔIpcRefを求めて出力する。
VcsUP = ΔVscRef / 2−VacSref / 2
VcsUN = ΔVscRef / 2 + VacSref / 2
VcsVP = ΔVscRef / 2 + VacSref / 2
VcsVN = ΔVscRef / 2−VacSref / 2
The parallel compensation unit capacitor voltage constant control unit 51 is an average value of the capacitor voltage of a total of 16 parallel compensation unit converter units of the 4 series of the parallel compensation unit capacitor voltage command VdcCPref and each of the u-phase v-phase positive and negative phase arms. Using VdcCP_AVE as an input, a parallel compensator DC current command value ΔIpcRef is obtained and output by the following calculation.

ΔIpcRef=−G(s)×(VdcCPref−VdcCP_AVE)
sはラプラス演算子、G(s)は比例積分制御を表す。
ΔIpcRef = −G (s) × (VdcCPref−VdcCP_AVE)
s represents a Laplace operator, and G (s) represents proportional-integral control.

並列補償部直流電流制御部52は、並列補償部直流電流指令値ΔIpcRefと、検出した並列補償部直流電流実際値ΔIpcを入力として、次の演算により並列補償部直流電圧指令VdcPrefを求めて出力する。   The parallel compensator DC current controller 52 receives the parallel compensator DC current command value ΔIpcRef and the detected parallel compensator DC current actual value ΔIpc as input, and calculates and outputs the parallel compensator DC voltage command VdcPref by the following calculation. .

VdcPref=G(s)×(ΔIpcRef−ΔIpc)+Vdc2
(Vdc2は第2の直流電力網の直流電圧検出値)
直列補償部コンデンサ電圧一定制御部53においては、直列補償部コンデンサ電圧指令値VdcCSrefと、U相V相の正負相アームのそれぞれ1直列の合計4個の直列補償部Hブリッジユニットのコンデンサ電圧の平均値VdcCS_AVEと、交流電圧検出値VacSを入力として、以下演算により並列補償部交流電流指令値Iac2Refを求めて出力する。
VdcPref = G (s) × (ΔIpcRef−ΔIpc) + Vdc2
(Vdc2 is the DC voltage detection value of the second DC power network)
In the series compensation unit capacitor voltage constant control unit 53, the series compensation unit capacitor voltage command value VdcCSref and the average of the capacitor voltages of the four series compensation units H bridge units in series of the positive and negative phase arms of the U phase and V phase, respectively. Using the value VdcCS_AVE and the AC voltage detection value VacS as inputs, the parallel compensation unit AC current command value Iac2Ref is obtained and output by the following calculation.

並列補償部交流電流指令振幅|Iac2Ref|をまず求める。   First, the parallel compensator AC current command amplitude | Iac2Ref | is obtained.

|Iac2Ref|=J(s)×(VdcCSref−VdcCS_AVE)
並列補償部交流電圧検出値VacPと位相が同一で振幅が1となる交流正弦波sin_VacPを求める。
| Iac2Ref | = J (s) × (VdcCSref−VdcCS_AVE)
An AC sine wave sin_VacP having the same phase as the parallel compensation unit AC voltage detection value VacP and an amplitude of 1 is obtained.

sin_VacP=VacP/|VacP|
(|VacP|は、VacPの正弦波振幅)
Iac2Ref=|Iac2Ref|×sin_VacP
交流電流制御部54は、交流電流指令値Iac2Refと、並列補償部交流電流検出値Iac2と、交流電圧検出値VacPを入力として次の演算により交流電圧指令値VacPrefを求めて出力する。
sin_VacP = VacP / | VacP |
(| VacP | is the sinusoidal amplitude of VacP)
Iac2Ref = | Iac2Ref | × sin_VacP
The AC current control unit 54 receives the AC current command value Iac2Ref, the parallel compensation unit AC current detection value Iac2, and the AC voltage detection value VacP as input and obtains and outputs the AC voltage command value VacPref by the following calculation.

VacPref=−K(s)×(Iac2Ref−Iac2)+VacP
並列補償部各変換器ユニット出力電圧指令(U相正側直流電圧指令VcpUP、U相負側直流電圧指令VcpUN、V相正側直流電圧指令VcpVP、V相負側直流電圧指令VcpVN)を次の演算により求めて出力する。
VacPref = −K (s) × (Iac2Ref−Iac2) + VacP
Parallel compensation unit Each converter unit output voltage command (U phase positive DC voltage command VcpUP, U phase negative DC voltage command VcpUN, V phase positive DC voltage command VcpVP, V phase negative DC voltage command VcpVN) Obtained by calculation and output.

VcpUP=VdcPref/2−VacPref/2
VcpUN=VdcPref/2+VacPref/2
VcpVP=VdcPref/2+VacPref/2
VcpVN=VdcPref/2−VacPref/2
尚、直列補償回路部11は、変換器ユニットとしてHブリッジ変換器3が使用されているので、DC電力網1とDC電力網2の電圧の高低が動作中に逆になっても動作可能である。
VcpUP = VdcPref / 2−VacPref / 2
VcpUN = VdcPref / 2 + VacPref / 2
VcpVP = VdcPref / 2 + VacPref / 2
VcpVN = VdcPref / 2−VacPref / 2
Since the H-bridge converter 3 is used as the converter unit, the series compensation circuit unit 11 can operate even when the voltage levels of the DC power network 1 and the DC power network 2 are reversed during operation.

[第2実施形態]
次に、DC送電網1の直流電圧Vdc1が、DC送電網2の直流電圧Vdc2よりも常時高いシステムに適用できる第2の実施形態の回路構成を図5に示す。
[Second Embodiment]
Next, FIG. 5 shows a circuit configuration of the second embodiment that can be applied to a system in which the DC voltage Vdc1 of the DC power transmission network 1 is always higher than the DC voltage Vdc2 of the DC power transmission network 2.

第2の実施例における直列補償回路部13は、チョッパブリッジ変換器4で構成されることが特徴である。それ以外の回路構成は第1の実施例と同様である。直列補償回路部13がHブリッジ変換器3ではなく、チョッパブリッジ変換器4により構成されるので、本実施形態は、一方のDC送電網(本例では送電網2)の電圧が他方の送電網の電圧より常に高い場合に適用される。   The series compensation circuit unit 13 in the second embodiment is characterized in that it is composed of a chopper bridge converter 4. The other circuit configuration is the same as that of the first embodiment. Since the series compensation circuit unit 13 is configured not by the H-bridge converter 3 but by the chopper bridge converter 4, in this embodiment, the voltage of one DC power transmission network (the power transmission network 2 in this example) is the other power transmission network. Applies when the voltage is always higher than

直列補償回路部13の正側端子はDC送電網1の正側端子に接続され、直列補償回路部13の負側端子はDC送電網2の正側端子に接続される。   The positive side terminal of the series compensation circuit unit 13 is connected to the positive side terminal of the DC power transmission network 1, and the negative side terminal of the series compensation circuit unit 13 is connected to the positive side terminal of the DC power transmission network 2.

以上の構成の電力変換器を用いても、並列補償回路部12、直列補償回路部13、高周波絶縁TR1トランスともに20MWの電力容量ですみ、第1の実施例と同様に低コスト化と低損失高効率化を達成することが可能になる。さらに、直列補償回路部の変換器ユニットを構成する、自己消弧能力を持つスイッチング素子数が、第1の実施例におけるHブリッジ変換器に比較して半減するので、更なる低コスト化と低損失高効率化が可能になる。   Even if the power converter having the above configuration is used, the parallel compensation circuit unit 12, the series compensation circuit unit 13, and the high-frequency insulated TR1 transformer need only have a power capacity of 20 MW, and the cost and the loss are reduced as in the first embodiment. High efficiency can be achieved. Furthermore, since the number of switching elements having a self-extinguishing capability constituting the converter unit of the series compensation circuit section is halved compared to the H-bridge converter in the first embodiment, further cost reduction and lowering are achieved. Loss efficiency can be improved.

[第3実施形態]
次に、3つのDC送電網が1か所で接続され、1つのDC送電網から送電されてくる直流電力を2つのDC送電網に分配送電する構成において、分配比率を自由に調整可能にする第3の実施形態の回路構成を図6に示す。
[Third embodiment]
Next, in a configuration in which three DC power transmission networks are connected at one place and DC power transmitted from one DC power transmission network is distributed and transmitted to two DC power transmission networks, the distribution ratio can be freely adjusted. The circuit configuration of the third embodiment is shown in FIG.

第3実施形態における直列補償回路部21、22のそれぞれ一端は、DC送電網2とDC送電網3の正側端子に接続され、他端をDC送電網1の正側端子に共に接続する。トランスTR2は3巻線トランスであり、一次巻線w1は並列補償回路部12のu相、v相のアーム相互接続点に接続され、二次巻線w2は直列補償回路部21のU相、V相の相アーム相互接続点に接続され、二次巻線w3は直列補償回路部22のU相、V相の相アーム相互接続点に接続されている。尚、二次巻線の数は、電力分配するDC送電網の数に応じて決定される。   One end of each of the series compensation circuit units 21 and 22 in the third embodiment is connected to the positive side terminals of the DC power transmission network 2 and the DC power transmission network 3, and the other end is connected together to the positive side terminal of the DC power transmission network 1. The transformer TR2 is a three-winding transformer, the primary winding w1 is connected to the u-phase and v-phase arm interconnection points of the parallel compensation circuit section 12, and the secondary winding w2 is the U-phase of the series compensation circuit section 21. The secondary winding w3 is connected to the V-phase phase arm interconnection point and the U-phase and V-phase phase arm interconnection point of the series compensation circuit unit 22. Note that the number of secondary windings is determined according to the number of DC power transmission networks to which power is distributed.

直列補償回路部21の出力する直流電圧ΔVsc2と直列補償回路部3の出力する直流電圧ΔVsc3を、分配比率指令k:1(図示しない外部装置より与えられるものとする)に従い、以下により設定する。   The DC voltage ΔVsc2 output from the series compensation circuit unit 21 and the DC voltage ΔVsc3 output from the series compensation circuit unit 3 are set as follows according to a distribution ratio command k: 1 (supplied from an external device not shown).

ΔVsc2:ΔVsc3=k:1
この電圧の分配比率(k:1)に対応して電流比が決まり、その結果、送電網1、2に対する電力分配比率がk:1となる。言い換えると、電力分配比指令に応じて電圧の分配比指令が決定される。尚、現実には、DC送電網2とDC送電網3の直流抵抗および、交流送電網への接続点の直流電圧に依存して分配比率が変化する分を、供給される電流の電流分配比率フィードバック値に従い、ΔVsc2、ΔVsc3に補正をかけて分配が指令値通りになるように調整する。
ΔVsc2: ΔVsc3 = k: 1
The current ratio is determined corresponding to the voltage distribution ratio (k: 1), and as a result, the power distribution ratio for the power transmission networks 1 and 2 is k: 1. In other words, the voltage distribution ratio command is determined according to the power distribution ratio command. In reality, the distribution ratio changes depending on the DC resistance of the DC transmission network 2 and the DC transmission network 3 and the DC voltage at the connection point to the AC transmission network. According to the feedback value, ΔVsc2 and ΔVsc3 are corrected so that the distribution is adjusted to the command value.

以上の構成の電力変換器を用いても、並列補償回路部、直列補償回路部、高周波絶縁トランスとも低コスト化と低損失高効率化を達成することが可能になる。さらに、多端子直流送電網における電流分配制御を自由に実施できるため、系統制御がより安定に実施できるようになる。   Even if the power converter having the above-described configuration is used, it is possible to achieve cost reduction and low loss and high efficiency in the parallel compensation circuit unit, the series compensation circuit unit, and the high-frequency insulation transformer. Furthermore, since current distribution control in a multi-terminal DC power transmission network can be performed freely, system control can be more stably performed.

図6の回路構成に対応した制御方式を図7を用いて説明する。   A control method corresponding to the circuit configuration of FIG. 6 will be described with reference to FIG.

並列補償部コンデンサ電圧一定制御部61は、並列補償部コンデンサ電圧指令VdcCPrefと、u相v相の正負相アームのそれぞれの4直列の合計16個の並列補償部変換器ユニットのコンデンサ電圧の平均値VdcCP_AVEとを入力として、以下演算により並列補償部直流電流指令値ΔIpcRefを求めて出力する。   The parallel compensation unit capacitor voltage constant control unit 61 is an average value of the capacitor voltage of a total of 16 parallel compensation unit converter units of the 4 series of the parallel compensation unit capacitor voltage command VdcCPref and the positive and negative phase arms of the u phase and the v phase. Using VdcCP_AVE as an input, a parallel compensator DC current command value ΔIpcRef is obtained and output by the following calculation.

ΔIpcRe=−G(s)×(VdcCPref−VdcCP_AVE)
sはラプラス演算子、G(s)は比例積分制御を表す。
ΔIpcRe = −G (s) × (VdcCPref−VdcCP_AVE)
s represents a Laplace operator, and G (s) represents proportional-integral control.

並列補償部直流電流制御部62は、並列補償部直流電流指令値ΔIpcRefと、検出した並列補償部直流電流実際値ΔIpcを入力として、次の演算により並列補償部直流電圧指令VdcPrefを求めて出力する。   The parallel compensator DC current controller 62 receives the parallel compensator DC current command value ΔIpcRef and the detected parallel compensator DC current actual value ΔIpc as input, and calculates and outputs the parallel compensator DC voltage command VdcPref by the following calculation. .

VdcPref=G(s)×(ΔIpcRef−ΔIpc)+Vdc2
(Vdc2は第二の直流電力網の直流電圧検出値)
並列補償部交流電圧指令VacPrefは500Hz、50kVrmsの交流電圧指令で、並列補償部各変換器ユニット出力電圧指令(U相正側直流電圧指令VcpUP、U相負側直流電圧指令VcpUN、V相正側直流電圧指令VcpVP、V相負側直流電圧指令VcpVN)を次の演算により求めて出力する。
VdcPref = G (s) × (ΔIpcRef−ΔIpc) + Vdc2
(Vdc2 is the DC voltage detection value of the second DC power network)
The parallel compensator AC voltage command VacPref is an AC voltage command of 500 Hz and 50 kVrms, and each parallel converter unit output voltage command (U phase positive DC voltage command VcpUP, U phase negative DC voltage command VcpUN, V phase positive side) DC voltage command VcpVP, V-phase negative DC voltage command VcpVN) is obtained by the following calculation and output.

VcpUP=VdcPref/2−VacPref/2
VcpUN=VdcPref/2+VacPref/2
VcpVP=VdcPref/2+VacPref/2
VcpVN=VdcPref/2−VacPref/2
直列補償回路部21の直流電流制御部63においては、直列補償部直流電流指令Idc1Refと、直流電力網2と直流電力網3への電力分配比率m2:m3と、直列補償回路部2の直流電流検出値Idc2と、第一の直流電力網の直流電圧検出値Vdc1と、第二の直流電力網の直流電圧検出値Vdc2とを入力として次の演算により、直列補償部直流電圧出力指令ΔVscRefを求めて出力する。
VcpUP = VdcPref / 2−VacPref / 2
VcpUN = VdcPref / 2 + VacPref / 2
VcpVP = VdcPref / 2 + VacPref / 2
VcpVN = VdcPref / 2−VacPref / 2
In the DC current control unit 63 of the series compensation circuit unit 21, the series compensation unit DC current command Idc1Ref, the power distribution ratio m2: m3 to the DC power network 2 and the DC power network 3, and the DC current detection value of the series compensation circuit unit 2 The Idc2, the DC voltage detection value Vdc1 of the first DC power network, and the DC voltage detection value Vdc2 of the second DC power network are input and the series compensation unit DC voltage output command ΔVscRef is obtained and output by the following calculation.

Idc2Ref=Idc1×m2/(m2+m3)
ΔVscRef2=H(s)×(Idc2Ref−Idc2)
+Vdc2−Vdc1
(sはラプラス演算子でH(s)は比例積分制御)
直列補償回路部21のコンデンサ電圧一定制御部64においては、直列補償部コンデンサ電圧指令値VdcCS2refと、U相V相の正負レグのそれぞれの1直列の合計4個の直列補償部Hブリッジのコンデンサ電圧の平均値VdcCS2_AVEと、交流電圧検出値VacS2を入力として、以下演算により直列補償部交流電流指令値Iac2Refを求めて出力する。
Idc2Ref = Idc1 × m2 / (m2 + m3)
ΔVscRef2 = H (s) × (Idc2Ref−Idc2)
+ Vdc2−Vdc1
(S is Laplace operator and H (s) is proportional integral control)
In the capacitor voltage constant control unit 64 of the series compensation circuit unit 21, the capacitor voltage of the series compensation unit capacitor voltage command value VdcCS2ref and one series of each of the U phase V phase positive and negative legs in total of four series compensation units H bridge. The average value VdcCS2_AVE and the AC voltage detection value VacS2 are input, and the series compensation unit AC current command value Iac2Ref is obtained and output by the following calculation.

直列補償部交流電流指令振幅|Iac2Ref|をまず求める。   First, a series compensation unit AC current command amplitude | Iac2Ref | is obtained.

|Iac2Ref|=J(s)×(VdcCS2ref−VdcCS2_AVE)
交流電圧検出値VacS2と位相が同一で振幅が1となる交流正弦波sin_VacS2を求める。
| Iac2Ref | = J (s) × (VdcCS2ref−VdcCS2_AVE)
An AC sine wave sin_VacS2 having the same phase as the AC voltage detection value VacS2 and an amplitude of 1 is obtained.

sin_VacS2=VacS2/|VacS2|
(|VacS2|は、VacS2の正弦波振幅)
Iac2Ref=|Iac2Ref|×sin_VacS2
交流電流制御部65は、交流電流指令値Iac2Refと、交流電流検出値Iac2と、交流電圧検出値VacS2を入力として次の演算により交流電圧指令値VacS2refを求めて出力する。
sin_VacS2 = VacS2 / | VacS2 |
(| VacS2 | is the sine wave amplitude of VacS2)
Iac2Ref = | Iac2Ref | × sin_VacS2
The AC current control unit 65 receives the AC current command value Iac2Ref, the AC current detection value Iac2, and the AC voltage detection value VacS2 as input and obtains and outputs the AC voltage command value VacS2ref by the following calculation.

VacS2ref=K(s)×(Iac2Ref−Iac2)+VacS2
直列補償回路部21の各変換器ユニット出力電圧指令(U相正側直流電圧指令VcsUP2、U相負側直流電圧指令VcsUN2、V相正側直流電圧指令VcsVP2、V相負側直流電圧指令VcsVN2)を次の演算により求めて出力する。
VacS2ref = K (s) × (Iac2Ref−Iac2) + VacS2
Each converter unit output voltage command of the series compensation circuit unit 21 (U-phase positive DC voltage command VcsUP2, U-phase negative DC voltage command VcsUN2, V-phase positive DC voltage command VcsVP2, V-phase negative DC voltage command VcsVN2) Is obtained by the following calculation and output.

VcsUP2=ΔVscRef2/2−VacS2ref/2
VcsUN2=ΔVscRef2/2+VacS2ref/2
VcsVP2=ΔVscRef2/2+VacS2ref/2
VcsVN2=ΔVscRef2/2−VacS2ref/2
直列補償回路部22の直流電流制御部66においては、直列補償部直流電流指令Idc1Refと、直流電力網2と直流電力網3への電力分配比率m2:m3と、直列補償回路部2の直流電流検出値Idc2と、第一の直流電力網の直流電圧検出値Vdc1と、第二の直流電力網の直流電圧検出値Vdc3とを入力として次の演算により、直列補償部直流電圧出力指令ΔVscRefを求めて出力する。
VcsUP2 = ΔVscRef2 // 2−VacS2ref / 2
VcsUN2 = ΔVscRef2 / 2 + VacS2ref / 2
VcsVP2 = ΔVscRef2 / 2 + VacS2ref / 2
VcsVN2 = ΔVscRef2 // 2−VacS2ref / 2
In the DC current control unit 66 of the series compensation circuit unit 22, the series compensation unit DC current command Idc1Ref, the power distribution ratio m2: m3 to the DC power network 2 and the DC power network 3, and the DC current detection value of the series compensation circuit unit 2 The Idc2, the DC voltage detection value Vdc1 of the first DC power network, and the DC voltage detection value Vdc3 of the second DC power network are inputted and the series compensation unit DC voltage output command ΔVscRef is obtained and output by the following calculation.

Idc3Ref=Idc1×m3/(m2+m3)
ΔVscRef3=H(s)×(Idc3Ref−Idc3)
+Vdc3−Vdc1
(sはラプラス演算子でH(s)は比例積分制御)
直列補償回路部22のコンデンサ電圧一定制御部67においては、直列補償部コンデンサ電圧指令値VdcCS3refと、U相V相の正負相アームのそれぞれの1直列の合計4個の直列補償部Hブリッジのコンデンサ電圧の平均値VdcCS3_AVEと、交流電圧検出値VacS3を入力として、以下演算により直列補償部交流電流指令値Iac3Refを求めて出力する。
Idc3Ref = Idc1 × m3 / (m2 + m3)
ΔVscRef3 = H (s) × (Idc3Ref−Idc3)
+ Vdc3-Vdc1
(S is Laplace operator and H (s) is proportional integral control)
In the capacitor voltage constant control unit 67 of the series compensation circuit unit 22, a series compensation unit capacitor voltage command value VdcCS3ref and a series of four series compensation units H bridge capacitors in each of the U phase V phase positive and negative phase arms. The average voltage value VdcCS3_AVE and the AC voltage detection value VacS3 are input, and the series compensation unit AC current command value Iac3Ref is obtained and output by the following calculation.

直列補償部交流電流指令振幅|Iac3Ref|をまず求める。   First, a series compensation unit AC current command amplitude | Iac3Ref | is obtained.

|Iac3Ref|=J(s)×(VdcCS3ref−VdcCS3_AVE)
交流電圧検出値VacS3と位相が同一で振幅が1となる交流正弦波sin_VacS3を求める。
| Iac3Ref | = J (s) × (VdcCS3ref−VdcCS3_AVE)
An AC sine wave sin_VacS3 having the same phase as the AC voltage detection value VacS3 and an amplitude of 1 is obtained.

sin_VacS3=VacS3/|VacS3|
(|VacS3|は、VacS3の正弦波振幅)
Iac3Ref=|Iac3Ref|×sin_VacS3
交流電流制御部68は、交流電流指令値Iac3Refと、交流電流検出値Iac3と、交流電圧検出値VacS3を入力として次の演算により交流電圧指令値VacS3refを求めて出力する。
sin_VacS3 = VacS3 / | VacS3 |
(| VacS3 | is the sine wave amplitude of VacS3)
Iac3Ref = | Iac3Ref | × sin_VacS3
The AC current control unit 68 receives the AC current command value Iac3Ref, the AC current detection value Iac3, and the AC voltage detection value VacS3 as input and obtains and outputs the AC voltage command value VacS3ref by the following calculation.

VacS3ref=K(s)×(Iac3Ref−Iac3)+VacS3
直列補償回路部3の各変換器ユニット出力電圧指令(U相正側直流電圧指令VcsUP3、U相負側直流電圧指令VcsUN3、V相正側直流電圧指令VcsVP3、V相負側直流電圧指令VcsVN3)を次の演算により求めて出力する。
VacS3ref = K (s) × (Iac3Ref−Iac3) + VacS3
Each converter unit output voltage command of the series compensation circuit unit 3 (U-phase positive DC voltage command VcsUP3, U-phase negative DC voltage command VcsUN3, V-phase positive DC voltage command VcsVP3, V-phase negative DC voltage command VcsVN3) Is obtained by the following calculation and output.

VcsUP3=ΔVscRef3/2−VacS3ref/2
VcsUN3=ΔVscRef3/2+VacS3ref/2
VcsVP3=ΔVscRef3/2+VacS3ref/2
VcsVN3=ΔVscRef3/2−VacS3ref/2
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
VcsUP3 = ΔVscRef3 / 2−VacS3ref / 2
VcsUN3 = ΔVscRef3 / 2 + VacS3ref / 2
VcsVP3 = ΔVscRef3 / 2 + VacS3ref / 2
VcsVN3 = ΔVscRef3 / 2−VacS3ref / 2
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1、2…DC電力網、3…Hブリッジ変換器、3a…レグ、4…チョッパブリッジ変換器、4a…レグ、11、13、21、22…直列補償回路部、12…並列補償回路部、   DESCRIPTION OF SYMBOLS 1, 2 ... DC power network, 3 ... H bridge converter, 3a ... Leg, 4 ... Chopper bridge converter, 4a ... Leg, 11, 13, 21, 22 ... Series compensation circuit part, 12 ... Parallel compensation circuit part,

Claims (5)

2つの直流送電網を電圧レベルを変換して接続する電力変換装置であって、
自己消弧能力を持つスイッチング素子がそれぞれ2個直列接続された第1レグ及び第2レグと、コンデンサとを並列に接続してなる構成要素をHブリッジユニットとしたとき、
1以上の前記Hブリッジユニットを直列に接続した相アームをそれぞれ2回路直列に接続した第1相レグ及び第2相レグが、互いに並列に接続された直列補償回路部と、
前記直列補償回路部の一方の直流端子は一方の前記直流送電網の非接地側ラインに接続され、他方の直流端子は他方の直流送電網の非接地側ラインに接続され、
自己消弧能力を持つスイッチング素子を直列に2個接続した第3レグと、該第3レグに並列に接続されたコンデンサからなる構成要素をチョッパユニットとしたとき、
1以上の前記チョッパユニットを直列に接続した相アームがそれぞれ2回路直列接続された第3相レグ及び第4相レグが互いに並列に接続された並列補償回路部と、
前記並列補償回路部の一方の直流端子は前記他方の直流送電網の非接地側ラインに接続され、他方の直流端子が前記2つの直流送電網の共通接地側ラインに接続され、
前記直列補償回路部の前記第1及び第2相レグの相アーム相互接続点に接続される一次巻線と、前記並列補償回路部の前記第3及び第4相レグの相アーム相互接続点に接続される二次巻線とを有する単相高周波絶縁トランスと、
を具備する電力変換装置。
A power conversion device for connecting two DC power grids by converting voltage levels,
When the first and second legs each having two switching elements each having a self-extinguishing capability are connected in series and a capacitor connected in parallel is an H-bridge unit,
A series compensation circuit unit in which a first phase leg and a second phase leg in which two or more phase arms each having one or more H bridge units connected in series are connected in series are connected in parallel;
One DC terminal of the series compensation circuit unit is connected to a non-ground side line of one of the DC transmission networks, and the other DC terminal is connected to a non-ground side line of the other DC transmission network,
When a chopper unit is composed of a third leg in which two switching elements having a self-extinguishing capability are connected in series and a capacitor connected in parallel to the third leg,
A parallel compensation circuit unit in which a third phase leg and a fourth phase leg are connected in parallel with each other, each of which includes two or more phase arms each having one or more chopper units connected in series;
One DC terminal of the parallel compensation circuit unit is connected to a non-ground side line of the other DC transmission network, and the other DC terminal is connected to a common ground side line of the two DC transmission networks,
A primary winding connected to the phase arm interconnection point of the first and second phase legs of the series compensation circuit unit, and a phase arm interconnection point of the third and fourth phase legs of the parallel compensation circuit unit A single-phase high-frequency isolation transformer having a secondary winding to be connected;
A power conversion device comprising:
3つ以上の複数の直流送電網を電圧レベルを変換して接続する電力変換装置であって、
自己消弧能力を持つスイッチング素子がそれぞれ2個直列接続された第1レグ及び第2レグと、コンデンサとを並列に接続してなる構成要素をHブリッジユニットとしたとき、
1以上の前記Hブリッジユニットを直列に接続した相アームをそれぞれ2回路直列に接続した第1相レグ及び第2相レグが、互いに並列にそれぞれ接続された複数の直列補償回路部と、
前記複数の直列補償回路部の一方の直流端子を、前記複数の直流送電網のうちの特定直流送電網を除く各直流送電網の非接地側ラインに接続し、他方の直流端子を前記特定直流送電網の非接地側ラインに共に接続し、
自己消弧能力を持つスイッチング素子を直列に2個接続した第3レグと、該第3レグに並列に接続されたコンデンサからなる構成要素をチョッパユニットとしたとき、
1以上の前記チョッパユニットを直列に接続した相アームがそれぞれ2回路直列接続された第3相レグ及び第4相レグが互いに並列に接続された並列補償回路部と、
前記並列補償回路部の一方の直流端子が、前記特定直流送電網の非接地側ラインに接続され、他方の直流端子が前記特定直流送電網の接地側ラインに接続され、
前記並列補償回路部の相アーム相互接続点に接続される一次巻線と、前記複数の直列補償回路部の相アーム相互接続点にそれぞれ接続される複数の二次巻線を有する単相高周波絶縁トランスと、
を具備する電力変換装置。
A power conversion device that connects three or more DC power transmission networks by converting voltage levels,
When the first and second legs each having two switching elements each having a self-extinguishing capability are connected in series and a capacitor connected in parallel is an H-bridge unit,
A plurality of series compensation circuit units each including a first phase leg and a second phase leg in which two or more phase arms each having one or more H bridge units connected in series are connected in series; and
One DC terminal of the plurality of series compensation circuit units is connected to a non-grounded side line of each DC power transmission network excluding a specific DC power transmission network of the plurality of DC power transmission networks, and the other DC terminal is connected to the specific DC terminal Connect together to the ungrounded line of the power grid,
When a chopper unit is composed of a third leg in which two switching elements having a self-extinguishing capability are connected in series and a capacitor connected in parallel to the third leg,
A parallel compensation circuit unit in which a third phase leg and a fourth phase leg are connected in parallel with each other, each of which includes two or more phase arms each having one or more chopper units connected in series;
One DC terminal of the parallel compensation circuit unit is connected to a non-ground side line of the specific DC transmission network, and the other DC terminal is connected to a ground side line of the specific DC transmission network,
Single-phase high-frequency insulation having a primary winding connected to the phase arm interconnection point of the parallel compensation circuit section and a plurality of secondary windings respectively connected to the phase arm interconnection points of the plurality of series compensation circuit sections With a transformer,
A power conversion device comprising:
前記直列補償回路部及び前記並列補償回路部のうちの一方の補償回路部が交流電圧制御を行い、他方の補償回路部が交流電流制御を行う請求項1又は2記載の電力変換装置。   The power converter according to claim 1 or 2, wherein one of the series compensation circuit unit and the parallel compensation circuit unit performs AC voltage control, and the other compensation circuit unit performs AC current control. 前記直列補償回路部は、2つの直流送電網の電圧差指令値に基づいて直流電圧を出力し、前記Hブリッジユニットを構成するコンデンサ電圧の総和の時間平均値が一定値となるように交流電流制御を行う請求項1記載の電力変換装置。   The series compensation circuit unit outputs a DC voltage based on a voltage difference command value of two DC transmission networks, and an AC current so that a time average value of a sum of capacitor voltages constituting the H bridge unit becomes a constant value. The power converter according to claim 1 which performs control. 前記複数の直列補償回路部の直流電圧出力は、前記複数の直流送電網の電力分配指令に基づいて決定される請求項2記載の電力変換装置。   3. The power converter according to claim 2, wherein DC voltage outputs of the plurality of series compensation circuit units are determined based on a power distribution command of the plurality of DC power transmission networks.
JP2012278277A 2012-12-20 2012-12-20 Power converter Active JP5992317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012278277A JP5992317B2 (en) 2012-12-20 2012-12-20 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278277A JP5992317B2 (en) 2012-12-20 2012-12-20 Power converter

Publications (2)

Publication Number Publication Date
JP2014124028A true JP2014124028A (en) 2014-07-03
JP5992317B2 JP5992317B2 (en) 2016-09-14

Family

ID=51404120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278277A Active JP5992317B2 (en) 2012-12-20 2012-12-20 Power converter

Country Status (1)

Country Link
JP (1) JP5992317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090524B1 (en) * 2016-09-07 2017-03-08 富士電機株式会社 Power interchange system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024392A (en) * 2009-07-21 2011-02-03 Hitachi Ltd Power conversion equipment
JP2011223784A (en) * 2010-04-13 2011-11-04 Hitachi Ltd Power conversion apparatus
JP2012065437A (en) * 2010-09-15 2012-03-29 Toshiba Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024392A (en) * 2009-07-21 2011-02-03 Hitachi Ltd Power conversion equipment
JP2011223784A (en) * 2010-04-13 2011-11-04 Hitachi Ltd Power conversion apparatus
JP2012065437A (en) * 2010-09-15 2012-03-29 Toshiba Corp Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090524B1 (en) * 2016-09-07 2017-03-08 富士電機株式会社 Power interchange system

Also Published As

Publication number Publication date
JP5992317B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
Chen et al. Low-frequency AC transmission for offshore wind power
US20220252046A1 (en) High-frequency uncontrolled rectifier-based dc transmission system for offshore wind farm
Salomonsson et al. Low-voltage DC distribution system for commercial power systems with sensitive electronic loads
Adam et al. AC fault ride-through capability of a VSC-HVDC transmission systems
EP2290799A1 (en) Bi-directional multilevel AC-DC converter arrangements
US20180097450A1 (en) Hybrid high voltage direct current converter station and operation method therefor
Kotb et al. A hybrid HVDC transmission system supplying a passive load
US20160146192A1 (en) Wind turbine power conversion system
CN102570491A (en) Multilevel power converter or inverter arrangement using h bridges
EP2637296A1 (en) HVDC converter station with 2-phase modular multilevel converter and Scott-T 2 to 3 phase transformer
Sharma et al. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system
Erlich et al. Low frequency AC for offshore wind power transmission-prospects and challenges
WO2022213525A1 (en) Ac-ac converter
Zhang et al. A thyristor based series power flow control device for multi-terminal HVDC transmission
JP6253258B2 (en) Power converter
Pillay et al. Transmission systems: HVAC vs HVDC
Reed et al. Modeling, analysis, and validation of a preliminary design for a 20 kV medium voltage DC substation
CN103199691B (en) Zero power starting method of thermal generator set with high-voltage direct-current transmission system
Tang et al. Offshore low frequency AC transmission with back-to-back modular multilevel converter (MMC)
Li et al. A new voltage source converter-HVDC transmission system based on an inductive filtering method
JP5992317B2 (en) Power converter
KR20170120687A (en) Voltage Source Converter with Current Limit
Paulinder Operation and control of HVDC links embedded in AC systems
Escobar-Mejia et al. New power electronic interface combining DC transmission, a medium-frequency bus and an AC-AC converter to integrate deep-sea facilities with the AC grid
Shojaei et al. A modular solid state transformer with a single-phase medium-frequency transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160817

R151 Written notification of patent or utility model registration

Ref document number: 5992317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151