JP2014121166A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2014121166A
JP2014121166A JP2012274186A JP2012274186A JP2014121166A JP 2014121166 A JP2014121166 A JP 2014121166A JP 2012274186 A JP2012274186 A JP 2012274186A JP 2012274186 A JP2012274186 A JP 2012274186A JP 2014121166 A JP2014121166 A JP 2014121166A
Authority
JP
Japan
Prior art keywords
holding ring
ring support
rotor
iron core
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012274186A
Other languages
Japanese (ja)
Inventor
Toshio Miyatake
俊雄 宮武
Yukihiro Yamamoto
幸弘 山本
Yasunori Satake
恭典 佐竹
Kenichi Hattori
憲一 服部
Daisuke Ito
大輔 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012274186A priority Critical patent/JP2014121166A/en
Publication of JP2014121166A publication Critical patent/JP2014121166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, in a rotary electric machine, a holding ring made of nonmagnetic steel is fixed to an end part of a rotor winding protruding from an end of a rotor iron core, and because the rotor winding at the end part or a spacer member in the winding is not always evenly distributed in a circumferential direction, the distribution causes oval deformation of the holding ring to generate bending stress, resulting in increased a load on the holding ring.SOLUTION: The rotary electric machine includes a rotor iron core in which a plurality of slots in an axial direction are formed in the circumferential direction, a rotor winding which is attached inside the slot of the rotor iron core, the holding ring which is attached to both end parts in a length direction of the rotor iron core and holds the end part of the rotor winding protruding from the end of the rotor iron core against centrifugal force, and a holding ring support fixed to the holding ring. In the rotary electric machine, rigidity on a pole core side of the holding ring support and rigidity on inter-pole side are different from each other.

Description

本発明は、蒸気タービン発電機やガスタービン発電機などの回転電機に係り、特に回転子鉄心から張り出した回転子巻線の端部を保持環で保持する構成の回転電機に関する。
The present invention relates to a rotary electric machine such as a steam turbine generator or a gas turbine generator, and more particularly to a rotary electric machine having a structure in which an end of a rotor winding protruding from a rotor core is held by a holding ring.

一般に回転機は、高速回転するために、固定子鉄心の軸方向に張り出した回転子巻線端部には大きな遠心力が作用する。そのため、この遠心力により回転子巻線端部が変形しないように、その外周部を回転子鉄心の軸方向端部に焼嵌めによって装着された高張力鋼製の保持環で保持している。   In general, since a rotating machine rotates at a high speed, a large centrifugal force acts on an end portion of a rotor winding projecting in the axial direction of a stator core. Therefore, the outer periphery of the rotor winding end is held by a high-strength steel holding ring attached to the axial end of the rotor core by shrink fitting so that the centrifugal winding force does not deform the rotor winding end.

ロータは高速で回転し巨大な遠心力が生じる。発電機の大容量化が進んできており、ロータ径の大型化などにより実現されるが、これは遠心力の増加につながり、保持環の信頼性を確保することが発電機容量の制限になってきている。   The rotor rotates at a high speed and generates a huge centrifugal force. The capacity of generators is increasing, and this is realized by increasing the rotor diameter, etc., but this leads to an increase in centrifugal force, and ensuring the reliability of the retaining ring limits the generator capacity. It is coming.

回転子巻線端部は回転が安定するように中心軸に対して対称になるようバランスがとられるが、周方向には一様ではないため、回転子巻線端部の周方向の重量分布に応じて作用する遠心力の大きさも分布し、それにより保持環は円形を保ったままではなく、楕円形状に変形する。   The rotor winding end is balanced to be symmetric about the central axis so that the rotation is stable, but it is not uniform in the circumferential direction, so the circumferential weight distribution of the rotor winding end Accordingly, the magnitude of the centrifugal force acting according to the distribution is also distributed, so that the retaining ring does not remain circular but deforms into an elliptical shape.

保持環は発電機内の構造において、もともと最大の負荷が生じる部分であり、さらにこのような楕円変形により曲げ応力が生じ負荷が増大すると、必要とされる材料強度が上がり、それを満たす材料の入手が困難になる。そのため、このような楕円変形を低減することにより、保持環にかかる負荷を低減することが必要である。   The retaining ring is the part where the maximum load is originally generated in the structure of the generator. Further, when bending stress occurs due to such elliptical deformation and the load increases, the required material strength increases, and the material that satisfies it is obtained. Becomes difficult. Therefore, it is necessary to reduce the load applied to the retaining ring by reducing such elliptical deformation.

本技術分野の背景技術として、特開昭58-116036号公報(特許文献1)がある。この公報には、「保持環の極間に焼嵌めされる部分の締代を、磁極に焼嵌めされる部分の締代よりも小さくしていることを特徴とする」と記載されている。   As background art of this technical field, there is JP-A-58-116036 (Patent Document 1). This publication states that “the tightening allowance of the portion that is shrink-fitted between the poles of the holding ring is smaller than the tightening allowance of the portion that is shrink-fit to the magnetic pole”.

このような構造にすることにより鉄心側の回転子鉄心2の剛性不均一による楕円変形を抑えることができる。   By adopting such a structure, it is possible to suppress elliptical deformation due to nonuniform rigidity of the rotor core 2 on the iron core side.

また、特開昭58-66549号公報(特許文献2)がある。この公報には、「エンドベル部をエンドベルとエンドリングとにより形成し、該エンドベルとエンドリングとの間の嵌合代を最大せん断応力が発生する位置近傍にのみ高い面圧が発生するように周方向に変化をされたことを特徴とする」と記載されている。   There is also JP-A-58-66549 (Patent Document 2). This publication states that “the end bell portion is formed by an end bell and an end ring, and the fitting margin between the end bell and the end ring is set so that a high surface pressure is generated only in the vicinity of the position where the maximum shear stress is generated. It is characterized by a change in direction. "

このような構造にすることで摩擦抵抗を制御し、滑りを低減することで楕円変形を抑制できる。
By adopting such a structure, the frictional resistance is controlled, and the elliptical deformation can be suppressed by reducing the slip.

特開昭58-116036号公報JP 58-116036 A 特開昭58-66549号公報JP 58-66549 A

発電機の大容量化に伴い、保持環に生じる負荷はますます増加している。そのため、コイル端部の重量の周方向の不均一な分布に伴う楕円変形を小さくして、曲げ応力を抑制することが必要である。   As the capacity of the generator is increased, the load generated on the retaining ring is increasing. For this reason, it is necessary to reduce the elliptical deformation caused by the uneven distribution of the weight of the coil end in the circumferential direction and to suppress the bending stress.

特許文献1では、鉄心側の楕円変形を抑制する構造を示しているが、もう一端の保持環支え側のほうが剛性は小さく変形しやすいが、これに対する記載はない。   Patent Document 1 shows a structure that suppresses elliptic deformation on the iron core side, but the other end of the holding ring support side is less rigid and more easily deformed, but there is no description for this.

特許文献2では、エンドリング(保持環支え)側の滑りを小さくし、楕円変形を抑えることができるが、コイル重量の分布によりせん断応力が最大の角度が異なる恐れがあり、機種ごとに正確な位置を把握することが必要で、また周方向の位置を精度よく合わせる必要があるため、組立が難しくコスト増につながる恐れがある。   In Patent Document 2, it is possible to reduce the slip on the end ring (holding ring support) side and suppress elliptical deformation, but there is a possibility that the maximum angle of the shear stress varies depending on the distribution of the coil weight. Since it is necessary to grasp the position and to match the position in the circumferential direction with high precision, it is difficult to assemble and may increase the cost.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「磁極と極間とを設けた回転子鉄心と、前記鉄心の極間に周方向に複数設けたスロットと、前記スロット内に装着した回転子巻線と、回転子鉄心の長手方向両端部に装着され回転子鉄心から張り出した回転子巻線の端部を遠心力から保持する保持環と、この保持環と固定される保持環支えとからなる回転電機において、前記保持環支えの極心側の剛性と極間側の剛性が異なること」を特徴とする。
The present application includes a plurality of means for solving the above-described problems. To give an example, “a rotor core provided with magnetic poles and poles, and a plurality of slots provided in the circumferential direction between the poles of the iron core; A rotor winding mounted in the slot, a holding ring mounted at both ends in the longitudinal direction of the rotor core and holding ends of the rotor winding protruding from the rotor core from centrifugal force, and the holding ring In the rotating electrical machine including the holding ring support that is fixed to the holding ring support, the rigidity on the pole core side and the rigidity on the pole side of the holding ring support are different.

本発明を実施することにより、保持環の楕円変形を低減することができ、それによる曲げ応力を小さくすることができるため、保持環の信頼性を向上することができ、材料の仕様を低くしコストを低減することもできる。
By implementing the present invention, the elliptical deformation of the retaining ring can be reduced and the bending stress caused thereby can be reduced, so that the reliability of the retaining ring can be improved and the specification of the material can be lowered. Cost can also be reduced.

本発明の第1実施例である回転電機の全体構成として示した側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view showing an overall configuration of a rotating electrical machine that is a first embodiment of the present invention. 従来の回転電機のコイル端部側から見た図である。It is the figure seen from the coil end part side of the conventional rotary electric machine. 従来の回転電機の鉄心端部の断面図である。It is sectional drawing of the iron core edge part of the conventional rotary electric machine. 本発明の第2実施例である回転電機のコイル端部側から見た図である。FIG. 5 is a view of a rotating electrical machine as a second embodiment of the present invention as viewed from the coil end side. 本発明のコイル端部の嵌合部の断面図である。It is sectional drawing of the fitting part of the coil end part of this invention. 本発明の焼嵌め時のコイル端部の嵌合部の断面図である。It is sectional drawing of the fitting part of the coil end part at the time of shrink fitting of this invention. 本発明の回転時のコイル端部の嵌合部の断面図である。It is sectional drawing of the fitting part of the coil end part at the time of rotation of this invention. 本発明の保持環における楕円変形量と周方向応力の関係を示す特性図である。It is a characteristic view showing the relationship between the amount of elliptical deformation and the circumferential stress in the retaining ring of the present invention. 従来と本発明における変形状態比較説明図である。It is a deformation | transformation state comparison explanatory drawing in the past and this invention. 本発明の別の一実施例である回転電機の全体構成として示した側断面図である。It is the sectional side view shown as a whole structure of the rotary electric machine which is another one Example of this invention. 本発明の第2実施例である回転電機のコイル端部の断面図である。FIG. 5 is a cross-sectional view of a coil end portion of a rotating electrical machine that is a second embodiment of the present invention. 本発明の第3実施例である回転電機のコイル端部の断面図である。FIG. 6 is a cross-sectional view of a coil end portion of a rotating electrical machine that is a third embodiment of the present invention.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

本実施例では、円筒状の保持環支えの板厚を変更した回転電機の例を説明する。   In this embodiment, an example of a rotating electrical machine in which the thickness of a cylindrical holding ring support is changed will be described.

図1は、本実施例の回転電機の構成図の例である。回転子は塊状鉄心から構成された回転子鉄心2と、回転子鉄心に周方向に複数設けられているスロットに挿入されているコイル3からなる。回転子鉄心は、回転軸1と一体に鋳造されたり、固定具を介して固定されたりして回転軸1に一体的に設けられている。コイル3の両端は鉄心からオーバーハングする構造となっており、遠心力による飛散防止のために保持環5により支持されている。また保持環の端部には径方向の変形を抑制するための円環状の保持環支え4を配置している。保持環は回転振鉄心の端部に焼嵌めされており、その保持環の他端には保持環支えが嵌合されている。   FIG. 1 is an example of a configuration diagram of a rotating electrical machine according to the present embodiment. The rotor is composed of a rotor core 2 composed of a massive iron core and coils 3 inserted into a plurality of slots provided in the circumferential direction of the rotor core. The rotor core is integrally provided on the rotary shaft 1 by being cast integrally with the rotary shaft 1 or fixed via a fixture. Both ends of the coil 3 are structured to overhang from the iron core, and are supported by the retaining ring 5 to prevent scattering due to centrifugal force. In addition, an annular holding ring support 4 is arranged at the end of the holding ring to suppress deformation in the radial direction. The holding ring is shrink-fitted to the end of the rotary vibration core, and a holding ring support is fitted to the other end of the holding ring.

回転子鉄心は2極機の場合、図3のようにN極、S極となるスロット6がない極心部分とその両極の間となる極間部分があり、また、コイル結合部(図示せず)やコイル間に配置されるスペーサ(図示せず)などがあるため、中心軸に対して対称の構造とはなっていない。   When the rotor core is a two-pole machine, as shown in FIG. 3, there are a pole part without a slot 6 to be N pole and S pole and a part between the poles, and a coil coupling part (not shown) ) And spacers (not shown) disposed between the coils, and the like, the structure is not symmetrical with respect to the central axis.

ここでは、これらの重量分布が極心側から極間側の範囲で、極心側に多く分布している場合について説明する。このような場合、図4のように保持環支えの極心側の内径を大きくすることにより肉厚を小さくし、極間側の内径を小さくし肉厚を大きくする。このような構成にすると保持環支え自身による遠心力が、極心側が小さくなり極間側が大きくなるため、コイルなどの分布による負荷と相殺し、周方向に均一な負荷になる。一方で保持環支えの剛性にも分布が生じるが、遠心力の分布ほど径方向の変形には影響しないため、結果として保持環の楕円変形を小さくすることができる。   Here, a description will be given of a case where a large amount of these weight distributions are distributed on the pole side in the range from the pole side to the pole side. In such a case, as shown in FIG. 4, the inner diameter on the pole core side of the holding ring support is increased to reduce the wall thickness, and the inner diameter on the pole side is decreased to increase the wall thickness. With such a configuration, the centrifugal force due to the holding ring support itself becomes smaller on the pole side and larger on the gap side, so that it cancels out the load due to the distribution of the coils and the like, and becomes a uniform load in the circumferential direction. On the other hand, distribution also occurs in the rigidity of the retaining ring support. However, since the centrifugal force distribution does not affect the radial deformation, the elliptical deformation of the retaining ring can be reduced as a result.

図8のように保持環の内径の変化量はコイルなどの重量分布と対応するため、発電機の構成により適正化することができ、重量分布が大きいものは保持環支えの内径の分布も大きくし、小さいものは保持環支えの内径の分布も小さくする。   As shown in Fig. 8, the amount of change in the inner diameter of the retaining ring corresponds to the weight distribution of the coil, etc., so it can be optimized depending on the generator configuration. However, the smaller one also reduces the distribution of the inner diameter of the holding ring support.

楕円変形は各部の重量による遠心力と極心からの距離により定まるが、例えば極心に集中した重量に換算して10kgの分布が生じるとすると、保持環支えは極間にそれと同様に集中した重量に換算して10kgの分布となるように肉厚を調整することが望ましい。   Elliptical deformation is determined by the centrifugal force due to the weight of each part and the distance from the pole, but if, for example, a distribution of 10 kg occurs in terms of the weight concentrated at the pole, the holding ring support is the same weight as that between the poles. It is desirable to adjust the wall thickness so that it becomes a distribution of 10 kg in terms of.

また、図4では内径の形状を楕円形状で示したが、同様の重量分布を付けることができる場合は、本形状でなくても良いのは自明である。   Further, in FIG. 4, the shape of the inner diameter is shown as an ellipse, but it is obvious that the same shape may not be necessary if a similar weight distribution can be provided.

前記実施例では極心側に多く重量分布が有る場合について記載したが、逆に極間側に多く重量分布が有る場合は、保持環支えの内径の分布も極心側の内径を小さくすることにより肉厚を大きくし、極間側の内径を大きくし肉厚を小さくすることで対応できることは自明である。
In the above embodiment, the case where there is a large weight distribution on the pole side has been described, but conversely, when there is a large weight distribution on the gap side, the inner diameter distribution of the holding ring support should also be made smaller on the pole side. It is obvious that this can be dealt with by increasing the wall thickness, increasing the inner diameter of the gap side and decreasing the wall thickness.

本実施例では、円筒状の保持環支えの焼き嵌め代を軸方向に変更した回転電機の例を説明する。   In the present embodiment, an example of a rotating electrical machine in which the shrinkage allowance of a cylindrical holding ring support is changed in the axial direction will be described.

本実施例では図5に示すように保持環支えは保持環の内側に配置される円筒状の部材で、両者は嵌め合いで固定されている構造で、嵌め合いの締代を鉄心側の方を大きくしている。   In this embodiment, as shown in FIG. 5, the holding ring support is a cylindrical member arranged inside the holding ring, and both are fixed by fitting. Has increased.

保持環は鉄心側、および、保持環支え側の両端で焼き嵌めしており、これらの部分は支持されているため、焼嵌め後の状態は図6に示すように、下側に凸の形状になっている。回転時にも、両者の中央部は補強構造がないため、回転時の遠心力による変形は大きく、回転数の増加に伴い徐々に図7のように上に凸の形状となる。この変形により保持環両端の焼き嵌め部の接触状態が変化し、回転前は中央よりの部分がより大きい面圧が生じているが、回転時は端部側の方が接触し、中央寄りの部分が離れやすい。本構造では鉄心側の部分の焼き嵌め代を増やしているため、従来のように軸方向の焼嵌め代を一定にした場合よりも、離れる部分が少なく面圧がより高いため、保持環と保持環支えが相対的に滑る時の摩擦抵抗が大きく、周方向の滑り量が小さくでき、楕円変形量も小さくなる。   The retaining ring is shrink-fitted at both ends of the iron core side and the retaining ring support side, and since these parts are supported, the state after shrink-fitting is a convex shape downward as shown in FIG. It has become. Even at the time of rotation, since the central part of both has no reinforcing structure, the deformation due to the centrifugal force at the time of rotation is large, and gradually becomes upwardly convex as shown in FIG. This deformation changes the contact state of the shrink-fitted parts at both ends of the holding ring, and a larger surface pressure is generated in the part from the center before rotation, but the end side is in contact with the center side during rotation, and it is closer to the center. The part is easy to leave. In this structure, the shrinkage allowance on the iron core side is increased, so there are fewer parts away and the surface pressure is higher than in the case where the shrinkage allowance in the axial direction is constant as in the conventional case. The frictional resistance when the ring support slides relatively is large, the amount of sliding in the circumferential direction can be reduced, and the amount of elliptical deformation is also reduced.

図9に、横軸には変位/定格回転時の線形変位が、縦軸には回転数/定格回転数がとった場合の、本実施例の場合(太線)と従来の構造の場合(細線)の結果を示す。本実施例の方が、滑り始める回転数が高く、滑りによる非線形の変位が小さい。そのため、停止後の残留変形量も小さくなる。このように、焼嵌め代を適性化することにより曲げ応力の増加につながる変形を抑制することができ、保持環の信頼性向上を図ることができる。   In FIG. 9, the horizontal axis represents displacement / linear displacement during rated rotation, and the vertical axis represents the rotation speed / rated rotation speed, in the case of this example (thick line) and the conventional structure (thin line). ) Result. In this embodiment, the number of rotations at which sliding starts is higher, and the non-linear displacement due to sliding is smaller. Therefore, the amount of residual deformation after stopping is also reduced. Thus, by optimizing the shrink-fitting allowance, deformation that leads to an increase in bending stress can be suppressed, and the reliability of the retaining ring can be improved.

嵌め合いの締代は保持環支えの外径にテーパ状の分布を付け、中央側のほうの外径を増やすことで実現することができる。また、逆に保持環側の内径にテーパ状の分布を付けることにしても同様の効果が得られる。また、両者にテーパを形成し、そのテーパ量を調整し相対的な締代を調整してもよい。   The fitting allowance can be realized by giving a tapered distribution to the outer diameter of the retaining ring support and increasing the outer diameter on the center side. On the contrary, the same effect can be obtained by providing a tapered distribution on the inner diameter of the retaining ring. Moreover, a taper may be formed in both, the taper amount may be adjusted, and a relative fastening allowance may be adjusted.

テーパの傾きは回転時と静止時の間で生じる焼嵌め部の傾きの変化に合わせると適当である。例えば保持環の焼嵌め面(内表面)の鉄心側の変形量が端部側の変形量に比べて、静止時と回転時で鉄心側が0.2mm変化が大きいとすると、これに追従できるように保持環支えの鉄心側が0.2mm高くなるようにテーパの傾斜を付ける。このようにすることにより回転時に適正な接触状態を保つことができ、楕円変形の量を低減することができる。このように保持環の静止時と回転時の鉄心側と端部側の差と同等のテーパ量にすることが望ましいが、それ以下でも一定の効果が得られることは自明である。   The inclination of the taper is appropriate in accordance with the change in the inclination of the shrink-fitted portion that occurs between rotation and stationary. For example, if the deformation amount on the iron core side of the retaining ring shrink-fit surface (inner surface) is 0.2mm larger on the iron core side when stationary and rotating than the deformation amount on the end side, it can follow this The taper is inclined so that the iron core side of the retaining ring support is 0.2mm higher. By doing so, an appropriate contact state can be maintained during rotation, and the amount of elliptical deformation can be reduced. As described above, it is desirable to make the taper amount equivalent to the difference between the iron core side and the end side when the holding ring is stationary and rotated, but it is obvious that a certain effect can be obtained even below that.

保持環や保持環支えの形状、および、その焼嵌め代の組み合わせにより一意には定まらないが、テーパを付けた場合一様に焼嵌め代を増やした場合に比べて接触面圧を増やす効果が大きく、例えば0.1mmのテーパを付けた場合、一様に0.1mm以上増やした場合の増加量に比べて数倍の増加がみられる。   The shape of the retaining ring and retaining ring support, and its combination of shrink-fitting allowances, are not uniquely determined, but the effect of increasing the contact surface pressure when taper is added compared to when the shrink-fitting allowance is increased uniformly. When the taper is large, for example, 0.1 mm, an increase of several times is seen compared to the amount of increase when uniformly increasing 0.1 mm or more.

このように、テーパ形状とした場合、保持環支えの焼嵌め代を一様に増やした場合よりも小さくすることができるため、焼嵌め時に必要となる温度上昇を抑えることができるため、材料に温度上昇による不要な負荷を与えることなく、また、組立工程を短縮することもできるため、低コストで信頼性の高い構造を実現することができる。   As described above, when the taper shape is used, since the shrinkage allowance of the retaining ring support can be made smaller than when the shrinkage fit is uniformly increased, the temperature increase required at the time of shrinkage fitting can be suppressed. Since an unnecessary load due to temperature rise is not applied and the assembly process can be shortened, a low-cost and highly reliable structure can be realized.

本実施例は、実施例1で示した構造と併用すればより楕円変形を抑える効果が期待できる。   If this embodiment is used in combination with the structure shown in Embodiment 1, an effect of suppressing elliptic deformation can be expected.

図10は、本実施例の回転電機の構成図の例である。図10のうち、既に説明した図1に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。   FIG. 10 is an example of a configuration diagram of the rotating electrical machine of the present embodiment. In FIG. 10, the description of the components having the same functions as those already described with reference to FIG. 1 is omitted.

本実施例では、図11に示すように保持環支え4aとして保持環5と回転軸1の間に柱状の部材を配置する。これらはそれぞれ溶接などで固定する。ここでは2極機で極心側の変形が大きい場合について示す。この場合極心側の中心軸に対して対称となる位置に対となるよう配置する。   In this embodiment, as shown in FIG. 11, a columnar member is disposed between the holding ring 5 and the rotary shaft 1 as the holding ring support 4a. These are each fixed by welding or the like. Here, a case where the deformation on the extreme core side is large in a two-pole machine is shown. In this case, it arrange | positions so that it may become a pair in the position symmetrical with respect to the center axis | shaft of the pole center side.

このように変形が大きくなる保持環の極心側と回転軸を剛体で結合することにより、保持環の変形を小さくする。このような保持環支えを用いた場合、通常円筒状の保持環支えを用いた場合より体積が小さくなるため、保持環支えの材料費を低減することができる。また、形状も単純であるため、部材の加工費も少なくなる。また、円筒状の保持環支えは保持環に対して焼き嵌めが必要であるため、この組み立て工程がなくなる。   Thus, the deformation | transformation of a holding | maintenance ring is made small by couple | bonding the polar axis side and rotating shaft of a holding | maintenance ring to which a deformation | transformation becomes large with a rigid body. When such a holding ring support is used, the volume is smaller than when a cylindrical holding ring support is used. Therefore, the material cost of the holding ring support can be reduced. Moreover, since the shape is simple, the processing cost of the member is reduced. Further, since the cylindrical holding ring support needs to be shrink-fitted to the holding ring, this assembling process is eliminated.

図12は極心側の保持環支え4aに加え、極間側の保持環支え4bを配置した場合の構成図である。この場合、部材は多くなるが保持環の径方向の変形を全体的に小さくすることができ、楕円変形の程度も小さくなるため、保持環にかかる負荷をより低減できる。この場合もそれぞれが中心軸に対して対称となる位置に対となるよう配置する。例えば、図のように極から90度ごとに4か所配置すると、保持環支えによる分布を必要最小限に抑えることができる。   FIG. 12 is a configuration diagram in a case where the holding ring support 4b on the inter-pole side is arranged in addition to the holding ring support 4a on the pole side. In this case, although the number of members increases, the radial deformation of the retaining ring can be reduced as a whole, and the degree of elliptical deformation is also reduced, so that the load on the retaining ring can be further reduced. Also in this case, they are arranged in pairs at positions that are symmetrical with respect to the central axis. For example, as shown in the figure, if four locations are arranged every 90 degrees from the pole, the distribution due to the retaining ring support can be minimized.

このような場合極心側と極間側で回転時に保持環に生じる径方向変位に合わせて、各保持環支えの剛性を変える。例えば、極心側で生じる変形と、極間側で生じる変形の比率が0.9となる場合、極心側の保持環支えに対して、極間側の保持環支えの剛性を0.9倍すると、両者の変形量の差を小さくすることができ、楕円変形量を低減することができる。このように保持環支えの剛性を極心側と極間側の変形量に合わせることが望ましいが、両者を近づける方向の差をつければ、それ以下の剛性差でも一定の効果が得られることは自明である。
In such a case, the rigidity of each holding ring support is changed in accordance with the radial displacement generated in the holding ring during rotation between the pole side and the pole side. For example, if the ratio of the deformation that occurs on the pole side and the deformation that occurs on the gap side is 0.9, if the rigidity of the holding ring support on the pole side is 0.9 times that of the holding ring support on the pole side, The difference in deformation amount can be reduced, and the elliptical deformation amount can be reduced. In this way, it is desirable to match the rigidity of the retaining ring support to the deformation amount on the pole side and the pole side, but if a difference in the direction in which the two are brought closer is given, a certain effect can be obtained even with a difference in stiffness of less than It is self-explanatory.

1…回転軸、2…回転子鉄心、3…コイル、4…保持環支え、5…保持環、6…スロット、10…極心、11…極間 DESCRIPTION OF SYMBOLS 1 ... Rotary shaft, 2 ... Rotor iron core, 3 ... Coil, 4 ... Holding ring support, 5 ... Holding ring, 6 ... Slot, 10 ... Polar core, 11 ... Between poles

Claims (4)

磁極と極間とを設けた回転子鉄心と、前記鉄心の極間に周方向に複数設けたスロットと、前記スロット内に装着した回転子巻線と、回転子鉄心の長手方向両端部に装着され回転子鉄心から張り出した回転子巻線の端部を遠心力から保持する保持環と、この保持環と固定される保持環支えとからなる回転電機において、前記保持環支えの極心側の剛性と極間側の剛性が異なることを特徴とする回転電機。
A rotor core provided with magnetic poles and poles, a plurality of slots provided in the circumferential direction between the poles of the iron core, a rotor winding mounted in the slot, and attached to both longitudinal ends of the rotor core In a rotary electric machine comprising a holding ring that holds the end of the rotor winding protruding from the rotor core from centrifugal force, and a holding ring support that is fixed to the holding ring, on the pole side of the holding ring support A rotating electric machine characterized in that the rigidity and the rigidity on the inter-electrode side are different.
請求項1に記載の回転電機において、前記保持環支えは保持環の内側に配置される円筒状の部材で、極心側の厚さが極間側の厚さよりも小さいことを特徴とする回転電機。
2. The rotating electrical machine according to claim 1, wherein the holding ring support is a cylindrical member disposed inside the holding ring, and the thickness on the pole side is smaller than the thickness on the gap side. Electric.
請求項1に記載の回転電機において、前記保持環支えは保持環の内側に配置される円筒状の部材で、保持環支えと保持環の両者は嵌め合いで固定されている構造で、嵌め合い部の締代は鉄心側の方が大きいことを特徴とする回転電機。

2. The rotating electrical machine according to claim 1, wherein the holding ring support is a cylindrical member disposed inside the holding ring, and both the holding ring support and the holding ring are fixed by fitting. A rotating electrical machine characterized in that the tightening margin of the part is larger on the iron core side.

請求項1に記載の回転電機において、保持環支えは保持環の内側に配置される柱状の部材で、中心軸に対して対称の位置に少なくとも1対以上、回転子鉄心と保持環の間に配置され、両者の間の変形を拘束することを特徴とする回転電機。 The rotating electrical machine according to claim 1, wherein the holding ring support is a columnar member disposed inside the holding ring, and at least one pair or more in a symmetrical position with respect to the central axis, between the rotor core and the holding ring. A rotating electrical machine that is arranged and restrains deformation between the two.
JP2012274186A 2012-12-17 2012-12-17 Rotary electric machine Pending JP2014121166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274186A JP2014121166A (en) 2012-12-17 2012-12-17 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274186A JP2014121166A (en) 2012-12-17 2012-12-17 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2014121166A true JP2014121166A (en) 2014-06-30

Family

ID=51175558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274186A Pending JP2014121166A (en) 2012-12-17 2012-12-17 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2014121166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006999T5 (en) 2019-03-08 2021-12-09 Mitsubishi Electric Corporation INSPECTION PROCEDURE FOR ROTATING ELECTRIC MACHINE, ROTATING ELECTRIC MACHINE, AND INSPECTION SYSTEM FOR ROTATING ELECTRIC MACHINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006999T5 (en) 2019-03-08 2021-12-09 Mitsubishi Electric Corporation INSPECTION PROCEDURE FOR ROTATING ELECTRIC MACHINE, ROTATING ELECTRIC MACHINE, AND INSPECTION SYSTEM FOR ROTATING ELECTRIC MACHINE
US11574398B2 (en) 2019-03-08 2023-02-07 Mitsubishi Electric Corporation Inspection method for rotating electric machine, rotating electric machine, and inspection system for rotating electric machine

Similar Documents

Publication Publication Date Title
CN107528396B (en) Rotor member, rotor, and motor
US8018114B2 (en) Generator rotor with improved wedges
KR101919718B1 (en) Rotor member of rotary electric machine, rotor of rotary electric machine, and rotary electric machine
CN102820742A (en) Electric motor rotor
US20180278106A1 (en) Rotor for induction motor and induction motor
RU2654211C2 (en) Electric machine rotor
CN109217506B (en) Rotor and motor
JP2017055644A (en) Single phase permanent magnet motor
JP2014121166A (en) Rotary electric machine
JP2015220846A (en) Rotor of dynamo-electric machine
KR102474760B1 (en) Permanent magnetic synchronous motor and rotor used in the same
TWM542286U (en) Single-phase brushless motor
TWM542289U (en) Single-phase motor
JP6370521B1 (en) Rotor and rotating electric machine
JP2016220404A (en) Squirrel-cage induction motor, squirrel-cage induction motor rotor and rotor manufacturing method
JP2015220950A (en) Rotating electrical machine
JP6946120B2 (en) Axial gap type rotary electric machine
JP2017169373A (en) Rotor member and rotary electric machine
JP6946119B2 (en) Axial gap type rotary electric machine
JP2019176665A (en) Split type stator and rotary electric machine
KR102574791B1 (en) Rotor with structure to reduce overhang magnetic path and permanent magnet motor including the same
JP7468640B2 (en) Rotor for rotating electrical machine
JP2012151947A (en) Outer rotor type motor
US11658524B2 (en) Rotary electric machine
JP7217217B2 (en) Rotor for permanent magnet synchronous rotating electric machine, and method for adjusting balance of rotor for permanent magnet synchronous rotating electric machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151019