JP2014118813A - Marine hot water power generation system - Google Patents

Marine hot water power generation system Download PDF

Info

Publication number
JP2014118813A
JP2014118813A JP2012271819A JP2012271819A JP2014118813A JP 2014118813 A JP2014118813 A JP 2014118813A JP 2012271819 A JP2012271819 A JP 2012271819A JP 2012271819 A JP2012271819 A JP 2012271819A JP 2014118813 A JP2014118813 A JP 2014118813A
Authority
JP
Japan
Prior art keywords
hot water
power generation
steam
condensate
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012271819A
Other languages
Japanese (ja)
Inventor
Kenji Fukushi
賢二 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012271819A priority Critical patent/JP2014118813A/en
Publication of JP2014118813A publication Critical patent/JP2014118813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PROBLEM TO BE SOLVED: To achieve a thermal power generating system with sea bottom hot water being applied as a heat source.SOLUTION: In order to suppress development cost and construction cost, the upper-most part of a power generating system major constituent element is set at a low depth from a sea surface or below and an entire system is moored at the sea bottom part, influence of tide power, ocean current and weather or the like over the power generation system is made minimum. Also, in order to suppress the cost, marine space down to the sea bottom is effectively utilized to constitute a steam generation and condensate system having a simple pipe structure. In order to make influence such as corrosion by salt contained in hot water minimum, hot water steam is not sent directly to a power generation turbine, but a heat exchanger is used to heat another thermal medium.

Description

本発明は、海底下熱水を熱源とした地熱発電システムに関するものである。 The present invention relates to a geothermal power generation system using subseafloor hot water as a heat source.

クリーンなエネルギー供給源として太陽光発電、風力発電とともに、地熱発電が注目されている。しかしながら、陸上での地熱発電量は年々増加しているものの、日本国内での最大の地熱発電所でも出力112MWと、原子力発電所の10分の1程度である。また、日本合計でも540MWと、中型の原子炉一基分に過ぎない。 Geothermal power generation is attracting attention as a clean energy supply source along with solar power generation and wind power generation. However, although geothermal power generation on land has been increasing year by year, the largest geothermal power plant in Japan has an output of 112 MW, which is about 1/10 of that of a nuclear power plant. Japan's total is 540 MW, which is just one medium-sized nuclear reactor.

また、既存の陸上での地熱発電は、設置に対して厳しい制限がある。多くの熱源がある国立公園内ではそもそも許可が下りづらく、山林を切り開いて発電所施設を建設するために、周辺自然環境への影響調査をしなければならない。温泉地が近くにあると、そこへの熱源供給への影響について調査しなければならない、等があり。その為、綿密な地質調査の上で建設地の決定、蒸気井、還元井を掘る箇所を決める必要がある。 In addition, existing onshore geothermal power generation has severe restrictions on installation. In the first place, it is difficult to get permission in a national park where there are many heat sources. In order to open up the forest and construct a power plant facility, it is necessary to investigate the impact on the surrounding natural environment. If there is a hot spring area nearby, the effect on the heat source supply to the area must be investigated. For this reason, it is necessary to determine the construction site, the steam well, and the location to dig the reduction well after careful geological survey.

熱源として海洋海底下にある熱水を利用して地熱発電が実現できれば有用であると考える。 We think that it would be useful if geothermal power generation could be realized using hot water under the ocean floor as a heat source.

しかしながら、海洋に発電設備を設置するにあたって様々な問題が発生する。先ず、利用できる熱水は海水を由来とする塩分を含んでいる為、熱水からそのまま蒸気を発生させた場合、蒸気に含まれる塩分が配管や発電タービンの内部構造に腐蝕作用等の無視できない影響を与えることになる。 However, various problems occur when installing power generation facilities in the ocean. First, since the available hot water contains salt derived from seawater, when steam is generated as it is from the hot water, the salt contained in the steam cannot be ignored such as the corrosive action on the internal structure of the piping and power generation turbine. Will have an impact.

発電システムを洋上固定プラットフォーム上に構築する場合、潮汐力、海流、天候等による熱水源との距離の変動が発生せず、配管が容易となるが、その場所の海底深度によってはプラットフォーム建設に膨大なコストが発生する。 When constructing a power generation system on an offshore fixed platform, the distance to the hot water source does not change due to tidal forces, ocean currents, weather, etc., and piping becomes easy. Cost.

洋上浮体プラットフォーム上に構築する場合は、潮汐力、海流、天候等による熱水源との距離の変動を配管により吸収することが困難となる。 When building on an offshore floating platform, it is difficult to absorb the fluctuations in the distance from the hot water source due to tidal forces, ocean currents, weather, etc., with the piping.

また、深海海底面上に発電システムを全て設置する場合、構成機器全てを設置深度に耐えられるようにする為に開発コスト、および構築コストが膨大になる。 Further, when all the power generation systems are installed on the deep sea bottom, the development cost and the construction cost become enormous so that all the components can withstand the installation depth.

塩分を含む熱水を利用して、熱交換により蒸気発生器で純水等の発電媒体を蒸発させ、発電タービンに送り、発電に使用した後の低温低圧蒸気を復水器で凝縮させ、再び蒸気発生器に供給することで、塩分が配管、発電タービンに与える影響を最小限とする。また、蒸気発生器、復水器を海中に、発電タービン本体は低深度海中に設置し、それらを一体として海底に係留し、自体の浮力で鉛直方向の安定を保つ構成とすることで、深度圧力に対する対応開発コストを最小限にし、大きな構築コストが掛かる海上固定プラットフォームの構築も不要とする。(請求項1) Using hot water containing salinity, the power generation medium such as pure water is evaporated by heat exchange by heat exchange, sent to the power generation turbine, and the low-temperature and low-pressure steam used for power generation is condensed by the condenser, and again Supplying to the steam generator minimizes the impact of salinity on piping and power generation turbines. In addition, the steam generator and condenser are installed in the sea, and the power generation turbine body is installed in the sea at a low depth. Corresponding to pressure, the development cost is minimized, and it is not necessary to construct an offshore fixed platform that requires a large construction cost. (Claim 1)

低深度海中に設置した発電タービンと海底の熱水供給口までの距離を利用して、主にその長さによって熱交換面積を確保する単純な管構造を持つ蒸気発生器を構成する。構造を単純にすることで開発コスト、構築コストを抑える。また、熱水を一度上昇させてから熱交換させることによって、熱供給流体と加熱流体を対向流式として熱効率を高める。熱水の供給循環は、熱水の供給圧力、および、上昇する熱水と下降する熱水の温度密度差によって発生する下降熱水側からの負圧によって実現される。(請求項2) A steam generator with a simple tube structure that secures the heat exchange area mainly by its length is constructed by using the distance between the power generation turbine installed in the deep sea and the hot water supply port on the seabed. Reduce development and construction costs by simplifying the structure. In addition, the heat supply fluid and the heating fluid are counterflowed to increase heat efficiency by raising the hot water once and then exchanging heat. The hot water supply circulation is realized by the hot water supply pressure and the negative pressure from the descending hot water side generated by the temperature density difference between the rising hot water and the descending hot water. (Claim 2)

また、上記と同じく復水器についても、海底までの距離を利用して、主にその長さによって熱交換面積を確保する、単純な管構造を持つ構造を採用することで、開発コスト、構築コストを抑える。復水の供給循環は、蒸気発生と復水による圧力差に対して、蒸気発生側と蒸気復水側の復水レベル差を、常に一定に保とうとする重力の働きによって実現される。(請求項3) Similarly to the above, the condenser also uses a structure with a simple tube structure that uses the distance to the seabed to secure the heat exchange area mainly by its length, so that the development cost and construction Reduce costs. Condensate supply circulation is realized by the action of gravity, which always keeps the condensate level difference between the steam generation side and the steam condensate side constant against the pressure difference between the steam generation and the condensate. (Claim 3)

以上の蒸気発生器、復水器、発電タービンを一体として海底に係留することで、潮汐力による海面高度変動による影響を排除できるが、海流および天候等による揺動発生により、熱水供給口との距離が変動することは避けられない。この変動を吸収する為に、蒸気発生器と熱水供給口を含む海底固定部分との接続には柔構造を持つ管で接続するものとする。(請求項4) By mooring the above steam generator, condenser, and power generation turbine together on the seabed, the influence of sea level altitude fluctuations due to tidal forces can be eliminated. It is inevitable that the distance of fluctuates. In order to absorb this variation, the connection between the steam generator and the seafloor fixed part including the hot water supply port is connected with a pipe having a flexible structure. (Claim 4)

本発明における発電システム全体を示す概要図である。It is a schematic diagram showing the whole power generation system in the present invention.

図1に発電システム全体構成の概要図を示す。 FIG. 1 shows a schematic diagram of the overall configuration of the power generation system.

発電システムは、海上に浮かぶ蓄電プラント船11、浅海中に設置され、アンカーケーブル31よって海底面から一定距離に係留される発電タービン船12、蒸気復水管22、復水管23、蒸気発生管24、蒸気管25、熱水上昇管28、熱水下降管29、および海底面に固定される熱水供給管26、固形物除去器13、固形物除去器13と熱水上昇管28を接続する柔構造管27、メインアンカー14等からなる。 The power generation system includes a power storage plant ship 11 that floats on the sea, a power generation turbine ship 12 that is installed in a shallow sea and anchored at a fixed distance from the bottom of the sea by an anchor cable 31, a steam condensate pipe 22, a condensate pipe 23, a steam generation pipe 24, The steam pipe 25, the hot water rise pipe 28, the hot water down pipe 29, the hot water supply pipe 26 fixed to the sea bottom, the solid matter remover 13, and the soft water rise pipe 28 that connects the solid matter remover 13 and the hot water rise pipe 28. It consists of a structural tube 27, a main anchor 14 and the like.

但し、陸地が近い場合は蓄電プラント船11を省略して、発電タービン船12から陸上へ送電する構成をとることができる。 However, when the land is close, it is possible to omit the power storage plant ship 11 and transmit power from the power generation turbine ship 12 to the land.

発電タービン船12は海上に露出するマンホール21を持つことでメンテナンス作業等で作業員が立ち入ることができる。 Since the power generation turbine ship 12 has a manhole 21 exposed on the sea, a worker can enter for maintenance work or the like.

熱伝達管は蒸気復水管22と蒸気発生管24のみで、他の管は断熱管として構成する。 The heat transfer pipe is only the steam condensate pipe 22 and the steam generation pipe 24, and the other pipes are constructed as heat insulation pipes.

柔構造管27について、耐圧強度としては熱水供給管26からの熱水供給圧力に耐えられれば良いので、主に熱水の高温に耐えられる素材のものを使用する。 Since the flexible tube 27 only needs to withstand the hot water supply pressure from the hot water supply tube 26, the flexible tube 27 is mainly made of a material that can withstand the high temperature of the hot water.

海底係留部分全体について、メインアンカー14と海底との間で十分な接地摩擦が得られるように、メインアンカー14を含んだ浮力、自重を調整する。また、海流、天候等による揺動を小さく抑えるためには、上部構造部分の浮力を大きくして、メインアンカーを重くすることが効果的であるが、構造各部に掛かる応力を考慮して最小限に留める。 The buoyancy and its own weight including the main anchor 14 are adjusted so that sufficient ground friction is obtained between the main anchor 14 and the seabed for the entire seabed mooring portion. Also, in order to keep the swinging due to ocean currents, weather, etc. small, it is effective to increase the buoyancy of the upper structure part and make the main anchor heavy, but it is minimal considering the stress applied to each part of the structure. Keep on.

発電タービン船12からメインアンカー14以外に下ろしたアンカーケーブル31は、これも海流、天候等による揺動を抑えるのに効果があるが、その他に地球自転によるコリオリ力を吸収する役目もある。 The anchor cable 31 lowered from the power generation turbine ship 12 to the part other than the main anchor 14 is also effective in suppressing swinging due to ocean currents, weather, etc., but also has a role of absorbing Coriolis force due to earth rotation.

津波等による海面異常下降を考慮して、復水管23、蒸気発生管24の下部は、メインアンカー14からある程度の余裕(装置降下許容限度56)をもってアンカーケーブル31で接続する。海面異常上昇については、蓄電プラント船11が発電タービン船12に乗り上げる等しないように十分な安全距離57をとり、また、船間を結ぶ電力線32、アンカーケーブル31も潮汐力による変動分を考慮して余長を持たせる。 In consideration of abnormal sea level descent due to a tsunami or the like, the lower part of the condensate pipe 23 and the steam generation pipe 24 is connected to the main anchor 14 with an anchor cable 31 with a certain margin (appropriate apparatus descent limit 56). Regarding the abnormal rise in sea level, a sufficient safety distance 57 is taken so that the power storage plant ship 11 does not ride on the power generation turbine ship 12, and the power line 32 and the anchor cable 31 connecting the ships are also taken into account the fluctuation due to the tidal force. Give extra length.

海底の熱水供給管26から供給される熱水は、固形物除去器13により固形物を除去される。これは、柔構造管27および熱水上昇管28に固形物が堆積して、管詰まりを発生させないようにする為である。固形物除去器13を通った熱水は、熱水供給管26からの供給圧力、および、熱水下降管29を下る熱水による負圧によって、柔構造管27および熱水上昇管28を上昇する。熱水下降管29に達した熱水は、熱伝達管である蒸気発生管24内部の復水を加熱し、熱交換によってそれ自体は温度を下げながら、熱水下降管29を下降する。熱水下降管29に最下部に達した温度の下がった熱水は、海中に放出する。海中に放出せずに、還元井を掘って海底下に戻す構成も可能であるが、コストを考えて図1の構成例では採用しない。熱水を一度上昇させてから熱交換させるのは、熱供給流体と加熱流体を対向流式として熱効率を高める為である。 Solid water is removed from the hot water supplied from the hot water supply pipe 26 on the seabed by the solid material remover 13. This is to prevent solid matter from accumulating on the flexible structure tube 27 and the hot water rising tube 28 to cause clogging. The hot water that has passed through the solid substance remover 13 rises the flexible structure pipe 27 and the hot water rise pipe 28 by the supply pressure from the hot water supply pipe 26 and the negative pressure due to the hot water descending the hot water descending pipe 29. To do. The hot water that has reached the hot water descending pipe 29 heats the condensate inside the steam generating pipe 24, which is a heat transfer pipe, and descends the hot water descending pipe 29 while lowering the temperature itself by heat exchange. The hot water whose temperature has reached the bottom of the hot water downcomer 29 is discharged into the sea. Although it is possible to dig a reduction well and return it to the bottom of the sea without releasing it into the sea, it is not adopted in the configuration example of FIG. 1 in consideration of cost. The reason why the hot water is once raised and then exchanged is to increase the thermal efficiency by using a heat supply fluid and a heating fluid as a counter-flow type.

蒸気発生管24において復水を加熱して発生した蒸気は、蒸気管25を通り、発電タービン船12に至り、発電タービンおよび発電機を回す。発電機を回して得られた電力は、蓄電プラント船11に送り蓄積する。蓄電プラント船11における蓄電方法は指定しないが、電気分解によって得られる水素で、または水素を原料として炭素酸化物を合成して蓄積することが考えられる。発電タービン船12で発電に使用された後の温度の下がった蒸気は、蒸気復水管22においてさらに冷やされて凝縮、液化する。蒸気復水管22は熱伝達管であり周囲の海水によって冷却される。冷却され液化した復水は復水管23を通り、蒸気発生管24に再び供給される。 The steam generated by heating the condensate in the steam generation pipe 24 passes through the steam pipe 25 and reaches the power generation turbine ship 12 to rotate the power generation turbine and the generator. The electric power obtained by turning the generator is sent to the storage plant ship 11 and stored. Although the power storage method in the power storage plant ship 11 is not specified, it is conceivable to synthesize and accumulate carbon oxides using hydrogen obtained by electrolysis or using hydrogen as a raw material. The steam whose temperature has been lowered after being used for power generation in the power generation turbine ship 12 is further cooled in the steam condensate pipe 22 to be condensed and liquefied. The steam condensate pipe 22 is a heat transfer pipe and is cooled by the surrounding seawater. The cooled and liquefied condensate passes through the condensate pipe 23 and is supplied again to the steam generation pipe 24.

発電時の蒸気復水管22、復水管23側の復水レベルを低温側復水レベル41、蒸気発生管24、蒸気管25側の復水レベルを高温側復水レベル42とする。この二つの復水レベルの差を復水レベル差54と呼び、高温側蒸気圧と低温側蒸気圧の蒸気圧差を示す。 The condensate level on the steam condensate pipe 22 and the condensate pipe 23 side during power generation is the low-temperature side condensate level 41, and the condensate level on the steam generation pipe 24 and steam pipe 25 side is the high-temperature side condensate level 42. The difference between the two condensate levels is called the condensate level difference 54, and indicates the difference in vapor pressure between the high temperature side vapor pressure and the low temperature side vapor pressure.

復水系統の管、蒸気復水管22、復水管23、蒸気発生管24、蒸気管25内部の圧力はその海中深度の圧力よりも低くなる。その為、これらの管は負圧に耐えられる圧縮強度を持つ必要がある。少なくとも、低温側復水レベル深度55における海水圧力以上の負圧に耐えられる圧縮強度を管全体で持たせる。 The pressure in the condensate system pipe, the steam condensate pipe 22, the condensate pipe 23, the steam generation pipe 24, and the steam pipe 25 is lower than the pressure in the sea depth. Therefore, these tubes need to have compressive strength that can withstand negative pressure. At least, the entire pipe has a compressive strength that can withstand negative pressure equal to or higher than seawater pressure at the low-temperature condensate level depth 55.

蒸気発生管上限深度52は、熱水供給管26から供給される熱水温度によって制限される。例えば熱水温度が摂氏200度以上の場合、約16.5気圧程度以上の圧力がなければ沸騰する恐れがある為、155メートル程度以上の深度が必要となる。 The steam generation pipe upper limit depth 52 is limited by the temperature of hot water supplied from the hot water supply pipe 26. For example, when the hot water temperature is 200 degrees Celsius or higher, there is a risk of boiling if there is no pressure of about 16.5 atmospheres or more, so a depth of about 155 meters or more is required.

摂氏200度以上の熱水が、深度1000メートルの海底から得られた場合、熱水下降管29の下端を海底から20メートル程度にとるとすると、蒸気発生管24長として最大約825メートル程度を確保できる。しかしながら、蒸気発生管24長を最大長で確保すると、復水レベル差(蒸気圧差)54を約160メートル(約16気圧)程度、発電タービン船12の高さを10メートルと仮定すると、蒸気復水管22長を確保できなくなる。蒸気発生管24長を725メートルとすれば、蒸気復水管22長を85メートル程度確保できる。これらの長さは蒸気復水管22、蒸気発生管24の材質等によって決まる熱伝達率から最適値を決める必要がある。また、長さだけではなく、太さ、本数等で熱伝達量を調整しても良い。 When hot water of 200 degrees Celsius or higher is obtained from the seabed at a depth of 1000 meters, assuming that the lower end of the hot water descending pipe 29 is about 20 meters from the seabed, the maximum length of the steam generation pipe 24 is about 825 meters. It can be secured. However, if the steam generation pipe 24 is secured at the maximum length, it is assumed that the condensate level difference (steam pressure difference) 54 is about 160 meters (about 16 atmospheres) and the height of the power generation turbine ship 12 is 10 meters. The length of the water pipe 22 cannot be secured. If the length of the steam generation pipe 24 is 725 meters, the length of the steam condensate pipe 22 can be secured to about 85 meters. It is necessary to determine the optimum values of these lengths from the heat transfer coefficient determined by the material of the steam condensate pipe 22 and the steam generation pipe 24. Moreover, you may adjust heat transfer amount not only by length but by thickness, the number, etc.

海洋で発電を実施するのに十分な熱水が得られる深海がある場所は、発電エネルギーの需要地域から遠く離れていると考えるのが妥当である。そこで需要地域までのエネルギー輸送が問題となる。需要地まで最大千数百キロメートルの距離があると仮定すると、送電線での電力供給は設置コスト的にも莫大で、また送電ロスも許容できる範囲に収めるのが難しいと考える。 It is reasonable to consider that the place where there is a deep sea where enough hot water is available to generate electricity in the ocean is far away from the generation energy demand area. Therefore, energy transportation to the demand area becomes a problem. Assuming that there is a distance of up to several thousand kilometers to the demand area, the power supply by the transmission line is huge in terms of installation cost, and it is difficult to keep the transmission loss within an allowable range.

しかしながら、発電した電力によって海水を電気分解して水素等を生成し、2次エネルギーとして需要地まで輸送することで解決できると考える。その為には今後、水素の大量輸送技術の発展によるコスト低減を期待する必要がある。また、水素と二酸化炭素からメタン、メタノール等の炭化水素化合物を効率良く生産できる技術が実用化すれば、火力発電所等で発生した二酸化炭素の処理プラントとして活用でき、また、生産した炭化水素化合物は現在の天然ガス輸送技術等を応用して需要地まで比較的低コストで運ぶことができる。 However, it is considered that the problem can be solved by electrolyzing seawater with the generated power to generate hydrogen and transport it as a secondary energy to the demand area. To that end, it is necessary to expect cost reductions through the development of mass transport technology for hydrogen. In addition, if technology that can efficiently produce hydrocarbon compounds such as methane and methanol from hydrogen and carbon dioxide is put into practical use, it can be used as a treatment plant for carbon dioxide generated in thermal power plants, and the produced hydrocarbon compounds. Can be transported to the demand area at a relatively low cost by applying the current natural gas transportation technology.

逆に需要自体を発電施設の近くに持ってくることも考えられる。大電力を必要とするプラント等を発電タービン船から送電可能な範囲にある陸地に建設するか、または海上浮体プラットフォーム上に建設したプラントを曳航して近くにもってくる等も考えられる。実現すれば全電力を再生可能エネルギーで賄うプラントとして競争力が確保できる可能性がある。 Conversely, it may be possible to bring the demand itself close to the power generation facility. It is also conceivable to construct a plant or the like that requires high power on land that is within the range where power can be transmitted from the power generation turbine ship, or tow a plant built on a floating floating platform and bring it close. If realized, there is a possibility that competitiveness can be secured as a plant that covers all electric power with renewable energy.

11 蓄電プラント船
12 発電タービン船
13 固形物除去器
14 メインアンカー
21 マンホール
22 蒸気復水管
23 復水管
24 蒸気発生管
25 蒸気管
26 熱水供給管
27 柔構造管
28 熱水上昇管
29 熱水下降管
31 アンカーケーブル
32 電力線
41 低温側復水レベル
42 高温側復水レベル
51 干潮時海面高度
52 蒸気発生管上限深度
54 復水レベル差(蒸気圧差)
55 低温側復水レベル深度
56 装置降下許容限度
57 安全距離
DESCRIPTION OF SYMBOLS 11 Power storage plant ship 12 Power generation turbine ship 13 Solid substance remover 14 Main anchor 21 Manhole 22 Steam condensate pipe 23 Condensate pipe 24 Steam generation pipe 25 Steam pipe 26 Hot water supply pipe 27 Flexible structure pipe 28 Hot water rise pipe 29 Hot water fall Pipe 31 Anchor cable 32 Power line 41 Low temperature side condensate level 42 High temperature side condensate level 51 Sea level altitude at low tide 52 Upper limit depth of steam generation pipe 54 Condensate level difference (steam pressure difference)
55 Low-temperature side condensate level depth 56 Device descent allowable limit 57 Safety distance

Claims (4)

海底熱水を熱源とする発電システムで、蒸気発生器と復水器を海中に、発電タービンシステムを低深度海中に設置するものであり、それらを一体として構成し海底に係留することで、自体の浮力で鉛直方向の安定を保つ構成を特徴とした地熱発電システム。 It is a power generation system that uses seafloor hot water as a heat source. It is installed in the sea with a steam generator and condenser, and a power generation turbine system in a deep sea. A geothermal power generation system characterized by maintaining vertical stability with buoyancy. 海中に設置した熱交換器(蒸気発生器)の熱水供給循環は、熱水の自然供給圧力、および、上昇する熱水と下降する温度の低下した熱水の密度差によって発生する、下降熱水側からの負圧によることを主として実現することを特徴とする請求項1記載の地熱発電システム。 The hot water supply circulation of heat exchangers (steam generators) installed in the sea is the falling heat generated by the natural supply pressure of hot water and the density difference between the rising hot water and the falling hot water. 2. The geothermal power generation system according to claim 1, which is mainly realized by negative pressure from the water side. 海中に設置した復水器の復水供給循環は、蒸気発生と復水による圧力差に対する、蒸気発生側と蒸気復水側の復水レベル差を、常に一定に保とうとする重力の働きを主として実現することを特徴とする請求項1記載の地熱発電システム。 The condensate supply circulation of the condenser installed in the sea mainly has the function of gravity to keep the condensate level difference between the steam generation side and the steam condensate side constant against the pressure difference between the steam generation and the condensate. It implement | achieves, The geothermal power generation system of Claim 1 characterized by the above-mentioned. 海底固定部分と海底係留部分を柔構造管で接続することを特徴とする請求項1記載の地熱発電システム。 The geothermal power generation system according to claim 1, wherein the seabed fixed part and the seabed mooring part are connected by a flexible structure pipe.
JP2012271819A 2012-12-12 2012-12-12 Marine hot water power generation system Pending JP2014118813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012271819A JP2014118813A (en) 2012-12-12 2012-12-12 Marine hot water power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271819A JP2014118813A (en) 2012-12-12 2012-12-12 Marine hot water power generation system

Publications (1)

Publication Number Publication Date
JP2014118813A true JP2014118813A (en) 2014-06-30

Family

ID=51173876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271819A Pending JP2014118813A (en) 2012-12-12 2012-12-12 Marine hot water power generation system

Country Status (1)

Country Link
JP (1) JP2014118813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147419A1 (en) * 2015-03-13 2016-09-22 地熱技術開発株式会社 Drilling/power-generating/recovering apparatus for enabling seafloor hydrothermal generation and recovery of useful substances
CN115355953A (en) * 2022-10-21 2022-11-18 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Device for measuring water level and water temperature of geothermal water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147419A1 (en) * 2015-03-13 2016-09-22 地熱技術開発株式会社 Drilling/power-generating/recovering apparatus for enabling seafloor hydrothermal generation and recovery of useful substances
JP2016169538A (en) * 2015-03-13 2016-09-23 地熱技術開発株式会社 Excavation/power generation/recovery apparatus for enabling submarine hot water power generation and useful substance recovery
CN115355953A (en) * 2022-10-21 2022-11-18 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Device for measuring water level and water temperature of geothermal water

Similar Documents

Publication Publication Date Title
US9649582B2 (en) Deep sea collection of solid materials from geothermal fluid
US10269462B2 (en) Semi-submersible nuclear power plant and multi-purpose platform
DK3256716T3 (en) HYDROPNEUMATIC ENERGY STORAGE SYSTEM
Bedard et al. An overview of ocean renewable energy technologies
RU2485316C2 (en) System to extract hydrothermal energy from deepwater oceanic sources and to extract resources from ocean bottom
US8484972B2 (en) Ocean thermal energy conversion (OTEC) electric power plant
CN104021828A (en) Fixed platform type floating nuclear power station and material changing method
CN203826014U (en) Semi-submersible platform floating nuclear power station
CN104036838A (en) Moving platform type floating nuclear power plant and refueling method
Meisen et al. Ocean energy technologies for renewable energy generation
CN204775876U (en) A marine nuclear power platform for shallow water ice formation sea area
CN203826016U (en) Fixed platform type floating nuclear power plant
PT103812A (en) AQUATIC SYSTEM FOR STORAGE OF ENERGY UNDER THE FORM OF COMPRESSED AIR.
JP2014118813A (en) Marine hot water power generation system
EP2102490B1 (en) Geothermal energy system
SHNELL et al. Energy from ocean floor geothermal resources
GB2449620A (en) Using existing oil and gas drilling platforms for the conversion of renewable energy sources
CN203826015U (en) Movable platform type floating nuclear power plant
JP2005280581A (en) Aquatic power generating system and aquatic power generation method
CN110778793A (en) Laying type seawater pipeline system for ocean temperature difference energy power generation
CN104021827A (en) Semisubmersible platform floating nuclear power station and material changing method
RU153219U1 (en) NUCLEAR INSTALLATION OF POWER SUPPLY OF OBJECTS OF THE MARINE OIL AND GAS DEPOSIT
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
von Jouanne et al. Ocean and geothermal renewable energy systems
CN112201379B (en) Intrinsically safe integrated small nuclear power supply for marine environment