JP2014117503A - Degree of oxygen saturation measuring device and degree of oxygen saturation calculation method - Google Patents

Degree of oxygen saturation measuring device and degree of oxygen saturation calculation method Download PDF

Info

Publication number
JP2014117503A
JP2014117503A JP2012275744A JP2012275744A JP2014117503A JP 2014117503 A JP2014117503 A JP 2014117503A JP 2012275744 A JP2012275744 A JP 2012275744A JP 2012275744 A JP2012275744 A JP 2012275744A JP 2014117503 A JP2014117503 A JP 2014117503A
Authority
JP
Japan
Prior art keywords
light
oxygen saturation
living body
wavelength
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275744A
Other languages
Japanese (ja)
Other versions
JP6125821B2 (en
Inventor
Atsushi Watanabe
享志 渡辺
Mitsuharu Miwa
光春 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2012275744A priority Critical patent/JP6125821B2/en
Priority to PCT/JP2013/083363 priority patent/WO2014097965A1/en
Publication of JP2014117503A publication Critical patent/JP2014117503A/en
Application granted granted Critical
Publication of JP6125821B2 publication Critical patent/JP6125821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Abstract

PROBLEM TO BE SOLVED: To provide a degree of oxygen saturation measuring device and a degree of oxygen saturation calculation method capable of calculating a degree of oxygen saturation precisely with only one each of a light incident position and a light detection position.SOLUTION: A degree of oxygen saturation measuring device 1A is a device for measuring a degree of oxygen saturation in a living body, and includes: a light incident part 21 that causes first light and second light whose wavelengths are different from each other to be incident in the living body from one light incident position; a light detection part 22 for detecting the light intensity of the first light and the second light propagated inside the living body at one light detection position; and a CPU 14 for calculating the degree of oxygen saturation in the living body by applying a degree of dimming of the first light and the second light in the living body acquired from the result of the detection by the light detection part 22 to the Modified Beer-Lambert law.

Description

本発明は、酸素飽和度測定装置及び酸素飽和度算出方法に関するものである。   The present invention relates to an oxygen saturation measuring device and an oxygen saturation calculating method.

近年、近赤外光を用いて生体内の酸素飽和度を非侵襲で測定する方法が研究されている。このような方法には、空間分解分光法(Spacially Resolved Spectroscopy:SRS)、時間分解分光法(Time Resolved Spectroscopy:TRS)、位相変調分光法(Phase Modulation Spectroscopy:PMS)がある。   In recent years, methods for non-invasive measurement of oxygen saturation in a living body using near infrared light have been studied. Such methods include spatially resolved spectroscopy (SRS), time resolved spectroscopy (TRS), and phase modulation spectroscopy (PMS).

(1)空間分解分光法(SRS)
一つの光入射位置から生体内に近赤外光(CW光)を入射した後、複数の光検出位置のそれぞれにて、生体内を吸収・散乱した光を検出する。そして、各光検出位置での入射光強度と検出光強度との比の常用対数(減光度)を算出し、光入射位置から光検出位置までの距離に対する減光度の傾きを利用して酸素飽和度を算出する。
(1) Spatial resolution spectroscopy (SRS)
After near-infrared light (CW light) is incident on the living body from one light incident position, light absorbed and scattered in the living body is detected at each of the plurality of light detection positions. Then, a common logarithm (attenuation level) of the ratio between the incident light intensity and the detected light intensity at each light detection position is calculated, and oxygen saturation is performed using the gradient of the light attenuation with respect to the distance from the light incident position to the light detection position. Calculate the degree.

(2)時間分解分光法(TRS)
数ピコ秒といった極めて短い時間幅を有するパルス光を生体に入射し、生体表面において検出される光の時間分解波形を超高速光検出器により検出する。そして、その検出光の時間応答特性を、光拡散理論に基づく時間応答特性と合致するようにフィッティングすることにより吸収係数や等価散乱係数の値を求めたのち、最小二乗法によりオキシヘモグロビン濃度、デオキシヘモグロビン濃度を求め、これらより酸素飽和度を算出する。
(2) Time-resolved spectroscopy (TRS)
Pulse light having an extremely short time width such as several picoseconds is incident on a living body, and a time-resolved waveform of light detected on the surface of the living body is detected by an ultrafast detector. After fitting the time response characteristics of the detected light so as to match the time response characteristics based on the light diffusion theory, the values of the absorption coefficient and equivalent scattering coefficient are obtained, and then the oxyhemoglobin concentration, deoxy The hemoglobin concentration is obtained, and the oxygen saturation is calculated from these.

(3)位相変調分光法(PMS)
100MHz程度の正弦波に変調された光を生体に入射し、生体表面において検出された光の位相変化及び振幅変化から各ヘモグロビン濃度および酸素飽和度を算出する。
(3) Phase modulation spectroscopy (PMS)
Light modulated into a sinusoidal wave of about 100 MHz is incident on the living body, and each hemoglobin concentration and oxygen saturation is calculated from the phase change and amplitude change of the light detected on the living body surface.

なお、特許文献1には、近赤外線無侵襲生体計測装置が記載されている。この文献に記載された装置は、生体の深い所の酸素状態を近赤外線を用いて高い精度で計測するために、次の構成を備えている。すなわち、この装置は、2つの波長の近赤外線の光の強度を強弱に変化させつつ照射する発光素子と、この発光素子と一定の距離に配置されてその光による透過光を受光する受光素子と、2つの波長において強弱それぞれの場合の吸光度を算出し、これら吸光度をBeer-Lambert則に適用して生体の酸素状態を演算する制御ユニットとを備えている。   Patent Document 1 describes a near-infrared noninvasive living body measuring apparatus. The apparatus described in this document has the following configuration in order to measure the oxygen state in a deep part of a living body with high accuracy using near infrared rays. That is, this apparatus includes a light emitting element that irradiates while changing the intensity of near-infrared light having two wavelengths, and a light receiving element that is disposed at a certain distance from the light emitting element and receives transmitted light from the light. And a control unit that calculates the absorbance of each of the two wavelengths at the intensity and applies the absorbance to the Beer-Lambert rule to calculate the oxygen state of the living body.

また、非特許文献1には、時間分解法を用いて組織の光学特性を非侵襲で測定する方法が記載されている。   Non-Patent Document 1 describes a method for non-invasively measuring the optical characteristics of a tissue using a time-resolving method.

実用新案登録第3016160号公報Utility Model Registration No. 3016160

Michael S. Patterson, B. Chance, and B. C. Wilson, “Time resolvedreflectance and transmittance for the noninvasive measurement of tissue opticalproperties”, APPLIED OPTICS, Vol. 28, No. 12 (1989)Michael S. Patterson, B. Chance, and B. C. Wilson, “Time resolvedreflectance and transmittance for the noninvasive measurement of tissue opticalproperties”, APPLIED OPTICS, Vol. 28, No. 12 (1989)

上述した3つの測定方法のうち、時間分解分光法では、数ピコ秒程度のパルス光を発生する光源と、数ピコ秒程度の時間幅の検出信号を時間分解計測し得る検出器とが必要であるため、装置のコストが高くなってしまう。更に、光拡散理論に基づく演算を行うため、演算処理装置への負担が大きくなってしまう。また、位相変調分光法では、検出光の位相変化を検出するために精度の高い位相検出技術が必要であり、装置のコストが高くなってしまう。更に、検出光の位相変化及び振幅変化を検出するために装置の構成が複雑になってしまう。これらの問題に対し、空間分解分光法は、連続光(CW光)を使用し、光検出の際にも特別な構成を必要としないので、上記2つの方法と比較して、極めて簡易な構成でもって測定を行うことができる。   Of the three measurement methods described above, time-resolved spectroscopy requires a light source that generates pulsed light of several picoseconds and a detector that can time-resolve detection signals with a time width of several picoseconds. This increases the cost of the device. Furthermore, since the calculation based on the light diffusion theory is performed, a burden on the arithmetic processing device is increased. In addition, phase modulation spectroscopy requires a highly accurate phase detection technique in order to detect a change in the phase of the detection light, which increases the cost of the apparatus. Furthermore, the configuration of the apparatus becomes complicated in order to detect the phase change and amplitude change of the detection light. To solve these problems, spatially resolved spectroscopy uses continuous light (CW light) and does not require any special configuration for light detection, so it has a very simple configuration compared to the above two methods. Measurements can be taken.

しかしながら、空間分解分光法にも課題が存在する。空間分解分光法では光検出位置を複数設けるため、光検出器と生体表面との接触状態や光の伝搬する経路が光検出位置毎に異なるため、それらの違いが測定誤差となって現れてしまう。また、各光検出位置における光検出器の検出特性のバラツキによって、測定精度が低下してしまう。   However, there are also problems with spatially resolved spectroscopy. In spatially-resolved spectroscopy, since multiple light detection positions are provided, the contact state between the light detector and the living body surface and the light propagation path differ for each light detection position, and these differences appear as measurement errors. . In addition, the measurement accuracy decreases due to variations in the detection characteristics of the photodetector at each light detection position.

なお、特許文献1に記載された装置では光入射位置および光検出位置を各一つのみとしており、上記の課題は回避される。しかし、この装置が採用している測定方法では、原理上、酸素飽和度を精度良く算出することが困難である(非特許文献1、特に式16を参照。光量を変化させても光路長、すなわち得られる深部情報は変わらない)。   In the apparatus described in Patent Document 1, only one light incident position and one light detection position are used, and the above-described problem is avoided. However, with the measuring method employed by this apparatus, it is difficult in principle to calculate the oxygen saturation with high accuracy (see Non-Patent Document 1, especially Equation 16. Even if the light amount is changed, the optical path length, That is, the depth information obtained does not change).

本発明は、このような問題点に鑑みてなされたものであり、光入射位置および光検出位置を各一つのみとし、酸素飽和度を精度良く算出することができる酸素飽和度測定装置及び酸素飽和度算出方法を提供することを目的とする。   The present invention has been made in view of such problems, and has only one light incident position and one light detection position, and an oxygen saturation measuring apparatus and oxygen capable of accurately calculating oxygen saturation. An object of the present invention is to provide a saturation calculation method.

上述した課題を解決するために、本発明による酸素飽和度測定装置は、生体内における酸素飽和度を測定する装置であって、一つの光入射位置から生体内に、互いに波長が異なる第1及び第2の光を入射する光入射部と、生体の内部を伝搬した第1及び第2の光の光強度を一つの光検出位置において検出する光検出部と、光検出部での検出結果から求められる生体内における第1及び第2の光の減光度をModified Beer-Lambert則に適用して生体内の酸素飽和度を算出する演算部とを備え、演算部が、生体内における第1及び第2の光の光路長が互いにほぼ等しく、且つ、第1の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和と、第2の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和との比が、第1の光の減光度と第2の光の減光度との比にほぼ等しいと仮定して、酸素飽和度を算出することを特徴とする。   In order to solve the above-described problem, an oxygen saturation measuring apparatus according to the present invention is an apparatus for measuring oxygen saturation in a living body, and includes first and second wavelengths different from each other from one light incident position to a living body. From the light incident part which injects 2nd light, the light detection part which detects the light intensity of the 1st and 2nd light which propagated the inside of the biological body in one light detection position, and the detection result in a light detection part A calculation unit that calculates the oxygen saturation level in the living body by applying the calculated attenuation of the first and second light in the living body to Modified Beer-Lambert rule, and the calculation unit includes the first and second in vivo The optical path lengths of the second light are substantially equal to each other, and the sum of the absorption term and the scattering term by the light-absorbing substance other than hemoglobin with respect to the first light, and the absorption term and scattering by the light-absorbing substance other than the hemoglobin with respect to the second light The ratio of the sum to the term is Assuming approximately equal to the ratio between the luminous intensity and the attenuation of the second light, and calculates the oxygen saturation.

また、本発明による酸素飽和度算出方法は、生体内における酸素飽和度を測定する装置の内部において酸素飽和度を算出する方法であって、一つの光入射位置から生体内に互いに波長が異なる第1及び第2の光を入射し、生体の内部を伝搬した第1及び第2の光の光強度を一つの光検出位置において検出して求められる生体内における第1及び第2の光の減光度をModified Beer-Lambert則に適用して生体内の酸素飽和度を算出する演算ステップを備え、演算ステップにおいて、生体内における第1及び第2の光の光路長が互いにほぼ等しく、且つ、第1の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和と、第2の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和との比が、第1の光の減光度と第2の光の減光度との比に等しいと仮定して、酸素飽和度を算出することを特徴とする。   Further, the oxygen saturation calculation method according to the present invention is a method for calculating oxygen saturation in an apparatus for measuring oxygen saturation in a living body, and has a wavelength different from each other in a living body from one light incident position. Decrease in the first and second light in the living body obtained by detecting the light intensities of the first and second light incident on the first and second light and propagating in the living body at one light detection position. A calculation step of calculating in-vivo oxygen saturation by applying the luminous intensity to the Modified Beer-Lambert rule, wherein in the calculation step, the optical path lengths of the first and second light in the living body are substantially equal to each other; The ratio of the sum of the absorption term and the scattering term of the light-absorbing substance other than hemoglobin relating to the first light and the sum of the absorption term and the scattering term of the light-absorbing substance other than the hemoglobin relating to the second light is reduced by the first light. Decrease in luminous intensity and second light Assuming equal to the ratio of the degree, and calculates the oxygen saturation.

また、上述した酸素飽和度測定装置及び酸素飽和度算出方法は、演算部が(又は演算ステップにおいて)、仮定に基づき算出された或る生体の酸素飽和度と、予め当該生体の酸素飽和度を測定した結果との比較に基づいて立式された以下の補正式(1)

(但し、SOは仮定に基づき算出された酸素飽和度、SO2,corrは補正後の酸素飽和度、a,bは実数)を用いて、他の生体について算出された酸素飽和度を補正することを特徴としてもよい。
Further, in the oxygen saturation measuring apparatus and the oxygen saturation calculating method described above, the calculation unit (or calculation step) calculates the oxygen saturation of a certain living body calculated based on the assumption and the oxygen saturation of the living body in advance. The following correction formula (1) based on the comparison with the measured results

(However, SO 2 is the oxygen saturation calculated based on the assumption, SO 2 and corr are the corrected oxygen saturation, and a and b are real numbers), and the oxygen saturation calculated for other living bodies is corrected. It may be characterized by.

また、酸素飽和度測定装置及び酸素飽和度算出方法は、演算部が(又は演算ステップにおいて)、以下の演算式(2)

(但し、SOは仮定に基づき算出された酸素飽和度、λは第1の光の波長、λは第2の光の波長、εHbO2(λ)は波長λの光に対するオキシヘモグロビンのモル吸光係数、εHb(λ)は波長λの光に対するデオキシヘモグロビンのモル吸光係数、OD(λ,t)は時刻tにおける波長λの光に対する減光度)を用いて酸素飽和度を算出することを特徴としてもよい。
In addition, the oxygen saturation measuring device and the oxygen saturation calculating method include a calculation unit (or calculation step) in which the following calculation formula (2)

(However, SO 2 is the oxygen saturation calculated based on the assumption, λ 1 is the wavelength of the first light, λ 2 is the wavelength of the second light, and ε HbO2 (λ) is the oxyhemoglobin of the light of the wavelength λ. Calculate oxygen saturation using the molar extinction coefficient, ε Hb (λ) is the molar extinction coefficient of deoxyhemoglobin for light of wavelength λ, and OD (λ, t) is the extinction of light of wavelength λ at time t). May be a feature.

本発明による酸素飽和度測定装置及び酸素飽和度算出方法によれば、光入射位置および光検出位置を各一つのみとし、酸素飽和度を精度良く算出することができる。   According to the oxygen saturation measuring apparatus and the oxygen saturation calculating method according to the present invention, it is possible to calculate the oxygen saturation with high accuracy by using only one light incident position and one light detection position.

本発明の一実施形態に係る酸素飽和度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the oxygen saturation measuring apparatus which concerns on one Embodiment of this invention. (a)一実施形態の酸素飽和度測定装置が備えるプローブの外観を示す平面図である。(b)(a)に示されたII−II線に沿った断面図である。(A) It is a top view which shows the external appearance of the probe with which the oxygen saturation measuring apparatus of one Embodiment is provided. (B) It is sectional drawing along the II-II line | wire shown by (a). プローブが生体の表面に装着された状態を示す図である。It is a figure which shows the state with which the probe was mounted | worn on the surface of the biological body. 係数K(λ)の算出方法の一例として、減光フィルタ(NDフィルタ)を用いる方法を概念的に示す図である。It is a figure which shows notionally the method of using a neutral density filter (ND filter) as an example of the calculation method of coefficient K ((lambda)). 係数K(λ)の算出方法の別の例として、光入射部において光の強度をモニタする方法を概念的に示す図である。It is a figure which shows notionally the method of monitoring the intensity | strength of light in a light-incidence part as another example of the calculation method of coefficient K ((lambda)). 本発明の一実施形態に係る酸素飽和度算出方法を示すフローチャートである。It is a flowchart which shows the oxygen saturation calculation method which concerns on one Embodiment of this invention. 一実施例として、息堪え実験によって右前額部での酸素飽和度を測定した結果を示すグラフである。As an example, it is a graph which shows the result of having measured the oxygen saturation in the right forehead part by a breath-taking experiment. 一実施例として、息堪え実験によって右前額部での酸素飽和度を測定した結果を示すグラフである。As an example, it is a graph which shows the result of having measured the oxygen saturation in the right forehead part by a breath-taking experiment.

以下、添付図面を参照しながら本発明による酸素飽和度測定装置及び酸素飽和度算出方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Embodiments of an oxygen saturation measuring device and an oxygen saturation calculating method according to the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態に係る酸素飽和度測定装置の構成を示すブロック図である。また、図2(a)は、本実施形態の酸素飽和度測定装置が備えるプローブ20の外観を示す平面図であり、図2(b)は、図2(a)に示されたII−II線に沿った断面図である。また、図3は、プローブ20が生体Aの表面に装着された状態を示す図である。   FIG. 1 is a block diagram showing a configuration of an oxygen saturation measuring apparatus according to an embodiment of the present invention. FIG. 2A is a plan view showing the appearance of the probe 20 provided in the oxygen saturation measuring apparatus of the present embodiment, and FIG. 2B is a cross-sectional view taken along the line II-II shown in FIG. It is sectional drawing along a line. FIG. 3 is a diagram showing a state in which the probe 20 is mounted on the surface of the living body A.

図1に示されるように、本実施形態の酸素飽和度測定装置1Aは、本体部10と、プローブ20とを備えている。酸素飽和度測定装置1Aは、生体の一部(例えば頭部)に固定されたプローブ20から一つの光入射位置に第1の光(波長λ)及び第2の光(波長λ≠λ)を入射し、生体における一つの光検出位置から出射される光の強度を検出することにより、ヘモグロビン酸素飽和度を算出する装置である。なお、第1及び第2の光としては、例えば近赤外光が用いられる。 As shown in FIG. 1, the oxygen saturation measuring apparatus 1 </ b> A of this embodiment includes a main body 10 and a probe 20. The oxygen saturation measuring apparatus 1A includes a first light (wavelength λ 1 ) and a second light (wavelength λ 2 ≠ λ) from a probe 20 fixed to a part of a living body (for example, the head) at one light incident position. 1 ) is a device that calculates hemoglobin oxygen saturation by detecting the intensity of light emitted from one light detection position in a living body. For example, near infrared light is used as the first and second light.

図2に示されるように、プローブ20は、光入射部21と光検出部22とを有している。光入射部21と光検出部22とは、互いに例えば数cm程度の間隔をあけて配置され、柔軟な黒色のゴム製のホルダー23によって実質的に一体化されている。プローブ20は、例えば毛髪の無い前額部に、粘着テープや伸縮性のバンド等によって固定されることができる。   As shown in FIG. 2, the probe 20 has a light incident part 21 and a light detection part 22. The light incident part 21 and the light detection part 22 are arranged with an interval of, for example, about several centimeters, and are substantially integrated by a flexible black rubber holder 23. The probe 20 can be fixed to the forehead portion having no hair, for example, with an adhesive tape, an elastic band, or the like.

光入射部21は、図3に示されるように、一つの光入射位置P1から生体A内に向けて第1及び第2の光L1,L2を入射する。光入射部21は、例えば発光ダイオード(LED)といった半導体発光素子を含んで構成されている。光入射部21は、半導体発光素子から発せられた第1及び第2の光L1,L2を、生体Aの表面に対してほぼ垂直に入射する。なお、半導体発光素子を駆動するための電力は、ケーブル28を介して本体部10から送られる。   As shown in FIG. 3, the light incident portion 21 enters the first and second lights L <b> 1 and L <b> 2 from one light incident position P <b> 1 toward the living body A. The light incident portion 21 includes a semiconductor light emitting element such as a light emitting diode (LED). The light incident portion 21 makes the first and second lights L1 and L2 emitted from the semiconductor light emitting element incident substantially perpendicular to the surface of the living body A. Note that power for driving the semiconductor light emitting element is sent from the main body 10 via the cable 28.

光検出部22は、生体の内部を伝搬した第1及び第2の光L1,L2の光強度を、一つの光検出位置P2において検出し、その光強度に応じた電気的な検出信号を生成する。光検出部22は、例えばSi PINフォトダイオードといった半導体受光素子を含んで構成されている。なお、光検出部22は、半導体受光素子から出力される光電流を積分し、増幅するプリアンプ部を更に有してもよい。これにより、微弱な信号を感度良く検出して検出信号を生成し、この信号を本体部10へケーブル28を介して伝送することができる。   The light detection unit 22 detects the light intensities of the first and second lights L1 and L2 propagated inside the living body at one light detection position P2, and generates an electrical detection signal corresponding to the light intensity. To do. The light detection unit 22 includes a semiconductor light receiving element such as a Si PIN photodiode. Note that the light detection unit 22 may further include a preamplifier unit that integrates and amplifies the photocurrent output from the semiconductor light receiving element. Thereby, a weak signal can be detected with high sensitivity to generate a detection signal, and this signal can be transmitted to the main body 10 via the cable 28.

図1を参照すると、本体部10は、駆動部(ドライバ)11、サンプルホールド回路12、A/D変換回路13、CPU14、表示部15、ROM16、RAM17、及びデータバス18を備えている。   Referring to FIG. 1, the main body unit 10 includes a drive unit (driver) 11, a sample hold circuit 12, an A / D conversion circuit 13, a CPU 14, a display unit 15, a ROM 16, a RAM 17, and a data bus 18.

駆動部11は、光入射部21の半導体発光素子を駆動する回路によって構成されている。駆動部11は、データバス18に電気的に接続されており、同じくデータバス18に電気的に接続されているCPU14から半導体発光素子の駆動を指示するための指示信号を受ける。指示信号には、半導体発光素子から出力される光の光強度や波長(例えば波長λ及びλのうちいずれかの波長)などの情報が含まれている。駆動部11は、CPU14から受けた指示信号に基づいて半導体発光素子を駆動し、生体内部へ光を入射させる。なお、光入射部の構成は本実施形態のものに限られず、本体部10に収容された発光素子から光ファイバを介してプローブ20の光入射部へ第1及び第2の光を送るように構成されてもよい。 The drive unit 11 is configured by a circuit that drives the semiconductor light emitting element of the light incident unit 21. The drive unit 11 is electrically connected to the data bus 18 and receives an instruction signal for instructing driving of the semiconductor light emitting element from the CPU 14 also electrically connected to the data bus 18. The instruction signal includes information such as the light intensity and wavelength (for example, one of the wavelengths λ 1 and λ 2 ) of the light output from the semiconductor light emitting element. The drive unit 11 drives the semiconductor light emitting element based on the instruction signal received from the CPU 14 and makes light enter the living body. The configuration of the light incident portion is not limited to that of the present embodiment, and the first and second lights are sent from the light emitting element accommodated in the main body portion 10 to the light incident portion of the probe 20 via the optical fiber. It may be configured.

サンプルホールド回路12及びA/D変換回路13は、プローブ20からケーブル28を介して伝送される検出信号を入力してこれを保持(ホールド)し、デジタル信号化を行ってCPU14に出力する。サンプルホールド回路12は、A/D変換回路13に電気的に接続されており、保持した検出信号をA/D変換回路13へ出力する。   The sample hold circuit 12 and the A / D conversion circuit 13 receive the detection signal transmitted from the probe 20 via the cable 28, hold (hold) it, convert it into a digital signal, and output it to the CPU 14. The sample hold circuit 12 is electrically connected to the A / D conversion circuit 13 and outputs the held detection signal to the A / D conversion circuit 13.

A/D変換回路13は、検出信号をアナログ信号からデジタル信号に変換するための手段である。A/D変換回路13は、サンプルホールド回路12から受けた検出信号をデジタル信号に変換する。A/D変換回路13は、データバス18に電気的に接続されており、変換した検出信号をデータバス18を介してCPU14へ出力する。   The A / D conversion circuit 13 is means for converting the detection signal from an analog signal to a digital signal. The A / D conversion circuit 13 converts the detection signal received from the sample hold circuit 12 into a digital signal. The A / D conversion circuit 13 is electrically connected to the data bus 18 and outputs the converted detection signal to the CPU 14 via the data bus 18.

CPU14は、本実施形態における演算部であり、A/D変換回路13から受けた検出信号に基づいて、生体内部に含まれるヘモグロビンの酸素飽和度を算出する。そのための演算プログラムは、ROM16に格納されている。CPU14は、算出したヘモグロビン酸素飽和度を示す時系列データをデータバス18を介して表示部15へ送る。表示部15は、データバス18に電気的に接続されており、データバス18を介してCPU14から送られた結果を表示する。   The CPU 14 is a calculation unit in the present embodiment, and calculates the oxygen saturation of hemoglobin contained in the living body based on the detection signal received from the A / D conversion circuit 13. A calculation program for this purpose is stored in the ROM 16. The CPU 14 sends time-series data indicating the calculated hemoglobin oxygen saturation to the display unit 15 via the data bus 18. The display unit 15 is electrically connected to the data bus 18 and displays the result sent from the CPU 14 via the data bus 18.

ここで、検出信号に基づくヘモグロビン酸素飽和度の算出方法について述べる。本実施形態では、CPU14が、光検出部22での検出結果から求められる生体内における第1及び第2の光L1,L2の減光度をModified Beer-Lambert則に適用することにより、生体内の酸素飽和度を算出する。   Here, a method for calculating the hemoglobin oxygen saturation based on the detection signal will be described. In the present embodiment, the CPU 14 applies the dimming degree of the first and second lights L1 and L2 in the living body obtained from the detection result in the light detection unit 22 to the modified Beer-Lambert rule, so Calculate oxygen saturation.

いま、光入射部21から波長λの近赤外光を生体内に照射すると、或る時刻tにおける波長λの光の減光度OD(λ,t)は、Modified Beer-Lambert則を適用して以下の式(3)のように表現される。

但し、数式(3)において、各変数の定義は以下のとおりである。
in(λ):波長λの光の入射光強度
out(λ,t):波長λの光の検出光強度
εHbO2(λ):波長λの光に対するオキシヘモグロビンのモル吸光係数
εHb(λ):波長λの光に対するデオキシヘモグロビンのモル吸光係数
[HbO](t):生体内のオキシヘモグロビン濃度
[Hb](t):生体内のデオキシヘモグロビン濃度
[tHb](t):生体内のトータルヘモグロビン濃度
SO(t):生体内の酸素飽和度
L(λ,t):波長λの光の光路長
A(λ,t):ヘモグロビン以外の吸光物質(例えば、チトクロムcオキシダーゼ、ミオグロビン、水、脂肪など)による吸収項
S(λ,t):散乱項
なお、酸素飽和度SO(t)は、次の数式によって定義される値である。
Now, when near-infrared light of wavelength λ is irradiated into the living body from the light incident part 21, the light attenuation OD (λ, t) of light of wavelength λ at a certain time t applies the Modified Beer-Lambert rule. It is expressed as the following equation (3).

However, in Equation (3), the definition of each variable is as follows.
I in (λ): incident light intensity of light of wavelength λ I out (λ, t): detected light intensity of light of wavelength λ ε HbO2 (λ): molar absorption coefficient ε Hb of light of wavelength λ λ): molar absorption coefficient of deoxyhemoglobin with respect to light of wavelength λ [HbO 2 ] (t): in vivo oxyhemoglobin concentration [Hb] (t): in vivo deoxyhemoglobin concentration [tHb] (t): in vivo Total hemoglobin concentration SO 2 (t): oxygen saturation L (λ, t) in the living body: optical path length of light of wavelength λ A (λ, t): light-absorbing substance other than hemoglobin (for example, cytochrome c oxidase, myoglobin , Water, fat, etc.) absorption term S (λ, t): scattering term Oxygen saturation SO 2 (t) is a value defined by the following equation.

上式(3)をλ=λ,λの近赤外光にそれぞれ適用すると、次の数式(5)及び(6)が得られる。なお、一実施例ではλは735nmであり、λは850nmである。

When the above equation (3) is applied to near-infrared light of λ = λ 1 and λ 2 , the following equations (5) and (6) are obtained. In one embodiment, λ 1 is 735 nm and λ 2 is 850 nm.

ここで、本実施形態では、CPU14が以下の仮定(近似)に基づいて酸素飽和度を算出する。まず、生体内における第1及び第2の光L1,L2の光路長が互いに等しいと仮定(近似)する。この仮定は、以下の数式(7)で表される。
Here, in the present embodiment, the CPU 14 calculates the oxygen saturation based on the following assumption (approximation). First, it is assumed (approximate) that the optical path lengths of the first and second lights L1 and L2 in the living body are equal to each other. This assumption is expressed by the following formula (7).

次に、第1の光L1に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和と、第2の光L2に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和との比が、第1の光L1の減光度と第2の光L2の減光度との比に等しいと仮定する。この仮定(近似)は、以下の数式(8)で表される。
Next, the ratio of the sum of the absorption term and the scattering term due to the light-absorbing substance other than hemoglobin relating to the first light L1 and the sum of the absorption term and the scattering term due to the light-absorbing substance other than the hemoglobin relating to the second light L2 is as follows: Assume that it is equal to the ratio of the dimming degree of the first light L1 and the dimming degree of the second light L2. This assumption (approximation) is expressed by the following mathematical formula (8).

以上の仮定(近似)を導入することによって、前述した数式(5)及び(6)から、酸素飽和度SO(t)は以下の数式(9)を用いて算出される。

なお、上記の数式(9)において、モル吸光係数εHbO2(λ)及びεHb(λ)を、例えばεHbO2(λ)=0.4646、εHb(λ)=1.2959、εHbO2(λ)=1.1596、εHb(λ)=0.7861(それぞれ単位はmM−1cm−1)とすることができる。
By introducing the above assumption (approximation), the oxygen saturation SO 2 (t) is calculated using the following equation (9) from the equations (5) and (6) described above.

In the above equation (9), the molar extinction coefficient epsilon HbO2 a (lambda) and epsilon Hb (lambda), for example, ε HbO2 (λ 1) = 0.4646 , ε Hb (λ 1) = 1.2959, ε HbO2 (λ 2) = 1.1596, ε Hb (λ 2) = 0.7861 ( units respectively mM -1 cm -1) can be.

数式(9)において、OD(λ,t)は次の数式(10)によって求められる。

ここで、ADC(λ,t)は波長λの光の検出光強度であり、ADCDARK(t)は暗電流の大きさに相当する電圧換算された12ビットA/Dカウント値であり,K(λ)は、半導体発光素子のパルス駆動順電流IFin(λ)の大きさに相当する値を12ビットA/Dカウント値に変換するための換算係数である。光検出部22のゲイン(例えば、初段トランスインピーダンスアンプのゲイン1.0×10倍、及び次段プログラマブルゲインアンプのゲイン20倍)を複数の生体に対して一定の値に統一すれば、換算係数K(λ)は、複数の生体に対して同一の値を適用可能となる。その際、検出光強度ADC(λ,t)及び暗電流相当値ADCDARK(t)は、複数の生体の光学定数(吸収係数、等価散乱係数)に依存して様々な値を示すこととなる。
In the formula (9), OD (λ, t) is obtained by the following formula (10).

Here, ADC (λ, t) is the detected light intensity of the light of wavelength λ, ADC DARK (t) is a voltage-converted 12-bit A / D count value corresponding to the magnitude of the dark current, and K (Λ) is a conversion coefficient for converting a value corresponding to the magnitude of the pulse driving forward current I Fin (λ) of the semiconductor light emitting element into a 12-bit A / D count value. If the gain of the light detection unit 22 (for example, the gain of the first-stage transimpedance amplifier is 1.0 × 10 7 times and the gain of the next-stage programmable gain amplifier is 20 times) is unified to a constant value for a plurality of living bodies, the conversion The coefficient K (λ) can be applied to the same value for a plurality of living bodies. At that time, the detected light intensity ADC (λ, t) and the dark current equivalent value ADC DARK (t) show various values depending on the optical constants (absorption coefficient, equivalent scattering coefficient) of a plurality of living bodies. .

本実施形態では、上述した数式(9)を補正した以下の数式(11)を用いて、補正後の酸素飽和度SO2,corr(t)を算出するとよい。但し、a,bは実数である。

この数式(11)のa,bは、数式(7)及び(8)の仮定に基づき算出された或る生体の酸素飽和度SO(t)と、予め当該生体の酸素飽和度SO(t)を他の手段により測定した結果との比較に基づいて求められる値である。
In the present embodiment, the corrected oxygen saturation SO 2, corr (t) may be calculated using the following equation (11) obtained by correcting the equation (9). However, a and b are real numbers.

A in this formula (11), b is the equation (7) and (8) and calculated certain biological oxygen saturation SO 2 (t) based on the assumption of, in advance the biometric oxygen saturation SO 2 ( t) is a value obtained based on a comparison with the result of measurement by other means.

上記数式(10)の係数K(λ)の算出方法の例について説明する。図4は、係数K(λ)の算出方法の一例として、減光フィルタ(NDフィルタ)を用いる方法を概念的に示す図である。この方法では、光入射部21と光検出部22を互いに対向するように配置し、これらの間に既知の透過率を有するNDフィルタ24を配置する。光入射部21から出射された光は、NDフィルタ24を通過して減光され、光検出部22に達する。なお、図4では、光入射部21の例として、3つのLED21a〜21cを有する構成が示されている。LED21a及び21bは、波長λの第1の光L1、及び波長λの第2の光L2をそれぞれ発光する。LED21cは、波長λ,λとは異なる波長λ(例えば810nm)の第3の光L3を発光する。また、光検出部22は、例えばSi PINフォトダイオードといった半導体受光素子と、その後段に設けられたトランスインピーダンスアンプ(TIA)22bおよびプログラマブルゲインアンプ(PGA)22cとを有する。 An example of a method for calculating the coefficient K (λ) of the above formula (10) will be described. FIG. 4 is a diagram conceptually illustrating a method using a neutral density filter (ND filter) as an example of a method for calculating the coefficient K (λ). In this method, the light incident part 21 and the light detection part 22 are disposed so as to face each other, and an ND filter 24 having a known transmittance is disposed therebetween. The light emitted from the light incident part 21 passes through the ND filter 24 and is attenuated, and reaches the light detection part 22. In addition, in FIG. 4, the structure which has three LED21a-21c as an example of the light-incidence part 21 is shown. LED21a and 21b emits light first light L1 having a wavelength lambda 1, and the wavelength lambda 2 of the second light L2, respectively. The LED 21c emits third light L3 having a wavelength λ 3 (for example, 810 nm) different from the wavelengths λ 1 and λ 2 . The light detection unit 22 includes a semiconductor light receiving element such as a Si PIN photodiode, for example, and a transimpedance amplifier (TIA) 22b and a programmable gain amplifier (PGA) 22c provided in the subsequent stage.

図4に示された構成では、光入射部21から各波長λ〜λの光L1〜L3を順に出力し、NDフィルタ24を透過後の光強度を光検出部22にて検出する。このとき、LED21a〜21cの順電流量を次第に増加させて各光L1〜L3の光強度を次第に高めつつ、検出光のA/Dカウント値(例えば12ビット)を取得するとよい。これにより、LED21a〜21cに与えられるパルス駆動順電流IFin(λ)、IFin(λ)、及びIFin(λ)の大きさに相当する値を12ビットA/Dカウント値に変換するための検量線が得られる。そして、この12ビットA/Dカウント値をNDフィルタ24の分光透過率で除することにより、光L1〜L3の光強度(LED21a〜21cの順電流量)の12ビットA/Dカウント相当値が得られ、これにより換算係数K(λ)、K(λ)及びK(λ)が得られたことになる。これらの換算係数は装置のみに依存するので、予め測定しておき、生体計測時には図1に示されたROM16(パラメータデータベース部)から読み出して演算に用いるとよい。 In the configuration shown in FIG. 4, light L <b> 1 to L <b> 3 having wavelengths λ 1 to λ 3 are sequentially output from the light incident unit 21, and the light intensity after passing through the ND filter 24 is detected by the light detection unit 22. At this time, the A / D count value (for example, 12 bits) of the detection light may be acquired while gradually increasing the forward current amount of the LEDs 21a to 21c to gradually increase the light intensity of each of the lights L1 to L3. As a result, the values corresponding to the magnitudes of the pulse drive forward currents I Fin1 ), I Fin2 ), and I Fin3 ) given to the LEDs 21a to 21c are converted into 12-bit A / D count values. A calibration curve for conversion is obtained. Then, by dividing the 12-bit A / D count value by the spectral transmittance of the ND filter 24, the 12-bit A / D count equivalent value of the light intensities of the lights L1 to L3 (the forward current amounts of the LEDs 21a to 21c) is obtained. Thus, conversion coefficients K (λ 1 ), K (λ 2 ), and K (λ 3 ) are obtained. Since these conversion factors depend only on the apparatus, they are preferably measured in advance and read from the ROM 16 (parameter database unit) shown in FIG.

図5は、係数K(λ)の算出方法の別の例として、光入射部21において光L1〜L3の強度をモニタする方法を概念的に示す図である。この方法では、光入射部21の内部におけるLED21a〜21cの近傍に、モニタ用ユニット(例えばモニタ用フォトダイオード)25a〜25cが配置される。これらのモニタ用ユニット25a〜25cは、LED21a〜21cが発光した光L1〜L3の光強度をそれぞれ検出し、光電流に変換する。これらの光電流は、光入射部21若しくは本体部10に設けられたTIA26a〜26c、PGA27a〜27c、及びADC28a〜28cによって12ビットA/Dカウント値にそれぞれ変換される。これにより、換算係数K(λ)、K(λ)及びK(λ)が得られる。 FIG. 5 is a diagram conceptually illustrating a method of monitoring the intensity of the light L1 to L3 in the light incident unit 21, as another example of the method for calculating the coefficient K (λ). In this method, monitoring units (for example, monitoring photodiodes) 25 a to 25 c are arranged in the vicinity of the LEDs 21 a to 21 c inside the light incident portion 21. These monitor units 25a to 25c detect the light intensities of the lights L1 to L3 emitted by the LEDs 21a to 21c, respectively, and convert them into photocurrents. These photocurrents are converted into 12-bit A / D count values by the TIAs 26a to 26c, the PGAs 27a to 27c, and the ADCs 28a to 28c provided in the light incident part 21 or the main body part 10, respectively. Thereby, conversion factors K (λ 1 ), K (λ 2 ), and K (λ 3 ) are obtained.

図6は、本実施形態による酸素飽和度算出方法を示すフローチャートである。この酸素飽和度算出方法では、まず、一つの光入射位置P1から生体A内に、互いに波長が異なる第1及び第2の光L1,L2を入射する(光入射ステップS11)。次に、生体Aの内部を伝搬した第1及び第2の光L1,L2の光強度を、一つの光検出位置P2において検出する(光検出ステップS12)。   FIG. 6 is a flowchart showing the oxygen saturation calculation method according to this embodiment. In this oxygen saturation calculation method, first, first and second lights L1 and L2 having different wavelengths are incident on the living body A from one light incident position P1 (light incident step S11). Next, the light intensity of the 1st and 2nd light L1, L2 which propagated the inside of the biological body A is detected in one light detection position P2 (light detection step S12).

続いて、光検出ステップS12での検出結果から求められる生体A内における第1及び第2の光L1,L2の減光度OD(λ,t)をModified Beer-Lambert則に適用して、生体A内の酸素飽和度SO(t)を算出する(演算ステップS13)。なお、演算ステップS13では、前述した数式(9)を用いて酸素飽和度SO(t)を算出することが好ましい。更に、演算ステップS13では、前述した補正式(11)を用いて、酸素飽和度を補正することがより好ましい。 Subsequently, the light intensity OD (λ, t) of the first and second lights L1 and L2 in the living body A obtained from the detection result in the light detection step S12 is applied to the Modified Beer-Lambert rule, and the living body A The oxygen saturation level SO 2 (t) is calculated (calculation step S13). In the calculation step S13, it is preferable to calculate the oxygen saturation SO 2 (t) using the above-described mathematical formula (9). Furthermore, in the calculation step S13, it is more preferable to correct the oxygen saturation using the correction equation (11) described above.

以上の構成を備える本実施形態の酸素飽和度測定装置1Aおよび酸素飽和度算出方法によって得られる効果について説明する。この酸素飽和度測定装置1Aおよび酸素飽和度算出方法では、光入射位置P1および光検出位置P2をそれぞれ一つのみ設けている。したがって、光検出位置を複数設ける空間分解分光法(SRS法)を採用する装置と比較して、光検出部22と生体Aの表面との接触状態が測定誤差に現れることを抑制でき、また、光検出位置P2における光検出部22の検出特性のバラツキの影響を回避できるので、より精度の高い測定を行うことができる。したがって、本実施形態の酸素飽和度測定装置1Aおよび酸素飽和度算出方法によれば、酸素飽和度を精度良く算出することができる。   The effects obtained by the oxygen saturation measuring apparatus 1A and the oxygen saturation calculating method of the present embodiment having the above-described configuration will be described. In the oxygen saturation measuring apparatus 1A and the oxygen saturation calculating method, only one light incident position P1 and one light detection position P2 are provided. Therefore, compared to an apparatus that employs spatially resolved spectroscopy (SRS method) that provides a plurality of light detection positions, the contact state between the light detection unit 22 and the surface of the living body A can be suppressed from appearing in the measurement error, Since it is possible to avoid the influence of variation in the detection characteristics of the light detection unit 22 at the light detection position P2, more accurate measurement can be performed. Therefore, according to the oxygen saturation measuring apparatus 1A and the oxygen saturation calculating method of the present embodiment, the oxygen saturation can be calculated with high accuracy.

また、本実施形態の酸素飽和度測定装置1Aによれば、光検出位置を複数設ける装置と比較して、光検出器の数を削減することができ、装置の簡素化および低コスト化に寄与することができる。更に、特許文献1に記載された装置と比較して、入射光強度を測定中に変化させる必要がないので、装置の簡素化および高い再現性を実現することができる。   Further, according to the oxygen saturation measuring apparatus 1A of the present embodiment, the number of photodetectors can be reduced compared to an apparatus having a plurality of light detection positions, contributing to simplification and cost reduction of the apparatus. can do. Furthermore, compared with the apparatus described in Patent Document 1, it is not necessary to change the incident light intensity during measurement, so that the apparatus can be simplified and highly reproducible.

また、本実施形態のように、補正式(11)を用いて酸素飽和度を補正することが好ましい。ここで、図7及び図8は、本実施形態の一実施例として、息堪え実験によって右前額部での酸素飽和度を測定した結果を示すグラフである。図7及び図8において、横軸は経過時間(単位:秒)を表しており、縦軸(右)は減光度(任意単位)を表しており、縦軸(左)は酸素飽和度(単位:%)を表している。また、図7及び図8では、以下のグラフG11〜G16が示されている。
グラフG11:波長735nmでの減光度
グラフG12:波長810nmでの減光度
グラフG13:波長850nmでの減光度
グラフG14:数式(11)によって算出された補正後の動静脈混合血酸素飽和度
グラフG15:市販のパルスオキシメータによって計測された経皮的動脈血酸素飽和度
グラフG16:別のTRS装置による左前額部の動静脈混合血酸素飽和度(MBL方式)
Further, as in the present embodiment, it is preferable to correct the oxygen saturation using the correction formula (11). Here, FIG.7 and FIG.8 is a graph which shows the result of having measured the oxygen saturation in the right forehead part by a breath-taking experiment as one Example of this embodiment. 7 and 8, the horizontal axis represents elapsed time (unit: seconds), the vertical axis (right) represents light attenuation (arbitrary unit), and the vertical axis (left) represents oxygen saturation (unit). :%). Moreover, in FIG.7 and FIG.8, the following graphs G11-G16 are shown.
Graph G11: Light attenuation graph at a wavelength of 735 nm G12: Light attenuation graph at a wavelength of 810 nm G13: Light attenuation graph at a wavelength of 850 nm G14: Corrected arteriovenous mixed blood oxygen saturation graph G15 calculated by Equation (11) : Percutaneous arterial oxygen saturation graph G16 measured with a commercially available pulse oximeter: Arteriovenous blood oxygen saturation in the left forehead using another TRS device (MBL method)

図16に示されるように、補正後の動静脈混合血酸素飽和度(グラフG14)では、75%から始まって息堪え開始後(時刻0秒)に一旦80%まで増加してから70%まで減少し、呼吸再開後(時刻75秒)には85%まで回復するといった、妥当と思われる変化が見られた。また、このような変化は、市販のパルスオキシメータによって計測された酸素飽和度(グラフG15)と波形が良く一致していることが示された。また、図17に示されるように、補正前の酸素飽和度(グラフG16)と比較して、補正後の酸素飽和度(グラフG14)の方が息堪え及び呼吸再開の様子が良く現れていることがわかった。なお、本実施例では、数式(11)の値aを10とし、値bを3.48とした。また、換算係数はK(735)=1.3×10、K(850)=8.0×10であった。 As shown in FIG. 16, in the corrected arteriovenous mixed blood oxygen saturation (graph G14), it starts from 75%, increases once to 80% after the start of breathing (time 0 second), and then increases to 70%. There was a change that seems to be appropriate, such as a decrease and recovery to 85% after resumption of breathing (time 75 seconds). Moreover, it was shown that such a change was in good agreement with the oxygen saturation (graph G15) measured by a commercially available pulse oximeter. Further, as shown in FIG. 17, the corrected oxygen saturation (graph G14) shows better breathing and resumption of breathing than the corrected oxygen saturation (graph G16). I understood it. In the present embodiment, the value a in Equation (11) is 10 and the value b is 3.48. The conversion factors were K (735) = 1.3 × 10 9 and K (850) = 8.0 × 10 8 .

本発明による酸素飽和度測定装置および酸素飽和度算出方法は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では数式(11)による補正式を用いており、この数式はy=ax−bの一次式となっているが、補正式は一次式以外の他の数式(例えば二次式など)であってもよい。   The oxygen saturation measuring device and the oxygen saturation calculating method according to the present invention are not limited to the above-described embodiments, and various other modifications are possible. For example, in the above-described embodiment, the correction formula according to Formula (11) is used, and this formula is a primary formula of y = ax−b. However, the correction formula is a formula other than the primary formula (for example, a secondary formula). Etc.).

1A…酸素飽和度測定装置、10…本体部、11…駆動部、12…サンプルホールド回路、13…変換回路、14…CPU、15…表示部、16…ROM、17…RAM、18…データバス、20…プローブ、21…光入射部、22…光検出部、23…ホルダー、24…NDフィルタ、28…ケーブル、A…生体、P1…光入射位置、P2…光検出位置。
DESCRIPTION OF SYMBOLS 1A ... Oxygen saturation measuring apparatus, 10 ... Main body part, 11 ... Drive part, 12 ... Sample hold circuit, 13 ... Conversion circuit, 14 ... CPU, 15 ... Display part, 16 ... ROM, 17 ... RAM, 18 ... Data bus , 20 ... probe, 21 ... light incident part, 22 ... light detection part, 23 ... holder, 24 ... ND filter, 28 ... cable, A ... biological body, P1 ... light incidence position, P2 ... light detection position.

Claims (6)

生体内における酸素飽和度を測定する装置であって、
一つの光入射位置から前記生体内に、互いに波長が異なる第1及び第2の光を入射する光入射部と、
前記生体の内部を伝搬した前記第1及び第2の光の光強度を一つの光検出位置において検出する光検出部と、
前記光検出部での検出結果から求められる前記生体内における前記第1及び第2の光の減光度をModified Beer-Lambert則に適用して前記生体内の酸素飽和度を算出する演算部と
を備え、
前記演算部は、前記生体内における前記第1及び第2の光の光路長が互いにほぼ等しく、且つ、前記第1の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和と、前記第2の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和との比が、前記第1の光の減光度と前記第2の光の減光度との比にほぼ等しいと仮定して、前記酸素飽和度を算出することを特徴とする、酸素飽和度測定装置。
An apparatus for measuring oxygen saturation in a living body,
A light incident part for entering the first and second light having different wavelengths into the living body from one light incident position;
A light detection unit for detecting the light intensity of the first and second light propagated in the living body at one light detection position;
A calculation unit that calculates the oxygen saturation in the living body by applying the attenuation of the first and second light in the living body obtained from the detection result in the light detecting unit to Modified Beer-Lambert rule. Prepared,
The arithmetic unit has optical path lengths of the first and second lights in the living body substantially equal to each other, and a sum of an absorption term and a scattering term by a light-absorbing substance other than hemoglobin related to the first light, Assume that the ratio of the absorption term and the sum of the scattering terms by the light-absorbing substance other than hemoglobin with respect to the second light is approximately equal to the ratio of the attenuation of the first light to the attenuation of the second light. And calculating the oxygen saturation.
前記演算部は、前記仮定に基づき算出された或る前記生体の酸素飽和度と、予め当該生体の酸素飽和度を測定した結果との比較に基づいて立式された以下の補正式

(但し、SOは前記仮定に基づき算出された酸素飽和度、SO2,corrは補正後の酸素飽和度、a,bは実数)を用いて、他の前記生体について算出された酸素飽和度を補正することを特徴とする、請求項1に記載の酸素飽和度測定装置。
The calculation unit is based on a comparison between the oxygen saturation of the living body calculated based on the assumption and the result of measuring the oxygen saturation of the living body in advance.

(Where SO 2 is the oxygen saturation calculated based on the above assumption, SO 2 and corr are the corrected oxygen saturation, and a and b are real numbers), and the oxygen saturation calculated for the other living body. The oxygen saturation measuring apparatus according to claim 1, wherein:
前記演算部は、以下の演算式

(但し、SOは前記仮定に基づき算出された酸素飽和度、λは前記第1の光の波長、λは前記第2の光の波長、εHbO2(λ)は波長λの光に対するオキシヘモグロビンのモル吸光係数、εHb(λ)は波長λの光に対するデオキシヘモグロビンのモル吸光係数、OD(λ,t)は時刻tにおける波長λの光に対する減光度)を用いて酸素飽和度を算出することを特徴とする、請求項1または2に記載の酸素飽和度測定装置。
The calculation unit has the following calculation formula:

(Where SO 2 is the oxygen saturation calculated based on the above assumption, λ 1 is the wavelength of the first light, λ 2 is the wavelength of the second light, and ε HbO2 (λ) is the light of wavelength λ. Oxyhemoglobin molar extinction coefficient, ε Hb (λ) is the deoxyhemoglobin molar extinction coefficient for light of wavelength λ, and OD (λ, t) is the degree of attenuation for light of wavelength λ at time t). The oxygen saturation measuring apparatus according to claim 1, wherein the oxygen saturation measuring apparatus calculates the oxygen saturation.
生体内における酸素飽和度を測定する装置の内部において酸素飽和度を算出する方法であって、
一つの光入射位置から前記生体内に互いに波長が異なる第1及び第2の光を入射し、前記生体の内部を伝搬した前記第1及び第2の光の光強度を一つの光検出位置において検出して求められる前記生体内における前記第1及び第2の光の減光度をModified Beer-Lambert則に適用して前記生体内の酸素飽和度を算出する演算ステップを備え、
前記演算ステップにおいて、前記生体内における前記第1及び第2の光の光路長が互いにほぼ等しく、且つ、前記第1の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和と、前記第2の光に関するヘモグロビン以外の吸光物質による吸収項と散乱項との和との比が、前記第1の光の減光度と前記第2の光の減光度との比にほぼ等しいと仮定して、前記酸素飽和度を算出することを特徴とする、酸素飽和度算出方法。
A method of calculating oxygen saturation inside an apparatus for measuring oxygen saturation in a living body,
The first and second lights having different wavelengths are incident on the living body from one light incident position, and the light intensities of the first and second lights propagated in the living body are measured at one light detection position. A calculation step of calculating oxygen saturation in the living body by applying the attenuation of the first and second light in the living body obtained by detection to the Modified Beer-Lambert rule,
In the calculating step, the optical path lengths of the first and second light in the living body are substantially equal to each other, and the sum of the absorption term and the scattering term by the light-absorbing substance other than hemoglobin related to the first light, Assume that the ratio of the absorption term and the sum of the scattering terms by the light-absorbing substance other than hemoglobin with respect to the second light is approximately equal to the ratio of the attenuation of the first light to the attenuation of the second light. And calculating the oxygen saturation.
前記演算ステップにおいて、前記仮定に基づき算出された或る前記生体の酸素飽和度と、予め当該生体の酸素飽和度を測定した結果との比較に基づいて立式された以下の補正式

(但し、SOは前記仮定に基づき算出された酸素飽和度、SO2,corrは補正後の酸素飽和度、a,bは実数)を用いて、他の前記生体について算出された酸素飽和度を補正することを特徴とする、請求項1に記載の酸素飽和度算出方法。
In the calculation step, the following correction equation was formulated based on a comparison between the oxygen saturation of the living body calculated based on the assumption and the result of measuring the oxygen saturation of the living body in advance.

(Where SO 2 is the oxygen saturation calculated based on the above assumption, SO 2 and corr are the corrected oxygen saturation, and a and b are real numbers), and the oxygen saturation calculated for the other living body. The oxygen saturation calculation method according to claim 1, wherein:
前記演算ステップにおいて、以下の演算式

(但し、SOは前記仮定に基づき算出された酸素飽和度、λは前記第1の光の波長、λは前記第2の光の波長、εHbO2(λ)は波長λの光に対するオキシヘモグロビンのモル吸光係数、εHb(λ)は波長λの光に対するデオキシヘモグロビンのモル吸光係数、OD(λ,t)は時刻tにおける波長λの光に対する減光度)を用いて酸素飽和度を算出することを特徴とする、請求項1または2に記載の酸素飽和度算出方法。
In the calculation step, the following calculation formula

(Where SO 2 is the oxygen saturation calculated based on the above assumption, λ 1 is the wavelength of the first light, λ 2 is the wavelength of the second light, and ε HbO2 (λ) is the light of wavelength λ. Oxyhemoglobin molar extinction coefficient, ε Hb (λ) is the deoxyhemoglobin molar extinction coefficient for light of wavelength λ, and OD (λ, t) is the degree of attenuation for light of wavelength λ at time t). The oxygen saturation calculation method according to claim 1 or 2, wherein calculation is performed.
JP2012275744A 2012-12-18 2012-12-18 Oxygen saturation measuring apparatus and oxygen saturation calculating method Active JP6125821B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012275744A JP6125821B2 (en) 2012-12-18 2012-12-18 Oxygen saturation measuring apparatus and oxygen saturation calculating method
PCT/JP2013/083363 WO2014097965A1 (en) 2012-12-18 2013-12-12 Oxygen saturation-measuring device and oxygen saturation-calculating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275744A JP6125821B2 (en) 2012-12-18 2012-12-18 Oxygen saturation measuring apparatus and oxygen saturation calculating method

Publications (2)

Publication Number Publication Date
JP2014117503A true JP2014117503A (en) 2014-06-30
JP6125821B2 JP6125821B2 (en) 2017-05-10

Family

ID=50978300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275744A Active JP6125821B2 (en) 2012-12-18 2012-12-18 Oxygen saturation measuring apparatus and oxygen saturation calculating method

Country Status (2)

Country Link
JP (1) JP6125821B2 (en)
WO (1) WO2014097965A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3756545A1 (en) 2019-06-26 2020-12-30 Phoenix Electric Co., Ltd. Method of measuring blood oxygen saturation
WO2021199655A1 (en) * 2020-03-31 2021-10-07 浜松ホトニクス株式会社 Dialysis system and dialysis system operation method
KR20220027444A (en) * 2020-08-27 2022-03-08 국민대학교산학협력단 Noninvasive hba1c measurement system and method thereof
KR102500415B1 (en) * 2022-01-05 2023-02-17 (주)한국아이티에스 Non-invasive hba1c and blood glucose measurement method and device using two wavelengths
US11583227B2 (en) 2018-11-11 2023-02-21 Biobeat Technologies Ltd. Wearable apparatus and method for monitoring medical properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104856692A (en) * 2015-03-31 2015-08-26 电子科技大学 Optical non-invasive detection method of mixed venous oxygen saturation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280513A (en) * 2005-03-31 2006-10-19 National Institute Of Information & Communication Technology Method and system of monitoring driver of vehicle
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument
WO2012066930A1 (en) * 2010-11-16 2012-05-24 株式会社 日立メディコ Biological light measuring device and operation method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280513A (en) * 2005-03-31 2006-10-19 National Institute Of Information & Communication Technology Method and system of monitoring driver of vehicle
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument
WO2012066930A1 (en) * 2010-11-16 2012-05-24 株式会社 日立メディコ Biological light measuring device and operation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583227B2 (en) 2018-11-11 2023-02-21 Biobeat Technologies Ltd. Wearable apparatus and method for monitoring medical properties
EP3756545A1 (en) 2019-06-26 2020-12-30 Phoenix Electric Co., Ltd. Method of measuring blood oxygen saturation
WO2021199655A1 (en) * 2020-03-31 2021-10-07 浜松ホトニクス株式会社 Dialysis system and dialysis system operation method
KR20220027444A (en) * 2020-08-27 2022-03-08 국민대학교산학협력단 Noninvasive hba1c measurement system and method thereof
KR102482459B1 (en) * 2020-08-27 2022-12-29 (주)한국아이티에스 Noninvasive hba1c measurement system and method thereof
KR102500415B1 (en) * 2022-01-05 2023-02-17 (주)한국아이티에스 Non-invasive hba1c and blood glucose measurement method and device using two wavelengths

Also Published As

Publication number Publication date
WO2014097965A1 (en) 2014-06-26
JP6125821B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
JP5175179B2 (en) Improved blood oxygenation monitoring method by spectrophotometry
Fantini et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry
US20050101850A1 (en) Optical device
US20180020959A1 (en) Concentration-measurement device and concentration-measurement method
KR102033914B1 (en) method for measuring blood glucose and wearable type apparatus for the same
US20110276276A1 (en) Apparatus and method for determining analyte concentrations
US20170258381A1 (en) Concentration measurement device and concentration measurement method
US9506854B2 (en) Method and device for measuring scattering-absorption body
US10638975B2 (en) Biological light measurement device
KR102166444B1 (en) Non invasive glucose meter using nir spectroscopy and method of measuring glucose meter using the same
US20100076319A1 (en) Pathlength-Corrected Medical Spectroscopy
US10422745B2 (en) Scattering absorber measurement device and scattering absorber measurement method
JP6043276B2 (en) Scattering absorber measuring apparatus and scattering absorber measuring method
ITBS20070161A1 (en) METHOD AND INSTRUMENT FOR THE NON-INVASIVE MEASUREMENT OF OXYGENATION / SATURATION OF A BIOLOGICAL FABRIC
JP2007111461A (en) Bio-optical measurement apparatus
US20200375476A1 (en) System and method for an optical blood flow measurement
JP6741485B2 (en) Pulse photometer and reliability evaluation method for calculated values of blood light-absorbing substance concentration
US10561375B2 (en) Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
JP3635331B2 (en) Substance measuring device
CN109157224B (en) Pulse blood oxygen monitoring system and method with additional reference light source calibration
CN109890287B (en) Method for non-invasive determination of hemoglobin concentration and oxygen concentration in blood
JP6412956B2 (en) Biological light measurement device, analysis device, and method
US20120136257A1 (en) SNR Through Ambient Light Cancellation
EP3936035A1 (en) Biological information measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250