JP2014116213A - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
JP2014116213A
JP2014116213A JP2012269868A JP2012269868A JP2014116213A JP 2014116213 A JP2014116213 A JP 2014116213A JP 2012269868 A JP2012269868 A JP 2012269868A JP 2012269868 A JP2012269868 A JP 2012269868A JP 2014116213 A JP2014116213 A JP 2014116213A
Authority
JP
Japan
Prior art keywords
oxygen
electrochemical device
positive electrode
electrolytic solution
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269868A
Other languages
Japanese (ja)
Other versions
JP6056076B2 (en
Inventor
Hiroyuki Nishide
宏之 西出
Satoshi Nakajima
聡 中島
Sho Tsukushi
翔 筑紫
Akira Omoda
亮 面田
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Samsung R&D Institute Japan Co Ltd
Original Assignee
Waseda University
Samsung R&D Institute Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Samsung R&D Institute Japan Co Ltd filed Critical Waseda University
Priority to JP2012269868A priority Critical patent/JP6056076B2/en
Priority to KR1020130098135A priority patent/KR102149333B1/en
Priority to US14/097,676 priority patent/US9343786B2/en
Publication of JP2014116213A publication Critical patent/JP2014116213A/en
Application granted granted Critical
Publication of JP6056076B2 publication Critical patent/JP6056076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical device in which oxygen can be supplied efficiently into the electrolyte.SOLUTION: An electrochemical device includes a positive electrode in which at least oxygen is a positive electrode active material, a negative electrode in which a metal is a negative electrode active material, and an electrolyte containing an oxygen adsorption-desorption material having an oxygen binding rate of 60-95% under pure oxygen. The oxygen adsorption-desorption material is a tetra phenyl porphyrin derivative in which a pivaloyl group is bonded in the direction of sixth seat, so that a high electron donative axial ligand can be coordinated to the fifth seat, and an oxygen molecule can be coordinated to the sixth seat with high binding power.

Description

本発明は、酸素を正極活物質とする正極と、金属を負極活物質とする負極と、電解液とを備える電気化学デバイスに関する。   The present invention relates to an electrochemical device including a positive electrode using oxygen as a positive electrode active material, a negative electrode using metal as a negative electrode active material, and an electrolytic solution.

酸素を正極活物質とし、金属を負極活物質とする電気化学デバイスは、次世代の電気化学デバイスとして自動車用途等、近年需要が高まっている。酸素を正極活物質とし、金属を負極活物質とする電気化学デバイスの従来の構造を、リチウム空気電池を例にとり説明する。図3は、従来のリチウム空気電池の構造を示す概略図である。   Electrochemical devices using oxygen as a positive electrode active material and metal as a negative electrode active material have been in increasing demand in recent years, such as automotive applications, as next-generation electrochemical devices. A conventional structure of an electrochemical device using oxygen as a positive electrode active material and metal as a negative electrode active material will be described using a lithium-air battery as an example. FIG. 3 is a schematic view showing the structure of a conventional lithium-air battery.

図3に示すリチウム空気電池200において、210は、拡散電極211に触媒層212を担持させた正極層である。220はリチウムからなる負極層である。正極層210と負極層220との間には電解液230が配置される。   In the lithium-air battery 200 shown in FIG. 3, reference numeral 210 denotes a positive electrode layer in which a catalyst layer 212 is supported on a diffusion electrode 211. Reference numeral 220 denotes a negative electrode layer made of lithium. An electrolyte solution 230 is disposed between the positive electrode layer 210 and the negative electrode layer 220.

上記のリチウム空気電池200においては、放電時、負極層220においては、リチウムが酸化しリチウムイオンと電子とが生成される。一方、正極層210では電解液230中を介して運ばれたリチウムイオンと、不図示の外部回路を通ってきた電子と、酸素によりリチウム酸化物や過酸化リチウムが生成される。この外部回路より電気エネルギーが取り出される。   In the above lithium-air battery 200, during the discharge, lithium is oxidized in the negative electrode layer 220 to generate lithium ions and electrons. On the other hand, in the positive electrode layer 210, lithium oxide or lithium peroxide is generated by lithium ions carried through the electrolytic solution 230, electrons passing through an external circuit (not shown), and oxygen. Electrical energy is extracted from this external circuit.

充電時には、正極層210側で生成されたリチウム酸化物や過酸化リチウムが還元されて、負極層220では、正極側から電解液230を介して運ばれたリチウムイオンが外部回路を通ってきた電子によりリチウムとなって析出する。一方、正極層210側では酸素が発生し電池外部へ放出される。   At the time of charging, lithium oxide and lithium peroxide generated on the positive electrode layer 210 side are reduced, and in the negative electrode layer 220, lithium ions carried from the positive electrode side through the electrolyte 230 pass through an external circuit. Precipitates as lithium. On the other hand, oxygen is generated on the positive electrode layer 210 side and released to the outside of the battery.

上記の電気化学デバイスにおいては、電解液への酸素供給量が多いほど、電極での酸化反応はスムーズに進行する。その結果、電池性能が向上する。かかる観点から、電解液に酸素吸脱着物質を含有させる電解液を備える電気化学デバイスが提案されている。   In the electrochemical device described above, the greater the amount of oxygen supplied to the electrolytic solution, the smoother the oxidation reaction at the electrode. As a result, battery performance is improved. From this point of view, an electrochemical device including an electrolytic solution that contains an oxygen adsorption / desorption substance in the electrolytic solution has been proposed.

特表2010−528412号公報Special table 2010-528412

しかし、酸素吸脱着物質を含有させた電解液を用いる場合、従来は酸素吸脱着物質と電解液中の他の成分とが反応し、酸素吸脱着物質内部に酸素錯体が形成されない場合がある。その場合、電解質への酸素供給が不十分になる。本発明の目的は、酸素錯体が形成されやすく、酸素吸脱着能に優れた酸素吸脱着物質を電解液に含有させ、電解質への酸素供給量を向上させ得る電解液を備える電気化学デバイスを提供することにある。   However, when an electrolytic solution containing an oxygen adsorbing / desorbing substance is used, conventionally, the oxygen adsorbing / desorbing substance may react with other components in the electrolytic solution, and an oxygen complex may not be formed inside the oxygen adsorbing / desorbing substance. In that case, oxygen supply to the electrolyte becomes insufficient. An object of the present invention is to provide an electrochemical device provided with an electrolyte solution that can easily form an oxygen complex and contains an oxygen adsorption / desorption material excellent in oxygen adsorption / desorption capability in the electrolyte solution, thereby improving the amount of oxygen supplied to the electrolyte. There is to do.

本発明は、酸素を正極活物質とする正極と、金属を負極活物質とする負極と、純酸素下における酸素結合率が60〜95%である酸素吸脱着物質を含有する電解液とを備える電気化学デバイスである。本発明の酸素吸脱着物質は、第5座に高電子供与性の軸配位子が配位され、第6座の方向にピバロイル基を有し、第6座に酸素分子が高い結合力で配位結合されうるテトラフェニルポルフィリン誘導体である。前記テトラフェニルポルフィリン誘導体に配位される軸配位子は、含窒素有機配位子であることが好ましい。電解液に含有される支持塩はLiTFSI及び/又はLiBETIであることが好ましい。   The present invention includes a positive electrode using oxygen as a positive electrode active material, a negative electrode using metal as a negative electrode active material, and an electrolytic solution containing an oxygen adsorbing / desorbing material having an oxygen bonding rate of 60 to 95% under pure oxygen. It is an electrochemical device. The oxygen adsorbing / desorbing material of the present invention has a high electron donating axial ligand coordinated at the fifth locus, has a pivaloyl group in the direction of the sixth locus, and oxygen molecules have a high binding force at the sixth locus. It is a tetraphenylporphyrin derivative that can be coordinated. The axial ligand coordinated to the tetraphenylporphyrin derivative is preferably a nitrogen-containing organic ligand. The supporting salt contained in the electrolytic solution is preferably LiTFSI and / or LiBETI.

本発明は、電解液内に酸素を効率的に供給することができる。   The present invention can efficiently supply oxygen into the electrolytic solution.

第6座の方向にピバロイル基を結合させたテトラフェニルポルフィリン−金属錯体の一例である。It is an example of a tetraphenylporphyrin-metal complex in which a pivaloyl group is bonded in the direction of the sixth locus. 本発明の電気化学デバイスの一例を表す概略図である。It is the schematic showing an example of the electrochemical device of this invention. 従来の電気化学デバイスの一例を表す概略図である。It is the schematic showing an example of the conventional electrochemical device.

本発明の電気化学デバイスに用いられる電解液は、純酸素下における酸素結合率が60〜95%である酸素吸脱着物質を含有する。   The electrolytic solution used in the electrochemical device of the present invention contains an oxygen adsorption / desorption material having an oxygen bonding rate of 60 to 95% under pure oxygen.

本発明に用いられる酸素吸脱着物質は、第5座に高電子供与性の軸配位子が配位され、第6座の方向にピバロイル基が結合された構造をもつテトラフェニルポルフィリン−金属錯体誘導体でありうる。上記の構造を有するテトラフェニルポルフィリン−金属錯体誘導体は、以下に説明する理由により、第6座に酸素分子が高い結合力で配位結合されうる。   The oxygen adsorbing / desorbing material used in the present invention is a tetraphenylporphyrin-metal complex having a structure in which a high electron donating axial ligand is coordinated to the fifth locus and a pivaloyl group is bound in the direction of the sixth locus. It can be a derivative. In the tetraphenylporphyrin-metal complex derivative having the above structure, an oxygen molecule can be coordinated to the sixth locus with a high binding force for the reason described below.

該テトラフェニルポルフィリン−金属錯体誘導体においては、第6座の方向に結合されたピバロイル基の立体的効果により、酸素分子がピバロイル基の内部に取り囲まれる。すなわち上記の構造を有することにより、本発明に用いられるテトラフェニルポルフィリン誘導体は、第6座に酸素分子を結合させ、酸素錯体を形成させやすくなる。   In the tetraphenylporphyrin-metal complex derivative, oxygen molecules are surrounded by the interior of the pivaloyl group due to the steric effect of the pivaloyl group bonded in the direction of the sixth locus. That is, by having the above structure, the tetraphenylporphyrin derivative used in the present invention easily binds an oxygen molecule to the sixth locus to form an oxygen complex.

本発明は、テトラフェニルポルフィリン−金属錯体の所定の位置にピバロイル基を結合させた上記の構造を含む酸素吸脱着物質を電解液に溶解させることにより、電解液中の酸素吸脱着能が向上する。その結果、高電流の放電の際、電解液中の酸素不足を酸素吸脱着物質からの酸素放出により電解液中に酸素を補って供給することが可能となる。   The present invention improves the ability to adsorb and desorb oxygen in an electrolytic solution by dissolving the oxygen adsorbing and desorbing material containing the above structure in which a pivaloyl group is bonded to a predetermined position of a tetraphenylporphyrin-metal complex in the electrolytic solution. . As a result, at the time of high-current discharge, oxygen deficiency in the electrolytic solution can be supplied by supplementing oxygen into the electrolytic solution by releasing oxygen from the oxygen adsorption / desorption material.

上記テトラフェニルポルフィリン−金属錯体としては、テトラピバロイルフェニルポルフィリン−コバルト錯体(CoTpivPP)、ジイソフタルイミドテトラフェニルポルフィリン−コバルト錯体(CoTohthPP)を挙げることができる。図1は、第6座の方向にピバロイル基を結合させたテトラフェニルポルフィリン−金属錯体の一例である。   Examples of the tetraphenylporphyrin-metal complex include tetrapivaloylphenylporphyrin-cobalt complex (CoTpivPP) and diisophthalimidotetraphenylporphyrin-cobalt complex (CoTohthPP). FIG. 1 is an example of a tetraphenylporphyrin-metal complex in which a pivaloyl group is bonded in the direction of the sixth position.

本発明に用いるテトラフェニルポルフィリン誘導体は、上記のピバロイル基を結合させる構造に加え、第5座に高電子供与性の軸配位子が配位される。これにより、テトラピバロイルフェニルポルフィリン誘導体の第6座への酸素分子の配位が促進される。   In the tetraphenylporphyrin derivative used in the present invention, a high electron donating axial ligand is coordinated to the fifth position in addition to the structure for binding the pivaloyl group. Thereby, coordination of the oxygen molecule to the 6th locus of the tetrapivaloylphenylporphyrin derivative is promoted.

高電子供与性の軸配位子としては、アミノ基、フォスフィノ基、カルボキシル基、チオール基等を有する含窒素有機配位子や、メチルアミン、トリメチルアミン、エーテルアミン、ピリジン、ヘキサメチレンジアミン、モルホリン、アニリン等のアミン類、エチレンイミン、シッフ塩基等のイミン類、メチルイミダゾール、ベンジルイミダゾール、トリメチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、アセチルアセトナート、エーテル類等を挙げることができる。特に、メチルイミダゾール、ベンジルイミダゾール、トリメチルイミダゾール等のイミダゾール類は、ポルフィリン誘導体の酸素親和性が高まる為好ましい。   As a high electron donating axial ligand, nitrogen-containing organic ligands having amino group, phosphino group, carboxyl group, thiol group, methylamine, trimethylamine, etheramine, pyridine, hexamethylenediamine, morpholine, Examples include amines such as aniline, imines such as ethyleneimine and Schiff base, imidazoles such as methylimidazole, benzylimidazole, and trimethylimidazole, triphenylphosphine, acetylacetonate, and ethers. In particular, imidazoles such as methylimidazole, benzylimidazole, and trimethylimidazole are preferable because the oxygen affinity of the porphyrin derivative is increased.

本発明に用いる酸素吸脱着物質は、テトラフェニルポルフィリン−金属錯体1molに対し軸配位子1molを吸着させうる。したがって、たとえば分子量1068のCoTpivPPに、分子量158のベンジルイミダゾールを反応させる場合、100質量部のCoTpivPPに対し、ベンジルイミダゾールを最大15質量部吸着させることができる。   The oxygen adsorption / desorption material used in the present invention can adsorb 1 mol of the axial ligand to 1 mol of the tetraphenylporphyrin-metal complex. Therefore, for example, when benzylimidazole having a molecular weight of 158 is reacted with CoTpivPP having a molecular weight of 1068, a maximum of 15 parts by mass of benzylimidazole can be adsorbed to 100 parts by mass of CoTpivPP.

本発明に用いる酸素吸脱着物質は、純酸素下、酸素結合率が60〜95%であることが好ましく、65〜95%であることがより好ましい。   The oxygen adsorption / desorption material used in the present invention preferably has an oxygen bonding rate of 60 to 95%, more preferably 65 to 95% under pure oxygen.

上記酸素結合率は、UV−visスペクトル測定により得られる該酸素吸脱着物質の吸光度を下記式(1)で表されるDrago式により解析することで得られる。
The oxygen bonding rate can be obtained by analyzing the absorbance of the oxygen adsorbing / desorbing material obtained by UV-vis spectrum measurement using the Drago equation represented by the following equation (1).

第5座に1−メチルイミダゾールを配位させた本発明のテトラフェニルポルフィリンコバルト誘導体(CoTpivPP-MeIm)を例として、酸素結合率について説明する。   The oxygen bond rate will be described using the tetraphenylporphyrin cobalt derivative (CoTpivPP-MeIm) of the present invention in which 1-methylimidazole is coordinated to the fifth position as an example.

本発明の酸素結合率の算出においては、まず、温度条件25℃、純窒素および任意の分圧酸素を供給し、CoTpivPP-MeImのUV−visスペクトル測定を行う。酸素供給により新たに生起した551nmの吸収ピークにおける純窒素下での吸光度をA、任意の分圧酸素下での吸光度をAとし、AとAとの差である(A−A)をΔAとする。上記式(1)において[Co]bΔεは定数であるからpO2vs.(pO2/ΔA)を作図すると比例関係を示し、p50 = K-1より酸素親和性パラメータ―p50を得る。 In the calculation of the oxygen bonding rate of the present invention, first, a temperature condition of 25 ° C., pure nitrogen and arbitrary partial pressure oxygen are supplied, and UV-vis spectrum measurement of CoTpivPP-MeIm is performed. The absorbance under a pure nitrogen in the absorption peak of 551nm newly occurs by an oxygen supply A 1, the absorbance at any minute Acid Motoka and A 2, which is the difference between A 1 and A 2 (A 2 - Let A 1 ) be ΔA. Since [Co] bΔε is a constant in the above formula (1), plotting p O2 vs. (p O2 / ΔA) shows a proportional relationship, and an oxygen affinity parameter −p 50 is obtained from p 50 = K −1 .

酸素親和性パラメータp50の値が低いほど、酸素親和性が高いことを意味する。イミダゾール類を軸配位子として配位させたテトラフェニルポルフィリン誘導体の酸素親和性パラメータp50の値の例としては、軸配位子の種類がベンジルイミダゾールの場合は20cmHg、トリチルイミダゾールの場合は23cmHg、1−メチルイミダゾールの場合は31cmHg、イミダゾールの場合は43cmHgである。 As the value of the oxygen affinity parameter p 50 is low, the higher the oxygen affinity. Examples of values of oxygen affinity parameter p 50 of tetraphenylporphyrin derivative is coordinated imidazoles as an axial ligand, 20 cm Hg is when the type of axial ligand is a benzyl imidazole, in the case of trityl imidazole 23cmHg In the case of 1-methylimidazole, it is 31 cmHg, and in the case of imidazole, it is 43 cmHg.

ΔAは酸素結合率に比例して増加することから、p50におけるΔAより、各酸素分圧におけるポルフィリン誘導体との酸素結合率が算出できる。 Since ΔA increases in proportion to the oxygen binding rate, the oxygen binding rate with the porphyrin derivative at each oxygen partial pressure can be calculated from ΔA at p 50 .

温度条件25℃、純酸素下の本発明に用いる酸素吸脱着物質の酸素結合率の例として、軸配位子としてベンジルイミダゾールを配位させた酸素吸脱着物質の酸素結合率は91%、トリチルイミダゾールの場合は79%、1−メチルイミダゾールの場合は67%、イミダゾールの場合は64%である。   As an example of the oxygen bonding rate of the oxygen adsorption / desorption material used in the present invention under a temperature condition of 25 ° C. and pure oxygen, the oxygen bonding rate of the oxygen adsorption / desorption material coordinated with benzylimidazole as the axial ligand is 91%, trityl 79% for imidazole, 67% for 1-methylimidazole and 64% for imidazole.

上記の酸素吸脱着物質は、本発明の電気化学デバイスの電気特性を損なわない限り、飽和溶解量に達するまで、電解液中に含有させることができる。   The oxygen adsorbing / desorbing substance can be contained in the electrolytic solution until the saturation dissolution amount is reached as long as the electrical characteristics of the electrochemical device of the present invention are not impaired.

本発明に用いる酸素吸脱着物質の製造例として、CoTpivPPの第5座にベンゾイミダゾールを配位させた製造例を記載する。ただし、本発明は以下に説明する内容に限定されるものではない。   As a production example of the oxygen adsorption / desorption material used in the present invention, a production example in which benzimidazole is coordinated to the fifth position of CoTpivPP will be described. However, the present invention is not limited to the contents described below.

本製造例においては、CoTpivPPをγ−ブチロラクトン中に溶解させ、該溶液にベンゾイミダゾールを添加することにより本発明に用いる酸素吸脱着物質を得ることができる。上記のCoTpivPP中にベンゾイミダゾールを所定量添加することにより、ベンゾイミダゾールが自然にCoTpivPPの第5座に吸着し、本発明の酸素吸脱着物質を得ることができる。   In this production example, CoTpivPP is dissolved in γ-butyrolactone, and benzimidazole is added to the solution to obtain the oxygen adsorption / desorption material used in the present invention. By adding a predetermined amount of benzimidazole to the above CoTpivPP, the benzimidazole is naturally adsorbed on the fifth locus of CoTpivPP, and the oxygen adsorption / desorption material of the present invention can be obtained.

[CoTpivPPの合成]
CoTpivPPの合成は、公知の方法により行うことができる。一例としては、H2TamPPの合成、H2TpivPPの合成、CoTpivPPの合成の三段階により行う。
[Synthesis of CoTpivPP]
CoTpivPP can be synthesized by a known method. As an example, the synthesis is performed in three steps: synthesis of H 2 TamPP, synthesis of H 2 TpivPP, and synthesis of CoTpivPP.

(1.H2TamPPの合成)
500 mLナスフラスコに2−ニトロベンズアルデヒド20.0 g (132.4mmol)、ピロール9.2 ml (132.4 mmol)を酢酸400 mLに溶解、120℃で30分沸点還流した。反応後、室温まで冷却しクロロホルムを50 mL加えた後に濾過、クロロホルムで洗浄した。乾燥後、ニトロ体として3.53 g (収率13%)を得た。ニトロ体5.0 g (6.3 mmol)を塩酸250 mLに溶解させた後、塩化スズ二水和物19.2 g (84.9 mmol)を加えて70℃で30分間撹拌、還元した。反応終了後充分に冷却しながらアンモニア水で中和、クロロホルムで抽出した。溶媒除去後、エタノール/ヘキサン混合溶液で再結晶後、濾過、メタノール洗浄、乾燥を経て4種のアトロプ異性体(α, α, α, α−、α, α, β,β−、α, β, α,β−、α, α, α,β−)からなるアミノ体H2TamPPを3.36 g (収率79%)得た。
(1. Synthesis of H 2 TamPP)
2-Nitrobenzaldehyde 20.0 g (132.4 mmol) and pyrrole 9.2 ml (132.4 mmol) were dissolved in 400 mL of acetic acid in a 500 mL eggplant flask and refluxed at 120 ° C. for 30 minutes. After the reaction, the mixture was cooled to room temperature, added with 50 mL of chloroform, filtered and washed with chloroform. After drying, 3.53 g (yield 13%) was obtained as a nitro compound. After dissolving 5.0 g (6.3 mmol) of the nitro compound in 250 mL of hydrochloric acid, 19.2 g (84.9 mmol) of tin chloride dihydrate was added, and the mixture was stirred and reduced at 70 ° C. for 30 minutes. After completion of the reaction, the mixture was neutralized with aqueous ammonia while being sufficiently cooled, and extracted with chloroform. After removing the solvent, it is recrystallized with a mixed solution of ethanol / hexane, filtered, washed with methanol, and dried, then the four atropisomers (α, α, α, α-, α, α, β, β-, α, β , α, β-, α, α, α, β-) 3.36 g (yield 79%) of the amino form H 2 TamPP.

(2.H2TpivPPの合成)
アトロプ異性体は光・熱的に平衡状態にあり、α,α,α,α−体はシリカゲルに対して特に強い吸着性を示す(クロロホルム/ジエチルエーテル(v/v=4/1), Rf値: α,α,α,α−、0.04;、α,α,β,β−、0.43;、α,β,α,β−、0.64;、α,α,α,β−、0.77)。以下、ピバロイル基形成までの実験操作は全て遮光条件下で行った。
( 2. Synthesis of H 2 TpivPP)
Atropisomers are in a photo-thermal equilibrium state, and α, α, α, α-isomers have particularly strong adsorptivity to silica gel (chloroform / diethyl ether (v / v = 4/1), Rf Values: α, α, α, α-, 0.04 ;, α, α, β, β-, 0.43 ;, α, β, α, β-, 0.64 ;, α, α, α, β-, 0.77). Hereinafter, all experimental operations up to the formation of the pivaloyl group were performed under light-shielding conditions.

アミノ体3.0g (4.45mmol)をベンゼン150mLに溶解させ、シリカゲル72gと共に80℃にて24時間沸点還流した。ポルフィリンの吸着したシリカゲルを濾過、クロロホルムで洗浄することでα,β,α,β−、α,α,β,β−体を溶出、続いてクロロホルム/ジエチルエーテル(v/v=4/1)を溶媒としたカラムクロマトグラフィーによりα,α,α,β−体0.46g(収率15%)を、溶媒をクロロホルム/アセトン(v/v=1/1)に変更しα,α,α,α−体2.34g (収率78%)をそれぞれ分画した。α,α,α,α−体2.34g(3.47mmol)とピリジン10.8mL(40等量、138.8mmol)をクロロホルム100mLに溶解させ、氷浴しながらピバル酸クロリド17.1mL(40等量、138.8mmol)を滴下し、0℃で1時間、室温で12時間反応させた。塩基性希薄アンモニア水溶液洗浄によりピリジン、ピリジン塩酸塩を除去、中性を示すまで純水で洗浄後クロロホルム抽出を経てフリーベース体H2TpivPP2.75g(収率78%)得た。 The amino compound (3.0 g, 4.45 mmol) was dissolved in benzene (150 mL) and refluxed at 80 ° C. for 24 hours with 72 g of silica gel. The silica gel adsorbed with porphyrin is filtered and washed with chloroform to elute α, β, α, β-, α, α, β, β-form, followed by chloroform / diethyl ether (v / v = 4/1) Α, α, α, β-form 0.46 g (yield 15%) was changed to chloroform / acetone (v / v = 1/1) and α, α, α, The α-isomer (2.34 g, yield 78%) was fractionated. α, α, α, α-isomer 2.34 g (3.47 mmol) and pyridine 10.8 mL (40 equivalents, 138.8 mmol) were dissolved in chloroform 100 mL, and pivalic acid chloride 17.1 mL (40 equivalents, 138.8 mmol) in an ice bath ) Was added dropwise and reacted at 0 ° C. for 1 hour and at room temperature for 12 hours. Pyridine and pyridine hydrochloride were removed by washing with basic dilute aqueous ammonia solution, washed with pure water until neutral, and then extracted with chloroform to obtain 2.75 g of free base H 2 TpivPP (yield 78%).

(3.CoTpivPPの合成)
水、酸素によるコバルト(II)の不可逆酸化を防ぐために、予め30分間以上窒素置換し、窒素雰囲気下でH2TpivPP0.50g(0.5mmol)とトリエチルアミン3.0mLをクロロホルム60mLに溶解させ、メタノール30mLに溶解させた無水酢酸コバルト(II)3.50g(40等量、20.0mmol)を滴下し、70℃で24時間沸点還流させた。反応終了後、未反応の酢酸コバルト(II)を濾別、濃縮した濾液をクロロホルムを溶媒とした塩基性アルミナカラムにより精製、溶解していた酢酸コバルト(II)を完全に除去した。続いて、ジエチルエーテル/ヘキサン(v/v=95/5)を溶媒としたフラッシュカラムクロマトグラフィー(Rf値:CoTpivPP,0.35;H2TpivPP 0.25)により分画、CoTpivPPを0.35g得た(収率65%)。
(3. Synthesis of CoTpivPP)
In order to prevent irreversible oxidation of cobalt (II) by water and oxygen, nitrogen substitution was performed for 30 minutes or more in advance, and 0.52 g (0.5 mmol) of H 2 TpivPP and 3.0 mL of triethylamine were dissolved in 60 mL of chloroform under a nitrogen atmosphere, and then dissolved in 30 mL of methanol. Dissolved anhydrous cobalt (II) 3.50 g (40 equivalents, 20.0 mmol) was added dropwise and refluxed at 70 ° C. for 24 hours. After completion of the reaction, unreacted cobalt acetate (II) was filtered off, and the concentrated filtrate was purified with a basic alumina column using chloroform as a solvent, and the dissolved cobalt acetate (II) was completely removed. Subsequently, fractionation was performed by flash column chromatography (Rf value: CoTpivPP, 0.35; H 2 TpivPP 0.25) using diethyl ether / hexane (v / v = 95/5) as a solvent to obtain 0.35 g of CoTpivPP (yield) 65%).

上記のCoTpivPPの合成は、J.Am.Soc.Chem.,97,1427(1974)の開示内容を参考にして行うことができる。   The above CoTpivPP can be synthesized with reference to the disclosure of J. Am. Soc. Chem., 97, 1427 (1974).

上記の酸素吸脱着物質を電解液に含有させることにより、本発明に係る電解液は、酸素の吸脱着を副反応なく可逆的に行うことができる。   By containing the above oxygen adsorption / desorption substance in the electrolytic solution, the electrolytic solution according to the present invention can reversibly perform the adsorption / desorption of oxygen without side reactions.

本発明に係る電解液について、酸素吸脱着物質の他の成分について説明する。   Regarding the electrolytic solution according to the present invention, other components of the oxygen adsorption / desorption material will be described.

該電解液の支持塩としては、公知の支持塩を特に限定されることなく用いることができる。好ましい支持塩の例としては、ヘキサフルオロホスフェート塩(LiPF6),パークロレート塩(LiClO4),テトラフルオロボレート塩(LiBF4),ペンタフルオロアルシン塩(LiAsF5),ビス(トリフルオロメタンスルホニル)イミド塩(Li(CF3SO22N),ビス(ペンタフルオロエタンスルホニル)イミド塩(LiN(C25SO22),トリフルオロメタンスルホン酸塩(Li(CF3SO3)),ノナフルオロブタンスルホン酸塩(Li(C49SO3))などが挙げられる。上記の支持塩は単独で用いてもよく、2種以上を併用してもよい。 As the supporting salt of the electrolytic solution, a known supporting salt can be used without any particular limitation. Examples of preferred supporting salts include hexafluorophosphate salt (LiPF 6 ), perchlorate salt (LiClO 4 ), tetrafluoroborate salt (LiBF 4 ), pentafluoroarsine salt (LiAsF 5 ), bis (trifluoromethanesulfonyl) imide Salt (Li (CF 3 SO 2 ) 2 N), bis (pentafluoroethanesulfonyl) imide salt (LiN (C 2 F 5 SO 2 ) 2 ), trifluoromethanesulfonate (Li (CF 3 SO 3 )), Nonafluorobutane sulfonate (Li (C 4 F 9 SO 3 )) and the like can be mentioned. Said support salt may be used independently and may use 2 or more types together.

本発明に用いる該テトラフェニルポルフィリン錯体誘導体において、適切に酸素錯体を形成させる観点からは、配位される軸配位子成分の種類と支持塩の種類とを好適な組み合わせで選択することが好ましい。   In the tetraphenylporphyrin complex derivative used in the present invention, from the viewpoint of appropriately forming an oxygen complex, it is preferable to select the type of the axial ligand component to be coordinated and the type of the supporting salt in a suitable combination. .

例えば、電解液中に支持電解質としてLiBF等を含み、軸配位子成分としてベンジルイミダゾールを共存させる場合、本発明に用いるテトラフェニルポルフィリン錯体誘導体において酸素が配位すべき第6座位に上記LiBF4などの支持電解質が配位し、酸素の配位が阻害される場合があるため好ましくない。 For example, when LiBF 4 or the like is included as a supporting electrolyte in the electrolyte and benzylimidazole is allowed to coexist as an axial ligand component, the LiBF is located at the sixth position to which oxygen should coordinate in the tetraphenylporphyrin complex derivative used in the present invention. This is not preferable because the supporting electrolyte such as 4 may coordinate and oxygen coordination may be inhibited.

したがって、適切に酸素錯体を形成させる観点からは、添加される軸配位子の種類を考慮して支持塩が選択されることが好ましい。上記に例示したベンジルイミダゾールを軸配位子成分とする場合に、好ましい支持塩としては、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTHSI)及び/又はリチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)を用いることが好ましい。   Therefore, from the viewpoint of appropriately forming an oxygen complex, it is preferable to select a supporting salt in consideration of the type of the added axial ligand. When benzylimidazole exemplified above is used as the axial ligand component, preferred supporting salts include lithium bis (trifluoromethanesulfonyl) imide (LiTHSI) and / or lithium bis (pentafluoroethanesulfonyl) imide (LiBETI). It is preferable to use it.

LiTHSIとLiBETIは、ファンデルファールス体積が大きい嵩高い分子である為、これらの成分の少なくとも一つを電解液に含有させる場合、上記に説明した、支持塩成分によるテトラフェニルポルフィリン誘導体の第6座への酸素の配位阻害を、抑制しうる。   Since LiTHSI and LiBETI are bulky molecules having a large van der Fars volume, when at least one of these components is contained in the electrolyte, the 6th locus of the tetraphenylporphyrin derivative by the supporting salt component described above is used. Inhibition of oxygen coordination to can be suppressed.

LiTHSI及び/又はLiBETIは、イミダゾール、メチルイミダゾール、トリチルイミダゾールを軸配位子成分とするテトラフェニルポルフィリン誘導体や、イミダゾールを側鎖に持つ高分子を配位させたテトラフェニルポルフィリン誘導体を用いる場合にも、好ましい支持塩成分である。   LiTHSI and / or LiBETI can also be used when using tetraphenylporphyrin derivatives with imidazole, methylimidazole, or tritylimidazole as the axial ligand component, or tetraphenylporphyrin derivatives coordinated with a polymer having imidazole in the side chain. , A preferred supporting salt component.

支持塩は、本発明の電気特性を発揮させ得る範囲で過剰に添加されうる。支持塩の含有量は、溶媒100質量部に対し2〜70質量部が好ましく、20〜50質量部がより好ましい。LiTFSIを含有させる場合には、20〜35質量部が好ましく、25〜35質量部がより好ましい。LiBeTIを含有させる場合には、25〜40質量部が好ましく、30〜40質量部がより好ましい。該電解液中には、本発明の電気特性を損なわない範囲で、他の成分を含有させてもよい。   The supporting salt can be added in excess as long as the electric characteristics of the present invention can be exhibited. The content of the supporting salt is preferably 2 to 70 parts by mass and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the solvent. When LiTFSI is contained, 20 to 35 parts by mass is preferable, and 25 to 35 parts by mass is more preferable. When LiBeTI is contained, 25 to 40 parts by mass is preferable, and 30 to 40 parts by mass is more preferable. The electrolytic solution may contain other components as long as the electrical characteristics of the present invention are not impaired.

本発明の電解液の溶媒と支持電解質の組み合わせは、負極活物質の金属イオンを伝導でき、かつ上記の酸素吸脱着物質を溶解可能なものであれば、特に限定されることなく水系電解液、非水系電解液、イオン性液体、高分子ゲル電解液等を用いることができる。好ましくは非水系電解液が用いられる。   The combination of the solvent of the electrolytic solution of the present invention and the supporting electrolyte is not particularly limited as long as it can conduct metal ions of the negative electrode active material and can dissolve the oxygen adsorption / desorption material. Nonaqueous electrolytes, ionic liquids, polymer gel electrolytes, and the like can be used. Preferably, a non-aqueous electrolyte solution is used.

該非水系電解液の溶媒としては、エチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネートなどの環状カーボネート、ジエチルカーボネート,ジメチルカーボネート,エチルメチルカーボネートなどの鎖状カーボネート、ガンマブチロラクトン,ガンマバレロラクトンなどの環状エステルカーボネート、テトラヒドロフラン,2−メチルテトラヒドロフランなどの環状エーテル、ジメトキシエタン,エチレングリコールジメチルエーテルなどの鎖状エーテルなどのほか、クロロエチレンカーボネート、フルオロエチレンカーボネート、3−メトキシプロピオニトリル、リン酸トリメチル、リン酸トリフェニル、スルホラン、ジメチルスルホキシドなどの公知の有機溶媒を用いることができる。   Examples of the solvent for the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, and cyclic esters such as gamma butyrolactone and gamma valerolactone. In addition to cyclic ethers such as carbonate, tetrahydrofuran and 2-methyltetrahydrofuran, chain ethers such as dimethoxyethane and ethylene glycol dimethyl ether, chloroethylene carbonate, fluoroethylene carbonate, 3-methoxypropionitrile, trimethyl phosphate and triphosphate Known organic solvents such as phenyl, sulfolane and dimethyl sulfoxide can be used.

また、N,N−ジエチル−N−エチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロスルホニル)イミド、N−メチル−N−プロピルピペリジウムビス(トリフルオロスルホニル)イミド、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミド、1−エチル−3−ブチルイミダゾリウムテトラフルオロボレート、などのイオン液体を用いてもよい。上記の溶媒は単独で用いてもよく、2種以上を併用してもよい。   N, N-diethyl-N-ethyl-N- (2-methoxyethyl) ammonium bis (trifluorosulfonyl) imide, N-methyl-N-propylpiperidinium bis (trifluorosulfonyl) imide, 1-methyl- Ionic liquids such as 3-propylimidazolium bis (trifluorosulfonyl) imide and 1-ethyl-3-butylimidazolium tetrafluoroborate may be used. Said solvent may be used independently and may use 2 or more types together.

本発明の電解液は、上記に例示した軸配位子が未配位のテトラフェニルポルフィリン誘導体と支持塩とを溶媒に溶解させ、さらに軸配位子成分を添加して混合することにより得ることができる。溶媒中に軸配位子成分を添加することにより、上記テトラフェニルポルフィリン誘導体の第5座に軸配位子が自然に配位し、本発明の酸素吸脱着物質を形成する。   The electrolytic solution of the present invention is obtained by dissolving a tetraphenylporphyrin derivative in which the axial ligand exemplified above is not coordinated and a supporting salt in a solvent, and further adding and mixing the axial ligand component. Can do. By adding an axial ligand component in the solvent, the axial ligand naturally coordinates to the fifth position of the tetraphenylporphyrin derivative, thereby forming the oxygen adsorbing / desorbing material of the present invention.

該電解液においては、上記の酸素吸脱着物質を少量溶解させるだけでも、酸素吸脱着能を向上させることができる。電解液における酸素吸脱着物質の好ましい含有量は、溶媒100質量部に対し、0.1〜3質量部である。   In the electrolytic solution, the oxygen adsorption / desorption ability can be improved only by dissolving a small amount of the oxygen adsorption / desorption substance. A preferable content of the oxygen adsorption / desorption material in the electrolytic solution is 0.1 to 3 parts by mass with respect to 100 parts by mass of the solvent.

上記の組成の電解液においては、電解質中の酸素濃度を本発明に係る酸素吸脱着物質を含有させない電解液と比較して5〜10倍高めることができる。これにより、本発明は、電極への酸素供給量を向上させることができ、放電時に高電流での作動を可能とする。   In the electrolytic solution having the above composition, the oxygen concentration in the electrolyte can be increased 5 to 10 times as compared with the electrolytic solution not containing the oxygen adsorbing / desorbing material according to the present invention. Thereby, this invention can improve the oxygen supply amount to an electrode, and enables the operation | movement by a high electric current at the time of discharge.

本発明の電気化学デバイスについて、負極活物質をリチウムとし、正極活物質を酸素とするリチウム空気電池を例として説明する。ただし、本発明の電気化学デバイスは、かかるリチウム空気電池に限定されるものではない。   The electrochemical device of the present invention will be described by taking as an example a lithium-air battery in which the negative electrode active material is lithium and the positive electrode active material is oxygen. However, the electrochemical device of the present invention is not limited to such a lithium-air battery.

本発明の電気化学デバイスの正極は、酸素を正極活物質とする。該リチウム空気電池の正極材料としては、多孔性の導電性材料が好ましく用いられる。導電性材料の例としては、カーボンブラック、グラファイト、グラフェン、それらの一部を変性した材料等を挙げることができる。上記に例示する導電性材料を適切な溶媒中に混合分散させることで正極スラリーを製造する。好ましい溶媒としてはN-メチルピロリドン等を挙げることができる。   The positive electrode of the electrochemical device of the present invention uses oxygen as a positive electrode active material. As the positive electrode material of the lithium-air battery, a porous conductive material is preferably used. Examples of the conductive material include carbon black, graphite, graphene, and materials obtained by modifying a part of them. The positive electrode slurry is produced by mixing and dispersing the conductive materials exemplified above in an appropriate solvent. Preferred examples of the solvent include N-methylpyrrolidone.

スラリー中には、導電助材や結着剤、分散剤、増粘剤等を適宜添加してもよい。該正極スラリーを公知の集電体表面に塗布して乾燥させることにより、集電体表面上に正極電極層を形成することができる。   In the slurry, a conductive additive, a binder, a dispersant, a thickener and the like may be appropriately added. A positive electrode layer can be formed on the surface of the current collector by applying the positive electrode slurry to a known current collector surface and drying it.

上記の正極材料には触媒を担持させた導電性材料または触媒そのままであってもよい。触媒としては、白金、金、銀、マンガン酸化物、鉄酸化物等、酸素を正極活物質とする正極電極の材料として公知の触媒を限定されることなく用いることができる。   The positive electrode material may be a conductive material carrying a catalyst or the catalyst as it is. As a catalyst, a well-known catalyst can be used as a positive electrode material which uses oxygen as a positive electrode active material, such as platinum, gold, silver, manganese oxide, and iron oxide, without limitation.

本発明の電気化学デバイスの負極は、リチウム、リチウム酸化物、リチウム合金等のリチウムイオンを吸蔵および放出しうる公知の物質を制限されることなく用いることができ、特に金属リチウムを用いることが好ましい。   For the negative electrode of the electrochemical device of the present invention, a known substance capable of occluding and releasing lithium ions such as lithium, lithium oxide, and lithium alloy can be used without limitation, and metallic lithium is particularly preferable. .

上記の負極に用いる物質に適宜溶剤に混合分散してペースト状の負極材を形成しても良い。この負極材料には、導電材や結着剤等を適宜添加してもよい。得られた負極材を、集電体表面に塗布し、負極層を形成することができる。   The material used for the negative electrode may be mixed and dispersed in a solvent as appropriate to form a paste-like negative electrode material. A conductive material, a binder, or the like may be appropriately added to the negative electrode material. The obtained negative electrode material can be applied to the current collector surface to form a negative electrode layer.

導電材としては、本発明の電気化学デバイスの電気化学的性能を損なわない電子伝導性材料であれば限定されることなく用いることができる。具体的には、天然黒鉛、カーボンブラック、ケッチェンブラック、炭素繊維等を挙げることができる。これらの導電材は単独で使用してもよく、併用してもよい。   As the conductive material, any electronic conductive material that does not impair the electrochemical performance of the electrochemical device of the present invention can be used without limitation. Specific examples include natural graphite, carbon black, ketjen black, and carbon fiber. These conductive materials may be used alone or in combination.

結着剤としては、活物質成分と導電材成分とを結着できる材料であれば制限されることなく用いることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリプロピレン等の熱可塑性樹脂等が挙げられる。   As the binder, any material that can bind the active material component and the conductive material component can be used without limitation. Specific examples include fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride, and thermoplastic resins such as polypropylene.

上記正極層および負極層に用いられる集電体には、銅、ニッケル、チタン、アルミニウム等を用いることができる。集電体の形状は、シート状の他、フィルム状等でもよい。   For the current collector used for the positive electrode layer and the negative electrode layer, copper, nickel, titanium, aluminum, or the like can be used. The shape of the current collector may be a sheet shape or a film shape.

上記の本発明の電解液と、正極とを用いた電気化学デバイスは下記の構成により形成することができる。図2は、本発明の電気化学デバイスの一例を表す概略図である。該電気化学デバイス100において、120は、不図示の所定の形状の電池ケースの内面に設けた負極層である。110は、拡散電極111に上記に説明した正極スラリーにより作製した触媒層112を担持させた正極層である。さらに電池ケース内に電解液130を注入し、正極層110と負極層120との間に電解液130を介在させるように構成される。電解液130には、上記に説明した本発明の酸素吸脱着物質が含有される。   The electrochemical device using the above-described electrolytic solution of the present invention and the positive electrode can be formed by the following configuration. FIG. 2 is a schematic view showing an example of the electrochemical device of the present invention. In the electrochemical device 100, 120 is a negative electrode layer provided on the inner surface of a battery case (not shown) having a predetermined shape. Reference numeral 110 denotes a positive electrode layer in which the catalyst layer 112 made of the positive electrode slurry described above is supported on the diffusion electrode 111. Further, the electrolytic solution 130 is injected into the battery case, and the electrolytic solution 130 is interposed between the positive electrode layer 110 and the negative electrode layer 120. The electrolytic solution 130 contains the oxygen adsorption / desorption material of the present invention described above.

本発明の電気化学デバイスとしては、リチウム電池等に例示される空気電池の他、水素やアルコールを燃料とする燃料電池等を挙げることができる。   Examples of the electrochemical device of the present invention include a fuel cell using hydrogen or alcohol as fuel as well as an air cell exemplified by a lithium battery.

下記の方法により、本発明に用いる電解液を製造し、酸素吸脱着性能を評価した。ただし、以下に記載する製造例および実施例は、本発明をこれに下記に限定するものではない。   The electrolytic solution used in the present invention was produced by the following method, and the oxygen adsorption / desorption performance was evaluated. However, the production examples and examples described below do not limit the present invention to the following.

上記に説明した方法でテトラフェニルポルフィリン誘導体(CoTpivPP)を合成した。GBLを溶媒とする5μMCoTpivPP溶液を調製した。該5μMCoTpivPP溶液に、軸配位子としてイミダゾール(Im)、1−メチルイミダゾール(MeIm)、ベンジルイミダゾール(BIm)、トリチルイミダゾール(TIm)のいずれかを添加した溶液をそれぞれ調製した。   A tetraphenylporphyrin derivative (CoTpivPP) was synthesized by the method described above. A 5 μM CoTpivPP solution using GBL as a solvent was prepared. Solutions were prepared by adding any of imidazole (Im), 1-methylimidazole (MeIm), benzylimidazole (BIm), and tritylimidazole (TIm) as axial ligands to the 5 μM CoTpivPP solution.

上記の軸配位子成分を添加した各5μM CoTpivPP溶液において、CoTpivPP錯体にそれぞれのイミダゾール誘導体を配位させ、本発明に係る酸素吸脱着物質を形成し、実施例1〜4とした。   In each 5 μM CoTpivPP solution to which the above-mentioned axial ligand component was added, each imidazole derivative was coordinated to the CoTpivPP complex to form the oxygen adsorbing / desorbing material according to the present invention.

実施例1〜4の酸素吸脱着物質の酸素吸脱着能を下記の方法により評価した。   The oxygen adsorption / desorption ability of the oxygen adsorption / desorption materials of Examples 1 to 4 was evaluated by the following method.

(酸素親和性の評価方法)
まず、実施例1〜4の酸素吸脱着物質の1.0M GBL溶液を調製した。温度条件25℃、純窒素を供給し、551nmの吸収ピークにおけるUV-visスペクトルをそれぞれ測定し、吸光度Aを得た。続いて純酸素になるまで酸素を供給した後、新たに生起した551nmの吸収ピークにおける各UV-visスペクトルを測定し、吸光度Aを得た。吸光度の差ΔA(A−A)を用いて、上記式(1)で表されるDrago式を計算し、実施例1〜4の酸素親和性パラメータp50を得ると共に酸素結合率を算出した。実施例1〜4の酸素親和性パラメータp50および酸素結合率を表1に示す。
(Oxygen affinity evaluation method)
First, 1.0 M GBL solutions of the oxygen adsorbing / desorbing materials of Examples 1 to 4 were prepared. Temperature 25 ° C., supplying pure nitrogen, the UV-vis spectra were measured at the absorption peak of 551 nm, to give the absorbance A 1. After supplying oxygen to a pure oxygen Subsequently, it measures each UV-vis spectrum in the absorption peak of 551nm newly occurs to give the absorbance A 2. Using the absorbance difference ΔA (A 2 −A 1 ), the Drago equation represented by the above equation (1) is calculated to obtain the oxygen affinity parameter p 50 of Examples 1 to 4 and the oxygen binding rate. did. The oxygen affinity parameter p 50 and oxygen binding ratio of Examples 1 to 4 shown in Table 1.

ピバロイル基が結合され軸配位子が未配位のテトラポルフィリンコバルト錯体を、比較例1として、上記実施例1〜4と同様の方法で酸素親和性パラメータp50および酸素結合率を測定した。比較例1においては、溶媒中での酸素親和性パラメータp50を実質的に測定することができなかった。 Tetra porphyrin cobalt complex of axial ligands is pivaloyl coupling position Mihai, as Comparative Example 1 was measured oxygen affinity parameter p 50 and oxygen binding ratio in the same manner as in Example 1-4. In Comparative Example 1 could not be substantially measured oxygen affinity parameter p 50 in a solvent.

100 本発明の電気化学デバイス
110、210 正極層
111、211 拡散電極
112、212 触媒層
120、220 負極層
130 本発明に係る電解液
200 従来のリチウム空気電池
230 従来の電解液
100 Electrochemical Devices 110 and 210 of the Present Invention Positive Electrode Layers 111 and 211 Diffusion Electrodes 112 and 212 Catalyst Layers 120 and 220 Negative Electrode Layers 130 Electrolytic Solution 200 of the Present Invention Conventional Lithium-Air Battery 230 Conventional Electrolytic Solution

Claims (4)

酸素を正極活物質とする正極と、金属を負極活物質とする負極と、純酸素下における酸素結合率が60〜95%である酸素吸脱着物質を含有する電解液とを備える電気化学デバイス。   An electrochemical device comprising: a positive electrode using oxygen as a positive electrode active material; a negative electrode using metal as a negative electrode active material; and an electrolytic solution containing an oxygen adsorbing / desorbing material having an oxygen bonding rate of 60 to 95% under pure oxygen. 酸素吸脱着物質が、第5座に高電子供与性の軸配位子が配位され、第6座の方向にピバロイル基を有し、第6座に酸素分子が高い結合力で配位結合されうるテトラフェニルポルフィリン誘導体である、請求項1に記載の電気化学デバイス。   Oxygen adsorbing / desorbing material is coordinated with a high electron-donating axial ligand at the 5th locus, a pivaloyl group in the 6th locus direction, and oxygen molecules at the 6th locus with high binding force The electrochemical device according to claim 1, which is a tetraphenylporphyrin derivative that can be produced. 前記テトラフェニルポルフィリン誘導体に配位される軸配位子が、含窒素有機配位子である請求項2に記載の電気化学デバイス。   The electrochemical device according to claim 2, wherein the axial ligand coordinated to the tetraphenylporphyrin derivative is a nitrogen-containing organic ligand. 前記電解液に含有される支持塩がLiTFSI及び/又はLiBETIである請求項2または請求項3に記載の電気化学デバイス。   The electrochemical device according to claim 2 or 3, wherein the supporting salt contained in the electrolytic solution is LiTFSI and / or LiBETI.
JP2012269868A 2012-12-10 2012-12-10 Electrochemical devices Expired - Fee Related JP6056076B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012269868A JP6056076B2 (en) 2012-12-10 2012-12-10 Electrochemical devices
KR1020130098135A KR102149333B1 (en) 2012-12-10 2013-08-19 Electrochemical device
US14/097,676 US9343786B2 (en) 2012-12-10 2013-12-05 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269868A JP6056076B2 (en) 2012-12-10 2012-12-10 Electrochemical devices

Publications (2)

Publication Number Publication Date
JP2014116213A true JP2014116213A (en) 2014-06-26
JP6056076B2 JP6056076B2 (en) 2017-01-11

Family

ID=51128795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269868A Expired - Fee Related JP6056076B2 (en) 2012-12-10 2012-12-10 Electrochemical devices

Country Status (2)

Country Link
JP (1) JP6056076B2 (en)
KR (1) KR102149333B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167414A (en) * 2015-03-10 2016-09-15 日本電信電話株式会社 Lithium air secondary battery
JP2017054760A (en) * 2015-09-11 2017-03-16 日本電信電話株式会社 Lithium air secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343786B2 (en) 2012-12-10 2016-05-17 Samsung Electronics Co., Ltd. Electrochemical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014731B1 (en) * 1970-09-19 1975-05-30
JPS61275106A (en) * 1984-09-24 1986-12-05 アクワノ−テイクス・コ−ポレイシヨン System for extracting and utilizing oxygen and other ligand from fluid
JP2004119278A (en) * 2002-09-27 2004-04-15 Toshiba Corp Nonaqueous electrolyte air cell
JP2006012587A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Flat organic electrolyte battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910310B2 (en) 2004-07-09 2012-04-04 日産自動車株式会社 Electrode composition, electrode, air electrode composition, fuel cell air electrode, fuel cell, fuel cell system and fuel cell vehicle
JP2011134594A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Metal air battery
JP2012174655A (en) 2011-02-24 2012-09-10 Toyota Motor Corp Air electrode for air battery, method of manufacturing the same, and air electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014731B1 (en) * 1970-09-19 1975-05-30
JPS61275106A (en) * 1984-09-24 1986-12-05 アクワノ−テイクス・コ−ポレイシヨン System for extracting and utilizing oxygen and other ligand from fluid
JP2004119278A (en) * 2002-09-27 2004-04-15 Toshiba Corp Nonaqueous electrolyte air cell
JP2006012587A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Flat organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167414A (en) * 2015-03-10 2016-09-15 日本電信電話株式会社 Lithium air secondary battery
JP2017054760A (en) * 2015-09-11 2017-03-16 日本電信電話株式会社 Lithium air secondary battery

Also Published As

Publication number Publication date
KR102149333B1 (en) 2020-08-28
JP6056076B2 (en) 2017-01-11
KR20140076473A (en) 2014-06-20

Similar Documents

Publication Publication Date Title
JP6002807B2 (en) Ionic liquid
US9893382B2 (en) Cosolvent electrolytes for electrochemical devices
JP5673825B2 (en) Power storage device
JP5786540B2 (en) Non-aqueous magnesium battery
Forgie et al. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid
JP2011028948A (en) Power storage device, and manufacturing method for electrode active material
JP6056076B2 (en) Electrochemical devices
JP2008112630A (en) Secondary battery
US20160314909A1 (en) Lithium ion capacitor
CN111276740A (en) Electrolyte for lithium-air battery or lithium-copper battery
Guo et al. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides
US9343786B2 (en) Electrochemical device
WO2015186568A1 (en) Nonaqueous electrolyte solution and electricity storage device using same
JP5976490B2 (en) Battery electrode and battery using the same
JP2014222606A (en) Electrochemical device
Wang et al. The applications of IL@ MOFs for solid-state electrolytes in all-solid-state battery: a review
JP6695302B2 (en) Lithium air secondary battery
JP2015138627A (en) Positive electrode elution inhibitor and lithium-ion secondary battery containing the same
JP2015213046A (en) Electrolytic solution or electrode including nitryl compound having sulfonyl group, and lithium ion secondary battery arranged by use thereof
US12027314B2 (en) Flexible energy storage device based on gylcerol gel electrolyte
JP2012089266A (en) Nonaqueous electrolyte air battery
JP6778673B2 (en) Lithium air secondary battery
JP2018198183A (en) Lithium air secondary battery
Neale et al. Electrolytes for Li–O2 Batteries
CN114583266A (en) Polycyclic ternary electrolyte and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6056076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees