JP2014113547A - Apparatus and method for treating waste water containing nitric acid and nitrous acid - Google Patents

Apparatus and method for treating waste water containing nitric acid and nitrous acid Download PDF

Info

Publication number
JP2014113547A
JP2014113547A JP2012269671A JP2012269671A JP2014113547A JP 2014113547 A JP2014113547 A JP 2014113547A JP 2012269671 A JP2012269671 A JP 2012269671A JP 2012269671 A JP2012269671 A JP 2012269671A JP 2014113547 A JP2014113547 A JP 2014113547A
Authority
JP
Japan
Prior art keywords
nitric acid
concentration
hydrogen donor
amount
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269671A
Other languages
Japanese (ja)
Other versions
JP5934083B2 (en
Inventor
Yuki Kanai
佑樹 金井
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012269671A priority Critical patent/JP5934083B2/en
Publication of JP2014113547A publication Critical patent/JP2014113547A/en
Application granted granted Critical
Publication of JP5934083B2 publication Critical patent/JP5934083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for treating waste water containing nitric acid and nitrous acid, in each of which the nitric acid concentration and nitrous acid concentration of the waste water can be measured quickly.SOLUTION: The apparatus for treating waste water containing nitric acid and nitrous acid includes: a hydrogen donor pump 26 for adding a hydrogen donor to the waste water containing nitric acid and nitrous acid; a denitrification tank 14 in which the hydrogen donor-added waste water is subjected to anaerobic biological treatment; an ultraviolet absorbance method-applied sensor 20 for measuring the nitric acid concentration and nitrous acid concentration of the waste water; an ion electrode method-applied sensor 18 for measuring the nitric acid concentration of the waste water; and a control part 28 for controlling the amount of the hydrogen donor to be added to the waste water by using the hydrogen donor pump 26 on the basis of the nitric acid concentration and nitrous acid concentration of the waste water, which are obtained by using the nitric acid concentration and nitrous acid concentration measured by the ultraviolet absorbance method-applied sensor 20 and the nitric acid concentration measured by the ion electrode method-applied sensor 18.

Description

本発明は、硝酸及び亜硝酸を含む排水の処理装置及び処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method for waste water containing nitric acid and nitrous acid.

水中に含まれるアンモニア態窒素、硝酸態窒素、亜硝酸態窒素等の窒素成分は、環境水の富栄養化の原因であり、排水中の濃度に基準が設けられている。一般的に、排水中のアンモニア態窒素は、硝化と脱窒という2段階の生物処理によって窒素ガスまで分解処理されている。硝化は好気性の硝化菌による反応であるのに対し、脱窒は嫌気性の脱窒菌による反応であるため、両方の反応を進行させるために、好気槽と嫌気槽の2種類の反応槽が必要である。従来法で利用される脱窒菌は従属栄養細菌であり、活性を維持するために脱窒槽に水素供与体としての有機物等を添加しなければならない。この際、亜硝酸と硝酸とでは還元に要する有機物量が異なるために、それぞれを正確に測定して注入量を制御すれば、薬品使用量の最適化に効果があるとともに処理水質の安定にもつながる。   Nitrogen components such as ammonia nitrogen, nitrate nitrogen, nitrite nitrogen and the like contained in water cause eutrophication of environmental water, and a standard is set for the concentration in wastewater. In general, ammonia nitrogen in waste water is decomposed into nitrogen gas by a two-stage biological treatment of nitrification and denitrification. Nitrification is a reaction by an aerobic nitrifying bacterium, whereas denitrification is a reaction by an anaerobic denitrifying bacterium, so two types of reaction tanks, an aerobic tank and an anaerobic tank, are used to advance both reactions. is necessary. The denitrifying bacteria used in the conventional method are heterotrophic bacteria, and an organic substance or the like as a hydrogen donor must be added to the denitrifying tank in order to maintain the activity. At this time, since the amount of organic substances required for reduction differs between nitrous acid and nitric acid, controlling the injection amount accurately by measuring each of them is effective in optimizing the amount of chemicals used and also stabilizes the quality of the treated water. Connected.

しかしながら、従来のオンライン分析法においてイオン電極法式では硝酸は測定できるが亜硝酸は測定できない。UV式センサを用いた紫外線吸光度法式では硝酸及び亜硝酸を含むNOxとして測定されてしまう。したがって、硝酸と亜硝酸をオンラインでそれぞれ同時に測定する方法は存在していなかった。   However, in the conventional on-line analysis method, the ion electrode method can measure nitric acid but cannot measure nitrous acid. In the UV absorbance method using a UV sensor, it is measured as NOx containing nitric acid and nitrous acid. Therefore, there was no method for measuring nitric acid and nitrous acid simultaneously online.

亜硝酸の測定方法としては、例えば、日本工業規格JIS K0102 43.1(亜硝酸イオンNO2−)の43.1.1ナフチルエチレンジアミン吸光光度法の項において、試料としてスルファニルアミド(4−アミノベンゼンスルホンアミド)を加えて亜硝酸イオンによって試料をジアゾ化させて、生じる赤い色のアゾ化合物の吸光度を測定して亜硝酸イオンの量を見積もる方法が開示されている。また、JIS K0102 43.1.2イオンクロマトグラフ法の項においては、イオンクロマトグラフ法による亜硝酸イオンの測定方法も開示されている(例えば、非特許文献1参照)。 As a measuring method of nitrous acid, for example, in the section of 43.1.1 naphthylethylenediamine spectrophotometry of Japanese Industrial Standard JIS K0102 43.1 (nitrite ion NO 2− ), sulfanilamide (4-aminobenzene) is used as a sample. A method is disclosed in which the amount of nitrite ions is estimated by diazotizing a sample with nitrite ions and measuring the absorbance of the resulting red azo compound. Further, in the section of JIS K0102 43.1.2 ion chromatographic method, a method for measuring nitrite ions by ion chromatographic method is also disclosed (for example, see Non-Patent Document 1).

また、特許文献1には、海水中の硝酸イオン及び亜硝酸イオンの濃度測定方法において、波長215〜240nmの範囲で吸光光度法による紫外吸光スペクトルを計測して硝酸イオン及び亜硝酸イオンを計測する方法が開示されている。   In Patent Document 1, in a method for measuring the concentration of nitrate ion and nitrite ion in seawater, an ultraviolet absorption spectrum is measured by an absorptiometry in a wavelength range of 215 to 240 nm to measure nitrate ion and nitrite ion. A method is disclosed.

また、特許文献2には、336nm、347nm、359nm、372nm、386nmの波長のうち、少なくとも一つの波長について測定した紫外線吸光度スペクトルから、液体中の亜硝酸濃度を算出する方法が開示されている。   Patent Document 2 discloses a method for calculating the concentration of nitrous acid in a liquid from an ultraviolet absorbance spectrum measured for at least one of wavelengths of 336 nm, 347 nm, 359 nm, 372 nm, and 386 nm.

特開2008−145297号公報JP 2008-145297 A 特開2011−257341号公報JP 2011-257341 A 特開2006−151779号公報JP 2006-151779 A 特開平7−256290号公報JP-A-7-256290

日本工業規格JIS K0102 43.1(亜硝酸イオンNO2−)Japanese Industrial Standard JIS K0102 43.1 (Nitrite ion NO2-)

しかし、非特許文献1のイオンクロマトグラフ法では、準備及び測定等に非常に手間がかかるため、液体中の亜硝酸濃度を迅速に測定することには適していないものと考えられる。また、上記ナフチルエチレンジアミン吸光光度法でも同様である。   However, the ion chromatographic method of Non-Patent Document 1 is considered to be unsuitable for quickly measuring the concentration of nitrous acid in a liquid because preparation and measurement are very laborious. The same applies to the naphthylethylenediamine absorptiometry.

また、特許文献1による測定方法では、波長215〜240nmの範囲のうち亜硝酸イオンに起因する吸光度スペクトルのいずれの波長のピークが亜硝酸イオンに由来するか不明なまま測定を行っているため、どのように実施すれば亜硝酸イオンを測定できるかについて十分な記載がない。   Moreover, in the measuring method by patent document 1, since it is measuring without knowing which peak of the wavelength of the absorbance spectrum resulting from nitrite ion out of the range of wavelengths 215 to 240 nm is derived from nitrite ion, There is no sufficient description about how nitrite ions can be measured.

また、特許文献2による測定方法では、液体中に含まれる硝酸濃度によって、亜硝酸に由来するピークのピーク高さが変化するため、液体中の硝酸濃度を測定して、亜硝酸の紫外線吸光度スペクトルの波長386nmにおけるピーク高さを補正することによって、より正確な亜硝酸濃度を得ている。しかし、液体中の硝酸濃度も頻繁に変動するような排水については都度補正する必要があり、排水中の亜硝酸濃度を迅速に測定することには適していないものと考えられる。 Moreover, in the measuring method by patent document 2, since the peak height of the peak derived from nitrous acid changes with the nitric acid concentration contained in the liquid, the nitric acid concentration in the liquid is measured, and the ultraviolet absorbance spectrum of nitrous acid. By correcting the peak height at a wavelength of 386 nm, a more accurate nitrous acid concentration is obtained. However, it is necessary to correct the wastewater whose nitric acid concentration in the liquid fluctuates frequently, and it is considered that it is not suitable for quickly measuring the nitrite concentration in the wastewater.

そこで、本発明の目的は、排水中の硝酸濃度及び亜硝酸濃度を迅速に測定することが可能な硝酸及び亜硝酸を含む排水の処理装置及び処理方法を提供することである。   Then, the objective of this invention is providing the processing apparatus and the processing method of the waste_water | drain containing nitric acid and nitrous acid which can measure the nitric acid density | concentration and nitrous acid density | concentration in waste water rapidly.

本発明の硝酸及び亜硝酸を含む排水の処理装置は、硝酸及び亜硝酸を含む排水に水素供与体を添加する水素供与体添加手段と、 前記水素供与体が添加された前記排水を嫌気的に生物処理する脱窒槽と、前記排水中の前記硝酸及び前記亜硝酸濃度を測定する紫外線吸光度法式センサと、前記排水中の前記硝酸濃度を測定するイオン電極法式センサと、前記紫外線吸光度法式センサにより測定された前記硝酸及び前記亜硝酸濃度と、前記イオン電極法式センサにより測定された前記硝酸濃度とにより求められる前記排水中の硝酸濃度及び亜硝酸濃度に基づいて、前記水素供与体添加手段により前記排水中に添加される前記水素供与体の添加量を制御する制御部と、を備える。   The apparatus for treating wastewater containing nitric acid and nitrous acid according to the present invention comprises a hydrogen donor addition means for adding a hydrogen donor to wastewater containing nitric acid and nitrous acid, and anaerobically the wastewater to which the hydrogen donor has been added. Measured by a denitrification tank for biological treatment, an ultraviolet absorbance method sensor for measuring the nitric acid and nitrous acid concentrations in the waste water, an ion electrode method sensor for measuring the nitric acid concentration in the waste water, and the ultraviolet absorbance method sensor Based on the concentration of nitric acid and nitrous acid in the wastewater determined by the concentration of nitric acid and nitrous acid, and the concentration of nitric acid measured by the ion electrode method sensor, the wastewater is added by the hydrogen donor addition means. And a control unit for controlling the amount of the hydrogen donor added therein.

また、前記硝酸及び亜硝酸を含む排水の処理装置において、前記水素供与体の添加量は、前記求められた亜硝酸濃度に1.1を乗じた濃度の亜硝酸の還元に必要な水素供与体量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることが好ましい。   Further, in the apparatus for treating waste water containing nitric acid and nitrous acid, the amount of hydrogen donor added is a hydrogen donor necessary for reducing nitrous acid having a concentration obtained by multiplying the determined nitrous acid concentration by 1.1. The amount is preferably the sum of the amount of hydrogen donor required for the reduction of nitric acid with the determined nitric acid concentration.

また、前記硝酸及び亜硝酸を含む排水の処理装置において、前記水素供与体の添加量は、前記求められた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量に1.1を乗じた量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることが好ましい。   Further, in the wastewater treatment apparatus containing nitric acid and nitrous acid, the amount of the hydrogen donor added is obtained by multiplying the amount of hydrogen donor required for the reduction of nitrous acid having the determined nitrous acid concentration by 1.1. The amount is preferably the sum of the amount of hydrogen donor required for the reduction of nitric acid with the determined nitric acid concentration.

また、本発明の硝酸及び亜硝酸を含む排水の処理方法は、硝酸及び亜硝酸を含む排水に水素供与体を添加する水素供与体添加工程と、前記排水中の前記硝酸及び前記亜硝酸濃度を紫外線吸光度法式により測定する第1測定工程と、前記排水中の前記硝酸濃度をイオン電極法式により測定する第2測定工程と、前記水素供与体が添加された前記排水を嫌気的に生物処理する脱窒工程と、を備え、前記水素供与体添加工程では、前記紫外線吸光度法式により測定された前記硝酸及び前記亜硝酸濃度と、前記イオン電極法式により測定された前記硝酸濃度とにより求められる前記排水中の硝酸濃度及び亜硝酸濃度に基づいて、前記排水中に添加する前記水素供与体の添加量を制御する。   The method for treating wastewater containing nitric acid and nitrous acid according to the present invention includes a hydrogen donor addition step of adding a hydrogen donor to wastewater containing nitric acid and nitrous acid, and the concentration of nitric acid and nitrous acid in the wastewater. A first measurement step for measuring by an ultraviolet absorbance method, a second measurement step for measuring the concentration of nitric acid in the waste water by an ion electrode method, and a deaeration for biologically treating the waste water to which the hydrogen donor has been added anaerobically. In the drainage determined by the concentration of nitric acid and nitrous acid measured by the ultraviolet absorbance method and the concentration of nitric acid measured by the ion electrode method. The amount of the hydrogen donor added to the waste water is controlled based on the concentration of nitric acid and the concentration of nitrous acid.

また、前記硝酸及び亜硝酸を含む排水の処理方法において、前記水素供与体の添加量は、前記求められた亜硝酸濃度に1.1を乗じた濃度の亜硝酸の還元に必要な水素供与体量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることが好ましい。   Further, in the method for treating waste water containing nitric acid and nitrous acid, the amount of the hydrogen donor added is a hydrogen donor necessary for the reduction of nitrous acid having a concentration obtained by multiplying the determined nitrous acid concentration by 1.1. The amount is preferably the sum of the amount of hydrogen donor required for the reduction of nitric acid with the determined nitric acid concentration.

また、前記硝酸及び亜硝酸を含む排水の処理方法において、前記水素供与体の添加量は、前記求められた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量に1.1を乗じた量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることが好ましい。   In the method for treating wastewater containing nitric acid and nitrous acid, the amount of the hydrogen donor added is obtained by multiplying the amount of hydrogen donor required for reduction of nitrous acid having the determined nitrous acid concentration by 1.1. The amount is preferably the sum of the amount of hydrogen donor required for the reduction of nitric acid with the determined nitric acid concentration.

本発明によれば、排水中の硝酸濃度及び亜硝酸濃度を迅速に測定することが可能な硝酸及び亜硝酸を含む排水の処理装置及び処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing apparatus and processing method of the waste_water | drain containing nitric acid and nitrous acid which can measure the nitric acid density | concentration and nitrous acid density | concentration in waste water rapidly can be provided.

本実施形態に係る排水処理装置の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the waste water treatment apparatus which concerns on this embodiment. 本実施形態に係る排水処理装置の構成の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a structure of the waste water treatment apparatus which concerns on this embodiment. 本実施形態に係る排水処理装置の構成の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a structure of the waste water treatment apparatus which concerns on this embodiment. 標準液の亜硝酸濃度と硝酸濃度の合計(NO−N)と紫外吸光度法式硝酸センサの測定値の関係を示す図である。It is a diagram showing the relationship between total nitrite concentration and nitric acid concentration of the standard (NO x -N) and UV spectrophotometry expression measurements of nitrate sensors. 標準液の亜硝酸濃度と、紫外線吸光度法式センサの測定値からイオン電極法式センサの測定値を差し引いた値との関係を示す図である。It is a figure which shows the relationship between the nitrous acid density | concentration of a standard solution, and the value which deducted the measured value of the ion electrode method sensor from the measured value of the ultraviolet light absorbance method sensor. 実施例2で用いた排水処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the waste water treatment equipment used in Example 2. 第2硝化槽における全窒素濃度に対する亜硝酸濃度(亜硝酸態窒素濃度)の比率と脱窒槽に添加した水素供与体(メタノール)の添加量との関係を示す図である。It is a figure which shows the relationship between the ratio of the nitrous acid concentration (nitrite nitrogen concentration) with respect to the total nitrogen concentration in a 2nd nitrification tank, and the addition amount of the hydrogen donor (methanol) added to the denitrification tank.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る排水処理装置の構成の一例を示す概略構成図である。図1に示す排水処理装置1は、排水流入ライン10a,10bと、排水貯留槽12と、脱窒槽14と、処理水排出ライン16と、イオン電極法式センサ18と、紫外線吸光度法式センサ20と、水素供与体貯留タンク22と、水素供与体添加ライン24と、水素供与体添加手段としての水素供与体ポンプ26と、制御部28と、を備えるものである。   FIG. 1 is a schematic configuration diagram illustrating an example of a configuration of a wastewater treatment apparatus according to the present embodiment. The waste water treatment apparatus 1 shown in FIG. 1 includes waste water inflow lines 10a and 10b, a waste water storage tank 12, a denitrification tank 14, a treated water discharge line 16, an ion electrode method sensor 18, an ultraviolet absorbance method sensor 20, A hydrogen donor storage tank 22, a hydrogen donor addition line 24, a hydrogen donor pump 26 as a hydrogen donor addition means, and a control unit 28 are provided.

排水貯留槽12には、排水流入ライン10aが接続されている。また、排水流入ライン10bの一端は排水貯留槽12に接続され、他端は脱窒槽14に接続されている。また、脱窒槽14には処理水排出ライン16が接続されている。水素供与体添加ライン24の一端は水素供与体貯留タンク22に接続され、他端は水素供与体ポンプ26を介して脱窒槽14に接続されている。排水貯留槽12内には、イオン電極法式センサ18及び紫外線吸光度法式センサ20が設置されている。両センサと制御部28、及び制御部28と水素供与体ポンプ26とはそれぞれ電気的に接続されている。詳細は後述するが、両センサにより検出された検出値が制御部28に送信され、制御部28は検出値に基づいて、水素供与体ポンプ26の出力等を調節して、水素供与体の添加量を制御する。   A drainage inflow line 10 a is connected to the drainage storage tank 12. One end of the drainage inflow line 10 b is connected to the drainage storage tank 12, and the other end is connected to the denitrification tank 14. A treated water discharge line 16 is connected to the denitrification tank 14. One end of the hydrogen donor addition line 24 is connected to the hydrogen donor storage tank 22, and the other end is connected to the denitrification tank 14 via a hydrogen donor pump 26. In the drainage storage tank 12, an ion electrode method sensor 18 and an ultraviolet absorbance method sensor 20 are installed. Both sensors and the control unit 28, and the control unit 28 and the hydrogen donor pump 26 are electrically connected to each other. Although details will be described later, the detection values detected by both sensors are transmitted to the control unit 28, and the control unit 28 adjusts the output of the hydrogen donor pump 26 and the like based on the detection values to add the hydrogen donor. Control the amount.

脱窒槽14の内部には、攪拌手段としての攪拌装置30を設置することが望ましい。攪拌装置30を設置することにより、脱窒槽14内の微生物と排水との接触効率を高めることができる。図1に示す攪拌装置30は、モータ、シャフト、攪拌羽根を備え、モータの駆動により、シャフトが回転し、シャフトの回転に伴って攪拌羽根が回転する。なお、図1に示す攪拌装置30は一例であって、この構成に制限されるものではない。また、脱窒槽14には、撹拌効率を高める点で、槽内に整流板を設置してもよい。   It is desirable to install a stirring device 30 as stirring means inside the denitrification tank 14. By installing the stirring device 30, the contact efficiency between the microorganisms in the denitrification tank 14 and the wastewater can be increased. The stirring device 30 shown in FIG. 1 includes a motor, a shaft, and a stirring blade, and the shaft is rotated by the driving of the motor, and the stirring blade rotates as the shaft rotates. In addition, the stirring apparatus 30 shown in FIG. 1 is an example, Comprising: It does not restrict | limit to this structure. Moreover, you may install a baffle plate in the tank in the denitrification tank 14 at the point which improves stirring efficiency.

次に、図1に示す排水処理装置1の動作について説明する。   Next, the operation of the waste water treatment apparatus 1 shown in FIG. 1 will be described.

硝酸及び亜硝酸を含む排水は、排水流入ライン10aを通り、排水貯留槽12に貯留される。排水貯留槽12内では、紫外線吸光度法式センサ20により、排水中の硝酸及び亜硝酸濃度(NOx濃度)が検出され、イオン電極法式センサ18により、排水中の硝酸濃度が検出される。本明細書において、硝酸濃度とは、硝酸態窒素濃度のことであり、亜硝酸濃度とは亜硝酸態窒素濃度のことである。検出された濃度値は、制御部28に送信される。その後、排水貯留槽12内の排水は、排水流入ライン10bを通り、脱窒槽14に供給される。また、水素供与体ポンプ26により、水素供与体貯留タンク22から水素供与体添加ライン24を通して脱窒槽14に水素供与体が供給される。水素供与体の添加量については、後述するが、制御部28により、硝酸濃度及び亜硝酸濃度に基づいて制御される。そして、脱窒槽14内では、水素供与体が存在する嫌気状態において、脱窒菌の作用により、排水中の硝酸、亜硝酸が、窒素ガスに還元される。脱窒槽14内で、硝酸、亜硝酸が脱窒反応により減少するとpHが上昇する。そこで、脱窒菌の活性が高いpH6〜8となるよう、脱窒槽14にpH調整剤を添加することが好ましい。脱窒槽14内で脱窒処理された処理水は、処理水排出ライン16を通して系外へ排出される。   Waste water containing nitric acid and nitrous acid passes through the waste water inflow line 10 a and is stored in the waste water storage tank 12. In the waste water storage tank 12, the concentration of nitric acid and nitrous acid (NOx concentration) in the waste water is detected by the ultraviolet absorbance method sensor 20, and the concentration of nitric acid in the waste water is detected by the ion electrode method sensor 18. In the present specification, the nitric acid concentration is a nitrate nitrogen concentration, and the nitrite concentration is a nitrite nitrogen concentration. The detected density value is transmitted to the control unit 28. Thereafter, the wastewater in the wastewater storage tank 12 is supplied to the denitrification tank 14 through the wastewater inflow line 10b. A hydrogen donor is supplied from the hydrogen donor storage tank 22 to the denitrification tank 14 through the hydrogen donor addition line 24 by the hydrogen donor pump 26. As will be described later, the amount of hydrogen donor added is controlled by the control unit 28 based on the nitric acid concentration and the nitrous acid concentration. In the denitrification tank 14, in an anaerobic state where a hydrogen donor is present, nitric acid and nitrous acid in the wastewater are reduced to nitrogen gas by the action of the denitrifying bacteria. When nitric acid and nitrous acid are reduced by the denitrification reaction in the denitrification tank 14, the pH rises. Therefore, it is preferable to add a pH adjuster to the denitrification tank 14 so that the denitrifying bacteria have a high activity of pH 6-8. The treated water denitrified in the denitrification tank 14 is discharged out of the system through the treated water discharge line 16.

以下に、脱窒槽14内に供給する水素供与体の添加量について説明する。   Below, the addition amount of the hydrogen donor supplied in the denitrification tank 14 is demonstrated.

本実施形態で用いられる水素供与体としては、例えば、メタノール、エタノール、イソプロピルアルコール、酢酸、水素ガス、アセトン、グルコース等が挙げられるが、これに制限されるものではなく、水素供与体として従来公知のもの全てを使用することができる。   Examples of the hydrogen donor used in the present embodiment include methanol, ethanol, isopropyl alcohol, acetic acid, hydrogen gas, acetone, glucose, and the like. However, the hydrogen donor is not limited thereto, and is conventionally known as a hydrogen donor. Can be used.

例えば、水素供与体としてメタノールを用い、メタノール(水素供与体)によって硝酸及び亜硝酸が還元される場合、以下の反応式(1),(2)として表される。
6NO +5CHOH → 3N+5CO+7HO+6OH (1)
2NO +CHOH → N+CO+HO+2OH (2)
For example, when methanol is used as a hydrogen donor and nitric acid and nitrous acid are reduced by methanol (hydrogen donor), the following reaction formulas (1) and (2) are expressed.
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH - (1)
2NO 2 + CH 3 OH → N 2 + CO 2 + H 2 O + 2OH (2)

上記反応式(1),(2)から、メタノールの添加量は、硝酸に含まれる窒素量の1.9倍(重量比)、亜硝酸に含まれる窒素量の1.17倍(重量比)となる。このことから分かるように、亜硝酸を還元するために必要な水素供与体の添加量は硝酸を還元するために必要な水素供与体量より少なくてよい。したがって、排水中の硝酸濃度及び亜硝酸濃度をそれぞれ測定し、硝酸及び亜硝酸の還元に必要な水素供与体量を求めることは、薬品使用量の最適化に効果があるとともに処理水質の安定にもつながる。   From the above reaction formulas (1) and (2), the amount of methanol added is 1.9 times the weight of nitrogen contained in nitric acid (weight ratio) and 1.17 times the weight of nitrogen contained in nitrous acid (weight ratio). It becomes. As can be seen from this, the amount of hydrogen donor required to reduce nitrous acid may be less than the amount of hydrogen donor required to reduce nitric acid. Therefore, measuring the concentration of nitric acid and nitrous acid in the wastewater to determine the amount of hydrogen donor required for the reduction of nitric acid and nitrous acid is effective in optimizing the amount of chemicals used and stabilizing the quality of the treated water. Is also connected.

本発明者らは、これまでリアルタイムに測定、モニタリングすることができなかった亜硝酸濃度の測定方法について鋭意検討した結果、紫外線吸光度法式センサ20の測定値からイオン電極法式センサ18の測定値を差し引いた値が、排水中の亜硝酸濃度と高い相関があることを見出した。本実施形態では、紫外線吸光度法式センサ20では、排水中の硝酸及び亜硝酸濃度を硝酸濃度と見なして測定され、イオン電極法式センサ18では、排水中の硝酸濃度が測定されるため、紫外線吸光度法式センサ20により測定された排水中の硝酸及び亜硝酸濃度とイオン電極法式センサ18により測定された排水中の硝酸濃度から、排水中の硝酸濃度及び亜硝酸濃度を求めている。そして、それらの濃度に基づいて水素供与体の添加量を制御する。より具体的には、例えば、紫外線吸光度法式センサ20により測定された排水中の硝酸及び亜硝酸濃度値が制御部28に送信され、また、イオン電極法式センサ18により測定された排水中の硝酸濃度値が制御部28に送信される。そして、制御部28において、測定された紫外線吸光度法式センサ20により測定された排水中の硝酸及び亜硝酸濃度値から、イオン電極法式センサ18により測定された排水中の硝酸濃度値を差し引くことにより、排水中の亜硝酸濃度が求められる。制御部では、イオン電極法式センサ18により測定された排水中の硝酸濃度の硝酸に含まれる窒素量の例えば1.9倍量の水素供与体及び上記求めた排水中の亜硝酸濃度の亜硝酸に含まれる窒素量の例えば1.17倍量の水素供与体が添加されるように、水素供与体ポンプ26の吐出量(出力)が調節される。本実施形態では、水素供与体添加手段として、ポンプを例としたが、これに制限されるものではなく、例えば、電磁弁等でもよい。すなわち、制御部により、上記のように求められた硝酸及び亜硝酸濃度に基づいて、電磁弁の開閉度が調節され、水素供与体の添加量が制御されてもよい。   As a result of intensive studies on the measurement method of nitrous acid concentration that could not be measured and monitored in real time, the present inventors subtracted the measurement value of the ion electrode method sensor 18 from the measurement value of the ultraviolet absorbance method sensor 20. It was found that this value is highly correlated with the concentration of nitrous acid in wastewater. In the present embodiment, the ultraviolet light absorbance method sensor 20 measures the nitric acid and nitrous acid concentrations in the waste water as the nitric acid concentration, and the ion electrode method sensor 18 measures the nitric acid concentration in the waste water. From the nitric acid and nitrous acid concentrations in the wastewater measured by the sensor 20 and the nitric acid concentration in the wastewater measured by the ion electrode method sensor 18, the nitric acid concentration and nitrous acid concentration in the wastewater are obtained. And the addition amount of a hydrogen donor is controlled based on those density | concentrations. More specifically, for example, the nitric acid and nitrous acid concentration values in the wastewater measured by the ultraviolet absorbance method sensor 20 are transmitted to the control unit 28, and the nitric acid concentration in the wastewater measured by the ion electrode method sensor 18 is used. The value is transmitted to the control unit 28. Then, in the control unit 28, by subtracting the nitric acid concentration value in the wastewater measured by the ion electrode method sensor 18 from the nitric acid and nitrous acid concentration values in the wastewater measured by the measured ultraviolet absorbance method sensor 20, Nitrous acid concentration in waste water is required. In the control unit, for example, 1.9 times the amount of nitrogen contained in the nitric acid having the nitric acid concentration in the wastewater measured by the ion electrode sensor 18 and the nitrous acid having the nitrite concentration in the drainage obtained as described above. The discharge amount (output) of the hydrogen donor pump 26 is adjusted so that, for example, 1.17 times the amount of nitrogen contained is added. In the present embodiment, a pump is used as an example of the hydrogen donor addition means, but the present invention is not limited to this, and may be, for example, a solenoid valve. That is, the control unit may adjust the degree of opening and closing of the electromagnetic valve based on the nitric acid and nitrous acid concentrations obtained as described above, and may control the addition amount of the hydrogen donor.

紫外線吸光度法式センサ20のみを用いた場合には、排水中の硝酸及び亜硝酸はすべて硝酸とみなされてしまうため、過剰に水素供与体が添加され、処理水中の有機体炭素濃度が上昇し、薬品添加コストも上昇するが、本実施形態によれば、紫外線吸光度法式センサ20のみを用いた場合より、処理水中の有機体炭素濃度の上昇及び薬品添加コストを抑えることができる。また、イオン電極法式センサ18のみを用いた場合には、排水中の亜硝酸が検出されずに水素供与体添加量が不足して十分な処理が行われず、処理水中の全窒素濃度が上昇してしまうことがあるが、本実施形態によれば、亜硝酸濃度も求めることができるため、イオン電極法式センサ18のみを用いた場合に比べて、必要な水素供与体添加量を供給することができ、処理水中の全窒素濃度の上昇を抑制することができる。   When only the UV absorbance sensor 20 is used, all the nitric acid and nitrous acid in the waste water are regarded as nitric acid, so an excessive amount of hydrogen donor is added, and the organic carbon concentration in the treated water increases. Although the chemical addition cost also increases, according to the present embodiment, the increase in the organic carbon concentration in the treated water and the chemical addition cost can be suppressed as compared with the case where only the ultraviolet absorbance sensor 20 is used. In addition, when only the ion electrode method sensor 18 is used, nitrous acid in the wastewater is not detected, the amount of hydrogen donor added is insufficient and sufficient treatment is not performed, and the total nitrogen concentration in the treated water increases. However, according to the present embodiment, since the concentration of nitrous acid can also be obtained, a necessary hydrogen donor addition amount can be supplied as compared with the case where only the ion electrode type sensor 18 is used. The increase in the total nitrogen concentration in the treated water can be suppressed.

本実施形態では、紫外線吸光度法式センサ20及びイオン電極法式センサ18により、排水中の亜硝酸濃度及び硝酸濃度をそれぞれ迅速に測定することができる。その結果、脱窒槽14に供給される排水中の硝酸及び亜硝酸に濃度変動が生じても、紫外線吸光度法式センサ20及びイオン電極法式センサ18により、リアルタイムに測定した排水中の亜硝酸濃度及び硝酸濃度に基づいて、水素供与体の添加量を制御することが可能となり、処理水中の有機体炭素濃度の上昇、薬品添加コストの上昇、処理水中の全窒素濃度の上昇等を抑制することができる。   In the present embodiment, the concentration of nitrous acid and the concentration of nitric acid in the wastewater can be quickly measured by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18, respectively. As a result, even if concentration fluctuations occur in the nitric acid and nitrous acid in the wastewater supplied to the denitrification tank 14, the concentration of nitrous acid and nitric acid in the wastewater measured in real time by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18 Based on the concentration, it becomes possible to control the addition amount of the hydrogen donor, and it is possible to suppress an increase in organic carbon concentration in the treated water, an increase in chemical addition cost, an increase in the total nitrogen concentration in the treated water, and the like. .

水素供与体の添加量は、紫外線吸光度法式センサ20及びイオン電極法式センサ18により求められた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量と、イオン電極法式センサ18により求められる硝酸濃度の硝酸の還元に必要な水素供与体量の和である。亜硝酸の還元に必要な水素供与体量は、例えばメタノールの場合、紫外線吸光度法式センサ20及びイオン電極法式センサ18により求められた亜硝酸濃度の亜硝酸に含まれる窒素量の1.17倍量を基準として算出されることが好ましく、1.17〜2.1倍量の水素供与体であることがより好ましい。また、紫外線吸光度法式センサ20及びイオン電極法式センサ18により求められる亜硝酸濃度は、紫外線吸光度法では亜硝酸イオンに対する測定感度が硝酸イオンに対する測定感度よりも劣るため、排水中の亜硝酸の実濃度より10%低くなる場合がある。したがって、亜硝酸の還元に必要な水素供与体の添加量は、上記求めた亜硝酸濃度に1.1を乗じた濃度の亜硝酸の還元に必要な水素供与体量であること、或いは、上記求めた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量に1.1倍を乗じた量であることが好ましい。一方、硝酸の還元に必要な水素供与体量は、例えばメタノールの場合はイオン電極法式センサ18により求められる硝酸濃度の硝酸に含まれる窒素量の1.9倍量を基準として算出されることが好ましく、2.0〜3.2倍量の水素供与体であることがより好ましい。すなわち、水素供与体の種類に関わらず、亜硝酸の還元に必要な水素供与体量は硝酸の還元に必要な水素供与体量の3分の2程度ということである。   The amount of hydrogen donor added depends on the amount of hydrogen donor required for the reduction of nitrous acid at the nitrous acid concentration determined by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18, and the nitric acid concentration determined by the ion electrode method sensor 18. This is the sum of the amount of hydrogen donor required for the reduction of nitric acid. For example, in the case of methanol, the amount of hydrogen donor necessary for the reduction of nitrous acid is 1.17 times the amount of nitrogen contained in nitrous acid having a nitrous acid concentration determined by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18. Is preferably calculated on the basis of 1 and more preferably 1.17 to 2.1 times the amount of hydrogen donor. The concentration of nitrous acid determined by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18 is such that the measurement sensitivity to nitrite ions is inferior to the measurement sensitivity to nitrate ions in the ultraviolet absorbance method. May be 10% lower. Therefore, the amount of hydrogen donor required for the reduction of nitrous acid is the amount of hydrogen donor required for the reduction of nitrous acid at a concentration obtained by multiplying the nitrite concentration determined above by 1.1, or the above The amount is preferably an amount obtained by multiplying the amount of hydrogen donor necessary for reduction of nitrous acid having the obtained nitrous acid concentration by 1.1 times. On the other hand, the amount of hydrogen donor necessary for the reduction of nitric acid can be calculated based on, for example, 1.9 times the amount of nitrogen contained in nitric acid having a nitric acid concentration determined by the ion electrode sensor 18 in the case of methanol. Preferably, the hydrogen donor is 2.0 to 3.2 times the amount. That is, regardless of the type of hydrogen donor, the amount of hydrogen donor required for the reduction of nitrous acid is about two thirds of the amount of hydrogen donor required for the reduction of nitric acid.

以下に、紫外線吸光度法式センサ20及びイオン電極法式センサ18の原理について説明する。   Hereinafter, the principle of the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18 will be described.

紫外線吸光度法式センサ20の原理は、以下の通りである。センサに内蔵されたUV光源からパルス出力されたUV光が、センサ先端部のスリット内の測定液を通過し、反対側の受光部で受光される。スリット内の測定液中の硝酸及び亜硝酸は特定範囲のUV光を吸収し、その吸収量が硝酸及び亜硝酸濃度に比例する。紫外線吸光度法式センサ20としては、例えば、WTW社製のNitra Vis700 IQ等が挙げられる。また、イオン電極法式センサ18の原理は以下の通りである。センサ内の硝酸イオン交換薄膜が硝酸を含む溶液と接触すると、溶液中のイオン濃度に応じて電極の電位差が発生する。この電位を測定し、予め作成した検量線からイオン濃度を算出する。また、イオン電極法式センサ18としては、例えば、WTW社製のVARiON700 IQ等が挙げられる。   The principle of the ultraviolet absorbance type sensor 20 is as follows. The UV light pulse-output from the UV light source incorporated in the sensor passes through the measurement liquid in the slit at the tip of the sensor and is received by the light receiving unit on the opposite side. Nitric acid and nitrous acid in the measurement liquid in the slit absorb a specific range of UV light, and the amount of absorption is proportional to the concentration of nitric acid and nitrous acid. Examples of the ultraviolet absorbance method sensor 20 include Nitra Vis700 IQ manufactured by WTW. The principle of the ion electrode sensor 18 is as follows. When the nitrate ion exchange thin film in the sensor comes into contact with a solution containing nitric acid, an electrode potential difference is generated according to the ion concentration in the solution. This potential is measured, and the ion concentration is calculated from a calibration curve prepared in advance. Examples of the ion electrode sensor 18 include VARiON 700 IQ manufactured by WTW.

図2は、本実施形態に係る排水処理装置の構成の他の一例を示す概略構成図である。図2に示す排水処理装置2において、図1に示す排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す排水処理装置2は、脱窒槽14の前段に設けられる排水貯留槽12に代えて硝化槽32を備えるものである。そして、硝化槽32内に紫外線吸光度法式センサ20及びイオン電極法式センサ18が設置されている。また、硝化槽32には、槽内に酸素を供給し且つ攪拌するためのエアレーション装置34が設置されている。硝化槽32には、排水流入ライン10aが接続されている。また、排水流入ライン10bの一端は硝化槽32に接続され、他端は脱窒槽14に接続されている。なお、図2に示す排水処理装置2では、脱窒槽14を硝化槽32の後段に設置した構成を例として説明するが、必ずしもこれに制限されるものではなく、脱窒槽14を硝化槽32の前段に設置した構成であってもよい。   FIG. 2 is a schematic configuration diagram illustrating another example of the configuration of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 2 shown in FIG. 2, the same components as those in the waste water treatment apparatus 1 shown in FIG. The waste water treatment apparatus 2 shown in FIG. 2 includes a nitrification tank 32 in place of the waste water storage tank 12 provided in the preceding stage of the denitrification tank 14. In the nitrification tank 32, an ultraviolet absorbance method sensor 20 and an ion electrode method sensor 18 are installed. The nitrification tank 32 is provided with an aeration apparatus 34 for supplying oxygen to the tank and stirring it. A drainage inflow line 10 a is connected to the nitrification tank 32. One end of the drainage inflow line 10 b is connected to the nitrification tank 32, and the other end is connected to the denitrification tank 14. In the wastewater treatment apparatus 2 shown in FIG. 2, a configuration in which the denitrification tank 14 is installed at the subsequent stage of the nitrification tank 32 will be described as an example. The structure installed in the front | former stage may be sufficient.

以下に、本実施形態の排水処理装置2の動作について説明する。   Below, operation | movement of the waste water treatment apparatus 2 of this embodiment is demonstrated.

本実施形態の処理対象となる排水は、例えば、アンモニア、有機体窒素等を含有する排水であり、例えば、生活排水、食品工場排水、発電所排水、電子産業排水等の産業排水等が挙げられる。アンモニア、有機体窒素等を含有する排水は、排水流入ライン10aから硝化槽32に供給される。そして、硝化槽32内では、エアレーション装置34により曝気されながら、すなわち好気条件下で、主に、硝化菌により、排水中のアンモニウム、有機体窒素が硝酸、亜硝酸に硝化される。なお、硝化菌は、例えば、排水中に含まれるアンモニウムイオンを亜硝酸に硝化する独立栄養性細菌のアンモニア酸化細菌、アンモニウムイオンを硝酸に硝化する独立栄養性細菌の亜硝酸酸化細菌等を含むものから構成される。   The wastewater to be treated in this embodiment is, for example, wastewater containing ammonia, organic nitrogen, and the like, and examples include industrial wastewater such as domestic wastewater, food factory wastewater, power plant wastewater, and electronic industrial wastewater. . Waste water containing ammonia, organic nitrogen and the like is supplied to the nitrification tank 32 from the waste water inflow line 10a. In the nitrification tank 32, ammonium and organic nitrogen in the wastewater are nitrified into nitric acid and nitrous acid mainly by nitrifying bacteria while being aerated by the aeration apparatus 34, that is, under aerobic conditions. In addition, nitrifying bacteria include, for example, ammonia-oxidizing bacteria that are auxotrophic bacteria that nitrify ammonium ions contained in wastewater to nitrite, nitrite-oxidizing bacteria that are auxotrophic bacteria that nitrify ammonium ions to nitric acid, etc. Consists of

硝化槽32内では、上記のようにアンモニア、有機体窒素が硝酸にまで硝化されるとpHが低下する。そこで、細菌の活性が高いpH6〜8となるよう、アルカリ剤を硝化槽32に添加することが好ましい。使用するアルカリ剤は水酸化ナトリウム、水酸化カリウムなどが挙げられるが特に限定はない。   In the nitrification tank 32, when ammonia and organic nitrogen are nitrified to nitric acid as described above, the pH is lowered. Therefore, it is preferable to add an alkaline agent to the nitrification tank 32 so that the pH of the bacteria is high and is 6-8. Examples of the alkaline agent to be used include sodium hydroxide and potassium hydroxide, but are not particularly limited.

また、硝化槽32内では、紫外線吸光度法式センサ20により、排水中の硝酸及び亜硝酸濃度(NOx濃度)が検出され、イオン電極法式センサ18により、排水中の硝酸濃度が検出される。検出された濃度値は、制御部28に送信される。硝化槽32内で処理された一次処理水は、排水流入ライン10bを通り、脱窒槽14に供給される。また、水素供与体ポンプ26により、水素供与体貯留タンク22から水素供与体配管を通して脱窒槽14に水素供与体が供給される。水素供与体の添加量については、前述した通り、制御部28により、硝酸濃度及び亜硝酸濃度に基づいて制御される。そして、脱窒槽14内では、水素供与体が存在する嫌気状態において、脱窒菌の作用により、排水中の硝酸、亜硝酸が、窒素ガスに還元される。脱窒槽14内で脱窒処理された処理水は、処理水排出ライン16を通して系外へ排出される。   Further, in the nitrification tank 32, the concentration of nitric acid and nitrous acid (NOx concentration) in the wastewater is detected by the ultraviolet absorbance method sensor 20, and the concentration of nitric acid in the wastewater is detected by the ion electrode method sensor 18. The detected density value is transmitted to the control unit 28. The primary treated water treated in the nitrification tank 32 is supplied to the denitrification tank 14 through the drainage inflow line 10b. A hydrogen donor pump 26 supplies a hydrogen donor from the hydrogen donor storage tank 22 to the denitrification tank 14 through a hydrogen donor pipe. As described above, the addition amount of the hydrogen donor is controlled by the control unit 28 based on the nitric acid concentration and the nitrous acid concentration. In the denitrification tank 14, in an anaerobic state where a hydrogen donor is present, nitric acid and nitrous acid in the wastewater are reduced to nitrogen gas by the action of the denitrifying bacteria. The treated water denitrified in the denitrification tank 14 is discharged out of the system through the treated water discharge line 16.

本実施形態によれば、硝化槽32内の排水(一次処理水)中の硝酸及び亜硝酸濃度を紫外線吸光度法式センサ20及びイオン電極法式センサ18により迅速に測定すること、すなわち、脱窒槽14に流入する直前の亜硝酸及び硝酸濃度を迅速に測定することができる。その結果、脱窒槽14に供給される排水中の硝酸及び亜硝酸に濃度変動が生じても、紫外線吸光度法式センサ20及びイオン電極法式センサ18により、リアルタイムに測定した排水(一次処理水)中の亜硝酸濃度及び硝酸濃度に基づいて、水素供与体の添加量を制御することが可能となり、処理水中の有機体炭素濃度の上昇、薬品添加コストの上昇、処理水中の全窒素濃度の上昇等を抑制することができる。   According to this embodiment, the nitric acid and nitrous acid concentrations in the waste water (primary treated water) in the nitrification tank 32 are quickly measured by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18, that is, in the denitrification tank 14. The concentration of nitrous acid and nitric acid immediately before entering can be measured quickly. As a result, even if concentration fluctuations occur in the nitric acid and nitrous acid in the wastewater supplied to the denitrification tank 14, the concentration in the wastewater (primary treated water) measured in real time by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18 is increased. Based on the nitrous acid concentration and nitric acid concentration, it becomes possible to control the amount of hydrogen donor added, increasing the organic carbon concentration in the treated water, increasing the cost of adding chemicals, increasing the total nitrogen concentration in the treated water, etc. Can be suppressed.

図3は、本実施形態に係る排水処理装置の構成の他の一例を示す概略構成図である。図3に示す排水処理装置3において、図1に示す排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図3に示す排水処理装置3は、脱窒槽14の後段に設けられる酸化槽36を更に備えるものである。酸化槽36には、槽内に酸素を供給し且つ攪拌するためのエアレーション装置38が設置されている。排水流入ライン10cの一端は脱窒槽14に接続され、他端は酸化槽36に接続されている。また、処理水排出ライン16は酸化槽36に接続されている。   FIG. 3 is a schematic configuration diagram illustrating another example of the configuration of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 3 shown in FIG. 3, the same code | symbol is attached | subjected about the structure similar to the waste water treatment apparatus 1 shown in FIG. 1, and the description is abbreviate | omitted. The waste water treatment apparatus 3 shown in FIG. 3 further includes an oxidation tank 36 provided at the subsequent stage of the denitrification tank 14. The oxidation tank 36 is provided with an aeration device 38 for supplying oxygen to the tank and stirring it. One end of the drainage inflow line 10 c is connected to the denitrification tank 14, and the other end is connected to the oxidation tank 36. Further, the treated water discharge line 16 is connected to the oxidation tank 36.

以下に、本実施形態の排水処理装置3の動作について説明する。   Below, operation | movement of the waste water treatment equipment 3 of this embodiment is demonstrated.

硝酸及び亜硝酸を含有する排水は、排水流入ライン10aから排水貯留槽12に供給される。そして、排水貯留槽12内では、紫外線吸光度法式センサ20により、排水中の硝酸及び亜硝酸濃度(NOx濃度)が検出され、イオン電極法式センサ18により、排水中の硝酸濃度が検出される。検出された濃度値は、制御部28に送信される。そして、排水貯留槽12内の排水は、排水流入ライン10bを通り、脱窒槽14に供給される。また、水素供与体ポンプ26により、水素供与体貯留タンク22から水素供与体配管を通して脱窒槽14に水素供与体が供給される。水素供与体の添加量については、前述した通り、制御部28により、硝酸濃度及び亜硝酸濃度に基づいて制御される。そして、脱窒槽14内では、水素供与体が存在する嫌気状態において、脱窒菌の作用により、排水中の硝酸、亜硝酸が、窒素ガスに還元される。脱窒槽14内で脱窒処理された排水(一次処理水)は、排水流入ライン10cから酸化槽36に供給される。酸化槽36内では、エアレーション装置38により曝気されながら、主に一次処理水中に残存する有機体炭素(水素供与体)が酸化処理される。酸化槽36内で酸化処理された処理水は、処理水排出ライン16から系外へ排出される。酸化槽36ではpHのコントロールは必要ないが、排水濃度が高濃度の場合には、脱窒処理で生成する無機炭素も高濃度になるため、酸化処理(曝気)により、無機炭素が二酸化炭素として放出されることで、pHが上昇する場合がある。そして、処理水のpHが排水基準や環境基準が満たされない場合等は、塩酸等の酸を酸化槽36に添加して、処理水の基準値となるように調整することが好ましい。   Waste water containing nitric acid and nitrous acid is supplied to the waste water storage tank 12 from the waste water inflow line 10a. In the drainage storage tank 12, the concentration of nitric acid and nitrous acid (NOx concentration) in the wastewater is detected by the ultraviolet absorbance method sensor 20, and the concentration of nitric acid in the wastewater is detected by the ion electrode method sensor 18. The detected density value is transmitted to the control unit 28. And the waste_water | drain in the waste_water | drain storage tank 12 passes along the waste_water | drain inflow line 10b, and is supplied to the denitrification tank 14. FIG. A hydrogen donor pump 26 supplies a hydrogen donor from the hydrogen donor storage tank 22 to the denitrification tank 14 through a hydrogen donor pipe. As described above, the addition amount of the hydrogen donor is controlled by the control unit 28 based on the nitric acid concentration and the nitrous acid concentration. In the denitrification tank 14, in an anaerobic state where a hydrogen donor is present, nitric acid and nitrous acid in the wastewater are reduced to nitrogen gas by the action of the denitrifying bacteria. Waste water (primary treated water) denitrified in the denitrification tank 14 is supplied to the oxidation tank 36 from the drain inflow line 10c. In the oxidation tank 36, organic carbon (hydrogen donor) remaining mainly in the primary treated water is oxidized while being aerated by the aeration apparatus 38. The treated water oxidized in the oxidation tank 36 is discharged out of the system from the treated water discharge line 16. Although it is not necessary to control the pH in the oxidation tank 36, when the wastewater concentration is high, the inorganic carbon produced by the denitrification treatment also becomes a high concentration, so that the inorganic carbon is converted into carbon dioxide by oxidation treatment (aeration). By being released, the pH may increase. When the pH of the treated water does not satisfy the drainage standard or the environmental standard, it is preferable to add an acid such as hydrochloric acid to the oxidation tank 36 and adjust the treated water so that it becomes the reference value of the treated water.

本実施形態によれば、排水中の硝酸及び亜硝酸濃度を紫外線吸光度法式センサ20及びイオン電極法式センサ18により迅速に測定すること、すなわち、脱窒槽14に流入する直前の亜硝酸及び硝酸濃度を迅速に測定することができる。その結果、亜硝酸及び硝酸の還元に必要な水素供与体を適切に制御することができるため、例えば、一次処理水中の有機体炭素濃度の上昇を抑えることができる。したがって、酸化槽36で処理する有機体炭素(水素供与体)の負荷の上昇を抑えることができるため、酸化槽36の容積を小さくすることが可能となる。   According to the present embodiment, the concentration of nitric acid and nitrous acid in the waste water is quickly measured by the ultraviolet absorbance method sensor 20 and the ion electrode method sensor 18, that is, the concentration of nitrous acid and nitric acid immediately before flowing into the denitrification tank 14 is determined. It can be measured quickly. As a result, the hydrogen donor necessary for the reduction of nitrous acid and nitric acid can be appropriately controlled, and for example, an increase in the organic carbon concentration in the primary treated water can be suppressed. Therefore, an increase in the load of organic carbon (hydrogen donor) to be treated in the oxidation tank 36 can be suppressed, and the volume of the oxidation tank 36 can be reduced.

以下、硝化・脱窒反応におけるその他の条件について説明する。   Hereinafter, other conditions in the nitrification / denitrification reaction will be described.

本実施形態の排水処理において、排水の温度が低いと、硝化・脱窒工程での処理速度が低下するため、必要に応じて、硝化槽、脱窒槽に加温設備を設置し、槽内の排水を加温して各処理を行ってもよい。硝化反応、脱窒反応の温度は10〜40℃の範囲であることが好ましい。   In the wastewater treatment of this embodiment, if the temperature of the wastewater is low, the treatment speed in the nitrification / denitrification process decreases, so if necessary, install heating equipment in the nitrification tank and denitrification tank. Each treatment may be performed by heating the waste water. The temperature of the nitrification reaction and denitrification reaction is preferably in the range of 10 to 40 ° C.

排水中にSS成分、過酸化水素、フッ素イオンが混入している場合、過酸化水素やフッ素イオン等は生物に対し阻害性を有するため、硝化反応や脱窒反応を行う前に、予め除去しておくことが好ましい。これらの阻害性物質の処理方法としては、既存の技術を使用することができ、過酸化水素の処理においては、酵素を添加する方法、還元剤を注入する方法、活性炭に接触させる方法等が挙げられる。また、SS成分等は凝集沈殿により処理することができ、フッ素イオンの処理においては、カルシウムを添加してフッ化カルシウムとして除去する方法、イオン交換樹脂にて処理する方法等が挙げられる。   When SS components, hydrogen peroxide, and fluorine ions are mixed in the wastewater, hydrogen peroxide and fluorine ions have an inhibitory effect on living organisms. Therefore, remove them before performing the nitrification reaction or denitrification reaction. It is preferable to keep it. As a method for treating these inhibitory substances, existing techniques can be used, and in the treatment of hydrogen peroxide, a method of adding an enzyme, a method of injecting a reducing agent, a method of contacting with activated carbon and the like can be mentioned. It is done. In addition, SS components and the like can be treated by coagulation precipitation, and in the treatment of fluorine ions, there are a method of adding calcium and removing it as calcium fluoride, a method of treating with an ion exchange resin, and the like.

硝化工程及び脱窒工程を行う前に、Ca等を用いてフッ素イオンを予め除去すると、本実施形態で処理する排水中にCaが含まれる場合がり、pHによっては、脱窒処理で無機炭素とカルシウムが反応して炭酸カルシウムが析出する可能性がある。その場合には、脱窒工程のpHをランゲリア指数を参考に決定することで、炭酸カルシウムの析出を防ぐことができる。これらは、槽内を攪拌することができないUSBでは適用できない対処方法である。本実施形態では、排水中のCaイオン濃度が200mg/L以上であっても、pH調整により、炭酸カルシウムの析出を抑制することができる。   If fluorine ions are previously removed using Ca or the like before performing the nitrification step and the denitrification step, Ca may be contained in the wastewater to be treated in the present embodiment. There is a possibility that calcium carbonate reacts to precipitate calcium carbonate. In that case, precipitation of calcium carbonate can be prevented by determining the pH of the denitrification step with reference to the Langeria index. These are coping methods that cannot be applied with USB, which cannot stir the inside of the tank. In the present embodiment, even if the Ca ion concentration in the waste water is 200 mg / L or more, precipitation of calcium carbonate can be suppressed by adjusting the pH.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

<実施例1>
硝酸ナトリウム及び亜硝酸ナトリウムを純水に溶解し、表1に示す標準液を作成し、紫外線吸光度法式センサ(WTW社製のNitra Vis700 IQ)及びイオン電極法式センサ(WTW社製のVARiON700 IQ)で標準液の濃度を測定した。表1に、標準液中の硝酸濃度、亜硝酸濃度、両濃度の合計(NO−N)、紫外線吸光度法式センサによる測定値A(濃度値)、及びイオン電極法式センサによる測定値B(濃度値)、及び測定値A−測定値B(=NO−N)をまとめた。
<Example 1>
Sodium nitrate and sodium nitrite are dissolved in pure water, and standard solutions shown in Table 1 are prepared. Using an ultraviolet absorbance method sensor (Nitra Vis700 IQ manufactured by WTW) and an ion electrode method sensor (VARiON700 IQ manufactured by WTW). The concentration of the standard solution was measured. Table 1 shows the nitric acid concentration, nitrous acid concentration in the standard solution, the sum of both concentrations (NO x -N), the measurement value A (concentration value) by the ultraviolet absorbance method sensor, and the measurement value B (concentration) by the ion electrode method sensor. value), and measurements A- summarizing measurement B (= NO 2 -N).

Figure 2014113547
Figure 2014113547

図4は、標準液の亜硝酸濃度と硝酸濃度の合計(NO−N)と紫外吸光度法式硝酸センサの測定値の関係を示す図である。表1及び図4から分かるように、標準液の亜硝酸濃度と硝酸濃度の合計(NO−N)と紫外線吸光度法式センサの測定値はほぼ一致した。 FIG. 4 is a graph showing the relationship between the total nitrite concentration and the nitric acid concentration (NO x -N) of the standard solution and the measured value of the ultraviolet absorbance method nitric acid sensor. As can be seen from Table 1 and FIG. 4, the total of the nitrous acid concentration and the nitric acid concentration (NO x -N) of the standard solution and the measured value of the UV absorbance sensor almost coincided.

図5は、標準液の亜硝酸濃度と、紫外線吸光度法式センサの測定値からイオン電極法式センサの測定値を差し引いた値との関係を示す図である。紫外線吸光度法式センサの測定値からイオン電極法式センサの測定値を差し引いた値は、標準液の亜硝酸濃度に比べ、最大で約10%程度低濃度となる傾向であったが、濃度の増減に対する比例係数はほぼ一定であった。   FIG. 5 is a diagram showing the relationship between the concentration of nitrous acid in the standard solution and the value obtained by subtracting the measurement value of the ion electrode method sensor from the measurement value of the ultraviolet absorbance method sensor. The value obtained by subtracting the measurement value of the ion electrode method sensor from the measurement value of the ultraviolet absorbance method sensor tended to be about 10% lower than the nitrous acid concentration of the standard solution. The proportionality coefficient was almost constant.

<実施例2>
図6は、実施例2で用いた排水処理装置の構成を示す模式図である。図6に示す排水処理装置4は、第1硝化槽40と、第2硝化槽42と、脱窒槽44と、酸化槽46と、沈殿槽48と、排水流入ライン50a,50b,50c,50d,50eと、処理水排出ライン52と、汚泥返送ライン54と、イオン電極法式センサ56と、紫外線吸光度法式センサ58と、水素供与体貯留タンク60と、水素供与体添加ライン62と、水素供与体ポンプ64と、制御部66と、を備えるものである。第1硝化槽40には排水流入ライン50aが接続されている。排水流入ライン50bの一端は第1硝化槽40に接続され、他端は第2硝化槽42に接続され、排水流入ライン50cの一端は第2硝化槽42に接続され、他端は脱窒槽44に接続され、排水流入ライン50dの一端は脱窒槽44に接続され、他端は酸化槽46に接続され、排水流入ライン50eの一端は酸化槽46に接続され、他端は沈殿槽48に接続され、汚泥返送ライン54の一端は沈殿槽48の底部に接続され、他端は排水流入ライン50aに接続されている。また、沈殿槽48には、処理水排出ライン52が接続されている。水素供与体添加ライン62の一端は水素供与体貯留タンク60に接続され、他端は脱窒槽44に接続されている。第1硝化槽40及び第2硝化槽42内にはエアレーション装置68,70が設置され、さらに第2硝化槽42内にはイオン電極法式センサ56と、紫外線吸光度法式センサ58とが設置されている。イオン電極法式センサ56及び紫外線吸光度法式センサ58と制御部66とは電気的に接続されており、両センサの測定値が制御部66に送信されるようになっている。制御部66と水素供与体ポンプ64とは電気的に接続されており、両センサにより測定された測定値(硝酸及び亜硝酸濃度値)に基づいて、水素供与体ポンプ64の出力を調節し、水素供与体の添加量が制御されるようになっている。
<Example 2>
FIG. 6 is a schematic diagram illustrating a configuration of the waste water treatment apparatus used in the second embodiment. 6 includes a first nitrification tank 40, a second nitrification tank 42, a denitrification tank 44, an oxidation tank 46, a precipitation tank 48, and drainage inflow lines 50a, 50b, 50c, 50d, 50e, treated water discharge line 52, sludge return line 54, ion electrode method sensor 56, ultraviolet absorbance method sensor 58, hydrogen donor storage tank 60, hydrogen donor addition line 62, and hydrogen donor pump. 64 and a control unit 66. A drainage inflow line 50 a is connected to the first nitrification tank 40. One end of the drainage inflow line 50 b is connected to the first nitrification tank 40, the other end is connected to the second nitrification tank 42, one end of the drainage inflow line 50 c is connected to the second nitrification tank 42, and the other end is denitrification tank 44. One end of the drainage inflow line 50d is connected to the denitrification tank 44, the other end is connected to the oxidation tank 46, one end of the drainage inflow line 50e is connected to the oxidation tank 46, and the other end is connected to the precipitation tank 48. One end of the sludge return line 54 is connected to the bottom of the sedimentation tank 48, and the other end is connected to the drainage inflow line 50a. In addition, a treated water discharge line 52 is connected to the settling tank 48. One end of the hydrogen donor addition line 62 is connected to the hydrogen donor storage tank 60, and the other end is connected to the denitrification tank 44. Aeration devices 68 and 70 are installed in the first nitrification tank 40 and the second nitrification tank 42, and an ion electrode method sensor 56 and an ultraviolet absorbance method sensor 58 are installed in the second nitrification tank 42. . The ion electrode method sensor 56 and the ultraviolet absorbance method sensor 58 and the control unit 66 are electrically connected, and the measured values of both sensors are transmitted to the control unit 66. The controller 66 and the hydrogen donor pump 64 are electrically connected, and the output of the hydrogen donor pump 64 is adjusted based on the measured values (nitric acid and nitrous acid concentration values) measured by both sensors. The amount of hydrogen donor added is controlled.

排水の組成及び各槽の寸法等は以下の通りである。
第1硝化槽:寸法382mmφ×528mm高さ、容量25L(水面高さ 約225mm)、処理方法は浮遊式活性汚泥法
第2硝化槽:寸法140mm×140mm×550mm高さ、容量5.1L(水面高さ約320mm)、処理方法は浮遊式活性汚泥法
第1及び第2硝化槽内の水温:20℃
第1及び第2硝化槽内のDO濃度:5mg/L
脱窒槽:寸法382mmφ×528mm高さ、容量22L(水面高さ 約190mm)、処理方法は従属栄養脱窒処理
酸化槽:寸法200mm×200mm×250mm高さ、容量4.5L(水面高さ 約113mm)
沈殿槽:寸法φ100mm×200mm高さ、容量15L
The composition of drainage and the dimensions of each tank are as follows.
First nitrification tank: dimension 382 mmφ × 528 mm height, capacity 25 L (water surface height approximately 225 mm), treatment method is floating activated sludge method Second nitrification tank: dimension 140 mm × 140 mm × 550 mm height, capacity 5.1 L (water surface) The height is about 320 mm), and the treatment method is the floating activated sludge method. Water temperature in the first and second nitrification tanks: 20 ° C
DO concentration in the first and second nitrification tanks: 5 mg / L
Denitrification tank: dimension 382 mmφ × 528 mm height, capacity 22 L (water surface height approximately 190 mm), treatment method is heterotrophic denitrification treatment Oxidation tank: dimension 200 mm × 200 mm × 250 mm height, capacity 4.5 L (water surface height approximately 113 mm) )
Sedimentation tank: dimension φ100mm × 200mm height, capacity 15L

実施例2では、排水が排水流入ライン50aから第1硝化槽40に供給され、硝化処理される。硝化処理された一次排水が排水流入ライン50bから第2硝化槽42に供給され、硝化処理される。第2硝化槽42では、紫外線吸光度法式センサ58により硝酸及び亜硝酸濃度が測定され、イオン電極法式センサ56により硝酸濃度が測定され、それらの測定値が制御部66に送信される。第2硝化槽42で硝化処理された二次排水が排水流入ライン50cから脱窒槽44に供給される。また、制御部66は、測定値に基づいて、硝酸濃度及び亜硝酸濃度を求め、求めた亜硝酸濃度の亜硝酸に含まれる窒素量の1.17倍量の水素供与体と、求めた硝酸濃度の硝酸に含まれる窒素量の1.9倍量の水素供与体との和を水素供与体量の添加量として、脱窒槽44内に水素供与体が供給されるように、水素供与体ポンプ64の出力を制御する。脱窒槽44で脱窒処理された三次排水が排水流入ライン50dから酸化槽46に供給され、酸化処理された後、酸化処理された四次排水が排水流入ライン50eから沈殿槽48に供給され、四次排水中の汚泥が排水から分離される。沈殿槽48の上澄水を処理水として、処理水排出ライン52から取り出され、沈殿槽48の底部に堆積した汚泥は汚泥返送ライン54から排水流入ライン50aを経由して第1硝化槽40に供給される。   In Example 2, waste water is supplied from the waste water inflow line 50a to the first nitrification tank 40 and subjected to nitrification treatment. The nitrified primary waste water is supplied from the drain inflow line 50b to the second nitrification tank 42 and nitrified. In the second nitrification tank 42, the concentration of nitric acid and nitrous acid is measured by the ultraviolet absorbance method sensor 58, the concentration of nitric acid is measured by the ion electrode method sensor 56, and the measured values are transmitted to the controller 66. The secondary waste water nitrified in the second nitrification tank 42 is supplied to the denitrification tank 44 from the drain inflow line 50c. Further, the control unit 66 obtains the nitric acid concentration and the nitrous acid concentration based on the measured values, 1.17 times the amount of nitrogen contained in the nitrous acid having the obtained nitrous acid concentration, and the obtained nitric acid. The hydrogen donor pump is supplied so that the hydrogen donor is supplied into the denitrification tank 44 by adding the hydrogen donor amount of 1.9 times the amount of nitrogen contained in the nitric acid in the concentration to the added amount of the hydrogen donor amount. 64 outputs are controlled. The tertiary drainage denitrified in the denitrification tank 44 is supplied from the drain inflow line 50d to the oxidation tank 46, and after the oxidation treatment, the oxidized fourth drainage is supplied from the drain inflow line 50e to the settling tank 48, The sludge in the fourth drain is separated from the drain. The sludge collected from the treated water discharge line 52 using the supernatant water of the settling tank 48 as treated water and accumulated at the bottom of the settling tank 48 is supplied from the sludge return line 54 to the first nitrification tank 40 via the drainage inflow line 50a. Is done.

実施例2における排水は塩化アンモニウムを添加して、NH−N濃度200mg/Lとなるようにそれぞれ調製した合成排水を用いた。 The waste water in Example 2 was a synthetic waste water prepared by adding ammonium chloride and adjusting the NH 4 —N concentration to 200 mg / L.

図7は、第2硝化槽における全窒素濃度に対する亜硝酸濃度(亜硝酸態窒素濃度)の比率と脱窒槽に添加した水素供与体(メタノール)の添加量との関係を示す図である。図7に示すように、全窒素濃度(TN)に対して亜硝酸濃度が多くなるにつれて、脱窒槽に供給する水素供与体量は少なくなった。例えば、特許文献4に示されているように、硝酸態窒素の脱窒のために必要なメタノールの添加量は、硝酸に含まれる窒素量の2.8倍量必要であると知られている。しかし、図7に示されるように、全窒素濃度に対して亜硝酸濃度(硝酸態窒素濃度)が70%含まれる場合には、硝酸及び亜硝酸に含まれる全窒素量の1.5倍量の水素供与体を添加すればよく、従来知られている水素供与体の添加量より少なくて済むことがわかる。すなわち、亜硝酸濃度及び硝酸濃度をそれぞれ求め、求めた濃度の硝酸及び亜硝酸を還元するために必要な水素供与体の添加量を求めた実施例2では、水素供与体の添加量を適切に制御することができる。   FIG. 7 is a diagram showing the relationship between the ratio of nitrite concentration (nitrite nitrogen concentration) to the total nitrogen concentration in the second nitrification tank and the amount of hydrogen donor (methanol) added to the denitrification tank. As shown in FIG. 7, as the nitrous acid concentration increased with respect to the total nitrogen concentration (TN), the amount of hydrogen donor supplied to the denitrification tank decreased. For example, as shown in Patent Document 4, it is known that the amount of methanol required for denitrification of nitrate nitrogen needs to be 2.8 times the amount of nitrogen contained in nitric acid. . However, as shown in FIG. 7, when 70% of the nitrous acid concentration (nitrate nitrogen concentration) is included with respect to the total nitrogen concentration, 1.5 times the total nitrogen amount contained in nitric acid and nitrous acid. It can be seen that the amount of the hydrogen donor may be added, and the amount of hydrogen donor may be less than that conventionally known. That is, in Example 2 where the concentration of nitrous acid and the concentration of nitric acid were respectively determined, and the amount of hydrogen donor required to reduce the determined concentrations of nitric acid and nitrous acid was determined, the amount of hydrogen donor added was appropriately set. Can be controlled.

1〜4 排水処理装置、10a〜10c,50a〜50e 排水流入ライン、12 排水貯留槽、14,44 脱窒槽、16,52 処理水排出ライン、18,56 イオン電極法式センサ、20,58 紫外線吸光度法式センサ、22,60 水素供与体貯留タンク、24,62 水素供与体添加ライン、26,64 水素供与体ポンプ、28,66 制御部、30 攪拌装置、32 硝化槽、34,38,68,70 エアレーション装置、36,46 酸化槽、40 第1硝化槽、42 第2硝化槽、48 沈殿槽、54 汚泥返送ライン。   1-4 Wastewater treatment equipment, 10a-10c, 50a-50e Wastewater inflow line, 12 Wastewater storage tank, 14,44 Denitrification tank, 16,52 Treated water discharge line, 18,56 Ion electrode type sensor, 20,58 UV absorbance Legal sensor, 22, 60 Hydrogen donor storage tank, 24, 62 Hydrogen donor addition line, 26, 64 Hydrogen donor pump, 28, 66 Control unit, 30 Stirrer, 32 Nitrification tank, 34, 38, 68, 70 Aeration apparatus, 36, 46 Oxidation tank, 40 First nitrification tank, 42 Second nitrification tank, 48 Sedimentation tank, 54 Sludge return line.

Claims (6)

硝酸及び亜硝酸を含む排水に水素供与体を添加する水素供与体添加手段と、
前記水素供与体が添加された前記排水を嫌気的に生物処理する脱窒槽と、
前記排水中の前記硝酸及び前記亜硝酸濃度を測定する紫外線吸光度法式センサと、
前記排水中の前記硝酸濃度を測定するイオン電極法式センサと、
前記紫外線吸光度法式センサにより測定された前記硝酸及び前記亜硝酸濃度と、前記イオン電極法式センサにより測定された前記硝酸濃度とにより求められる前記排水中の硝酸濃度及び亜硝酸濃度に基づいて、前記水素供与体添加手段により前記排水中に添加される前記水素供与体の添加量を制御する制御部と、を備えることを特徴とする硝酸及び亜硝酸を含む排水の処理装置。
Hydrogen donor addition means for adding a hydrogen donor to waste water containing nitric acid and nitrous acid;
A denitrification tank for anaerobically biotreating the wastewater to which the hydrogen donor is added;
An ultraviolet absorbance method sensor for measuring the nitric acid and nitrous acid concentrations in the waste water;
An ion electrode type sensor for measuring the concentration of nitric acid in the waste water;
Based on the concentration of nitric acid and nitrous acid measured by the ultraviolet absorbance method sensor and the concentration of nitric acid and nitrous acid in the waste water determined by the concentration of nitric acid measured by the ion electrode method sensor, the hydrogen A wastewater treatment apparatus containing nitric acid and nitrous acid, comprising: a control unit that controls an addition amount of the hydrogen donor added to the wastewater by a donor addition means.
前記水素供与体の添加量は、前記求められた亜硝酸濃度に1.1を乗じた濃度の亜硝酸の還元に必要な水素供与体量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることを特徴とする請求項1記載の硝酸及び亜硝酸を含む排水の処理装置。   The amount of hydrogen donor added is the amount of hydrogen donor necessary for the reduction of nitrous acid having a concentration obtained by multiplying the determined nitrous acid concentration by 1.1 and the reduction of nitric acid having the determined nitric acid concentration. The apparatus for treating waste water containing nitric acid and nitrous acid according to claim 1, which is a sum of the amount of hydrogen donor. 前記水素供与体の添加量は、前記求められた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量に1.1を乗じた量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることを特徴とする請求項1記載の硝酸及び亜硝酸を含む排水の処理装置。   The amount of hydrogen donor added is the amount obtained by multiplying the amount of hydrogen donor required for the reduction of nitrous acid with the determined nitrite concentration by 1.1 and the reduction of nitric acid with the determined nitric acid concentration. The apparatus for treating waste water containing nitric acid and nitrous acid according to claim 1, which is a sum of the amount of hydrogen donor. 硝酸及び亜硝酸を含む排水に水素供与体を添加する水素供与体添加工程と、
前記排水中の前記硝酸及び前記亜硝酸濃度を紫外線吸光度法式により測定する第1測定工程と、
前記排水中の前記硝酸濃度をイオン電極法式により測定する第2測定工程と、
前記水素供与体が添加された前記排水を嫌気的に生物処理する脱窒工程と、を備え、
前記水素供与体添加工程では、前記紫外線吸光度法式により測定された前記硝酸及び前記亜硝酸濃度と、前記イオン電極法式により測定された前記硝酸濃度とにより求められる前記排水中の硝酸濃度及び亜硝酸濃度に基づいて、前記排水中に添加する前記水素供与体の添加量を制御することを特徴とする硝酸及び亜硝酸を含む排水の処理方法。
A hydrogen donor addition step of adding a hydrogen donor to waste water containing nitric acid and nitrous acid;
A first measurement step of measuring the concentration of nitric acid and nitrous acid in the waste water by an ultraviolet absorbance method;
A second measurement step of measuring the nitric acid concentration in the waste water by an ion electrode method,
A denitrification step for anaerobically biotreating the wastewater to which the hydrogen donor has been added,
In the hydrogen donor addition step, the concentration of nitric acid and nitrous acid in the wastewater determined by the nitric acid and nitrous acid concentrations measured by the ultraviolet absorbance method and the nitric acid concentration measured by the ion electrode method A method for treating wastewater containing nitric acid and nitrous acid, wherein the amount of the hydrogen donor added to the wastewater is controlled based on the above.
前記水素供与体の添加量は、前記求められた亜硝酸濃度に1.1を乗じた濃度の亜硝酸の還元に必要な水素供与体量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることを特徴とする請求項4記載の硝酸及び亜硝酸を含む排水の処理方法。   The amount of hydrogen donor added is the amount of hydrogen donor necessary for the reduction of nitrous acid having a concentration obtained by multiplying the determined nitrous acid concentration by 1.1 and the reduction of nitric acid having the determined nitric acid concentration. 5. The method for treating waste water containing nitric acid and nitrous acid according to claim 4, wherein the amount is a sum of the amount of hydrogen donor. 前記水素供与体の添加量は、前記求められた亜硝酸濃度の亜硝酸の還元に必要な水素供与体量に1.1を乗じた量と前記求められた硝酸濃度の硝酸の還元に必要な水素供与体量との和であることを特徴とする請求項4記載の硝酸及び亜硝酸を含む排水の処理方法。   The amount of hydrogen donor added is the amount obtained by multiplying the amount of hydrogen donor required for the reduction of nitrous acid with the determined nitrite concentration by 1.1 and the reduction of nitric acid with the determined nitric acid concentration. 5. The method for treating waste water containing nitric acid and nitrous acid according to claim 4, wherein the amount is a sum of the amount of hydrogen donor.
JP2012269671A 2012-12-10 2012-12-10 Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid Active JP5934083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269671A JP5934083B2 (en) 2012-12-10 2012-12-10 Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269671A JP5934083B2 (en) 2012-12-10 2012-12-10 Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid

Publications (2)

Publication Number Publication Date
JP2014113547A true JP2014113547A (en) 2014-06-26
JP5934083B2 JP5934083B2 (en) 2016-06-15

Family

ID=51170139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269671A Active JP5934083B2 (en) 2012-12-10 2012-12-10 Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid

Country Status (1)

Country Link
JP (1) JP5934083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532535A (en) * 2014-08-21 2017-11-02 シャープ株式会社 Sensor and system for measuring concentration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145355A (en) * 1977-05-17 1978-12-18 Stamicarbon Method of and device for biologically purifying waste water
JPS547758A (en) * 1977-06-20 1979-01-20 Ebara Infilco Co Ltd Method of treating waste water
JPS63191945A (en) * 1987-02-05 1988-08-09 Kankyo Eng Kk Method and apparatus for quantitative determination of non-functional nitrogen
JPH01242940A (en) * 1988-03-24 1989-09-27 Fuji Electric Co Ltd Method of measuring concentration of nitric acid ion and concentration of nitrous acid ion
JP2004050149A (en) * 2002-07-24 2004-02-19 Ebara Corp Biological treatment method and equipment for liquid organic waste or sewage
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
US20100126930A1 (en) * 2005-08-24 2010-05-27 Parkson Corporation Denitrification process and system
JP2010197383A (en) * 2009-01-30 2010-09-09 Meidensha Corp Method and apparatus for measuring nitrite nitrogen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145355A (en) * 1977-05-17 1978-12-18 Stamicarbon Method of and device for biologically purifying waste water
US4183810A (en) * 1977-05-17 1980-01-15 Stamicarbon, B.V. Process and device for the biological purification of waste water
JPS547758A (en) * 1977-06-20 1979-01-20 Ebara Infilco Co Ltd Method of treating waste water
JPS63191945A (en) * 1987-02-05 1988-08-09 Kankyo Eng Kk Method and apparatus for quantitative determination of non-functional nitrogen
JPH01242940A (en) * 1988-03-24 1989-09-27 Fuji Electric Co Ltd Method of measuring concentration of nitric acid ion and concentration of nitrous acid ion
JP2004050149A (en) * 2002-07-24 2004-02-19 Ebara Corp Biological treatment method and equipment for liquid organic waste or sewage
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
US20100126930A1 (en) * 2005-08-24 2010-05-27 Parkson Corporation Denitrification process and system
JP2012187587A (en) * 2005-08-24 2012-10-04 Parkson Corp Denitrification process and system
JP2010197383A (en) * 2009-01-30 2010-09-09 Meidensha Corp Method and apparatus for measuring nitrite nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532535A (en) * 2014-08-21 2017-11-02 シャープ株式会社 Sensor and system for measuring concentration

Also Published As

Publication number Publication date
JP5934083B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5211675B2 (en) Method for removing ammoniacal nitrogen and COD components from ammonia water
WO2011061084A1 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP5742195B2 (en) Method and system for processing ammoniacal nitrogen-containing liquid
CN107777790A (en) High calcium high-salt sewage denitrogenation carbon source
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP6179630B1 (en) Biological treatment method and biological treatment apparatus
JP2010000479A (en) Organic raw water denitrification method including scale prevention
US6882419B2 (en) System for improved biological nutrient removal
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP5934083B2 (en) Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid
JP4660211B2 (en) Water treatment control system and water treatment control method
JP4408706B2 (en) Nitrogen removal method and apparatus
US20150251937A1 (en) Method and an apparatus for simultaneous removal of thiosalts and nitrogen compounds in waste water
JP2011139982A (en) Method and apparatus for treating nitrogen-containing water biologically
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
KR100306206B1 (en) Method and equipment for the treatment of wastewater containing nitrate-nitrogen
JPH067792A (en) Treatment of organic waste water treatment apparatus
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
KR101066892B1 (en) System for controlling the dosage of external carbon source using continuous measurement device of nitrogen ion
Iurchenko et al. Influence on Environmental Safety of the Drinking Water of Nitrification in Water Reservoir Being a Source of Water Supply and Filter Filling Materials in Water Treatment Facilities
JPH0938682A (en) Biological water treatment
US10800688B2 (en) Controlling digester biosolids and wastewater activated sludge systems
KR20200028585A (en) Annamox reactor and water treatment method using the same
Kim et al. New ORP/pH based control strategy for chlorination and dechlorination of wastewater: pilot scale application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250