JP2014110218A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2014110218A
JP2014110218A JP2012265472A JP2012265472A JP2014110218A JP 2014110218 A JP2014110218 A JP 2014110218A JP 2012265472 A JP2012265472 A JP 2012265472A JP 2012265472 A JP2012265472 A JP 2012265472A JP 2014110218 A JP2014110218 A JP 2014110218A
Authority
JP
Japan
Prior art keywords
heat
battery
transfer plate
heat transfer
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012265472A
Other languages
Japanese (ja)
Inventor
Tomonori Sasaki
智則 佐々木
Takayuki Kato
崇行 加藤
Shintaro Watanabe
慎太郎 渡▲辺▼
Eiji Oishi
英史 大石
Takashi Sakai
崇 酒井
Hiroo Ueda
浩生 植田
Naoto Morisaku
直人 守作
Kazuki Maeda
和樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012265472A priority Critical patent/JP2014110218A/en
Publication of JP2014110218A publication Critical patent/JP2014110218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce difference in temperature between secondary batteries, while suppressing increase in the number of components.SOLUTION: In a battery module 50, rectangular batteries 51A-51D are aligned in a state of being held in a battery holder 52, and heat-transfer plates 53A-53D are aligned such that the rectangular batteries 51A-51D and the heat-transfer plates 53A-53D are alternately arranged. A surface opposite to a surface facing a second coated portion 63 of a heat radiation part 72 of the heat-transfer plates 53A-53D surface-contact with a weight main body 33. In an alignment direction of the rectangular batteries 51A-51D, the heat-transfer plate 53A has the least area of contact with the weight main body 33 of the heat-transfer plate 53A joined to the rectangular battery 51A provided at the most distal end, and the heat-transfer plate 53B has the next least area of contact after the heat-transfer plate 53A. The heat-transfer plate 53C has the next least area of contact with the weight main body 33 after the heat-transfer plate 53B, and the heat-transfer plate 53D joined to the rectangular battery 51D has the largest area of contact with the weight main body 33.

Description

本発明は、二次電池が発する熱を放熱体に放熱する電池モジュールに関する。   The present invention relates to a battery module that radiates heat generated by a secondary battery to a radiator.

電池モジュールにおいては、複数の二次電池が並設されている。このとき、複数の二次電池間で温度差が生じると、特定の二次電池の寿命が短くなる。特許文献1に記載のバッテリシステムでは、複数の二次電池(電池セル)を並設するとともに、並設方向に隣り合う二次電池の間には、セパレータが設けられている。   In the battery module, a plurality of secondary batteries are arranged in parallel. At this time, if a temperature difference occurs between the plurality of secondary batteries, the lifetime of the specific secondary battery is shortened. In the battery system described in Patent Document 1, a plurality of secondary batteries (battery cells) are arranged in parallel, and a separator is provided between secondary batteries adjacent in the arrangement direction.

各二次電池間では、配設位置によって温度差が生じる。セパレータは、厚さを相違する形状とすることで、熱抵抗を変化させることができる。そして、特許文献1に記載のバッテリシステムでは、温度の高い二次電池に挟まれるセパレータを厚く形成する一方で、温度の低い二次電池に挟まれるセパレータを薄く形成することで二次電池間の温度差を小さくしている。   A temperature difference occurs between the secondary batteries depending on the arrangement position. A separator can change thermal resistance by making it into the shape from which thickness differs. And in the battery system of patent document 1, while forming the separator pinched | interposed into a secondary battery with high temperature thickly, while forming the separator pinched | interposed into a secondary battery with low temperature thinly, it is between secondary batteries. The temperature difference is reduced.

特開2010−272378号公報JP 2010-272378 A

ところで、二次電池の温度によってセパレータの厚みを変更すると、厚いセパレータに隣り合う二次電池と薄いセパレータに隣り合う二次電池で二次電池間の距離に差が生じる。二次電池間の距離に差が生じると、隣り合う二次電池の端子間距離にも差が生じ、この結果、端子間距離に合わせて複数の接続部材を用いる必要があり、部品点数が増加してしまう。   By the way, when the thickness of the separator is changed depending on the temperature of the secondary battery, a difference occurs in the distance between the secondary batteries between the secondary battery adjacent to the thick separator and the secondary battery adjacent to the thin separator. If there is a difference in the distance between the secondary batteries, there will also be a difference in the distance between the terminals of the adjacent secondary batteries. As a result, it is necessary to use multiple connecting members according to the distance between the terminals, increasing the number of parts. Resulting in.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的は、部品点数の増加を抑制しつつ、二次電池間の温度差を小さくすることができる電池モジュールを提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a battery module capable of reducing a temperature difference between secondary batteries while suppressing an increase in the number of parts. It is to provide.

上記課題を解決する電池モジュールは、並設される複数の二次電池と、放熱体と対向する放熱部と、前記複数の二次電池間に設けられる電池間部とを有する複数の伝熱プレートと、前記二次電池の端子同士を接続する複数の接続部材と、を備えた電池モジュールであって、前記複数の伝熱プレートの電池間部は、前記二次電池の熱を吸熱するとともに、前記複数の二次電池の並設方向の長さが同一であり、前記複数の伝熱プレートの放熱部は、前記電池間部からの熱を前記放熱体に放熱し、前記複数の伝熱プレートは、前記放熱部の放熱効率が異なる伝熱プレートを含むことを要旨とする。   A battery module that solves the above-described problem includes a plurality of heat transfer plates having a plurality of secondary batteries arranged side by side, a heat radiating portion facing the heat radiating body, and an inter-battery portion provided between the plurality of secondary batteries. And a plurality of connection members that connect the terminals of the secondary battery, and the inter-battery portions of the plurality of heat transfer plates absorb the heat of the secondary battery, The lengths of the plurality of secondary batteries in the side-by-side direction are the same, and the heat dissipating part of the plurality of heat transfer plates dissipates heat from the inter-battery part to the heat radiating body, and the plurality of heat transfer plates Includes a heat transfer plate having a different heat dissipation efficiency of the heat dissipation portion.

これによれば、二次電池の温度に見合った放熱効率の放熱部を有する伝熱プレートを二次電池間に配置することができる。電池モジュールにおいては、二次電池が集合して設けられるため、それぞれの二次電池が同じように発熱しても、二次電池の温度が同じになるとは限らない。また、二次電池は、周囲の環境にも影響されるため、二次電池の温度に偏りが生じるおそれがある。二次電池の温度に見合った放熱効率の放熱部を有する伝熱プレートを当該二次電池に隣り合うように設けることで、二次電池間の温度差を小さくすることができる。また、放熱部の放熱効率を異ならせることで二次電池間の温度差を小さくできるため、電池間部の二次電池の並設方向の長さを異ならせて二次電池間の温度差を小さくする必要がない。このため、電池間部の二次電池の並設方向の長さを同一にすることができ、二次電池間の距離に差が生じにくい。したがって、隣り合う二次電池の端子間距離に差が生じにくく、共通の接続部材を用いて二次電池を接続することができる。このため、部品点数の増加が抑制される。   According to this, the heat-transfer plate which has the thermal radiation part of the thermal radiation efficiency corresponding to the temperature of the secondary battery can be arrange | positioned between secondary batteries. In the battery module, since the secondary batteries are provided together, even if each secondary battery generates heat in the same way, the temperature of the secondary battery is not always the same. Moreover, since the secondary battery is also affected by the surrounding environment, there is a possibility that the temperature of the secondary battery may be biased. A temperature difference between the secondary batteries can be reduced by providing a heat transfer plate having a heat radiating portion having a heat radiation efficiency corresponding to the temperature of the secondary battery so as to be adjacent to the secondary battery. In addition, since the temperature difference between the secondary batteries can be reduced by changing the heat dissipation efficiency of the heat dissipation part, the temperature difference between the secondary batteries can be reduced by changing the length of the secondary batteries in the parallel arrangement direction between the batteries. There is no need to make it smaller. For this reason, it is possible to make the lengths of the secondary batteries in the juxtaposed direction in the inter-battery portion the same, and it is difficult for a difference in the distance between the secondary batteries to occur. Therefore, a difference in the distance between terminals of adjacent secondary batteries hardly occurs, and the secondary batteries can be connected using a common connecting member. For this reason, the increase in the number of parts is suppressed.

上記電池モジュールについて、前記伝熱プレートのうち、他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部を有する伝熱プレートの電池間部は、前記複数の二次電池のうち、前記複数の二次電池の並設方向における最も端に位置する二次電池以外の二次電池の間に設けられることが好ましい。   Regarding the battery module, among the heat transfer plates, the inter-battery portion of the heat transfer plate having a heat dissipation portion with high heat dissipation efficiency compared to the heat dissipation efficiency of the heat dissipation portion of the other heat transfer plate is the plurality of secondary batteries. Among these, it is preferable to be provided between secondary batteries other than the secondary battery located at the end in the juxtaposition direction of the plurality of secondary batteries.

これによれば、並設された複数の二次電池は、最も端に位置する二次電池から離間するにつれて、周囲の二次電池の発熱により、冷却されにくくなる。したがって、冷却されにくい二次電池の間に、放熱効率の高い放熱部の伝熱プレートを設けることで、最も端に位置する二次電池と、放熱効率の高い放熱部の伝熱プレートと隣り合う二次電池の温度差を小さくすることができる。   According to this, the plurality of secondary batteries arranged in parallel are less likely to be cooled due to the heat generated by the surrounding secondary batteries as they are separated from the secondary battery located at the end. Therefore, by providing the heat transfer plate of the heat dissipation part with high heat dissipation efficiency between the secondary batteries that are difficult to be cooled, the secondary battery located at the end is adjacent to the heat transfer plate of the heat dissipation part with high heat dissipation efficiency. The temperature difference of the secondary battery can be reduced.

上記電池モジュールについて、前記他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部は、前記他の伝熱プレートの放熱部の熱容量より大きい熱容量を有することを有することが好ましい。   About the said battery module, it may have that the thermal radiation part of high thermal radiation efficiency has heat capacity larger than the thermal capacity of the thermal radiation part of said other heat-transfer plate compared with the thermal radiation efficiency of the thermal radiation part of said other heat-transfer plate. preferable.

これによれば、放熱部の熱容量を大きくすることで、放熱部の放熱効率を高くすることができる。
上記電池モジュールについて、前記他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部は、前記他の伝熱プレートの放熱部より前記放熱体との接触面積が大きいことが好ましい。
According to this, by increasing the heat capacity of the heat radiating portion, the heat radiating efficiency of the heat radiating portion can be increased.
About the said battery module, compared with the thermal radiation efficiency of the thermal radiation part of the said other heat-transfer plate, the thermal radiation part with high thermal radiation efficiency has a larger contact area with the said heat sink than the thermal radiation part of the said other heat-transfer plate. preferable.

これによれば、放熱部と放熱体との接触面積を大きくすることで、放熱体への放熱量を増加させ、これにより放熱部の放熱効率を高くすることができる。   According to this, by increasing the contact area between the heat dissipating part and the heat dissipating body, the amount of heat dissipated to the heat dissipating body can be increased, thereby increasing the heat dissipating efficiency of the heat dissipating part.

本発明によれば、部品点数の増加を抑制しつつ、二次電池間の温度差を小さくすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature difference between secondary batteries can be made small, suppressing the increase in a number of parts.

実施形態のフォークリフトを示す概略側面図。The schematic side view which shows the forklift of embodiment. 実施形態の電池パックを示す斜視図。The perspective view which shows the battery pack of embodiment. 実施形態の電池モジュールを示す斜視図。The perspective view which shows the battery module of embodiment. 実施形態の電池ホルダ、角型電池、伝熱プレート及びエンドプレートを示す分解斜視図。The disassembled perspective view which shows the battery holder of embodiment, a square battery, a heat-transfer plate, and an end plate. 実施形態の電池モジュールを示す断面図。Sectional drawing which shows the battery module of embodiment.

以下、電池モジュールをフォークリフトに搭載される電池モジュールに具体化した一実施形態について説明する。以下の説明において「前」「後」「左」「右」「上」「下」は、フォークリフトの運転者がフォークリフトの前方を向いた状態を基準とした場合の「前」「後」「左」「右」「上」「下」を示すものとする。   Hereinafter, an embodiment in which the battery module is embodied in a battery module mounted on a forklift will be described. In the following description, “front”, “rear”, “left”, “right”, “upper”, and “lower” are “front”, “rear”, and “left” when the forklift driver is facing the front of the forklift. ”,“ Right ”,“ upper ”, and“ lower ”.

図1に示すように、フォークリフト10の車体11の前下部には駆動輪12が設けられているとともに、車体11の後下部には操舵輪13が設けられている。また、車体11の前部には、荷役装置が設けられている。荷役装置を構成するマスト14は、車体11の前部に立設されているとともに、当該マスト14にはリフトブラケット15を介して左右一対のフォーク16が設けられている。そして、フォーク16は、マスト14に連結されたリフトシリンダ17の駆動により、リフトブラケット15とともに昇降される。また、フォーク16は、マスト14に連結されたティルトシリンダ18の駆動により、マスト14とともに傾動される。フォーク16には、積荷19が搭載される。車体11には、駆動輪12の駆動源となる走行用モータM1と、フォーク16の駆動源となる荷役用モータM2が搭載されている。   As shown in FIG. 1, drive wheels 12 are provided at the front lower part of the vehicle body 11 of the forklift 10, and steering wheels 13 are provided at the rear lower part of the vehicle body 11. In addition, a cargo handling device is provided at the front portion of the vehicle body 11. The mast 14 constituting the cargo handling apparatus is erected on the front portion of the vehicle body 11, and the mast 14 is provided with a pair of left and right forks 16 via a lift bracket 15. The fork 16 is lifted and lowered together with the lift bracket 15 by driving a lift cylinder 17 connected to the mast 14. Further, the fork 16 is tilted together with the mast 14 by driving a tilt cylinder 18 connected to the mast 14. A load 19 is mounted on the fork 16. The vehicle body 11 is equipped with a traveling motor M1 as a drive source for the drive wheels 12 and a cargo handling motor M2 as a drive source for the fork 16.

また、車体11の中央には、運転室20が設けられている。運転室20には、作業者(運転者)が着座可能な運転シート21が設けられている。運転シート21の前方にはハンドル22が設けられている。運転室20の下部には、電池パック30が搭載されている。以下、電池パック30について詳細に説明を行う。   A cab 20 is provided in the center of the vehicle body 11. The cab 20 is provided with a driving seat 21 on which an operator (driver) can sit. A handle 22 is provided in front of the driving seat 21. A battery pack 30 is mounted below the cab 20. Hereinafter, the battery pack 30 will be described in detail.

図2に示すように、電池パック30は、フォーク16に搭載される積荷19とつりあいをとるためのカウンタウェイト31を備えている。カウンタウェイト31は、直方体状をなすウェイト部32と、ウェイト部32の短手方向一端32aからウェイト部32の厚み方向に立設されるとともに、ウェイト部32の長手方向一端32cから長手方向他端32dに亘って延びる矩形板状のウェイト本体33とからなる。換言すれば、ウェイト部32は、ウェイト本体33の基端からウェイト本体33の厚み方向に立設されている。ウェイト本体33の先端(ウェイト本体33の基端とは反対側の端部)には、ウェイト本体33を該ウェイト本体33の厚み方向に切り欠いた切欠部35が形成されている。本実施形態において、カウンタウェイト31は、例えば、鉄などの金属材料から形成されている。   As shown in FIG. 2, the battery pack 30 includes a counterweight 31 for balancing with the load 19 mounted on the fork 16. The counterweight 31 is erected in the thickness direction of the weight portion 32 from the weight portion 32 having a rectangular parallelepiped shape, and the one end 32a in the lateral direction of the weight portion 32, and the other end in the longitudinal direction from the longitudinal one end 32c of the weight portion 32 The weight main body 33 has a rectangular plate shape extending over 32d. In other words, the weight portion 32 is erected from the base end of the weight body 33 in the thickness direction of the weight body 33. At the distal end of the weight body 33 (the end opposite to the base end of the weight body 33), a notch 35 is formed by cutting the weight body 33 in the thickness direction of the weight body 33. In the present embodiment, the counterweight 31 is made of a metal material such as iron, for example.

ウェイト部32の短手方向他端32bには、ウェイト本体33から離間して設けられる逆U字状のフレーム41がウェイト部32から立設されている。フレーム41は、ウェイト部32の上面(ウェイト本体33が設けられた面)における短手方向他端32bの2つの角部から立設された第1の柱部43及び第2の柱部44と、第1の柱部43及び第2の柱部44の上端部(ウェイト部32と接合される端部と反対側の端部)を繋ぐ基部42と、からなる。つまり、電池パック30は、ウェイト部32の短手方向他端32b側に、ウェイト部32とフレーム41によって囲まれた正面開口部30aを有する。なお、電池パック30において、この正面開口部30aは、矩形板状をなす蓋部材46によって閉塞されている。   An inverted U-shaped frame 41 that is spaced apart from the weight main body 33 is erected from the weight portion 32 at the other end 32 b in the short direction of the weight portion 32. The frame 41 includes a first pillar portion 43 and a second pillar portion 44 erected from two corners of the other end 32b in the lateral direction on the upper surface of the weight portion 32 (the surface on which the weight main body 33 is provided) , And a base portion 42 that connects the upper end portions of the first column portion 43 and the second column portion 44 (the end portion opposite to the end portion joined to the weight portion 32). That is, the battery pack 30 has a front opening 30 a surrounded by the weight 32 and the frame 41 on the other end 32 b side of the weight 32. In the battery pack 30, the front opening 30a is closed by a lid member 46 having a rectangular plate shape.

各柱部43,44の立設方向への長さ(各柱部43,44の長手方向の長さ)は、ウェイト部32の上面から、ウェイト本体33の先端面までの最短の長さと同一となっており、フレーム41の上面(基部42の上面)とウェイト本体33の先端面には、天板47が支持されている。この天板47によって、ウェイト本体33とフレーム41との間の開口部(図示せず)が閉塞されている。更に、電池パック30は、ウェイト部32の長手方向一端32c側に、ウェイト本体33と、ウェイト部32と、第1の柱部43と、天板47によって囲まれた一端側開口部30bを有する。また、電池パック30は、ウェイト部32の長手方向他端32d側に、ウェイト本体33と、ウェイト部32と、第2の柱部44と、天板47によって囲まれた他端側開口部30cを有する。なお、一端側開口部30b及び他端側開口部30cは、蓋部材45によって閉塞されている。   The length in the standing direction of each pillar portion 43, 44 (the length in the longitudinal direction of each pillar portion 43, 44) is the same as the shortest length from the upper surface of the weight portion 32 to the distal end surface of the weight body 33. A top plate 47 is supported on the upper surface of the frame 41 (the upper surface of the base portion 42) and the distal end surface of the weight body 33. The top plate 47 closes an opening (not shown) between the weight body 33 and the frame 41. Further, the battery pack 30 has a weight main body 33, the weight portion 32, the first column portion 43, and one end side opening 30 b surrounded by the top plate 47 on the one end 32 c side of the weight portion 32 in the longitudinal direction. . Further, the battery pack 30 has the other end side opening 30c surrounded by the weight main body 33, the weight portion 32, the second column portion 44, and the top plate 47 on the other end 32d side of the weight portion 32 in the longitudinal direction. Have The one end side opening 30b and the other end side opening 30c are closed by a lid member 45.

ウェイト本体33の厚み方向一端面は電池モジュール50が設置される設置面33aとされている。設置面33aには、電池モジュール50が複数設けられている。電池モジュール50は、ウェイト本体33の長手方向に間隔を空けて2個並んで設けられるとともに、ウェイト本体33の短手方向に間隔を空けて3組並んで設けられている。切欠部35には、矩形平板状をなす載置板36が固定されている。載置板36上には、電池モジュール50の制御を行う制御機器が収容される収容ケース37及びリレーや配線などが収容されるジャンクションボックス38が配設されている。   One end surface in the thickness direction of the weight main body 33 is an installation surface 33a on which the battery module 50 is installed. A plurality of battery modules 50 are provided on the installation surface 33a. Two battery modules 50 are provided side by side in the longitudinal direction of the weight main body 33, and three sets of battery modules 50 are provided side by side in the lateral direction of the weight main body 33 at intervals. A mounting plate 36 having a rectangular flat plate shape is fixed to the notch 35. On the mounting plate 36, a housing case 37 that houses a control device that controls the battery module 50 and a junction box 38 that houses a relay, wiring, and the like are disposed.

図3及び図4に示すように、電池モジュール50は、二次電池(例えば、リチウムイオン二次電池やニッケル水素蓄電池)としての角型電池51が電池ホルダ52に保持された状態で並設されるとともに、角型電池51と交互に伝熱プレート53が並設されている。電池モジュール50において、角型電池51の並設方向両端にはエンドプレート54が設けられている。角型電池51は、並設方向に隣り合う端子56の極性が異なる極性になるように配設されている。そして、並設方向に隣り合う端子56同士は、接続部材67(バスバー)によって交互に接続されて、各角型電池51は直列接続されている。   As shown in FIGS. 3 and 4, the battery module 50 is juxtaposed in a state where a square battery 51 as a secondary battery (for example, a lithium ion secondary battery or a nickel hydride storage battery) is held by a battery holder 52. In addition, heat transfer plates 53 are arranged in parallel with the square batteries 51. In the battery module 50, end plates 54 are provided at both ends of the prismatic battery 51 in the juxtaposition direction. The prismatic battery 51 is arranged so that the polarities of the terminals 56 adjacent in the juxtaposition direction are different. The terminals 56 adjacent to each other in the juxtaposed direction are alternately connected by connection members 67 (bus bars), and the respective square batteries 51 are connected in series.

図4に示すように、電池ホルダ52は、四角箱状のホルダ本体60と、ホルダ本体60の外面の四隅に設けられた直方体状の取付台61とを有している。詳細に説明すると、ホルダ本体60は、矩形板状をなすとともに、角型電池51の厚み方向の面を被覆する第1の被覆部62を有している。第1の被覆部62の長手方向両端62a,62bには、角型電池51の幅方向(角型電池51の厚み方向及び高さ方向に直交する方向)の面を被覆する第2の被覆部63及び第3の被覆部64が第1の被覆部62の厚み方向に立設されている。第2の被覆部63及び第3の被覆部64は、共に矩形板状をなしている。第2の被覆部63及び第3の被覆部64の短手方向は、第1の被覆部62の厚み方向と同一方向である。第2の被覆部63の短手方向の寸法は、第3の被覆部64よりも若干小さくなっている。   As shown in FIG. 4, the battery holder 52 includes a square box-shaped holder main body 60 and a rectangular parallelepiped mounting base 61 provided at the four corners of the outer surface of the holder main body 60. More specifically, the holder body 60 has a first covering portion 62 that covers the surface in the thickness direction of the prismatic battery 51 while forming a rectangular plate shape. Second covering portions that cover the surfaces of the rectangular batteries 51 in the width direction (directions perpendicular to the thickness direction and the height direction of the rectangular batteries 51) are provided at both longitudinal ends 62 a and 62 b of the first covering portion 62. 63 and a third covering portion 64 are erected in the thickness direction of the first covering portion 62. Both the 2nd coating | coated part 63 and the 3rd coating | coated part 64 have comprised the rectangular plate shape. The short direction of the second covering portion 63 and the third covering portion 64 is the same direction as the thickness direction of the first covering portion 62. The dimension in the short direction of the second covering portion 63 is slightly smaller than that of the third covering portion 64.

第1の被覆部62の短手方向両端62c,62dには、角型電池51の高さ方向の面を被覆する第4の被覆部65及び第5の被覆部66が立設されている。第4の被覆部65及び第5の被覆部66は、共に矩形板状をなしている。第4の被覆部65及び第5の被覆部66の長手方向は、第1の被覆部62の長手方向と同一方向である。第4の被覆部65及び第5の被覆部66の短手方向は、第1の被覆部62の厚み方向と同一方向である。第5の被覆部66の短手方向の寸法は、第4の被覆部65よりも若干小さくなっている。   A fourth covering portion 65 and a fifth covering portion 66 that cover the surface in the height direction of the prismatic battery 51 are provided upright at both ends 62 c and 62 d in the short direction of the first covering portion 62. Both the 4th coating | coated part 65 and the 5th coating | coated part 66 have comprised the rectangular plate shape. The longitudinal directions of the fourth covering portion 65 and the fifth covering portion 66 are the same as the longitudinal direction of the first covering portion 62. The short direction of the fourth covering portion 65 and the fifth covering portion 66 is the same direction as the thickness direction of the first covering portion 62. The dimension in the short direction of the fifth covering portion 66 is slightly smaller than that of the fourth covering portion 65.

第4の被覆部65及び第5の被覆部66の長手方向両端の外面には、取付台61が設けられている。各取付台61には、ボルトB1が挿通される挿通孔61aが設けられている。   Mounts 61 are provided on the outer surfaces of the longitudinal ends of the fourth covering portion 65 and the fifth covering portion 66. Each mounting base 61 is provided with an insertion hole 61a through which the bolt B1 is inserted.

ホルダ本体60は、各被覆部62〜66に囲まれる領域に角型電池51が収容される収容部Sを有する。そして、この収容部Sに角型電池51が収容されるとともに、角型電池51の厚み方向両面のうち、第1の被覆部62に被覆される面とは反対側の面側に、伝熱プレート53が設けられている。   The holder main body 60 has a housing portion S in which the square battery 51 is housed in a region surrounded by the covering portions 62 to 66. And while the square battery 51 is accommodated in this accommodating part S, it heat-transfers to the surface side on the opposite side to the surface coat | covered with the 1st coating | coated part 62 among the thickness direction both surfaces of the square battery 51. A plate 53 is provided.

伝熱プレート53は、矩形板状をなすとともに角型電池51の厚み方向の面と接合される本体部71と、本体部71の長手方向一端71aから本体部71の厚み方向に延びる矩形板状の放熱部72を有している。本体部71と、放熱部72とは、短手方向及び長手方向が異なる方向となっている。伝熱プレート53は、例えば、アルミニウムなどの金属からなる。伝熱プレート53は、本体部71が角型電池51の厚み方向の面に接合されるとともに、放熱部72が電池ホルダ52外に突出して第2の被覆部63の外面(第2の被覆部63における第3の被覆部64と対向する面とは反対側の面)を覆っている。   The heat transfer plate 53 has a rectangular plate shape and is joined to the surface in the thickness direction of the prismatic battery 51, and a rectangular plate shape that extends in the thickness direction of the main body portion 71 from one longitudinal end 71a of the main body portion 71. The heat radiating part 72 is provided. The main body portion 71 and the heat radiating portion 72 are different in the short side direction and the long side direction. The heat transfer plate 53 is made of a metal such as aluminum, for example. In the heat transfer plate 53, the main body 71 is joined to the surface in the thickness direction of the rectangular battery 51, and the heat radiating portion 72 protrudes out of the battery holder 52 so that the outer surface of the second covering portion 63 (second covering portion). 63, the surface opposite to the surface facing the third covering portion 64).

エンドプレート54は、矩形板状をなす本体部74と、本体部74の四隅に設けられた取付部75とを有している。取付部75には、ボルトB1が挿通される挿通孔75aが設けられている。そして、電池モジュール50は、電池ホルダ52の取付台61に設けられた挿通孔と71a、エンドプレート54の取付部75に設けられた挿通孔75aにボルトB1が挿通されるとともに、ボルトB1にナットNを螺合することで固定されている。   The end plate 54 has a main body portion 74 having a rectangular plate shape, and attachment portions 75 provided at four corners of the main body portion 74. The attachment portion 75 is provided with an insertion hole 75a through which the bolt B1 is inserted. The battery module 50 is configured such that the bolt B1 is inserted into the insertion hole 75a provided in the attachment base 75 of the battery holder 52 and the attachment portion 75 of the end plate 54, and the bolt B1 has a nut. N is fixed by screwing.

図5に示すように、電池モジュール50は、エンドプレート54において、電池モジュール50に対向する面とは反対側の面に設けられたブラケット76を挿通したボルトB2をウェイト本体33に螺合することでウェイト本体33に固定されている。このとき、伝熱プレート53の放熱部72において、第2の被覆部63と対向する面と反対側の面は、ウェイト本体33と面接触している。   As shown in FIG. 5, in the battery module 50, the bolt B <b> 2 inserted through the bracket 76 provided on the surface opposite to the surface facing the battery module 50 in the end plate 54 is screwed into the weight body 33. The weight main body 33 is fixed. At this time, in the heat radiating portion 72 of the heat transfer plate 53, the surface opposite to the surface facing the second covering portion 63 is in surface contact with the weight main body 33.

本実施形態の電池モジュール50においては、伝熱プレート53の放熱部72の大きさが異なっている。図5に示す電池モジュール50において、説明の便宜上、電池モジュール50の並設方向の最も端(両端)に設けられる角型電池51に符号51Aを付し、角型電池51Aに隣り合う角型電池51に符号51Bを付す。更に、角型電池51Bにおける角型電池51Aと反対側に隣り合う角型電池51に符号51Cを付し、角型電池51Cにおける角型電池51Bと反対側に隣り合う角型電池51に符号51Dを付す。なお、角型電池51Dは、電池モジュール50における角型電池51の並設方向の両端を最短距離で結ぶ線Lの中心Cから最も近い位置に配置される角型電池である。また、それぞれの角型電池51A,51B,51C,51Dの厚み方向の面に接合される伝熱プレート53に、それぞれ、53A,53B,53C,53Dの符号を付して説明を行う。なお、角型電池51A〜51Dは、放電時又は充電時の発熱量が同じものとする。   In the battery module 50 of the present embodiment, the size of the heat radiating portion 72 of the heat transfer plate 53 is different. In the battery module 50 shown in FIG. 5, for convenience of explanation, the rectangular battery 51 provided at the extreme end (both ends) in the side-by-side direction of the battery module 50 is denoted by reference numeral 51 </ b> A and is adjacent to the rectangular battery 51 </ b> A. 51 is denoted by reference numeral 51B. Furthermore, reference numeral 51C is given to the square battery 51 adjacent to the opposite side of the square battery 51A in the square battery 51B, and reference numeral 51D is assigned to the square battery 51 adjacent to the opposite side of the square battery 51B in the square battery 51C. Is attached. The prismatic battery 51D is a prismatic battery that is disposed at a position closest to the center C of the line L that connects both ends of the prismatic batteries 51 in the battery module 50 in the juxtaposition direction. In addition, the heat transfer plates 53 joined to the surfaces in the thickness direction of the respective square batteries 51A, 51B, 51C, 51D will be described with reference numerals 53A, 53B, 53C, 53D, respectively. Note that the square batteries 51A to 51D have the same heat generation amount during discharging or charging.

各伝熱プレート53A〜53Dのそれぞれは、本体部71の長手方向の寸法、短手方向の寸法及び厚み(伝熱プレート53A〜53Dの本体部71における角型電池51の並設方向の長さ)が同一となっている。本体部71は、各角型電池51A〜51Dの間に設けられる電池間部となっている。   Each of the heat transfer plates 53A to 53D has a length in the longitudinal direction of the main body 71, a dimension in the short direction, and a thickness (the length in the parallel arrangement direction of the prismatic batteries 51 in the main body 71 of the heat transfer plates 53A to 53D. ) Are the same. The main body 71 is an inter-battery portion provided between the respective square batteries 51A to 51D.

各伝熱プレート53A〜53Dは、放熱部72の短手方向の寸法が異なっている。具体的にいえば、放熱部72の短手方向の寸法は、伝熱プレート53Dの放熱部72が最も大きく、伝熱プレート53Cの放熱部72が伝熱プレート53Dの放熱部72の次に大きい。また、放熱部72の短手方向の寸法は、伝熱プレート53Bの放熱部72が伝熱プレート53Cの放熱部72の次に大きく、伝熱プレート53Aの放熱部72が最も小さくなっている。なお、放熱部72の長手方向の寸法は、全ての伝熱プレート53A〜53Dにおいて同一である。各伝熱プレート53A〜53Dの放熱部72は、短手方向の寸法が異なることで、その熱容量が異なっている。   Each of the heat transfer plates 53 </ b> A to 53 </ b> D has different dimensions in the short direction of the heat radiating portion 72. Specifically, the heat sink 72 has the largest dimension in the short direction of the heat transfer plate 53D, the heat sink 72 of the heat transfer plate 53C next to the heat sink 72 of the heat transfer plate 53D. . Further, the heat dissipation portion 72 has a short dimension in the short direction, the heat dissipation portion 72 of the heat transfer plate 53B being next to the heat dissipation portion 72 of the heat transfer plate 53C, and the heat dissipation portion 72 of the heat transfer plate 53A being the smallest. In addition, the dimension of the longitudinal direction of the thermal radiation part 72 is the same in all the heat-transfer plates 53A-53D. The heat dissipation portions 72 of the heat transfer plates 53A to 53D have different heat capacities due to the different dimensions in the short direction.

角型電池51の並設方向において、最も端に設けられる角型電池51Aに接合される伝熱プレート53Aは、放熱部72の熱容量が最も小さい。角型電池51Bに接合される伝熱プレート53Bは、放熱部72の熱容量が伝熱プレート53Aの放熱部72の熱容量の次に小さい。角型電池51Cに接合される伝熱プレート53Cは、放熱部72の熱容量が伝熱プレート53Bの放熱部72の熱容量の次に小さい。角型電池51Dに接合される伝熱プレート53Dは、放熱部72の熱容量が最も大きい。   In the parallel arrangement direction of the square batteries 51, the heat transfer plate 53 </ b> A joined to the square battery 51 </ b> A provided at the end has the smallest heat capacity of the heat radiating portion 72. The heat transfer plate 53B joined to the prismatic battery 51B has the heat capacity of the heat radiating portion 72 next to the heat capacity of the heat radiating portion 72 of the heat transfer plate 53A. In the heat transfer plate 53C joined to the square battery 51C, the heat capacity of the heat dissipating part 72 is next to the heat capacity of the heat dissipating part 72 of the heat transfer plate 53B. The heat transfer plate 53D joined to the prismatic battery 51D has the largest heat capacity of the heat radiating portion 72.

更に、放熱部72の短手方向の長さが異なることで、各伝熱プレート53A〜53Dとウェイト本体33との接触面積が異なっている。伝熱プレート53A〜53Dは、角型電池51の並設方向における最も端(両端)の伝熱プレート53Aから伝熱プレート53Dに近づくにつれて接触面積が増加している。すなわち、角型電池51の並設方向において、最も端に設けられる角型電池51Aと接合される伝熱プレート53Aほど、ウェイト本体33との接触面積が小さい。   Furthermore, the contact area of each heat-transfer plate 53A-53D and the weight main body 33 differs because the length of the heat radiation part 72 in the transversal direction differs. The contact areas of the heat transfer plates 53A to 53D increase as they approach the heat transfer plate 53D from the heat transfer plate 53A at the end (both ends) in the side-by-side arrangement of the prismatic batteries 51. That is, in the parallel arrangement direction of the square batteries 51, the heat transfer plate 53A joined to the square battery 51A provided at the end has a smaller contact area with the weight body 33.

角型電池51の並設方向において、最も端に設けられる角型電池51Aに接合される伝熱プレート53Aは、放熱部72のウェイト本体33との接触面積が最も小さい。角型電池51Bに接合される伝熱プレート53Bは、放熱部72のウェイト本体33との接触面積が、伝熱プレート53Aの放熱部72のウェイト本体33との接触面積の次に小さい。角型電池51Cに接合される伝熱プレート53Cは、放熱部72のウェイト本体33との接触面積が、伝熱プレート53Bの放熱部72のウェイト本体33との接触面積の次に小さい。角型電池51Dに接合される伝熱プレート53Dは、放熱部72のウェイト本体33との接触面積が、最も大きい。   In the direction in which the prismatic batteries 51 are arranged side by side, the heat transfer plate 53A joined to the prismatic battery 51A provided at the end has the smallest contact area with the weight main body 33 of the heat radiating section 72. The heat transfer plate 53B joined to the prismatic battery 51B has a contact area with the weight main body 33 of the heat radiating portion 72 next to the contact area with the weight main body 33 of the heat radiating portion 72 of the heat transfer plate 53A. The heat transfer plate 53C joined to the square battery 51C has the contact area with the weight main body 33 of the heat radiating portion 72 next to the contact area with the weight main body 33 of the heat radiating portion 72 of the heat transfer plate 53B. The heat transfer plate 53D joined to the square battery 51D has the largest contact area with the weight main body 33 of the heat radiating portion 72.

そして、伝熱プレート53A〜53Dの放熱部72は、ウェイト本体33との接触面積が大きいほど、放熱効率が高くなる。また、伝熱プレート53A〜53Dの放熱部72は、熱容量が大きいほど、放熱効率が高くなる。このため、伝熱プレート53Dの放熱部72>伝熱プレート53Cの放熱部72>伝熱プレート53Bの放熱部72>伝熱プレート53Aの放熱部72の順に放熱効率が高くなっている。すなわち、伝熱プレート53Dの放熱部72の放熱効率は、他の伝熱プレート53A〜53Cの放熱部72の放熱効率と比較して高い。そして、伝熱プレート53Dの本体部71は、角型電池51の並設方向における最も端に位置する角型電池51A以外の角型電池51である角型電池51Cと角型電池51Dとの間に設けられている。   And as for the thermal radiation part 72 of heat-transfer plate 53A-53D, the thermal radiation efficiency becomes high, so that the contact area with the weight main body 33 is large. Moreover, the heat dissipation part 72 of the heat transfer plates 53A to 53D has higher heat dissipation efficiency as the heat capacity is larger. For this reason, the heat dissipation efficiency increases in the order of the heat dissipating part 72 of the heat transfer plate 53D> the heat dissipating part 72 of the heat transfer plate 53C> the heat dissipating part 72 of the heat transfer plate 53B> the heat dissipating part 72 of the heat transfer plate 53A. That is, the heat dissipation efficiency of the heat dissipation portion 72 of the heat transfer plate 53D is higher than the heat dissipation efficiency of the heat dissipation portions 72 of the other heat transfer plates 53A to 53C. And the main-body part 71 of the heat-transfer plate 53D is between the square battery 51C and the square battery 51D which are square batteries 51 other than the square battery 51A located in the endmost in the parallel arrangement direction of the square batteries 51. Is provided.

次に、電池モジュール50の作用について説明する。
各角型電池51A〜51Dが発熱すると、この熱は、電池ホルダ52や、伝熱プレート53A〜53Dを介して周囲に拡散していく。伝熱プレート53A〜53Dのうち、角型電池51A〜51D間に挟まれる伝熱プレート53A〜53Dの本体部71には、本体部71を挟む両方の角型電池51A〜51Dから熱が伝導する。角型電池51A〜51D間に挟まれない伝熱プレート53Aには、角型電池51Aから熱が伝導する。
Next, the operation of the battery module 50 will be described.
When each of the square batteries 51A to 51D generates heat, this heat is diffused to the surroundings via the battery holder 52 and the heat transfer plates 53A to 53D. Of the heat transfer plates 53A to 53D, heat is conducted from both the square batteries 51A to 51D sandwiching the main body 71 to the main body 71 of the heat transfer plates 53A to 53D sandwiched between the square batteries 51A to 51D. . Heat is conducted from the prismatic battery 51A to the heat transfer plate 53A that is not sandwiched between the prismatic batteries 51A to 51D.

電池ホルダ52や、伝熱プレート53A〜53Dに拡散した熱は、ウェイト本体33や、周囲の熱媒体に放熱される。したがって、カウンタウェイト31(ウェイト本体33)は、角型電池51A〜51Dが発した熱が放熱される放熱体として機能している。線Lの中心Cから最も近い位置に設けられる角型電池51Dは、熱が篭りやすい。一方、角型電池51の並設方向において、最も端に設けられる角型電池51Aは、周囲の角型電池51B〜51Dに影響されにくい。結果として、角型電池51A〜51Dの放電時又は充電時の発熱量が同じ場合、角型電池51A>角型電池51B>角型電池51C>角型電池51Dの順に温度が高くなる可能性が高い。   The heat diffused to the battery holder 52 and the heat transfer plates 53A to 53D is radiated to the weight body 33 and the surrounding heat medium. Therefore, the counterweight 31 (the weight main body 33) functions as a heat radiating body that radiates heat generated by the square batteries 51A to 51D. The prismatic battery 51D provided at a position closest to the center C of the line L is likely to generate heat. On the other hand, in the direction in which the square batteries 51 are arranged side by side, the square battery 51A provided at the end is hardly affected by the surrounding square batteries 51B to 51D. As a result, when the calorific values at the time of discharging or charging of the square batteries 51A to 51D are the same, the temperature may increase in the order of the square battery 51A> the square battery 51B> the square battery 51C> the square battery 51D. high.

伝熱プレート53A〜53Dは、放熱部72の放熱効率が、伝熱プレート53D>伝熱プレート53C>伝熱プレート53B>伝熱プレート53Aの順に大きい。温度が高い角型電池51A〜51Dに接合される伝熱プレート53A〜53Dほど、放熱効率を高くすることで、角型電池51の間の温度差が小さくなる。   In the heat transfer plates 53A to 53D, the heat dissipation efficiency of the heat radiating part 72 is larger in the order of heat transfer plate 53D> heat transfer plate 53C> heat transfer plate 53B> heat transfer plate 53A. As the heat transfer plates 53A to 53D joined to the square batteries 51A to 51D having higher temperatures increase the heat dissipation efficiency, the temperature difference between the square batteries 51 becomes smaller.

したがって、上記実施形態によれば、以下のような効果を得ることができる。
(1)伝熱プレート53A〜53Dは、放熱部72の放熱効率を異ならせることで、角型電池51A〜51D間の温度差を小さくしている。特に、本実施形態では、角型電池51A〜51Dの温度に見合った伝熱プレート53A〜53Dを用いることで、角型電池51の温度が均一になる。各伝熱プレート53A〜53Dの厚み(角型電池51A〜51Dの並設方向の長さ)が同一であっても、角型電池51A〜51Dの温度差を小さくすることができるため、角型電池51A〜51D間の距離は等しくなり、共通の接続部材67によって各角型電池51A〜51Dを接続することができる。このため、角型電池51間の距離に合わせて複数の接続部材を用意する必要がなく、部品点数の増加が抑制される。
Therefore, according to the above embodiment, the following effects can be obtained.
(1) The heat transfer plates 53 </ b> A to 53 </ b> D reduce the temperature difference between the square batteries 51 </ b> A to 51 </ b> D by making the heat dissipation efficiency of the heat dissipation part 72 different. In particular, in this embodiment, the temperature of the square battery 51 becomes uniform by using the heat transfer plates 53A to 53D corresponding to the temperature of the square batteries 51A to 51D. Even if the heat transfer plates 53A to 53D have the same thickness (the length in the direction in which the prismatic batteries 51A to 51D are arranged in parallel), the temperature difference between the prismatic batteries 51A to 51D can be reduced. The distances between the batteries 51 </ b> A to 51 </ b> D are equal, and the square batteries 51 </ b> A to 51 </ b> D can be connected by the common connection member 67. For this reason, it is not necessary to prepare a plurality of connecting members according to the distance between the square batteries 51, and an increase in the number of parts is suppressed.

(2)各伝熱プレート53A〜53Dの放熱部72の短手方向の寸法を異ならせることで、各伝熱プレート53A〜53Dの放熱部72の熱容量を異ならせている。そして、各伝熱プレート53A〜53Dの放熱量を異ならせることで、各伝熱プレート53A〜53Dの放熱効率を異ならせることができる。   (2) The heat capacity of the heat radiating portion 72 of each of the heat transfer plates 53A to 53D is made different by changing the dimension in the short direction of the heat radiating portion 72 of each of the heat transfer plates 53A to 53D. And the thermal radiation efficiency of each heat-transfer plate 53A-53D can be varied by varying the heat radiation amount of each heat-transfer plate 53A-53D.

(3)各伝熱プレート53A〜53Dの放熱部72と、ウェイト本体33との接触面積を角型電池51A〜51Dの発熱量によって異ならせている。このため、ウェイト本体33との接触面積によって、放熱部72の放熱効率を異ならせることができる。   (3) The contact area between the heat radiating portion 72 of each of the heat transfer plates 53A to 53D and the weight main body 33 varies depending on the amount of heat generated by the square batteries 51A to 51D. For this reason, the heat radiation efficiency of the heat radiation part 72 can be varied depending on the contact area with the weight main body 33.

(4)本実施形態の電池モジュール50のように、電池ホルダ52に角型電池51及び伝熱プレート53を支持させる場合、特許文献1に記載のように、二次電池間のセパレータの厚みを変更してしまうと、セパレータの厚みに対応させて電池ホルダ52の形状を変更させる必要がある。このため、複数の電池ホルダが必要となり、部品点数が増加してしまうおそれがある。本実施形態のように、ウェイト本体33の接触面積を増加させ、伝熱プレート53の角型電池51に挟まれる部分の厚みを均一とすることで、電池ホルダ52の形状を変更する必要がない。このため、部品点数を増加させることなく、角型電池51間の温度差を小さくすることができる。   (4) When the square battery 51 and the heat transfer plate 53 are supported by the battery holder 52 as in the battery module 50 of the present embodiment, the thickness of the separator between the secondary batteries is set as described in Patent Document 1. If changed, it is necessary to change the shape of the battery holder 52 in accordance with the thickness of the separator. For this reason, a plurality of battery holders are required, and the number of parts may increase. As in this embodiment, it is not necessary to change the shape of the battery holder 52 by increasing the contact area of the weight body 33 and making the thickness of the portion sandwiched between the square batteries 51 of the heat transfer plate 53 uniform. . For this reason, the temperature difference between the square batteries 51 can be reduced without increasing the number of parts.

なお、実施形態は、以下のように変更してもよい。
○ 実施形態において、各伝熱プレート53の放熱部72の厚さを異ならせることで、放熱部72の熱容量を異ならせ、これにより放熱部72の放熱効率を異ならせてもよい。
In addition, you may change embodiment as follows.
In the embodiment, the heat capacity of the heat dissipating part 72 may be varied by varying the thickness of the heat dissipating part 72 of each heat transfer plate 53, thereby varying the heat dissipating efficiency of the heat dissipating part 72.

○ 実施形態において、各伝熱プレート53の放熱部72の材質を異ならせることで、放熱部72の放熱効率を異ならせてもよい。また、放熱部72に加え、本体部71の材質を異ならせてもよい。   In the embodiment, the heat dissipation efficiency of the heat dissipating part 72 may be varied by changing the material of the heat dissipating part 72 of each heat transfer plate 53. Further, in addition to the heat radiating portion 72, the material of the main body portion 71 may be different.

○ 実施形態において、各伝熱プレート53の放熱部72の短手方向の寸法を異ならせることで、ウェイト本体33との接触面積を異ならせたが、これに限られない。例えば、一部の伝熱プレート53の放熱部72をウェイト本体33から離間して設けることで、ウェイト本体33との接触面積を異ならせてもよい。   In the embodiment, the contact area with the weight main body 33 is made different by changing the dimension in the short direction of the heat radiating portion 72 of each heat transfer plate 53, but is not limited thereto. For example, the contact area with the weight main body 33 may be varied by providing the heat radiating portions 72 of some of the heat transfer plates 53 apart from the weight main body 33.

○ 実施形態において、各角型電池51A〜51Dの発熱量に見合った放熱効率の放熱部72を有する伝熱プレート53A〜53Dを各角型電池51A〜51Dに接合したが、これに限られない。例えば、最も温度差が大きくなる角型電池51Aと角型電池51Dに接合される伝熱プレート53A,53Dの放熱部72の放熱効率が、伝熱プレート53Aの放熱部72の放熱効率よりも、伝熱プレート53Dの放熱効率の方が高ければよく、他の伝熱プレート53の放熱効率は問わない。この場合、最も温度差が大きくなる角型電池51Aと角型電池51Dの温度差が小さくなるため、角型電池51間の温度差が小さくなる。   In the embodiment, the heat transfer plates 53A to 53D having the heat radiation portions 72 having the heat radiation efficiency corresponding to the heat generation amounts of the respective square batteries 51A to 51D are joined to the respective square batteries 51A to 51D. . For example, the heat dissipation efficiency of the heat dissipating part 72 of the heat transfer plates 53A and 53D joined to the square battery 51A and the square battery 51D with the largest temperature difference is greater than the heat dissipating efficiency of the heat dissipating part 72 of the heat transfer plate 53A. It is sufficient that the heat transfer efficiency of the heat transfer plate 53D is higher, and the heat transfer efficiency of the other heat transfer plates 53 is not limited. In this case, since the temperature difference between the prismatic battery 51A and the prismatic battery 51D having the largest temperature difference is reduced, the temperature difference between the prismatic batteries 51 is reduced.

○ 実施形態において、送風機などを設けて送風機によって角型電池51を冷却してもよい。この場合、送風機による送風によって冷却されやすい角型電池51と、冷却されにくい角型電池51で温度差が生じる。例えば、送風機の送風方向の上流側に位置する角型電池51ほど送風によって冷却されやすく、下流側に位置する角型電池51ほど送風によって冷却されにくい場合、上流側に位置する角型電池51と、下流側に位置する角型電池51で温度差が生じる。この場合、下流側に位置する角型電池51に接合される伝熱プレート53の放熱部72の放熱効率を、他の伝熱プレート53と比較して高くする。すなわち、送風機などの外部要因によって温度差に偏りが生じる場合、これらを考慮して、伝熱プレート53の放熱部72の放熱効率を異ならせてもよい。   In the embodiment, a rectangular fan 51 may be provided to cool the prismatic battery 51 with the blower. In this case, a temperature difference occurs between the prismatic battery 51 that is easily cooled by the air blown by the blower and the prismatic battery 51 that is difficult to cool. For example, when the square battery 51 located on the upstream side in the blowing direction of the blower is more easily cooled by blowing, and the square battery 51 located on the downstream side is less likely to be cooled by blowing, the square battery 51 located on the upstream side A temperature difference is generated in the square battery 51 located on the downstream side. In this case, the heat radiation efficiency of the heat radiation portion 72 of the heat transfer plate 53 joined to the square battery 51 located on the downstream side is made higher than that of the other heat transfer plates 53. That is, when the temperature difference is biased due to an external factor such as a blower, the heat dissipation efficiency of the heat dissipation portion 72 of the heat transfer plate 53 may be varied in consideration of these.

○ 実施形態において、放熱効率が同一の伝熱プレートを設けた場合に、最も温度が低くなる角型電池51以外の角型電池51に放熱効率の高い放熱部72を有する伝熱プレート53を接合させてもよい。   In the embodiment, when the heat transfer plate having the same heat dissipation efficiency is provided, the heat transfer plate 53 having the heat dissipation portion 72 having the high heat dissipation efficiency is joined to the square battery 51 other than the square battery 51 having the lowest temperature. You may let them.

○ 実施形態において、角型電池51は、発熱量が異なっていてもよい。この場合、発熱量の多い角型電池51に接合される伝熱プレート53の放熱部72の放熱効率を他の伝熱プレート53の放熱効率と比較して高くしてもよいし、発熱量と角型電池51の配置位置とから伝熱プレート53のウェイト本体33との接触面積を変更してもよい。なお、この場合、電池モジュール50の出荷前に、各角型電池51の内部抵抗を測定することで、使用によって角型電池51の内部抵抗が変化する前の発熱量を求めることができる。   In the embodiment, the prismatic battery 51 may have a different amount of heat generation. In this case, the heat dissipation efficiency of the heat dissipation portion 72 of the heat transfer plate 53 joined to the square battery 51 having a large heat generation amount may be higher than the heat dissipation efficiency of the other heat transfer plates 53, You may change the contact area with the weight main body 33 of the heat-transfer plate 53 from the arrangement position of the square battery 51. FIG. In this case, by measuring the internal resistance of each square battery 51 before shipment of the battery module 50, the amount of heat generated before the internal resistance of the square battery 51 is changed by use can be obtained.

○ 実施形態において、伝熱プレート53における角型電池51に挟まれる電池間部(本体部71)の厚みは、同一の接続部材67を使用できる範囲内や、製造上の誤差の範囲内であれば異なっていてもよい。すなわち、「複数の伝熱プレート53の本体部71(電池間部)の角型電池51(二次電池)の並設方向の長さが同一」の「同一」は、同一の接続部材67を用いて端子56同士を接続できる程度の誤差や、製造上の誤差を許容するものである。   In the embodiment, the thickness of the inter-battery portion (main body portion 71) sandwiched between the square batteries 51 in the heat transfer plate 53 may be within a range where the same connection member 67 can be used or within a range of manufacturing errors. May be different. That is, “the same” in “the lengths of the main body portions 71 (between the batteries) of the plurality of heat transfer plates 53 in the direction in which the prismatic batteries 51 (secondary batteries) are arranged in parallel” is the same as the connection member 67. An error to the extent that the terminals 56 can be connected together and a manufacturing error are allowed.

○ 実施形態において、伝熱プレート53は、本体部71の厚みが同一であれば、本体部71の大きさが異なっていてもよい。例えば、放熱部72の形状が同じで本体部71の大きさが異なっていてもよい。   In embodiment, if the thickness of the main-body part 71 is the same as the heat-transfer plate 53, the magnitude | size of the main-body part 71 may differ. For example, the shape of the heat radiation part 72 may be the same, and the size of the main body part 71 may be different.

○ 実施形態において、放熱体としてウェイト本体33以外を用いてもよい。例えば、電池モジュール50を筐体に収容して電池パック30を構成する場合には、筐体の側壁を放熱体として利用してもよい。   In the embodiment, a weight other than the weight main body 33 may be used as the heat radiator. For example, when the battery module 50 is accommodated in the casing to form the battery pack 30, the side wall of the casing may be used as a heat radiator.

○ 実施形態において、二次電池として、角型電池51以外の、円筒形電池などを用いてもよい。
○ 実施形態において、電池ホルダ52を設けず、角型電池51と伝熱プレート53を並設した電池モジュールを用いてもよい。
In the embodiment, a cylindrical battery or the like other than the square battery 51 may be used as the secondary battery.
In the embodiment, a battery module in which the square battery 51 and the heat transfer plate 53 are arranged in parallel may be used without providing the battery holder 52.

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(イ)前記他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部を有する伝熱プレートの前記電池間部は、前記二次電池の並設方向における両端を最短距離で結ぶ線の中心から最も近くに配置される前記二次電池と、該二次電池に隣り合う前記二次電池との間に設けられることを特徴とする請求項2に記載の電池モジュール。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(B) The inter-battery portion of the heat transfer plate having a heat dissipation portion with a high heat dissipation efficiency compared with the heat dissipation efficiency of the heat dissipation portion of the other heat transfer plate is the shortest distance between both ends in the parallel arrangement direction of the secondary batteries. 3. The battery module according to claim 2, wherein the battery module is provided between the secondary battery disposed closest to the center of the line connecting the two and the secondary battery adjacent to the secondary battery.

30…電池パック、31…カウンタウェイト、50…電池モジュール、51,51A,51B,51C,51D…角型電池、53,53A,53B,53C,53D…伝熱プレート、56…端子、67…接続部材、71…本体部、72…放熱部。   30 ... Battery pack, 31 ... Counterweight, 50 ... Battery module, 51, 51A, 51B, 51C, 51D ... Square battery, 53, 53A, 53B, 53C, 53D ... Heat transfer plate, 56 ... Terminal, 67 ... Connection 71, body part, 72 ... heat dissipation part.

Claims (4)

並設される複数の二次電池と、
放熱体と対向する放熱部と、前記複数の二次電池間に設けられる電池間部とを有する複数の伝熱プレートと、
前記二次電池の端子同士を接続する複数の接続部材と、を備えた電池モジュールであって、
前記複数の伝熱プレートの電池間部は、前記二次電池の熱を吸熱するとともに、前記複数の二次電池の並設方向の長さが同一であり、
前記複数の伝熱プレートの放熱部は、前記電池間部からの熱を前記放熱体に放熱し、
前記複数の伝熱プレートは、前記放熱部の放熱効率が異なる伝熱プレートを含むことを特徴とする電池モジュール。
A plurality of secondary batteries arranged in parallel;
A plurality of heat transfer plates having a heat dissipating part facing the heat dissipating member and an inter-battery part provided between the plurality of secondary batteries;
A plurality of connecting members for connecting the terminals of the secondary battery, and a battery module comprising:
The inter-battery portions of the plurality of heat transfer plates absorb the heat of the secondary battery, and the lengths in the juxtaposed direction of the plurality of secondary batteries are the same,
The heat dissipating part of the plurality of heat transfer plates dissipates heat from the inter-battery part to the heat dissipating body,
The plurality of heat transfer plates include a heat transfer plate having different heat dissipation efficiency of the heat dissipation portion.
前記伝熱プレートのうち、他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部を有する伝熱プレートの電池間部は、前記複数の二次電池のうち、前記複数の二次電池の並設方向における最も端に位置する二次電池以外の二次電池の間に設けられることを特徴とする請求項1に記載の電池モジュール。   Among the heat transfer plates, the inter-battery portion of the heat transfer plate having a heat dissipation portion with a high heat dissipation efficiency compared to the heat dissipation efficiency of the heat dissipation portion of the other heat transfer plate is the plurality of secondary batteries. The battery module according to claim 1, wherein the battery module is provided between secondary batteries other than the secondary battery located at the endmost in the direction in which the secondary batteries are arranged side by side. 前記他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部は、前記他の伝熱プレートの放熱部の熱容量より大きい熱容量を有することを特徴とする請求項1又は請求項2に記載の電池モジュール。   The heat dissipation part having a higher heat dissipation efficiency than the heat dissipation efficiency of the heat dissipation part of the other heat transfer plate has a larger heat capacity than the heat capacity of the heat dissipation part of the other heat transfer plate. Item 3. The battery module according to Item 2. 前記他の伝熱プレートの放熱部の放熱効率と比較して高い放熱効率の放熱部は、前記他の伝熱プレートの放熱部より前記放熱体との接触面積が大きいことを特徴とする請求項1〜請求項3のうちいずれか一項に記載の電池モジュール。   The heat dissipating part having a high heat dissipating efficiency compared to the heat dissipating efficiency of the heat dissipating part of the other heat transfer plate has a larger contact area with the heat dissipating body than the heat dissipating part of the other heat transfer plate. The battery module according to any one of claims 1 to 3.
JP2012265472A 2012-12-04 2012-12-04 Battery module Pending JP2014110218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265472A JP2014110218A (en) 2012-12-04 2012-12-04 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265472A JP2014110218A (en) 2012-12-04 2012-12-04 Battery module

Publications (1)

Publication Number Publication Date
JP2014110218A true JP2014110218A (en) 2014-06-12

Family

ID=51030713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265472A Pending JP2014110218A (en) 2012-12-04 2012-12-04 Battery module

Country Status (1)

Country Link
JP (1) JP2014110218A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047214A1 (en) * 2014-09-24 2016-03-31 株式会社豊田自動織機 Battery pack and industrial vehicle
JP2017004676A (en) * 2015-06-08 2017-01-05 株式会社豊田自動織機 Cell holder, battery module, and manufacturing method of battery module
JP2017076527A (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Battery module
JP2017123309A (en) * 2016-01-08 2017-07-13 株式会社豊田自動織機 Battery module
JP2018018629A (en) * 2016-07-26 2018-02-01 株式会社豊田自動織機 Battery module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249205A (en) * 2002-02-26 2003-09-05 Toyota Motor Corp Collective battery and battery system
JP2012160543A (en) * 2011-01-31 2012-08-23 Jm Energy Corp Power storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249205A (en) * 2002-02-26 2003-09-05 Toyota Motor Corp Collective battery and battery system
JP2012160543A (en) * 2011-01-31 2012-08-23 Jm Energy Corp Power storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047214A1 (en) * 2014-09-24 2016-03-31 株式会社豊田自動織機 Battery pack and industrial vehicle
JP2016066456A (en) * 2014-09-24 2016-04-28 株式会社豊田自動織機 Battery pack and industrial vehicle
JP2017004676A (en) * 2015-06-08 2017-01-05 株式会社豊田自動織機 Cell holder, battery module, and manufacturing method of battery module
JP2017076527A (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Battery module
JP2017123309A (en) * 2016-01-08 2017-07-13 株式会社豊田自動織機 Battery module
JP2018018629A (en) * 2016-07-26 2018-02-01 株式会社豊田自動織機 Battery module

Similar Documents

Publication Publication Date Title
WO2014091998A1 (en) Battery module and method for manufacturing battery module
JP5621859B2 (en) Battery module
JP5692539B2 (en) Industrial vehicle
JP5590080B2 (en) Industrial vehicle
JP6127524B2 (en) Battery pack
JP2014110218A (en) Battery module
WO2014092000A1 (en) Battery pack and industrial vehicle
JP5660103B2 (en) Industrial vehicle
JP2014149992A (en) Battery pack
JP5974721B2 (en) Battery pack
JP2014123516A (en) Battery pack
JP6065738B2 (en) Battery pack
JP2014076887A (en) Industrial vehicle
JP6123299B2 (en) Battery pack and industrial vehicle
JP6098205B2 (en) Battery pack
JP6155672B2 (en) Battery pack
JP2014146461A (en) Battery pack
JP5692540B2 (en) Industrial vehicle
JP6149925B2 (en) Battery module
JP5978974B2 (en) Battery pack
JP6724518B2 (en) Battery pack and battery pack weight adjustment method
JP5978983B2 (en) Battery module
JP6304426B2 (en) Battery pack
JP6060694B2 (en) Battery module
JP6036138B2 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329