JP2014109515A - Pump controller - Google Patents

Pump controller Download PDF

Info

Publication number
JP2014109515A
JP2014109515A JP2012264455A JP2012264455A JP2014109515A JP 2014109515 A JP2014109515 A JP 2014109515A JP 2012264455 A JP2012264455 A JP 2012264455A JP 2012264455 A JP2012264455 A JP 2012264455A JP 2014109515 A JP2014109515 A JP 2014109515A
Authority
JP
Japan
Prior art keywords
voltage
liquid
pump controller
detection circuit
electric pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012264455A
Other languages
Japanese (ja)
Other versions
JP6127477B2 (en
Inventor
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012264455A priority Critical patent/JP6127477B2/en
Publication of JP2014109515A publication Critical patent/JP2014109515A/en
Application granted granted Critical
Publication of JP6127477B2 publication Critical patent/JP6127477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insufficient voltage detection circuit suitable for a pump controller that controls a liquid level of conductive liquid stored in a liquid tank to a desired state.SOLUTION: An electric pump controller is configured such that AC voltage decreased while insulated via a transformer 20 from an external AC power source is applied to each of electrode pairs 21, 22, and 23 for detecting a liquid level of conductive liquid 2 stored in a liquid tank 1 and, based on liquid information on the basis of the conduction states of these electrode pairs, the liquid level is controlled to a desired state via the electric pump and an invertor 5 that drives the electric pump at a variable speed. An insufficient voltage detection circuit 30 is configured to detect that a DC voltage obtained by rectifying decreased AC voltage has decreased below a preset determination value. When the insufficient voltage detection circuit 30 detects the decrease in the DC voltage, a determination is made that the external AC power source went out, and various pieces of information about the electric pump controller are stored in an EEPROM 13 as a non-volatile memory.

Description

この発明は、液槽のへの液体の供給または排出を行う電動機で駆動されるポンプ(以下電動ポンプという)と、この電動ポンプを可変速駆動するインバータとを備えたポンプ装置により、液槽に貯留されている液体の液位を所望の状態に制御するポンプコントローラに関する。   According to the present invention, a liquid tank is provided by a pump device including a pump (hereinafter referred to as an electric pump) that is driven by an electric motor that supplies or discharges liquid to or from the liquid tank, and an inverter that drives the electric pump at a variable speed. The present invention relates to a pump controller that controls a liquid level of a stored liquid to a desired state.

この種のポンプコントローラにおいては、全体の制御を行うCPU(中央演算処理装置、マイコンとも称する)や電動ポンプを可変速駆動するインバータ等の構成機器へ給電する例えば商用電源が停電や電源異常などによる電圧低下を発生したときには、これを速やかに検知すると共に、この電圧低下が発生する直前の各構成機器の動作状態を不揮発性メモリに退避して保存した後に各構成機器の動作を停止させ、電圧低下が回復した後には、これを検知すると共に、前記不揮発性メモリに保存した内容に基づいて、各構成機器の動作を再開させることが行われている。   In this type of pump controller, power is supplied to components such as a CPU (central processing unit, also referred to as a microcomputer) that performs overall control and an inverter that drives the electric pump at a variable speed. When a voltage drop occurs, this is promptly detected, and the operation state of each component device immediately before the voltage drop occurs is saved in a nonvolatile memory, and then the operation of each component device is stopped. After the decrease is recovered, this is detected and the operation of each component device is restarted based on the content stored in the nonvolatile memory.

例えば下記特許文献1に開示されている従来装置では、停電や電圧低下を検出する手段として、インバータの中間直流電圧を監視する手段を設け、この中間直流電圧を監視する手段により、この中間直流電圧が予め定めた判定値以下になることが検知されたとき、停電が発生したと見做して、この停電が発生する直前の状態を不揮発性メモリに退避させて保存することを行っている。   For example, in the conventional apparatus disclosed in Patent Document 1 below, as a means for detecting a power failure or a voltage drop, a means for monitoring the intermediate DC voltage of the inverter is provided, and the intermediate DC voltage is monitored by means for monitoring this intermediate DC voltage. Is detected to be equal to or less than a predetermined determination value, it is assumed that a power failure has occurred, and the state immediately before the occurrence of the power failure is saved and saved in a nonvolatile memory.

特開2001−268988号公報Japanese Patent Laid-Open No. 2001-268888

しかしながら、通常、インバータには数百ボルトの中間直流電圧が印加されることから、前記従来装置におけるインバータの中間直流電圧を監視する手段は、高耐圧の回路部品や直流電圧の電圧値を絶縁して検出する機能を有する回路構成が求められており、停電や電圧低下の検出手段としての中間直流電圧を監視する手段が大型化するとともに高価格になるという難点があった。   However, since an intermediate DC voltage of several hundred volts is normally applied to the inverter, the means for monitoring the intermediate DC voltage of the inverter in the conventional device insulates the high voltage circuit components and the DC voltage value. Therefore, there is a demand for a circuit configuration having a function to detect the power supply, and there is a problem that the means for monitoring the intermediate DC voltage as a means for detecting a power failure or a voltage drop becomes large and expensive.

この発明の課題は、上記問題点を解消して、電源の停電や電圧低下を検出する手段が小形で安価となる電動ポンプコントローラを提供することにある。   An object of the present invention is to provide an electric pump controller that solves the above-described problems and has a small and inexpensive means for detecting a power failure or voltage drop.

この発明は、液槽に貯留されている導電性液体の液位を検出するための長さが異なる複数個の電極対に、それぞれ外部の交流電源から絶縁しつつ降圧された交流電圧を印加し、これら電極対の導通状態に基づいた液位情報に基づいて、前記液槽へ液体の供給または排出を行う電動ポンプを可変速駆動するインバータを制御して前記液位を所望の状態に制御するポンプコントローラにおいて、前記電極対に印加される降圧された交流電圧を監視し、これが予め定めた判定値より低下したことを検知したとき前記交流電源の不足電圧検出信号とする不足電圧検出回路を備えたことを特徴とする。   The present invention applies an AC voltage stepped down while insulating from an external AC power source to a plurality of electrode pairs having different lengths for detecting the liquid level of the conductive liquid stored in the liquid tank. Based on the liquid level information based on the conductive state of these electrode pairs, the liquid level is controlled to a desired state by controlling an inverter that drives the electric pump that supplies or discharges the liquid to or from the liquid tank at a variable speed. The pump controller includes an undervoltage detection circuit that monitors the stepped down AC voltage applied to the electrode pair and sets the AC power supply as an undervoltage detection signal when detecting that the AC voltage has dropped below a predetermined determination value. It is characterized by that.

また、上記においてにおいて、前記不足電圧検出回路が前記降圧された交流電圧またはこの電圧を整流した直流電圧の低下を検知したときには、前記電動ポンプコントローラの各種情報を不揮発性メモリに退避して保存するものとする。   Further, in the above, when the undervoltage detection circuit detects a decrease in the stepped-down AC voltage or a DC voltage obtained by rectifying the voltage, various information of the electric pump controller is saved and stored in a nonvolatile memory. Shall.

液槽に貯留されている導電性液体の液位を所望の状態に制御するポンプコントローラは、導電性液体の液位を検出するための液位検出回路を備えている。この液位検出回路は、液槽に貯留されている導電性液体の液位を検出するための複数個の電極対を備え、これら複数個の電極対にそれぞれ外部の交流電源から絶縁しつつ降圧された交流電圧を印加し、各電極対の導通状態を監視することにより、液槽内の導電性液体の液位を検出している。   The pump controller that controls the liquid level of the conductive liquid stored in the liquid tank to a desired state includes a liquid level detection circuit for detecting the liquid level of the conductive liquid. The liquid level detection circuit includes a plurality of electrode pairs for detecting the liquid level of the conductive liquid stored in the liquid tank, and steps down the voltage while insulating each of the plurality of electrode pairs from an external AC power source. The liquid level of the conductive liquid in the liquid tank is detected by applying the AC voltage and monitoring the conduction state of each electrode pair.

この発明は、電動ポンプコントローラの上記液位検出回路が、外部の交流電源から絶縁され、かつ降圧された交流電圧を使用していることに着目してなされたものであり、液位を検出するために用いられている前記降圧された交流電圧が電源電圧に比例するという特性を利用して、電源電圧の停電や電圧低下をするものである。このため、ポンプコントローラに備えられる電源の停電や電圧低下を検出する不足電圧検出回路は、インバータの主回路から絶縁する必要がなく、かつ低電圧の定格の電子部品により構成できるので、小形で安価な回路とすることができる。   The present invention is made by paying attention to the fact that the liquid level detection circuit of the electric pump controller uses an AC voltage that is insulated from an external AC power source and is stepped down, and detects the liquid level. For this reason, the power supply voltage is interrupted or lowered by utilizing the characteristic that the stepped-down AC voltage used for this purpose is proportional to the power supply voltage. For this reason, the undervoltage detection circuit that detects power failure and voltage drop of the power supply provided in the pump controller does not need to be insulated from the main circuit of the inverter and can be configured with low-voltage rated electronic components, so it is small and inexpensive. A simple circuit.

この発明の実施の形態を示す電動ポンプコントローラの模式的概念構成図Schematic conceptual configuration diagram of an electric pump controller showing an embodiment of the present invention 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図2の動作を説明する波形図Waveform diagram explaining the operation of FIG. 図2の動作を説明する波形図Waveform diagram explaining the operation of FIG.

図1は、この発明の実施の形態を示すポンプコントローラの模式的概念構成図である。   FIG. 1 is a schematic conceptual configuration diagram of a pump controller showing an embodiment of the present invention.

この図において、1は水等の導電性液体2を貯留する液槽、4は配管3を介して一旦液槽1に貯留した導電性液体2を各末端(例えば、各家庭の水道の蛇口等)へ圧力をかけて送り出す交流の電動ポンプ、5は電動ポンプ4を可変速駆動するインバータ、10はこの電動ポンプコントローラの全体の演算制御を行うCPU(中央演算処理ユニット)、11はインバータ5とCPU10との間のデータ通信処理を行うための通信インタフェース、12は配管3に設置された流量センサや圧力センサ等の各種の状態監視センサからの状態監視信号をCPU10に伝達するためのセンサインタフェース、13はこのポンプコントローラの各種情報を保存するための不揮発性メモリとしてのEEPROM、20はこのポンプコントローラの構成機器へ給電する商用電源などの外部の交流電源(例えばAC200V)から絶縁しつつ低電圧、例えばAC12Vに降圧された交流電圧を生成するための変圧器、21、22、・・・23は変圧器20で生成された前記のAC12Vに降圧された交流電圧が印加される長さの異なる複数個の電極対である。電極対は図示の例では21、22、・・・23の順に電極長さを順次長くなっており、浸漬レベルが深くなっている。   In this figure, 1 is a liquid tank for storing a conductive liquid 2 such as water, and 4 is a conductive liquid 2 once stored in the liquid tank 1 via a pipe 3 at each end (for example, a faucet for each household) ), An AC electric pump that feeds the electric pump 4 under pressure, 5 is an inverter that drives the electric pump 4 at a variable speed, 10 is a CPU (central processing unit) that performs overall control of the electric pump controller, 11 is an inverter 5 A communication interface for performing data communication processing with the CPU 10, a sensor interface 12 for transmitting state monitoring signals from various state monitoring sensors such as a flow sensor and a pressure sensor installed in the pipe 3 to the CPU 10, 13 is an EEPROM as a non-volatile memory for storing various information of the pump controller, and 20 is a component of the pump controller. Transformers 21, 22,... 23 are transformers 20 for generating a low voltage, for example, an AC voltage stepped down to AC 12 V while being insulated from an external AC power source (for example, AC 200 V) such as a commercial power source. A plurality of electrode pairs having different lengths to which an AC voltage stepped down is applied to the generated AC12V. In the example shown in the drawing, the electrode length is sequentially increased in the order of 21, 22,..., And the immersion level is deeper.

24は液位検出回路であり、液槽1内の導電性液体2の液位状態(例えば、満水,減水,渇水等の状態)を監視している。この液位検出回路24は抵抗、ダイオード、コンパレータ素子、ホトカプラ素子などにより構成された検出回路を電極対21、22、・・・23それぞれに対して備え、電極対21、22、・・・23の内のどの浸漬レベルの電極対が導通しているかによって液槽1に貯留されている導電性液体2の液位を検出する動作を行っている。   A liquid level detection circuit 24 monitors the liquid level state of the conductive liquid 2 in the liquid tank 1 (for example, the state of full water, low water, drought, etc.). The liquid level detection circuit 24 includes a detection circuit constituted by a resistor, a diode, a comparator element, a photocoupler element, and the like for each of the electrode pairs 21, 22,... 23, and the electrode pairs 21, 22,. The liquid level of the conductive liquid 2 stored in the liquid tank 1 is detected depending on which level of the electrode pair is conductive.

すなわち、図示の液位hの液面以下に位置する電極対は液槽内の液体を通して導通状態になっていることから、検出抵抗R1、R2の直列回路に電極対を通してAC12Vの低電圧の交流電圧が印加されることになる。その結果、対応するダイオードDとコンパレータ素子CPとを介したホトカプラ素子PCそれぞれが半サイクル毎にオン・オフする動作状態がCPU20に伝達されることにより、導電性液体2の液位を検出することができる。このとき、導通状態にある電極対に流れる交流電流を僅少に制限することで、該電極対の電気分解作用に基づく磨耗を軽減させている。   That is, since the electrode pair located below the liquid level at the liquid level h shown in the figure is in a conductive state through the liquid in the liquid tank, the AC 12V low voltage AC is passed through the electrode pair to the series circuit of the detection resistors R1 and R2. A voltage will be applied. As a result, the liquid level of the conductive liquid 2 is detected by transmitting to the CPU 20 an operating state in which each of the photocoupler elements PC via the corresponding diode D and comparator element CP is turned on and off every half cycle. Can do. At this time, the wear based on the electrolysis action of the electrode pair is reduced by slightly limiting the alternating current flowing through the electrode pair in the conductive state.

また、変圧器20からのAC12Vに対してダイオード25とコンデンサ26とを介することにより、コンデンサ26の両端にはAC12Vを整流した電圧DC17V(図示の+17)が得られる。このAC12Vを整流したDC17Vが外部の交流電源の電圧に比例するという特性を利用するため、この整流電圧を後述の不足電圧検出回路30へ直流電源として加える。   Further, a voltage DC17V (+17 in the figure) obtained by rectifying AC12V is obtained at both ends of the capacitor 26 by passing the diode 25 and the capacitor 26 with respect to AC12V from the transformer 20. In order to utilize the characteristic that DC17V obtained by rectifying the AC12V is proportional to the voltage of the external AC power supply, this rectified voltage is applied as a DC power supply to an undervoltage detection circuit 30 described later.

上述のように、このポンプコントローラは、液槽1に貯留されている導電性液体2の液位を検出するための複数個の電極対21、22、・・・23に、それぞれ外部の交流電源から変圧器20により絶縁しつつ低電圧に降圧された交流電圧が印加され、これらの電極対21、22、・・・23の導通状態に基づく液位検出回路24から液位検出信号が出力される。そして、CPU10が液位検出回路24からの液位検出信号に従って液槽1内のその都度の液位状態を判定し、インバータ5を制御して電動ポンプ4を可変速駆動し、液槽1内の導電性液体2の液位を所望の状態に制御する動作を行っている。   As described above, the pump controller includes an external AC power supply for each of the plurality of electrode pairs 21, 22,... 23 for detecting the liquid level of the conductive liquid 2 stored in the liquid tank 1. Is applied with an AC voltage that is stepped down to a low voltage while being insulated by the transformer 20, and a liquid level detection signal is output from the liquid level detection circuit 24 based on the conduction state of these electrode pairs 21, 22,... The Then, the CPU 10 determines the respective liquid level state in the liquid tank 1 in accordance with the liquid level detection signal from the liquid level detection circuit 24, and controls the inverter 5 to drive the electric pump 4 at a variable speed. The operation of controlling the liquid level of the conductive liquid 2 to a desired state is performed.

図2は、図1に示した不足電圧検出回路30の詳細回路構成図であり、抵抗31と32で電圧検出回路を構成し、抵抗33とは定電圧ダイオード34とで基準電圧回路を構成する。コンパレータ素子35は電圧検出回路の検出電圧V2と基準電圧回路で生成された基準電圧Vz(低電圧ダイオード34のツェナ―電圧)とを比較して、V2≧Vzのとき出力電圧VcをLレベルとし、V2<Vzのとき、出力電圧VcをHレベルとする。この出力電圧Vcは、ホトカプラ素子37回して、CPU10へ入力される。   FIG. 2 is a detailed circuit configuration diagram of the undervoltage detection circuit 30 shown in FIG. 1. A resistor 31 and 32 constitute a voltage detection circuit, and a resistor 33 and a constant voltage diode 34 constitute a reference voltage circuit. . The comparator element 35 compares the detection voltage V2 of the voltage detection circuit with the reference voltage Vz (the zener voltage of the low voltage diode 34) generated by the reference voltage circuit, and sets the output voltage Vc to L level when V2 ≧ Vz. When V2 <Vz, the output voltage Vc is set to the H level. This output voltage Vc is input to the CPU 10 by turning the photocoupler element 37 times.

図2に示した不足電圧検出回路30の動作を、図3,4に示した波形図を参照しつつ、以下に説明する。   The operation of the undervoltage detection circuit 30 shown in FIG. 2 will be described below with reference to the waveform diagrams shown in FIGS.

図3は、この発明のポンプコントローラの構成機器へ給電する商用電源などの交流電源が正常なときの不足電圧検出回路30の動作を説明するための各部の電圧波形を示す。V1は不足電圧検出回路30の入力電圧、すなわち、コンデンサ26の両端の整流電圧(図示の+17)の波形を示し、V2は前記V1を抵抗31と抵抗32とにより分圧した電圧波形を示す。Vzは基準電圧であり、抵抗33と定電圧ダイオード34の回路に印加される図示の+17が、定電圧ダイオード34によりほぼ一定値Vzとされた電圧波形を示す。   FIG. 3 shows voltage waveforms at various portions for explaining the operation of the undervoltage detection circuit 30 when an AC power supply such as a commercial power supply for supplying power to the components constituting the pump controller of the present invention is normal. V1 indicates an input voltage of the undervoltage detection circuit 30, that is, a waveform of a rectified voltage (+17 in the figure) across the capacitor 26, and V2 indicates a voltage waveform obtained by dividing the V1 by the resistor 31 and the resistor 32. Vz is a reference voltage, and +17 shown in the figure, which is applied to the circuit of the resistor 33 and the constant voltage diode 34, indicates a voltage waveform that is set to a substantially constant value Vz by the constant voltage diode 34.

図3において電圧V2は、常にV2≧Vzの関係にあるので、コンパレータ素子35の出力Vcは常に論理「L」レベルにあり、その結果、抵抗36を介したホトカプラ素子37より、この論理「L」レベルの信号がCPU10に伝達され、CPU10では、前記交流電源の電圧が服することなく正常な電圧にあると判断する。   In FIG. 3, the voltage V2 is always in the relationship of V2 ≧ Vz, so that the output Vc of the comparator element 35 is always at the logic “L” level. As a result, the photocoupler element 37 via the resistor 36 causes the logic “L”. ”Level signal is transmitted to the CPU 10, and the CPU 10 determines that the voltage of the AC power supply is normal and not normal.

図4は、この発明のポンプコントローラの構成機器へ給電する商用電源などの交流電源が停電(瞬時停電も含む)もしくは電源異常などにより、例えば正常時の約50%相当まで電源電圧が低下したときの不足電圧検出回路30の動作を説明する波形図である。   FIG. 4 shows a case in which the power supply voltage drops to, for example, about 50% of normal due to a power failure (including instantaneous power failure) or a power failure due to an AC power source such as a commercial power source that supplies power to the components of the pump controller of the present invention. 6 is a waveform diagram for explaining the operation of the undervoltage detection circuit 30 of FIG.

図4において、V1´は図3に示したV1(図4では破線の波形)が異常に低下したときの不足電圧検出回路30に加わる入力電圧波形を示し、V2´は前記V1´を抵抗31と抵抗32とにより分圧した電圧波形を示し、Vzは定電圧ダイオード34によりほぼ一定値にされた基準電圧の電圧波形を示す。   In FIG. 4, V1 ′ indicates an input voltage waveform applied to the undervoltage detection circuit 30 when V1 shown in FIG. 3 (broken line waveform in FIG. 4) abnormally decreases, and V2 ′ replaces V1 ′ with the resistor 31. And Vz indicates a voltage waveform of a reference voltage that is made substantially constant by the constant voltage diode 34.

ここで、V2´<Vzの関係の領域が予め定めた所定期間(例えば2ミリ秒以上の期間)存在する状態になると、コンパレータ素子35の出力Vcは、この領域では論理「H」レベルとなり、従って、抵抗36を介したホトカプラ素子37より、この論理「H」レベル信号がCPU10に伝達さる(図4)のVc参照)。CPU10は、これによって前記交流電源が異常な不足電圧状態に陥ったと判断する。その結果、CPU10は電源が完全にダウンする前に、電動ポンプ制御のために必要な前記ポンプコントローラの各種情報をEEPROM13に退避して保存する動作を行う。   Here, when a region having a relationship of V2 ′ <Vz exists in a predetermined period (for example, a period of 2 milliseconds or more), the output Vc of the comparator element 35 becomes a logic “H” level in this region, Therefore, the logic “H” level signal is transmitted to the CPU 10 from the photocoupler element 37 via the resistor 36 (see Vc in FIG. 4). Thus, the CPU 10 determines that the AC power supply has fallen into an abnormal undervoltage state. As a result, the CPU 10 performs an operation of saving and storing various information of the pump controller required for the electric pump control in the EEPROM 13 before the power supply is completely shut down.

また、電源異常からの正常な状態への復帰条件は、V2>Vzの関係にある状態が予め定めた一定期間(前記所定期間よりも長い期間であり、例えば100ミリ秒以上の期間)連続して存在することとする。この条件は、CPU10でコンパレータ素子10の出力電圧Vcの論理「L」レベルとなる期間をカウントして判定する。コンパレータ素子10の出力電圧Vcの論理「L」レベルとなる期間が連続して100ミリ秒を超える期間を越える期間継続することが検知され、前記の条件が成立したら電源異常から復帰したと看做してCPU10は退避していた電動ポンプコントローラの各種情報をEEPROM13から読み込むようにする。   Further, the condition for returning from a power failure to a normal state is that a state in which V2> Vz is satisfied continuously for a predetermined period (a period longer than the predetermined period, for example, a period of 100 milliseconds or more). Exist. This condition is determined by counting the period when the output voltage Vc of the comparator element 10 is at the logic “L” level in the CPU 10. It is detected that the period when the output voltage Vc of the comparator element 10 is at the logic “L” level continues for a period exceeding the period exceeding 100 milliseconds. Then, the CPU 10 reads various information of the saved electric pump controller from the EEPROM 13.

上述のように、液槽1に貯留されている導電性液体2の液位を検出するための低電圧の交流電圧(AC12V)を、交流電源の異常を検出すると共用することにより、交流電源の異常状態を検出する不足電圧検出回路30を電圧定格の低い電子部品で簡単に構成することができるので、これのコストを低減することができる。交流電源が異常状態になった場合に電動ポンプ運転に必要な各種情報を退避するなどの処置を行うことが可能になる。   As described above, the low-voltage AC voltage (AC12V) for detecting the liquid level of the conductive liquid 2 stored in the liquid tank 1 is shared when an AC power supply abnormality is detected. Since the undervoltage detection circuit 30 for detecting an abnormal state can be easily configured with electronic components having a low voltage rating, the cost of the circuit can be reduced. When the AC power supply is in an abnormal state, it is possible to take measures such as saving various information necessary for the electric pump operation.

1…液槽、2…導電性液体、3…配管、4…電動ポンプ、5…インバータ、10…CPU、11…通信インタフェース、12…センサインタフェース、13…EEPROM、20…変圧器、22、22、・・・23…電極対、24…液面検出回路、25…ダイオード、26…コンデンサ、30…不足電圧検出回路、31〜33…抵抗、34…定電圧ダイオード、35…コンパレータ素子、36…抵抗、37…ホトカプラ素子。   DESCRIPTION OF SYMBOLS 1 ... Liquid tank, 2 ... Conductive liquid, 3 ... Piping, 4 ... Electric pump, 5 ... Inverter, 10 ... CPU, 11 ... Communication interface, 12 ... Sensor interface, 13 ... EEPROM, 20 ... Transformer, 22 and 22 23 ... Electrode pair, 24 ... Liquid level detection circuit, 25 ... Diode, 26 ... Capacitor, 30 ... Undervoltage detection circuit, 31-33 ... Resistance, 34 ... Constant voltage diode, 35 ... Comparator element, 36 ... Resistor, 37 ... Photocoupler element.

Claims (3)

液槽に貯留されている導電性液体の液位を検出するための長さが異なる複数個の電極対に、それぞれ外部の交流電源から絶縁しつつ降圧された交流電圧を印加し、これら電極対の導通状態に基づいた液位状態に基づいて、
前記液槽へ液体の供給または排出を行う電動ポンプを可変速駆動するインバータを制御して前記液位を所望の状態に制御するポンプコントローラにおいて、前記電極対に印加される降圧された交流電圧を監視し、これが予め定めた判定値より低下したことを検知したとき前記交流電源の不足電圧検出信号とする不足電圧検出回路を備えたことを特徴とするポンプコントローラ。
A plurality of electrode pairs having different lengths for detecting the liquid level of the conductive liquid stored in the liquid tank are applied with an AC voltage stepped down while being insulated from an external AC power source. Based on the liquid level state based on the conduction state of
In a pump controller that controls an inverter that drives an electric pump that supplies or discharges liquid to the liquid tank at a variable speed to control the liquid level to a desired state, a reduced AC voltage applied to the electrode pair A pump controller, comprising: an undervoltage detection circuit that monitors and detects that the voltage has fallen below a predetermined determination value, and serves as an undervoltage detection signal for the AC power supply.
請求項1に記載の電動ポンプコントローラにおいて、
前記不足電圧検出回路では、前記降圧された交流電圧を整流して得られる直流電圧が予め定めた判定値より低下したことを検出することを特徴とするポンプコントローラ。
The electric pump controller according to claim 1,
The pump controller according to claim 1, wherein the undervoltage detection circuit detects that a DC voltage obtained by rectifying the stepped-down AC voltage is lower than a predetermined determination value.
請求項1又は請求項2に記載の電動ポンプコントローラにおいて、
前記不足電圧検出回路が前記交流電圧またはこれを整流した直流電圧の低下を検知したときには、前記電動ポンプコントローラの各種情報を不揮発性メモリに退避して保存するようにしたことを特徴とするポンプコントローラ。
In the electric pump controller according to claim 1 or 2,
When the undervoltage detection circuit detects a drop in the AC voltage or a DC voltage obtained by rectifying the AC voltage, various information of the electric pump controller is saved and stored in a nonvolatile memory. .
JP2012264455A 2012-12-03 2012-12-03 Pump controller Active JP6127477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264455A JP6127477B2 (en) 2012-12-03 2012-12-03 Pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264455A JP6127477B2 (en) 2012-12-03 2012-12-03 Pump controller

Publications (2)

Publication Number Publication Date
JP2014109515A true JP2014109515A (en) 2014-06-12
JP6127477B2 JP6127477B2 (en) 2017-05-17

Family

ID=51030228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264455A Active JP6127477B2 (en) 2012-12-03 2012-12-03 Pump controller

Country Status (1)

Country Link
JP (1) JP6127477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401880A (en) * 2018-04-04 2018-08-17 佛山科学技术学院 A kind of hydroponic plant planting unit of automatic water supplement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540469U (en) * 1978-09-07 1980-03-15
US4263587A (en) * 1979-04-09 1981-04-21 International Telephone And Telegraph Corporation Liquid level control system
JPH05288592A (en) * 1992-04-09 1993-11-02 Mitsubishi Electric Corp Liquid level detector
JPH0667733A (en) * 1992-08-24 1994-03-11 Kiyuudenkou:Kk Liquid level control system
JP2001268988A (en) * 2000-03-21 2001-09-28 Toshiba Fa Syst Eng Corp Inverter
JP2004279109A (en) * 2003-03-13 2004-10-07 Omron Corp Liquid level detection device for multiple electrodes
JP2011113329A (en) * 2009-11-27 2011-06-09 Hitachi Industrial Equipment Systems Co Ltd Water supply apparatus and level control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540469U (en) * 1978-09-07 1980-03-15
US4263587A (en) * 1979-04-09 1981-04-21 International Telephone And Telegraph Corporation Liquid level control system
JPH05288592A (en) * 1992-04-09 1993-11-02 Mitsubishi Electric Corp Liquid level detector
JPH0667733A (en) * 1992-08-24 1994-03-11 Kiyuudenkou:Kk Liquid level control system
JP2001268988A (en) * 2000-03-21 2001-09-28 Toshiba Fa Syst Eng Corp Inverter
JP2004279109A (en) * 2003-03-13 2004-10-07 Omron Corp Liquid level detection device for multiple electrodes
JP2011113329A (en) * 2009-11-27 2011-06-09 Hitachi Industrial Equipment Systems Co Ltd Water supply apparatus and level control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401880A (en) * 2018-04-04 2018-08-17 佛山科学技术学院 A kind of hydroponic plant planting unit of automatic water supplement

Also Published As

Publication number Publication date
JP6127477B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN108535637B (en) Apparatus for detecting failure of power relay of inverter
JP6279192B1 (en) Inverter device and abnormality detection method for inverter device
KR20100110260A (en) Brushless dc motor with soft-starting of pwm signals
JP5855699B2 (en) Motor driving device having welding detection function of magnetic contactor
JP2017200418A (en) Malfunction detector of relay
JP2006280159A (en) Co-generation system
JP2009134564A (en) Operation control device of electric equipment
JP6127477B2 (en) Pump controller
JP2014011834A (en) Power conditioner and fuel cell power generation system
JP2009259726A (en) Heating cooker
JP2011010469A (en) Power supply device, and method and program for controlling the power supply device
JP2016226283A (en) Control power supply device for inverter
JP2011182568A (en) Rush current suppression device
JP5008465B2 (en) Uninterruptible power system
JP2007129867A (en) Relay control method and relay controller for inrush current limiting circuit
JP2011119046A (en) Fuel cell generator
JP2006280097A (en) Power generation system
JP2015043642A (en) Power conditioner
JP5671697B2 (en) Air conditioner
JP2010122082A (en) Fault detection circuit and electric power regulator
US12025137B2 (en) Water gulping detection
JP2008096079A (en) Heat pump controller
KR20100006984A (en) Power cut off device and control method thereof
JP2011108455A (en) Electronic breaker
CN208508534U (en) Microcomputer electric draught control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6127477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250