JP2014109239A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2014109239A
JP2014109239A JP2012264630A JP2012264630A JP2014109239A JP 2014109239 A JP2014109239 A JP 2014109239A JP 2012264630 A JP2012264630 A JP 2012264630A JP 2012264630 A JP2012264630 A JP 2012264630A JP 2014109239 A JP2014109239 A JP 2014109239A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
deflection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012264630A
Other languages
Japanese (ja)
Inventor
Masanobu Hirata
公信 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Truck Corp
Original Assignee
Volvo Lastvagnar AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Lastvagnar AB filed Critical Volvo Lastvagnar AB
Priority to JP2012264630A priority Critical patent/JP2014109239A/en
Publication of JP2014109239A publication Critical patent/JP2014109239A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine that can suppress a rise in exhaust pressure by a deflection member when an exhaust flow rate increases while allowing exhaust to flow in an exhaust emission control device substantially equally when the exhaust flow rate is small.SOLUTION: An exhaust emission control device 4 includes an oxidation catalyst 7, a DPF 8, an SCR catalyst 9, and an ammonia oxidation catalyst 10 in this order from the upstream side. An exhaust passage 3 is formed in a channel shape right before the oxidation catalyst 7 and SCR catalyst 9, and exhaust changes its course by 180 degrees and flows in the oxidation catalyst 7 and SCR catalyst 9. Here, deflection members 21, 21 made of a temperature-sensing deformation material are arranged in a projection region on an inner wall of the exhaust passage 3 (channel-shaped part 31) when the oxidation catalyst 7 and SCR catalyst 9 are projected upstream. The deflection members 21, 21 deflect exhaust deviating outward and flowing in the curvature of the exhaust passage 3 toward the center and deform so as to make the deflection (exhaust resistance) of the flow of the exhaust less when the exhaust temperature is high than when the exhaust temperature is low.

Description

本発明は、内燃機関の排気通路に介装される排気浄化装置に関する。   The present invention relates to an exhaust emission control device interposed in an exhaust passage of an internal combustion engine.

特許文献1には、触媒のケーシングに接続した入口パイプの開口端に流路変更板を溶接し、この流路変更板により排ガスの流路を変更することで、触媒の各部位への排ガス供給量の格差を縮小するようにした、排気浄化装置が開示されている。   In Patent Document 1, a flow path change plate is welded to an opening end of an inlet pipe connected to a catalyst casing, and the flow path of the exhaust gas is changed by the flow path change plate, thereby supplying exhaust gas to each part of the catalyst. An exhaust emission control device is disclosed which reduces the quantity difference.

特開2011−099415号公報JP 2011-099415 A

ところで、排気流量が少ない場合に、触媒やフィルタなどの排気浄化装置における排気流れの偏りを減少させることができるように、偏向部材の角度などの偏向特性を設定すると、排気流量が多くなった場合に、偏向部材による排気の抵抗が増大して内燃機関の背圧を上昇させ、内燃機関の燃費性能を低下させる要因になってしまうという問題があった。   By the way, if the deflection characteristics such as the angle of the deflection member are set so that the deviation of the exhaust flow in the exhaust purification device such as a catalyst or a filter can be reduced when the exhaust flow rate is small, the exhaust flow rate increases In addition, the exhaust resistance by the deflecting member is increased to increase the back pressure of the internal combustion engine, which causes a reduction in fuel efficiency of the internal combustion engine.

そこで、本発明は上記従来技術の問題点に鑑み、排気流量が少ない場合に、排気浄化装置における排気流れの偏りを減少させつつ、排気流量が多くなった場合に、偏向部材による機関背圧の上昇を抑制できる、内燃機関の排気浄化装置を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention reduces the deviation of the exhaust flow in the exhaust purification device when the exhaust flow rate is small, and reduces the back pressure of the engine due to the deflection member when the exhaust flow rate increases. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress the increase.

このため、本発明に係る内燃機関の排気浄化装置は、排気浄化装置の横断面における排気の流れを分散させるように排気の流れを偏向する偏向部材を、内燃機関の排気通路に配置し、前記偏向部材は、排気温度に応じて変形する感温変形材料で形成され、排気温度が高い場合には低い場合に比べて排気の流れの偏向を弱めるように変形するようにした。   For this reason, the exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a deflection member that deflects the flow of exhaust gas so as to disperse the flow of exhaust gas in a cross section of the exhaust gas purification apparatus. The deflecting member is formed of a temperature-sensitive deformable material that deforms according to the exhaust temperature, and is deformed so that the deflection of the exhaust flow is weakened when the exhaust temperature is high compared to when the exhaust temperature is low.

本発明によれば、排気流量が少なく排気の温度が低い場合には、偏向部材によって排気浄化装置の横断面における排気の流れを分散させる一方、排気流量が多くなって排気の温度が高くなると、偏向部材が変形して排気の偏向が弱められることで、偏向部材による排気抵抗が弱まり、排圧(内燃機関の背圧)の上昇を抑制できる。   According to the present invention, when the exhaust gas flow rate is low and the exhaust gas temperature is low, the deflection member disperses the flow of the exhaust gas in the cross section of the exhaust gas purification device, while the exhaust gas flow rate increases and the exhaust gas temperature increases. Since the deflection member is deformed and the deflection of the exhaust is weakened, the exhaust resistance due to the deflection member is weakened, and an increase in exhaust pressure (back pressure of the internal combustion engine) can be suppressed.

本発明の実施形態におけるディーゼルエンジンの排気系を示す図The figure which shows the exhaust system of the diesel engine in embodiment of this invention 本発明の実施形態において偏向部材を設けない場合の排気の流れを示す図The figure which shows the flow of exhaust when not providing a deflection | deviation member in embodiment of this invention 本発明の実施形態における偏向部材を示す斜視図The perspective view which shows the deflection | deviation member in embodiment of this invention 本発明の実施形態における偏向部材の排気温度による変形特性及び排気の偏向特性を示す図The figure which shows the deformation | transformation characteristic by the exhaust temperature of the deflection | deviation member in embodiment of this invention, and the deflection | deviation characteristic of exhaust_gas | exhaustion 本発明の実施形態における貫通孔を有する偏向部材を示す斜視図The perspective view which shows the deflection | deviation member which has a through-hole in embodiment of this invention 本発明の実施形態における2つ1組とする偏向部材を示す斜視図The perspective view which shows the deflection | deviation member made into two sets in embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。
図1は、排気浄化装置を含む、エンジンの排気系を示す図である。
ディーゼルエンジン(内燃機関)1は、排気マニホールド2下流側の排気通路(排気管)3に、排気浄化装置4を備えている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a diagram showing an exhaust system of an engine including an exhaust purification device.
The diesel engine (internal combustion engine) 1 includes an exhaust purification device 4 in an exhaust passage (exhaust pipe) 3 on the downstream side of the exhaust manifold 2.

ディーゼルエンジン1は、排気浄化装置4を装備するため、上流側の第1ケーシング5aと、下流側の第2ケーシング5bと、これらのケーシング5a、5b間の連通路6とを備えている。
第1ケーシング5a内には、前段(上流側)にディーゼル酸化触媒(DOC;Diesel Oxidation Catalyst)7が収納され、後段(下流側)にディーゼルパティキュレートフィルタ(以下「DPF」という)8が収納されている。
Since the diesel engine 1 is equipped with the exhaust emission control device 4, the diesel engine 1 includes an upstream first casing 5a, a downstream second casing 5b, and a communication path 6 between the casings 5a and 5b.
In the first casing 5a, a diesel oxidation catalyst (DOC; Diesel Oxidation Catalyst) 7 is accommodated in the front stage (upstream side), and a diesel particulate filter (hereinafter referred to as “DPF”) 8 is accommodated in the rear stage (downstream side). ing.

DPF8は、排気中の粒子状物質であるPM(Particulate Matter)を捕集するフィルタである。DPF8は、例えば、多孔質セラミックのハニカム構造の担体からなり、上流側と下流側とを連通する通路が多数並設されると共に、隣接する通路同士において上流側と下流側とが交互に封止された、ウォールフロータイプのフィルタである。
このウォールフロータイプのDPF8では、排気は、上流端が開口し下流端が封止された通路から流入し、通路壁(隔壁の気孔)を通って、上流端が封止され下流端が開口する通路へ流出し、この際に、排気中のPMが通路壁に捕集される。
The DPF 8 is a filter that collects PM (Particulate Matter) that is particulate matter in the exhaust gas. The DPF 8 is made of, for example, a porous ceramic honeycomb structure, and has a large number of passages communicating with the upstream side and the downstream side, and the upstream side and the downstream side are alternately sealed between adjacent passages. This is a wall flow type filter.
In this wall flow type DPF 8, the exhaust flows from a passage whose upstream end is open and whose downstream end is sealed, passes through a passage wall (a pore in the partition wall), the upstream end is sealed, and the downstream end opens. It flows out to the passage, and at this time, PM in the exhaust is collected on the passage wall.

酸化触媒7は、排気中のNOを酸化させてNOを生成し、このNOを酸化剤としてDPF8に供給すると共に、酸化熱を発生させて下流側のDPF8を昇温する。
このようにDPF8の前段(上流側)に酸化触媒7を配置することにより、DPF8に捕集されたPMは、酸化触媒7から供給されたNOと反応して酸化し、DPF8の連続再生が行われる。
The oxidation catalyst 7, and NO in the exhaust is oxidized to generate NO 2, is supplied to the DPF8 the NO 2 as oxidizing agent, the temperature is raised to DPF8 downstream by generating oxidation heat.
By arranging the oxidation catalyst 7 in the upstream (upstream side) of the DPF 8 in this way, the PM collected by the DPF 8 reacts with the NO 2 supplied from the oxidation catalyst 7 to be oxidized, and the continuous regeneration of the DPF 8 is performed. Done.

第2ケーシング5b内には、前段(上流側)にアンモニアを還元剤としてNOxを還元する機能を有するSCR触媒9が収納され、後段(下流側)にSCR触媒9から流出したアンモニアを酸化してNとする酸化触媒としての機能を有するアンモニア酸化触媒10が収納されている。「SCR」は、Selective Catalytic Reductionの略語である。 In the second casing 5b, an SCR catalyst 9 having a function of reducing NOx using ammonia as a reducing agent is housed in the front stage (upstream side), and the ammonia flowing out from the SCR catalyst 9 is oxidized in the rear stage (downstream side). An ammonia oxidation catalyst 10 having a function as an oxidation catalyst of N 2 is accommodated. “SCR” is an abbreviation for Selective Catalytic Reduction.

また、第2ケーシング5b上流の連通路6には、SCR触媒9へ向けて、還元剤(アンモニア)の前駆体としての尿素水溶液(以下「尿素水」という)を噴射する尿素水噴射ノズル11が設けられている。
尿素水は、図示しない尿素水タンクから噴射量制御用の制御モジュール12を介してノズル11へ供給される。制御モジュール12は、マイクロコンピュータを内蔵する電子制御ユニット(ECU)50によって制御される。
A urea water injection nozzle 11 that injects a urea aqueous solution (hereinafter referred to as “urea water”) as a reducing agent (ammonia) precursor toward the SCR catalyst 9 in the communication passage 6 upstream of the second casing 5 b. Is provided.
The urea water is supplied from a urea water tank (not shown) to the nozzle 11 via the control module 12 for controlling the injection amount. The control module 12 is controlled by an electronic control unit (ECU) 50 incorporating a microcomputer.

尿素水噴射ノズル11から噴射された尿素水は、排気の熱により加水分解してアンモニアとなり、係るアンモニアはSCR触媒9に吸着される。SCR触媒9では、吸着したアンモニアを還元剤として、NOxとアンモニア(NH)とを選択的に還元反応させ、NOxを水(HO)と窒素(N)とに転換して浄化する。
上記のSCR触媒9と尿素水噴射ノズル11とでNOx還元装置が構成される。
The urea water injected from the urea water injection nozzle 11 is hydrolyzed by the heat of the exhaust to become ammonia, and the ammonia is adsorbed by the SCR catalyst 9. In the SCR catalyst 9, NOx and ammonia (NH 3 ) are selectively reduced using the adsorbed ammonia as a reducing agent, and NOx is converted into water (H 2 O) and nitrogen (N 2 ) for purification. .
The SCR catalyst 9 and the urea water injection nozzle 11 constitute a NOx reduction device.

また、酸化触媒7の上流側及びSCR触媒9の上流側の排気通路3には、排気の流れを偏向して、酸化触媒7及びSCR触媒9の横断面(排気の流れ方向に直交する断面)における排気の流れの偏りを減少させるための偏向部材21,21を配置してある。
尚、偏向部材21を、酸化触媒7の上流側とSCR触媒9の上流側とのいずれか一方に設けることができる。
In addition, the exhaust flow is deflected in the exhaust passage 3 upstream of the oxidation catalyst 7 and upstream of the SCR catalyst 9, so that the cross section of the oxidation catalyst 7 and the SCR catalyst 9 (cross section orthogonal to the exhaust flow direction). Deflection members 21 and 21 are arranged to reduce the deviation of the exhaust flow.
The deflection member 21 can be provided on either the upstream side of the oxidation catalyst 7 or the upstream side of the SCR catalyst 9.

本実施形態の排気浄化装置4では、酸化触媒7とDPF8とが同一直線上に配置され、SCR触媒9とアンモニア酸化触媒10とが同一直線上に配置され、酸化触媒7及びDPF8が、SCR触媒9及びアンモニア酸化触媒10に対して略平行に並んで配置され、かつ、酸化触媒7とDPF8における排気の流れ方向と、SCR触媒9とアンモニア酸化触媒10における排気の流れ方向とが同じに設定され、DPF8を通過した排気は、進路を180度変えて進んだ後、再度進路を180度変えてSCR触媒9に流入するように、排気通路3を設けてある。   In the exhaust purification device 4 of the present embodiment, the oxidation catalyst 7 and the DPF 8 are arranged on the same straight line, the SCR catalyst 9 and the ammonia oxidation catalyst 10 are arranged on the same straight line, and the oxidation catalyst 7 and the DPF 8 are made up of the SCR catalyst. 9 and the ammonia oxidation catalyst 10 are arranged substantially in parallel, and the exhaust flow direction in the oxidation catalyst 7 and the DPF 8 and the exhaust flow direction in the SCR catalyst 9 and the ammonia oxidation catalyst 10 are set to be the same. The exhaust passage 3 is provided so that the exhaust gas that has passed through the DPF 8 travels by changing the course by 180 degrees and then flows again into the SCR catalyst 9 by changing the course by 180 degrees.

更に、排気マニホールド2の出口においては、酸化触媒7とDPF8における排気の流れ方向とは逆方向に向けて排気が流れた後、進路を180度変えて酸化触媒7に流入するように排気通路3を設けてある。
即ち、酸化触媒7及びSCR触媒9の直前で、排気通路3は屈曲してU字状をなし、排気は、進路を180度変えて酸化触媒7及びSCR触媒9に流入するように構成されている。
Further, at the outlet of the exhaust manifold 2, the exhaust passage 3 is arranged such that after the exhaust gas flows in a direction opposite to the flow direction of the exhaust gas in the oxidation catalyst 7 and the DPF 8, the course is changed by 180 degrees and flows into the oxidation catalyst 7. Is provided.
That is, immediately before the oxidation catalyst 7 and the SCR catalyst 9, the exhaust passage 3 is bent to form a U shape, and the exhaust gas is configured to flow into the oxidation catalyst 7 and the SCR catalyst 9 by changing the course by 180 degrees. Yes.

ここで、排気の流量が少ない場合、排気は、図2に示すように、排気の進路を180度変えるU字状部(屈曲部)31の曲りの外側31aに偏って流れる、つまり、曲りの内側31bを流れる排気流量よりも曲りの外側31aを流れる排気流量が多くなる傾向を示し、酸化触媒7及びSCR触媒9を流れる排気に偏りが発生し、引いては、DPF8及びアンモニア酸化触媒10でも排気の流れに偏りが発生することになる。
そこで、U字状部31の曲りの外側31aに偏って流れる排気を、偏向部材21、21によって内側に向けて案内、偏向することで、排気の流れを排気通路3内に分散させ、酸化触媒7及びSCR触媒9の横断面(排気の流れ方向に直交する断面)における排気の流れの偏りを減少させる。
Here, when the flow rate of the exhaust gas is small, as shown in FIG. 2, the exhaust gas flows unevenly toward the outer side 31 a of the U-shaped portion (bending portion) 31 that changes the course of the exhaust gas by 180 degrees. The exhaust flow rate flowing through the curved outer side 31a tends to be larger than the exhaust flow rate flowing through the inner side 31b, and the exhaust gas flowing through the oxidation catalyst 7 and the SCR catalyst 9 is biased. There will be a bias in the flow of exhaust.
Therefore, the exhaust gas flowing toward the outer side 31 a of the U-shaped portion 31 is guided and deflected inward by the deflecting members 21, 21 to disperse the exhaust flow in the exhaust passage 3, thereby oxidizing the catalyst. 7 and the SCR catalyst 9 in the cross section (cross section orthogonal to the exhaust flow direction) is reduced.

偏向部材21、21は、長方形の板材を長手方向の中央付近で折り曲げたような形に形成され、図3に示すように、折り曲げ部21aを境に、一方を、排気通路3の内壁に固定されるベース部21bとし、他方を、排気通路3内に突出する偏向部(フィン部)21cとする。
そして、偏向部材21、21は、酸化触媒7、SCR触媒9を上流側に向け投影したときの排気通路3(U字状部31)の内壁への投影領域、つまり、U字状部31の曲りの外側31aであって酸化触媒7、SCR触媒9の入口に向けて排気が進路を略90度変える部分に、ベース部21bが排気の流れの上流側、偏向部21cが下流側となるように、ベース部21bを排気通路3の内壁に重ねるようにして固定されている。
これにより、偏向部21cは、排気の流れの下流側に向けて徐々に排気通路3の内壁から離れるような傾斜を有することになる。
The deflecting members 21 and 21 are formed in a shape in which a rectangular plate is bent near the center in the longitudinal direction, and one is fixed to the inner wall of the exhaust passage 3 with the bent portion 21a as a boundary as shown in FIG. The base portion 21b is formed, and the other is a deflection portion (fin portion) 21c protruding into the exhaust passage 3.
The deflecting members 21 and 21 are projected areas on the inner wall of the exhaust passage 3 (U-shaped portion 31) when the oxidation catalyst 7 and the SCR catalyst 9 are projected toward the upstream side, that is, the U-shaped portion 31 of the U-shaped portion 31. The base portion 21b is on the upstream side of the exhaust flow, and the deflecting portion 21c is on the downstream side at the outer side 31a of the bend, where the exhaust gas changes its course toward the entrance of the oxidation catalyst 7 and the SCR catalyst 9. The base portion 21 b is fixed so as to overlap the inner wall of the exhaust passage 3.
Thereby, the deflection | deviation part 21c has the inclination which leaves | separates from the inner wall of the exhaust passage 3 gradually toward the downstream of the flow of exhaust.

偏向部21cは、U字状部31の曲りの外側31aで、排気が流れる排気通路3内の空間に突出し、U字状部31の曲りの外側31aに沿って流れる排気を、内側に向けて案内、偏向する。
これにより、図4に示すように、排気がU字状部31の曲りの外側31aに偏って流れる場合に、排気の流れを分散させることができ、以って、酸化触媒7及びSCR触媒9の横断面における排気の流れの偏りを減少させることができる。
The deflecting portion 21c protrudes into the space in the exhaust passage 3 through which the exhaust flows at the outer side 31a of the U-shaped portion 31 and directs the exhaust flowing along the outer side 31a of the curved U-shaped portion 31 to the inside. Guide and deflect.
As a result, as shown in FIG. 4, when the exhaust gas flows unevenly toward the outer side 31 a of the U-shaped portion 31, the exhaust gas flow can be dispersed, and thus the oxidation catalyst 7 and the SCR catalyst 9. It is possible to reduce the deviation of the exhaust flow in the cross section.

ここで、排気の流量が多い(排気温度が高い)場合には、偏向部材21、21による偏向を行わなくとも、酸化触媒7及びSCR触媒9の横断面における排気の流れの偏りは十分に小さくなる。従って、排気流量が多い場合、偏向部材21、21による偏向の効果は減少し、逆に、排気抵抗を増大させてしまうという不利益が大きくなってしまう。
一方、排気の流量が少ない(排気温度が低い)場合には、排気がU字状部31の曲りの外側31aに偏って流れる傾向が強くなるため、偏向部材21、21によって排気の流れを分散させることの効果が大きく、また、排気抵抗は充分に小さく抑制できる。
Here, when the exhaust gas flow rate is large (the exhaust gas temperature is high), the deviation of the exhaust gas flow in the cross section of the oxidation catalyst 7 and the SCR catalyst 9 is sufficiently small without performing deflection by the deflection members 21 and 21. Become. Therefore, when the exhaust gas flow rate is large, the effect of deflection by the deflecting members 21 and 21 is reduced, and conversely, the disadvantage of increasing the exhaust resistance is increased.
On the other hand, when the flow rate of the exhaust gas is small (the exhaust gas temperature is low), the exhaust gas tends to flow toward the outer side 31a of the bend of the U-shaped portion 31, so the flow of the exhaust gas is dispersed by the deflecting members 21 and 21. In addition, the exhaust resistance can be suppressed sufficiently small.

そこで、偏向部材21、21を、温度に応じて変形する感温変形材料で形成し、図4に示すように、排気温度に応じて偏向部21cと排気通路3の内壁(ベース部21b)とがなす角度(挟角)θ、つまり、偏向部21cの傾きが変化し、排気流量が多く排気の温度が高い場合には、排気流量が少なく排気温度が低い場合に比べて角度θが小さくなり、排気の偏向、換言すれば、排気抵抗が弱まるようにしてある。
これにより、排気流量が少ない場合(ディーゼルエンジン1の低負荷、低回転域で排気温度が低い場合)には、排気の流れの偏りを減少させて、酸化触媒7、DPF8、SCR触媒9及びアンモニア酸化触媒10の横断面における排気の流れの偏りを減少させ、排気浄化装置4において高い効率で排気を浄化させることができる。
また、排気流量が多い場合(ディーゼルエンジン1の高負荷、高回転域で排気温度が高い場合)には、偏向部材21、21による排気抵抗の増大を抑制して、ディーゼルエンジン1の背圧上昇による燃費性能の低下などを抑制できる。
Therefore, the deflection members 21 and 21 are formed of a temperature-sensitive deformation material that deforms according to the temperature, and as shown in FIG. 4, the deflection portion 21c and the inner wall (base portion 21b) of the exhaust passage 3 according to the exhaust temperature. Angle θ (ie, the included angle) θ, that is, the inclination of the deflecting portion 21c changes, and when the exhaust gas flow rate is high and the exhaust gas temperature is high, the angle θ is smaller than when the exhaust gas flow rate is low and the exhaust gas temperature is low. The exhaust gas deflection, in other words, the exhaust resistance is weakened.
As a result, when the exhaust gas flow rate is small (when the exhaust temperature is low in the low load and low rotation range of the diesel engine 1), the deviation of the exhaust flow is reduced, and the oxidation catalyst 7, DPF 8, SCR catalyst 9 and ammonia The deviation of the exhaust flow in the cross section of the oxidation catalyst 10 can be reduced, and the exhaust purification device 4 can purify the exhaust with high efficiency.
Further, when the exhaust flow rate is large (when the exhaust temperature is high in a high load and high rotation range of the diesel engine 1), an increase in exhaust resistance due to the deflection members 21 and 21 is suppressed, and the back pressure of the diesel engine 1 is increased. It is possible to suppress a decrease in fuel consumption performance due to fuel.

偏向部材21、21の材料である感温変形材料としては、バイメタルや形状記憶合金など公知の感温変形材料を適宜用いることができ、温度と変形量(角度θ変化量)との相関は、低温域での排気流れの偏りを減少させつつ、高温域で排気抵抗の増大を抑制できるように適合させる。
ここで、偏向部材21、21を形状記憶合金で形成する場合、100℃以上の高温域で機能する高温形状記憶合金を用いる。係る高温形状記憶合金として、一例として、チタンTi−ニッケルNi−ジルコニウムZr−ニオブNb系合金や、チタンTi−タンタルTa系合金などを用いることができる。
As the temperature-sensitive deformation material that is a material of the deflecting members 21 and 21, a known temperature-sensitive deformation material such as a bimetal or a shape memory alloy can be used as appropriate, and the correlation between the temperature and the deformation amount (angle θ change amount) is It is adapted so that an increase in exhaust resistance can be suppressed in a high temperature range while reducing an uneven exhaust flow in a low temperature range.
Here, when the deflection members 21 and 21 are formed of a shape memory alloy, a high temperature shape memory alloy that functions in a high temperature range of 100 ° C. or higher is used. As an example of such a high-temperature shape memory alloy, titanium Ti—nickel Ni—zirconium Zr—niobium Nb alloy, titanium Ti—tantalum Ta alloy, or the like can be used.

尚、感温変形材料による変形では、偏向特性を細かく調整することが難しいので、例えば、図5(A)、(B)に示すように、偏向部21c(偏向フィン部)に複数の貫通孔21dを穿設し、貫通孔21dの配置領域、径、密度(間隔)、軸心方向などの設定によって、偏向特性の調整を行うことができる。例えば、偏向部21cのベース部21b寄りでは、貫通孔21dの径及び/又は単位面積当たりの孔数を先端側に比べて小さくすれば、排気通路3の内壁に沿って流れる排気を中心寄りに偏向させつつ、排気通路3の中心寄りを流れる排気が過剰に偏向されてしまうことを抑制できる。
また、複数の偏向部材21を同一箇所に並べて配置することができ、例えば、図6(A)、(B)に示す例では、2つの偏向部材211、212を排気通路3の周方向に並べて配置してある。図6(A)は、2つの偏向部材211、212が共に貫通孔21dを備えない例であり、図6(B)は、2つの偏向部材211、212が共に貫通孔21dを有する例である。
In addition, since it is difficult to finely adjust the deflection characteristics in the deformation using the temperature-sensitive deformable material, for example, as shown in FIGS. 5A and 5B, a plurality of through holes are formed in the deflection portion 21c (deflection fin portion). 21d can be drilled, and the deflection characteristics can be adjusted by setting the arrangement region, diameter, density (interval), axial direction, and the like of the through-hole 21d. For example, near the base portion 21b of the deflecting portion 21c, if the diameter of the through hole 21d and / or the number of holes per unit area are made smaller than the tip side, the exhaust flowing along the inner wall of the exhaust passage 3 is closer to the center. While deflecting, it is possible to suppress the exhaust gas flowing near the center of the exhaust passage 3 from being excessively deflected.
In addition, a plurality of deflection members 21 can be arranged side by side at the same location. For example, in the example shown in FIGS. 6A and 6B, two deflection members 211 and 212 are arranged in the circumferential direction of the exhaust passage 3. It is arranged. FIG. 6A is an example in which the two deflection members 211 and 212 do not include the through hole 21d, and FIG. 6B is an example in which the two deflection members 211 and 212 both have the through hole 21d. .

以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
例えば、複数の偏向部材を排気の流れ方向の前後に隣接させて設けることができる。
また、偏向部材は、触媒(排気浄化装置)に対する流入排気の偏りを抑制するために用いることができる他、フィルタ(排気浄化装置)に対する流入排気の偏りを抑制するために用いることができる。
Although the contents of the present invention have been specifically described with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.
For example, a plurality of deflecting members can be provided adjacent to each other in the exhaust flow direction.
Further, the deflection member can be used for suppressing the bias of the inflowing exhaust gas with respect to the catalyst (exhaust purification device), and can be used for suppressing the bias of the inflowing exhaust gas with respect to the filter (exhaust gas purification device).

また、偏向部材は、実施形態に示したように、触媒やフィルタなどの排気浄化装置の上流に設けることで、下流側の排気浄化装置における排気の偏りを抑制できる他、排気浄化装置の下流側に設けることで、上流側の排気浄化装置における排気の偏りを抑制することが可能である。即ち、排気浄化装置の下流側であって排気が偏る側に偏向部材を設けることで、排気が偏る側の経路における排気抵抗が増し、排気流れの偏りを抑制することができる。   Further, as shown in the embodiment, the deflection member is provided upstream of the exhaust purification device such as a catalyst or a filter, so that the bias of the exhaust gas in the downstream exhaust purification device can be suppressed, and the downstream side of the exhaust purification device. It is possible to suppress the deviation of the exhaust gas in the upstream side exhaust purification device. That is, by providing the deflecting member on the downstream side of the exhaust purification device and on the side where the exhaust is biased, the exhaust resistance in the path on the side where the exhaust is biased increases, and the bias of the exhaust flow can be suppressed.

また、偏向部材が適用される排気系は、排気浄化装置の上流側で排気通路3が屈曲する排気系に限定されるものではなく、例えば、排気浄化装置の上流側で排気通路3がストレートに延びる排気系にも適用することが可能である。
排気浄化装置の上流側で排気通路がストレートに延びる排気系の場合であって、例えば、排気浄化装置(触媒やフィルタ)の軸心付近に排気が偏って流れる場合には、排気浄化装置の周辺部に向けて排気を偏向する偏向部材を設け、排気温度が高くなった場合には、係る偏向部材が変形して偏向(排気抵抗)が弱まるようにする。
Further, the exhaust system to which the deflection member is applied is not limited to an exhaust system in which the exhaust passage 3 is bent on the upstream side of the exhaust purification device. For example, the exhaust passage 3 is straight on the upstream side of the exhaust purification device. The present invention can also be applied to an extended exhaust system.
In the case of an exhaust system in which the exhaust passage extends straight on the upstream side of the exhaust purification device, for example, when the exhaust gas flows unevenly near the axis of the exhaust purification device (catalyst or filter), the periphery of the exhaust purification device A deflecting member that deflects exhaust toward the part is provided, and when the exhaust temperature becomes high, the deflecting member is deformed so that the deflection (exhaust resistance) is weakened.

また、排気温度に応じて変形する偏向部材と、変形しない偏向部材とを組み合わせて用いたり、排気温度に対する変形(角度変化)の特性が異なる複数の偏向部材を組み合わせて用いたりすることができる。
また、偏向部材を適用する内燃機関をディーゼルエンジン1に限定するものではなく、ガソリンエンジンなどへの適用が可能であり、ガソリンエンジンの場合も、三元触媒など排気浄化装置における排気の偏りを改善しつつ、排気抵抗の増大を抑制できる。
Further, a deflection member that deforms according to the exhaust temperature and a deflection member that does not deform can be used in combination, or a plurality of deflection members having different deformation (angle changes) characteristics with respect to the exhaust temperature can be used in combination.
Further, the internal combustion engine to which the deflecting member is applied is not limited to the diesel engine 1, but can be applied to a gasoline engine or the like, and in the case of the gasoline engine, the exhaust bias in the exhaust purification device such as a three-way catalyst is improved. However, an increase in exhaust resistance can be suppressed.

1 ディーゼルエンジン(内燃機関)
2 排気マニホールド
3 排気通路(排気管)
4 排気浄化装置
5a 第1ケーシング
5b 第2ケーシング
6 連通路
7 酸化触媒(DOC)
8 ディーゼルパティキュレートフィルタ(DPF)
9 SCR触媒
10 アンモニア酸化触媒
21 偏向部材
21d 貫通孔
31 U字状部(屈曲部)
1 Diesel engine (internal combustion engine)
2 Exhaust manifold 3 Exhaust passage (exhaust pipe)
4 Exhaust purification device 5a 1st casing 5b 2nd casing 6 Communication path 7 Oxidation catalyst (DOC)
8 Diesel particulate filter (DPF)
9 SCR catalyst 10 Ammonia oxidation catalyst 21 Deflection member 21d Through hole 31 U-shaped part (bent part)

Claims (7)

排気浄化装置の横断面における排気の流れを分散させるように排気の流れを偏向する偏向部材を、内燃機関の排気通路に配置し、
前記偏向部材は、排気温度に応じて変形する感温変形材料で形成され、排気温度が高い場合には低い場合に比べて排気の流れの偏向を弱めるように変形する、内燃機関の排気浄化装置。
A deflection member for deflecting the exhaust flow so as to disperse the exhaust flow in the cross section of the exhaust purification device is disposed in the exhaust passage of the internal combustion engine;
The deflection member is formed of a temperature-sensitive deformable material that deforms according to the exhaust temperature, and is deformed so as to weaken the deflection of the exhaust flow when the exhaust temperature is high compared to when the exhaust temperature is low. .
前記偏向部材は、板状に形成され、排気温度に応じて変形して前記排気通路に対する角度が変化する、請求項1記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 1, wherein the deflection member is formed in a plate shape, and is deformed according to an exhaust temperature to change an angle with respect to the exhaust passage. 前記排気浄化装置の手前に前記排気通路の屈曲部が配され、前記偏向部材が、前記屈曲部の曲りの外側に沿って流れる排気を内側に向けて偏向する、請求項1又は2記載の内燃機関の排気浄化装置。   The internal combustion engine according to claim 1, wherein a bent portion of the exhaust passage is disposed in front of the exhaust purification device, and the deflecting member deflects exhaust flowing along the outside of the bent portion of the bent portion inward. Engine exhaust purification system. 前記偏向部材が板状に形成され、前記板状の偏向部材と前記排気通路の内壁とがなす挟角が、排気温度が高くなるほど小さくなるように変形する、請求項1から3のいずれか1つに記載の内燃機関の排気浄化装置。   4. The device according to claim 1, wherein the deflecting member is formed in a plate shape, and a sandwich angle formed by the plate-shaped deflecting member and the inner wall of the exhaust passage is deformed so as to decrease as the exhaust gas temperature increases. An exhaust purification device for an internal combustion engine according to claim 1. 前記板状の偏向部材に複数の貫通孔を形成した、請求項4記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein a plurality of through holes are formed in the plate-shaped deflection member. 前記偏向部材を形成する感温変形材料が形状記憶合金である、請求項1から5のいずれか1つに記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein the temperature-sensitive deformation material forming the deflection member is a shape memory alloy. 前記形状記憶合金が、チタン−ニッケル−ジルコニウム−ニオブ系合金、又は、チタン−タンタル系合金である、請求項6記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 6, wherein the shape memory alloy is a titanium-nickel-zirconium-niobium alloy or a titanium-tantalum alloy.
JP2012264630A 2012-12-03 2012-12-03 Exhaust emission control device for internal combustion engine Withdrawn JP2014109239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264630A JP2014109239A (en) 2012-12-03 2012-12-03 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264630A JP2014109239A (en) 2012-12-03 2012-12-03 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014109239A true JP2014109239A (en) 2014-06-12

Family

ID=51030029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264630A Withdrawn JP2014109239A (en) 2012-12-03 2012-12-03 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2014109239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150538A1 (en) * 2016-03-03 2017-09-08 いすゞ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150538A1 (en) * 2016-03-03 2017-09-08 いすゞ自動車株式会社 Exhaust gas purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
WO2014112063A1 (en) Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device equipped with same
JP5099684B2 (en) Exhaust purification device
JP6053096B2 (en) Exhaust purification device
US8080208B2 (en) Exhaust gas purification device
JP4943499B2 (en) Exhaust gas purification device for internal combustion engine
EP3279440B1 (en) Exhaust purification unit
JP6009260B2 (en) Exhaust purification device
JP6297323B2 (en) Exhaust purification device
US10371032B2 (en) Exhaust gas purifier for engine
WO2011011460A2 (en) Exhaust cooling module for scr catalysts
JP2013136991A (en) Exhaust gas purification device
JP6076841B2 (en) Exhaust gas purification device for internal combustion engine
JP2013104395A (en) Exhaust emission control device
JP2016188579A (en) Exhaust emission control unit
JP2012127307A (en) Exhaust emission control device for engine
JP2014109239A (en) Exhaust emission control device for internal combustion engine
CN111742122B (en) Reducing agent injection device
JP2014109240A (en) Exhaust emission control device for internal combustion engine
JP5839663B2 (en) Exhaust gas purification device
JP5471089B2 (en) Reducing agent supply device for urea SCR catalyst
JP2007247549A (en) Exhaust emission control device for internal combustion engine
WO2019069792A1 (en) Exhaust purification device for internal combustion engine
JP5352755B6 (en) Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device having the same
JP5869888B2 (en) Exhaust purification equipment
JP2018091209A (en) Selective reduction catalyst system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160208