JP2014108399A - Filter having water-repellent amorphous carbon film - Google Patents

Filter having water-repellent amorphous carbon film Download PDF

Info

Publication number
JP2014108399A
JP2014108399A JP2012264597A JP2012264597A JP2014108399A JP 2014108399 A JP2014108399 A JP 2014108399A JP 2012264597 A JP2012264597 A JP 2012264597A JP 2012264597 A JP2012264597 A JP 2012264597A JP 2014108399 A JP2014108399 A JP 2014108399A
Authority
JP
Japan
Prior art keywords
water
mesh
filter
amorphous carbon
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012264597A
Other languages
Japanese (ja)
Other versions
JP6204657B2 (en
Inventor
Takako Nakajima
貴子 中島
Hitoshi Ogawa
等 小川
Kunihiko Shibusawa
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP2012264597A priority Critical patent/JP6204657B2/en
Publication of JP2014108399A publication Critical patent/JP2014108399A/en
Application granted granted Critical
Publication of JP6204657B2 publication Critical patent/JP6204657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter excellent in wear resistance.SOLUTION: A filter in an embodiment comprises: a mesh comprising fiber yarn; and an amorphous carbon film for coating the fiber yarn of the mesh. The filter functions as a filter for separating a non-polar organic solvent such as oil from water by imparting water repellency (a contact angle with the water of 90° or more) to the mesh by the amorphous carbon film.

Description

本発明は、フィルターに関し、詳しくは、水と非極性有機溶媒とを分離するフィルターに関する。   The present invention relates to a filter, and more particularly to a filter that separates water and a nonpolar organic solvent.

従来より、油等の非極性有機溶媒と水との分離を行うフィルターが提案されている(例えば、特許文献1参照)。このフィルターでは、通液性を有する基体に親水性の表面処理を行うことにより、油から水滴を効率よく分離することを可能としている。   Conventionally, a filter for separating a nonpolar organic solvent such as oil and water has been proposed (see, for example, Patent Document 1). In this filter, it is possible to efficiently separate water droplets from oil by performing a hydrophilic surface treatment on a substrate having liquid permeability.

特開2010−247087号公報JP 2010-247087 A

しかしながら、こうしたフィルターは、必ずしもクリーンな環境で使用されるとは限らない。例えば、分離を行う液体中に、金属切削片や砕石、ガラス片等、フィルターの基材に損傷を与える夾雑物を含む場合がある。この場合、こうした夾雑物によって基材が破損、摩耗し、フィルターとしての機能を損なってしまう恐れが生じる。   However, such a filter is not always used in a clean environment. For example, the liquid to be separated may contain impurities such as metal cutting pieces, crushed stones, and glass pieces that damage the filter substrate. In this case, the base material may be damaged or worn by such impurities, and the function as a filter may be impaired.

本発明の様々な実施形態は、耐摩耗性に優れるフィルターを提供することを目的の一つとする。本発明の様々な実施形態の他の目的は、本明細書全体を参照することにより明らかとなる。   It is an object of various embodiments of the present invention to provide a filter having excellent wear resistance. Other objects of the various embodiments of the present invention will become apparent by reference to the entire specification.

本発明の一実施形態に係るフィルターは、水と非極性有機溶媒とを分離するフィルターであって、繊維糸からなるメッシュと、前記繊維糸を被覆し、前記メッシュに撥水性を付与する非晶質炭素膜と、を備える。   A filter according to an embodiment of the present invention is a filter that separates water and a nonpolar organic solvent, and includes a mesh made of fiber yarns, an amorphous material that coats the fiber yarns and imparts water repellency to the meshes. A carbonaceous film.

本発明の様々な実施形態によって、耐摩耗性に優れるフィルターを提供することができる。   Various embodiments of the present invention can provide a filter with excellent wear resistance.

本発明の一実施形態に係るフィルターの断面を模式的に表す模式図。The schematic diagram which represents typically the cross section of the filter which concerns on one Embodiment of this invention.

本発明の様々な実施形態について添付図面を参照して説明する。これらの図面において、同一又は類似の構成要素には同一又は類似の参照符号を付し、その同一又は類似の構成要素についての詳細な説明は適宜省略する。   Various embodiments of the present invention will be described with reference to the accompanying drawings. In these drawings, the same or similar components are denoted by the same or similar reference numerals, and detailed description of the same or similar components is appropriately omitted.

図1は、本発明の一実施形態に係るフィルター10の断面を模式的に表す模式図である。一実施形態におけるフィルター10は、図示するように、繊維糸からなるメッシュ12と、このメッシュ12の繊維糸を被覆する非晶質炭素膜14とを備え、非晶質炭素膜14によってメッシュ12に撥水性(水との接触角が90°以上)が付与されることにより油等の非極性有機溶媒と水とを分離するフィルターとして機能する。なお、図1は、本発明の一実施形態に係るフィルター10の構成を模式的に表すものであり、その寸法は必ずしも正確に図示されていない点に留意されたい。   FIG. 1 is a schematic diagram schematically showing a cross section of a filter 10 according to an embodiment of the present invention. As illustrated, the filter 10 in one embodiment includes a mesh 12 made of fiber yarns and an amorphous carbon film 14 covering the fiber yarns of the mesh 12, and the mesh 12 is formed by the amorphous carbon film 14. By providing water repellency (contact angle with water is 90 ° or more), it functions as a filter that separates water from nonpolar organic solvents such as oil. It should be noted that FIG. 1 schematically represents the configuration of the filter 10 according to an embodiment of the present invention, and the dimensions thereof are not necessarily illustrated accurately.

一実施形態におけるメッシュ12は、例えば鉄鋼等の金属、ステンレス鋼等の金属合金等よりなる繊維糸を編み込んで形成される。メッシュ12は、例えば、メッシュ数(メッシュカウント)#60(1インチ幅に60本のメッシュが存在)、線径0.12mm、目開き0.30mm、開口率51%のメッシュを用いることができ、好ましくはメッシュカウント#30以上、目開き0.60mm以下のメッシュを用いることができる。また、メッシュ12の材料は、ここで述べたものに限られず、例えば、ポリプロピレン、ポリエステルなど様々な樹脂からなるメッシュ、あるいは様々な複合素材から成るもの、繊維糸基体上に湿式メッキや乾式メッキされたもの、電鋳による繊維糸などであっても構わない。   The mesh 12 in one embodiment is formed, for example, by weaving a fiber yarn made of a metal such as steel or a metal alloy such as stainless steel. As the mesh 12, for example, a mesh having a mesh number (mesh count) # 60 (60 meshes in 1 inch width), a wire diameter of 0.12 mm, an aperture of 0.30 mm, and an aperture ratio of 51% can be used. Preferably, a mesh having a mesh count # 30 or more and an opening of 0.60 mm or less can be used. Further, the material of the mesh 12 is not limited to those described here, for example, meshes made of various resins such as polypropylene and polyester, or those made of various composite materials, and wet plating or dry plating on the fiber yarn base. Or a fiber yarn by electroforming.

一実施形態におけるフィルター10は、必ずしも平膜である必要はなく、円筒状や円錐状、バスケット状、凸面レンズ状など必要に応じて様々な形態を採ることができる。さらに、一実施形態におけるメッシュ12の繊維糸は、本発明の趣旨を逸脱しない範囲でその表面を予めブラストや酸処理によって粗化することや、電解研磨などで平滑化することも可能である。   The filter 10 in one embodiment does not necessarily have to be a flat membrane, and can take various forms such as a cylindrical shape, a conical shape, a basket shape, and a convex lens shape. Furthermore, the fiber yarn of the mesh 12 in one embodiment can be roughened by blasting or acid treatment in advance or smoothed by electrolytic polishing or the like without departing from the spirit of the present invention.

図1においては、非晶質炭素膜14をメッシュ12の両面に形成しているが、メッシュ12の片面のみに形成することもできる。このように、非晶質炭素膜14をメッシュ12の片面の表層のみに形成した場合であっても(さらに、非晶質炭素膜14の成膜面側からろ過液を透過させても、未成膜面側からろ過液を透過させても)、非極性有機溶媒と水との分離膜として機能させることが可能である。従って、非晶質炭素膜14を被覆しない側に露出するメッシュ自体の材料特性を合わせて活用することも可能となる。例えば、フィルター10に抗菌性、滅菌性が必要であれば、銀や銅などの繊維糸からなるメッシュ12を採用し、この銀や銅からなるメッシュ12の片面を露出させたままとすることも可能である。   In FIG. 1, the amorphous carbon film 14 is formed on both sides of the mesh 12, but it may be formed only on one side of the mesh 12. As described above, even when the amorphous carbon film 14 is formed only on the surface layer of one side of the mesh 12 (even if the filtrate is permeated from the film forming surface side of the amorphous carbon film 14), Even if the filtrate is permeated from the membrane surface side), it can function as a separation membrane between the nonpolar organic solvent and water. Accordingly, it is possible to utilize the material characteristics of the mesh itself exposed on the side not covering the amorphous carbon film 14 together. For example, if the filter 10 needs antibacterial and sterilization properties, a mesh 12 made of fiber threads such as silver or copper may be used, and one side of the mesh 12 made of silver or copper may be left exposed. Is possible.

一実施形態におけるメッシュ12は、フィルター10の使用用途に合わせて適切な組成の金属を繊維糸として採用することができる。例えば、耐食性が必要な場合は貴金属やチタニウムなどからなるメッシュ12を選択すればよく、また、高い延伸性(弾性変形領域)が必要な場合はステンレス製や各種のアモルファス金属素材のメッシュ12を選択すればよく、さらに、高い剛性が必要な場合はNi−Co合金等からなるメッシュ12を選択すればよい。   In the mesh 12 in one embodiment, a metal having an appropriate composition can be adopted as the fiber yarn in accordance with the intended use of the filter 10. For example, when corrosion resistance is required, a mesh 12 made of noble metal or titanium may be selected. When high stretchability (elastic deformation region) is required, a mesh 12 made of stainless steel or various amorphous metal materials is selected. What is necessary is just to select the mesh 12 which consists of a Ni-Co alloy etc. when high rigidity is required.

さらに、フィルター10を内燃機関の燃料タンク入り口の油水分離に使用(雨天給油時の雨水の浸入防止等)する場合等においては、メッシュ12を金属とすることにより、フィルター10に帯電防止性(導電性)を付与することも可能となる。なお、メッシュ12に形成される非晶質炭素膜は本来は絶縁性であるものの、非常に薄く形成することが可能であるため、静電気をその高い電圧によって非晶質炭素膜の厚み方向に通電(除電)させることが可能である。さらに、メッシュ12を金属とすることにより、フィルター10に電気的極性を付与することも可能となり、電気泳動の原理によるろ過物質の選別分離を行うことも可能となる他、同様に、フィルター10に電圧を印加することで、フィルター10を電界で誘導することも可能となり、フィルター10のメッシュ(面)を電界形成により一定方向に引き付けたり、電界を無くし定位置に戻したりすることによるメッシュ(面)の移動(位置変化)をろ過の必要性に応じて行うこともできる。   Further, when the filter 10 is used for oil / water separation at the fuel tank inlet of the internal combustion engine (preventing intrusion of rainwater when raining, etc.), the mesh 10 is made of metal so that the filter 10 has antistatic properties (conductivity). Property). Although the amorphous carbon film formed on the mesh 12 is originally insulative, it can be formed very thin, so that static electricity is applied in the thickness direction of the amorphous carbon film by the high voltage. (Static elimination) can be performed. Furthermore, by using the mesh 12 as a metal, it is possible to impart electrical polarity to the filter 10, and it is possible to perform separation and separation of the filtered substance based on the principle of electrophoresis. By applying a voltage, the filter 10 can be induced by an electric field. The mesh (surface) of the filter 10 is attracted in a certain direction by forming an electric field, or the electric field is eliminated to return to a fixed position (surface). ) Movement (position change) can be performed according to the necessity of filtration.

また、従来、金属素材で構成される(編み上げられる)メッシュ繊維糸は、例えば加熱した金属原料をダイスなどの細穴に通し、糸状に引き抜くことで形成される。この加熱に際して繊維糸表層の金属自体が不均一に酸化されたり、後に錆として金属酸化物が部分的に形成され、酸化された部分において水との濡れ性が変化する場合がある。一実施形態におけるフィルター10は金属基体である金属繊維糸の表層に略均一に非晶質炭素膜を形成することが可能であり、フィルター10を構成するメッシュ12の水との濡れ性が均一化される。また、非晶質炭素膜は防汚性や耐薬品性なども有するため、金属繊維糸の事後的な(形成後の)変質を防止することもできる。   Conventionally, mesh fiber yarns composed of metal materials (knitted) are formed by, for example, passing a heated metal raw material through a fine hole such as a die and drawing it into a yarn shape. During this heating, the metal of the fiber yarn surface layer may be oxidized unevenly, or a metal oxide may be partially formed as rust later, and the wettability with water may change in the oxidized portion. The filter 10 in one embodiment can form an amorphous carbon film substantially uniformly on the surface layer of the metal fiber yarn that is a metal substrate, and the wettability of the mesh 12 constituting the filter 10 with water is uniformized. Is done. In addition, since the amorphous carbon film also has antifouling properties and chemical resistance, it is possible to prevent post-deterioration (after formation) of the metal fiber yarn.

また、一実施形態におけるメッシュ12を銅や銀などの軟質金属で形成されたものとする場合、非晶質炭素膜の軟質金属による凝着付着防止性によって、軟質金属繊維糸の編目(交点)部分で摩擦(メッシュ伸縮時の糸同士のズレ摩擦)によって凝着物(金属酸化物などの異物)や金属磨耗粉が発生することを抑制することもできる。   Further, when the mesh 12 in one embodiment is formed of a soft metal such as copper or silver, the stitch (intersection) of the soft metal fiber yarn is prevented by the adhesion prevention property of the amorphous carbon film by the soft metal. It is also possible to suppress the generation of adherents (foreign matter such as metal oxides) and metal wear powder due to friction (displacement friction between yarns during mesh expansion / contraction) at the portion.

一実施形態における非晶質炭素膜14は、例えば、水素と炭素からなる非晶質炭素膜の場合には、アセチレン等の炭化水素ガスを原料ガスとして用いる公知のプラズマCVD法により形成することができる。メッシュ12の繊維糸を非晶質炭素膜14によって被覆することにより、メッシュ12に撥水性を付与して油等の非極性有機溶媒と水との分離を可能とすると共に、メッシュ12を保護することが可能となる。即ち、非晶質炭素膜は親油性及び撥水性を示すため、フィルター10を非極性有機溶媒を通すが水を通さないフィルターとして機能させると共に、耐摩耗性を向上させる。   For example, in the case of an amorphous carbon film made of hydrogen and carbon, the amorphous carbon film 14 in one embodiment may be formed by a known plasma CVD method using a hydrocarbon gas such as acetylene as a source gas. it can. By covering the fiber yarns of the mesh 12 with the amorphous carbon film 14, the mesh 12 is provided with water repellency so that the nonpolar organic solvent such as oil can be separated from water and the mesh 12 is protected. It becomes possible. That is, since the amorphous carbon film exhibits lipophilicity and water repellency, the filter 10 functions as a filter that passes a non-polar organic solvent but does not allow water to pass therethrough, and improves wear resistance.

一実施形態における非晶質炭素膜14は、メッシュ12の繊維糸を被覆してメッシュ12に撥水性を付与することができればよく、例えば、水素と炭素からなる非晶質炭素膜ににSiや各種の金属元素を含有させたもの、硫黄、フッ素等の改質元素を含有させたもの、アルゴンなどの不活性ガスを加えたものであってもかまわない。さらに撥水作用を補強するため、非晶質炭素膜14上に非晶質炭素膜とは異なる撥水材料をさらにコーティングしてもよいし、非晶質炭素膜14の表層を微細な凹凸形状とすることもできる。こうした非晶質炭素膜14は、優れた耐摩耗性や摺動性、軟質金属凝着防止性、延伸密着性、耐薬品性、HO、O、Hガスバリア性、紫外線透過防止性等を有することで知られており、保護膜又は機能向上膜として、基材に高付加価値を付与することができる。 The amorphous carbon film 14 in one embodiment is only required to cover the fiber yarns of the mesh 12 so as to impart water repellency to the mesh 12. For example, an amorphous carbon film made of hydrogen and carbon may be coated with Si or It may be one containing various metal elements, one containing a modifying element such as sulfur or fluorine, or one added with an inert gas such as argon. Further, in order to reinforce the water repellency, the amorphous carbon film 14 may be further coated with a water repellent material different from the amorphous carbon film, and the surface layer of the amorphous carbon film 14 may have a fine uneven shape. It can also be. Such an amorphous carbon film 14 has excellent wear resistance, slidability, soft metal adhesion prevention, stretch adhesion, chemical resistance, H 2 O, O 2 , H gas barrier property, ultraviolet light transmission prevention property, etc. As a protective film or a function improving film, a high added value can be imparted to the base material.

一実施形態におけるメッシュ12の表層に形成される非晶質炭素膜14の膜厚は、メッシュ12の線径や目開きに応じて適宜選定され特に限定されないが、数nm〜数十μmの範囲で形成され、理想的には膜の連続性を考えた場合100nm以上である。但し、非晶質炭素膜は数nm程度の薄膜でも形成可能であり、メッシュ12の開口部分の寸法精度を概ね維持しながら形成することが可能となる。   The film thickness of the amorphous carbon film 14 formed on the surface layer of the mesh 12 in one embodiment is appropriately selected according to the wire diameter and openings of the mesh 12 and is not particularly limited, but ranges from several nm to several tens of μm. Ideally, it is 100 nm or more when considering the continuity of the film. However, the amorphous carbon film can be formed as a thin film of about several nm, and can be formed while maintaining the dimensional accuracy of the opening portion of the mesh 12 in general.

一実施形態における非晶質炭素膜14を水素と炭素から成るものとした場合、水素終端された炭素構造を有する非晶質炭素膜の表層は極めて不活性であるため、フィルター10の表層への不要な物質(又は、ろ過させたい有用な物質)の吸着を防止することができる。   When the amorphous carbon film 14 in one embodiment is made of hydrogen and carbon, the surface layer of the amorphous carbon film having a hydrogen-terminated carbon structure is extremely inactive. Adsorption of unnecessary substances (or useful substances to be filtered) can be prevented.

ここで、一実施形態におけるフィルター10において、非晶質炭素膜14がメッシュ12に撥水性を付与するメカニズムについて詳述する。一般的な非晶質炭素膜(特に炭化水素系のアセチレン等の水素と炭素からなる原料ガスを用いてプラズマCVD法で形成した非晶質炭素膜)は、例えば表面粗さRa:0.1μm前後のステンレス鋼(2B材相当)の平板上に形成した場合、水(純水)との接触角は80°前後の値(親水性)を示すに過ぎない。非晶質炭素膜は、表面張力の小さい典型的な物質である炭化水素系の物質であるにもかかわらず、平板上に形成すると「撥水性」を付与する「撥水材料」として用いることが困難となる。   Here, the mechanism by which the amorphous carbon film 14 imparts water repellency to the mesh 12 in the filter 10 in one embodiment will be described in detail. A typical amorphous carbon film (in particular, an amorphous carbon film formed by a plasma CVD method using a raw material gas composed of hydrogen and carbon such as hydrocarbon acetylene) has a surface roughness Ra of 0.1 μm, for example. When formed on the front and back stainless steel (equivalent to 2B material) flat plates, the contact angle with water (pure water) only shows a value of about 80 ° (hydrophilicity). The amorphous carbon film is used as a “water-repellent material” that imparts “water repellency” when formed on a flat plate, despite being a hydrocarbon-based material that is a typical material having a low surface tension. It becomes difficult.

一方、非晶質炭素膜を、一実施形態におけるメッシュ12のように、繊維糸が3次元的に交差してなるメッシュの表層に両面形成すると、例えばメッシュカウント#60のメッシュである場合、水との接触角は105°を超える値(撥水性)を示すようになる。この接触角は、フッ化炭素基、シリコーン基などの撥水材料に匹敵するものである。こうした非晶質炭素膜による撥水性の付与は、いかなる基材に対しても生じるものではない。例えば、超高分子量ポリエチレン粉末の焼結多孔質成形体(メッシュと同様に孔を有する)を焼成法により作製し、これを切削することで形成された超高分子量ポリエチレン多孔性シート(例えば、平均孔径17μm、気孔率30%)上に非晶質炭素膜を形成しても、その水との接触角は、前述した表面粗さRa:0.1μm前後のステンレス鋼の平板上に非晶質炭素膜を形成したものと同程度以下である75°前後の値(親水性)を示すに過ぎない。   On the other hand, when both sides of the amorphous carbon film are formed on the surface layer of the mesh formed by three-dimensionally intersecting fiber yarns as in the mesh 12 in one embodiment, for example, when the mesh is a mesh of mesh count # 60, And a contact angle with a value exceeding 105 ° (water repellency). This contact angle is comparable to a water-repellent material such as a fluorocarbon group and a silicone group. Such provision of water repellency by the amorphous carbon film does not occur on any substrate. For example, a sintered porous molded body of ultra high molecular weight polyethylene powder (having pores as in the case of a mesh) is produced by a firing method, and an ultra high molecular weight polyethylene porous sheet formed by cutting this (for example, average Even if an amorphous carbon film is formed on a pore diameter of 17 μm and a porosity of 30%, the contact angle with water is amorphous on the stainless steel flat plate having the surface roughness Ra of about 0.1 μm described above. It only shows a value around 75 ° (hydrophilicity) that is about the same as or lower than that of the carbon film.

物質間の吸着、結合を司る物質表面の極性や官能基の存在等の化学的因子は、平らな表面の物質間の接触角を決め、さらに物質表面の微細な凹凸構造はその接触角を強調する方向に機能する。物質表面の比較的大きな凹凸の凹部の中に、より細かい凹凸が存在し、その凹凸の中にさらに細かい凹凸が存在する「フラクタル構造」は、物質表面の実質的な表面積を増大させ、濡れる表面はより濡れるようになり、水を弾く表面はより水を弾く表面になることで知られる。このフラクタル構造は、ハスの葉の表面がフッ素材料等の撥水材料を使用していないにもかかわらず完全に水を弾くこと等に対する説明に用いられる。微細な凹凸を有する固体表面に置かれた液体が、その固体表面に完全に接触している場合の撥水性については「Wenzelの理論」によって説明され、微細な凹凸を有する固体表面に置かれた液体が、凹凸構造の凹部における溝が深いために毛管現象によって溝の底まで到達できず、液体の下側に空気が残る場合の撥水性については「Cassaie−Baxterの理論」によって説明されることが知られている。   Chemical factors such as the polarity of the substance surface that controls adsorption and bonding between substances and the presence of functional groups determine the contact angle between substances on a flat surface, and the fine uneven structure on the substance surface emphasizes the contact angle. It works in the direction you want. The “fractal structure” in which finer irregularities exist in the concave parts of relatively large irregularities on the material surface, and there are finer irregularities in the irregularities, increases the substantial surface area of the material surface and wets the surface. Is known to become wetter and the surface that repels water becomes the surface that repels water. This fractal structure is used to explain the fact that the surface of a lotus leaf completely repels water even when a water repellent material such as a fluorine material is not used. The water repellency when a liquid placed on a solid surface having fine irregularities is completely in contact with the solid surface is explained by “Wenzel's theory” and placed on a solid surface having fine irregularities. The water repellency when the liquid cannot reach the bottom of the groove due to capillarity due to the deep groove in the concave portion of the concavo-convex structure and the air remains on the lower side of the liquid is explained by the “Cassie-Baxter theory” It has been known.

したがって、一実施形態におけるフィルター10(非晶質炭素膜14が形成されたメッシュ12)が撥水性を示すのは、基材であるメッシュ12が、繊維糸が3次元的に複雑に波を打つように交差して形成される目開き(開口部)からなる凹凸構造を有し、さらに、この凹凸構造の細部、例えば、繊維糸同士が交差する交点部分において、一方の繊維糸の曲面と他方の繊維糸の曲面とによって形成される微細な隙間から成るより詳細な凹凸構造を有し、所謂「フラクタル構造体」に類似の構造となっていることに起因していると考えることができる。加えて、メッシュ12が3次元的で複雑な凹凸構造の中に空気を含んでいる点も、メッシュ12が撥水性を示す要因の一つとして考えることができる(例えば、空気と水との接触角は180°である。)。   Therefore, the filter 10 (the mesh 12 on which the amorphous carbon film 14 is formed) in one embodiment exhibits water repellency because the mesh 12 as a base material has a three-dimensionally complicated wave of fiber yarns. In this way, the surface has a concavo-convex structure consisting of openings (openings) formed so as to intersect with each other, and the details of the concavo-convex structure, for example, at the intersection where the fiber yarns intersect, the curved surface of one fiber yarn and the other It can be considered that this is caused by having a more detailed concavo-convex structure composed of fine gaps formed by the curved surface of the fiber yarn and having a structure similar to a so-called “fractal structure”. In addition, the fact that the mesh 12 includes air in a three-dimensional and complicated uneven structure can be considered as one of the factors that the mesh 12 exhibits water repellency (for example, contact between air and water). The angle is 180 °).

以上詳述したように、非晶質炭素膜は、油等の非極性の有機溶媒との親和性が高いと共に疎水性である炭化水素で構成されているにもかかわらず、平板上に形成しても十分な撥水性(90°を超える接触角)を発現しないが、織物メッシュの表層に形成することによって、優れた撥水性(水の透過防止性)を示すと共に、油等の非極性有機溶媒等との良好な濡れ性を増長させていると考えることができる。   As described above in detail, the amorphous carbon film is formed on a flat plate despite being made of a hydrocarbon having a high affinity with a non-polar organic solvent such as oil and being hydrophobic. However, it does not exhibit sufficient water repellency (contact angle exceeding 90 °), but by forming it on the surface layer of the woven mesh, it exhibits excellent water repellency (water permeation prevention) and nonpolar organics such as oil. It can be considered that good wettability with a solvent or the like is increased.

また、一実施形態においては、前述したように、メッシュ12の片面のみに非晶質炭素膜14を形成し、非晶質炭素膜14を形成していない面側からろ過液を注入しても高い水の透過防止性を示す。この理由として、接触角の異なる2つの固体表面が繋がって存在している場合において、接触角の小さい一方の固体表面から接触角の大きい他方の固体表面に液滴が移動する際、この液滴は、他方の固体表面の大きい接触角に達するまでは、この他方の固体表面に進入することができないという「ピン止め効果」によるものと推測することができる。   In one embodiment, as described above, the amorphous carbon film 14 is formed only on one side of the mesh 12, and the filtrate is injected from the side where the amorphous carbon film 14 is not formed. High water permeation prevention. This is because when two solid surfaces having different contact angles are connected to each other, when the droplet moves from one solid surface having a small contact angle to the other solid surface having a large contact angle, It can be presumed that this is due to the “pinning effect” in which it is impossible to enter the other solid surface until the large contact angle of the other solid surface is reached.

ここで、さらに、一実施形態におけるフィルター10において、非極性有機溶媒と水とを分離する作用について補足する。まず、極性溶媒である水と非極性溶媒とはなじみが悪い。また、炭化水素系の原料ガスから構成される非晶質炭素膜は、有機溶媒と類似の構造を有し、非晶質炭素膜と有機溶媒とはなじみが良い。さらに、一実施形態におけるフィルター10では、非晶質炭素膜が凹凸を有するメッシュ12上に形成されているから、平面上に形成された場合と比較して表面面積が大きくなり、メッシュ12全体が、より一層有機溶媒とのなじみが良いものとなる。   Here, it supplements about the effect | action which isolate | separates a nonpolar organic solvent and water further in the filter 10 in one Embodiment. First, the familiarity between water, which is a polar solvent, and nonpolar solvents is poor. In addition, an amorphous carbon film composed of a hydrocarbon-based source gas has a structure similar to that of an organic solvent, and the amorphous carbon film and the organic solvent are well suited. Furthermore, in the filter 10 according to one embodiment, since the amorphous carbon film is formed on the uneven mesh 12, the surface area becomes larger than when formed on a plane, and the entire mesh 12 is Further, the compatibility with the organic solvent becomes better.

このように、なじみが悪い水と非極性有機溶媒との混合液をフィルター10に注入すると、混合液に含まれる水は、非晶質炭素膜によって撥水性を付与されたメッシュ12の表面との接触角が90°を超え、毛管圧力によってメッシュ12の開口部に進入することができず、逆に押し出される。一方、混合液に含まれる非極性有機溶媒は、メッシュ12とのなじみが良いから、毛管圧力によってメッシュ12の開口部に進入し、メッシュ12を通過することができる。   As described above, when a mixed liquid of water and a nonpolar organic solvent having poor compatibility is injected into the filter 10, the water contained in the mixed liquid is mixed with the surface of the mesh 12 to which water repellency is imparted by the amorphous carbon film. The contact angle exceeds 90 ° and cannot enter the opening of the mesh 12 due to capillary pressure, but is pushed out in reverse. On the other hand, since the nonpolar organic solvent contained in the mixed solution has good affinity with the mesh 12, it can enter the opening of the mesh 12 by the capillary pressure and pass through the mesh 12.

こうした、フィルター10における水と非極性有機溶媒とを分離する作用は、水と非極性有機溶媒それぞれの表面張力、及び、水と非極性有機溶媒との界面張力(水とのなじみの程度)にも依存する。例えば、水の表面張力は、72mN/m(72ミリニュートン/メートル)と非常に大きい。また、油の表面張力は、例えば、ミネラルスピリットで26.4mN/m程度と小さい。従って、フィルター10に注入された際のメッシュ12の開口部における毛管圧力が異なることになり、非極性有機溶媒のみを通過させて水と非極性有機溶媒を分離することができる。なお、こうした非極性有機溶媒としては、以下の溶媒を例示することができるが、これらに限定されない。
・ブロモベンゼン(表面張力:35.75mN/m、水との界面張力:38.1mN/m)
・ベンゼン(表面張力:28.88mN/m、水との界面張力:35.0mN/m)
・n−オクタノール(表面張力:27.53mN/m、水との界面張力:8.5mN/m)
・四塩化炭素(表面張力:26.9mN/m、水との界面張力:45.1mN/m)
・n−オクタン(表面張力:21.8mN/m、水との界面張力:50.8mN/m)
・ジエチルエーテル(表面張力:17.0mN/m、水との界面張力:10.7mN/m)
The action of separating the water and the nonpolar organic solvent in the filter 10 is based on the surface tension of each of the water and the nonpolar organic solvent and the interfacial tension between the water and the nonpolar organic solvent (degree of familiarity with water). Also depends. For example, the surface tension of water is as high as 72 mN / m (72 mNewton / meter). Moreover, the surface tension of oil is as small as about 26.4 mN / m by mineral spirit, for example. Accordingly, the capillary pressure at the opening of the mesh 12 when injected into the filter 10 is different, and only the nonpolar organic solvent is allowed to pass through to separate water and the nonpolar organic solvent. Examples of such nonpolar organic solvents include, but are not limited to, the following solvents.
Bromobenzene (surface tension: 35.75 mN / m, interfacial tension with water: 38.1 mN / m)
Benzene (surface tension: 28.88 mN / m, interfacial tension with water: 35.0 mN / m)
N-octanol (surface tension: 27.53 mN / m, interfacial tension with water: 8.5 mN / m)
Carbon tetrachloride (surface tension: 26.9 mN / m, interfacial tension with water: 45.1 mN / m)
N-octane (surface tension: 21.8 mN / m, interfacial tension with water: 50.8 mN / m)
Diethyl ether (surface tension: 17.0 mN / m, interfacial tension with water: 10.7 mN / m)

以上説明した本発明の一実施形態に係るフィルター10によれば、メッシュ12の繊維糸を非晶質炭素膜で被膜してメッシュ12に撥水性を付与することによって、水と非極性有機溶媒とを分離する。メッシュ12を非晶質炭素膜で被覆することにより、フィルター10の耐摩耗性、その他様々な特性を向上させることができる。   According to the filter 10 according to the embodiment of the present invention described above, water, a non-polar organic solvent, and the like can be obtained by coating the fiber yarn of the mesh 12 with an amorphous carbon film and imparting water repellency to the mesh 12. Isolate. By covering the mesh 12 with an amorphous carbon film, the wear resistance and other various characteristics of the filter 10 can be improved.

以下に述べる方法により、本発明の一実施形態におけるフィルターの油水分離機能を確認した。   The oil-water separation function of the filter in one embodiment of the present invention was confirmed by the method described below.

1.基材の準備
各種のステンレス鋼製(SUS304 2B)のメッシュ(寸法:50mm×50mm)を実施例1〜8、比較例1〜3の基材として準備した。なお、比較例4は、樹脂製(ポリプロピレン製)の多孔性シート(日東電工(株)製サンマップ LC-T超高分子量ポリエチレン多孔性のシート、平均孔径17μm、気孔率30%)を基材とした。実施例及び比較例の基材は表1(単位はmm)の通りである。各基材の両面にアセチレンを原料ガスとする公知のプラズマCVDプロセスにて水素と炭素からなる非晶質炭素膜を概ね160nmの厚さで形成したものを、それぞれ実施例1−1〜8−1、比較例1−1〜4−1とし、比較例4を除く基材の片面のみに前述した非晶質炭素膜を概ね160nmの厚さで形成したものを、それぞれ実施例1−2〜8−2、比較例1−2〜3−2とした。
1. Preparation of base materials Various stainless steel (SUS304 2B) meshes (dimensions: 50 mm x 50 mm) were prepared as base materials for Examples 1 to 8 and Comparative Examples 1 to 3. Comparative Example 4 is a resin (polypropylene) porous sheet (Nitto Denko Corporation Sunmap LC-T ultrahigh molecular weight polyethylene porous sheet, average pore diameter 17 μm, porosity 30%) as a base material. It was. The base material of an Example and a comparative example is as Table 1 (a unit is mm). Examples in which an amorphous carbon film made of hydrogen and carbon having a thickness of about 160 nm was formed on both surfaces of each substrate by a known plasma CVD process using acetylene as a source gas in a thickness of about 160 nm, respectively. 1 and Comparative Examples 1-1 to 4-1, and those obtained by forming the above-described amorphous carbon film with a thickness of about 160 nm on only one side of the base material excluding Comparative Example 4 were the same as Example 1-2. 8-2 and Comparative Examples 1-2 to 3-2.

Figure 2014108399
Figure 2014108399

2.油水分離実験
まず、油と水の分離状態を目視で確認できるようにするため、水(純水)100mlに対して「食用色素 稀釈」の赤色(株式会社 三幸)を小さいステンレスさじに1/3程度加えて赤く着色したもの用意した。さらに、油としてミネラルスピリットを準備した。なお、温度20〜25℃における表面張力は、ミネラルスピリットが26.4mN/m、水が72mN/mである。また、この検証実験は、常温の水、油(ミネラルスピリット)を用いて、湿度20〜40%、温度22度程度の環境下で行っている。また、水と油の混合液のろ過は、特別な圧力をかけない状態で行った。
2. Oil-water separation experiment First, in order to make it possible to visually confirm the separation state of oil and water, the red color of “edible dye dilution” (Miyuki Co., Ltd.) is reduced to 1/3 of a small stainless steel spoon for 100 ml of water (pure water). A red colored one was prepared. Furthermore, mineral spirit was prepared as oil. The surface tension at a temperature of 20 to 25 ° C. is 26.4 mN / m for mineral spirits and 72 mN / m for water. In addition, this verification experiment is performed in an environment with a humidity of 20 to 40% and a temperature of about 22 degrees using normal temperature water and oil (mineral spirit). Moreover, filtration of the liquid mixture of water and oil was performed in the state which does not apply special pressure.

次に、赤く着色した水(溶質を伴う水)の表面張力が、水(純水)の表面張力と比較して大きく変動していないことを、Si(100)ウエハ(平板5cm×5cm)上に双方を滴下して任意の異なる10点の接触角の平均値を比較することによって確認した。さらに、テトラメチルシラン(TMS)を原料ガスとして公知のCVD法でSiを含む非晶質炭素膜をステンレス鋼平板(SUS304 2B材 5cm×5cm)表面に概ね160nmの厚さで形成したものの表面上に水(純水)を滴下して任意の異なる10点の接触角の平均値を算出した。同様に、アセチレンを原料ガスとして公知のCVD法で水素と炭素を含む非晶質炭素膜をステンレス鋼平板(SUS304 2B材 5cm×5cm)表面に概ね160nmの厚さで形成したものの表面上に水(純水)を滴下して任意の異なる10点の接触角の平均値を算出した。また、前述した赤色の着色料は、油(ミネラルスピリット)を着色しないことも事前に確認している。
接触角計
測定機器: 協和界面科学(株) ポータブル接触角計 PCA-1
測定範囲: 0〜180°(表示分解能0.1°)
測定方法: 接触角測定(液適法)
測定環境: 湿度20〜40%、温度22度程度
Next, on the Si (100) wafer (flat plate 5 cm × 5 cm), the surface tension of red colored water (water with solute) does not vary greatly compared to the surface tension of water (pure water). This was confirmed by comparing both the average values of the contact angles of 10 different points. Further, an amorphous carbon film containing Si is formed on a stainless steel flat plate (SUS304 2B material 5 cm × 5 cm) with a thickness of about 160 nm by a known CVD method using tetramethylsilane (TMS) as a source gas. Water (pure water) was added dropwise to calculate an average value of contact angles at 10 arbitrarily different points. Similarly, an amorphous carbon film containing hydrogen and carbon is formed on the surface of a stainless steel plate (SUS304 2B material 5 cm × 5 cm) with a thickness of about 160 nm by a known CVD method using acetylene as a source gas. (Pure water) was added dropwise to calculate the average value of contact angles at any 10 different points. It has also been confirmed in advance that the red colorant described above does not color oil (mineral spirit).
Contact angle meter Measuring device: Kyowa Interface Science Co., Ltd. Portable contact angle meter PCA-1
Measurement range: 0 to 180 ° (display resolution 0.1 °)
Measuring method: Contact angle measurement (liquid proper method)
Measurement environment: Humidity 20-40%, temperature around 22 degrees

赤く着色した水の接触角の平均値は48.1°であり、着色していない純水の接触角の平均値は50.6°であり、双方の接触角の差は僅かに2°程度であり、水を着色することにより表面張力が大きく変化していないことが確認できた。さらに、Siを含む非晶質炭素膜を形成したものの着色していない純水との10点における接触角の平均値は81.1°であり、水素と炭素からなる非晶質炭素膜を形成したものの着色していない純水との10点における接触角の平均値は81°であった。よって、テトラメチルシラン(TMS)を原料ガスとしたSiを含む非晶質炭素膜とアセチレンを原料ガスとした水素と炭素から成る非晶質炭素膜の接触角(表面濡れ性)に差がないことも確認できた。   The average contact angle of red colored water is 48.1 °, the average contact angle of uncolored pure water is 50.6 °, and the difference between the two contact angles is only about 2 °. It was confirmed that the surface tension did not change greatly by coloring water. Furthermore, although an amorphous carbon film containing Si was formed, the average value of the contact angle at 10 points with uncolored pure water was 81.1 °, and an amorphous carbon film made of hydrogen and carbon was formed. However, the average value of the contact angles at 10 points with uncolored pure water was 81 °. Therefore, there is no difference in contact angle (surface wettability) between an amorphous carbon film containing Si using tetramethylsilane (TMS) as a source gas and an amorphous carbon film consisting of hydrogen and carbon using acetylene as a source gas. I was able to confirm that.

1)検証実験1(水の中に少量の油が混入してる場合の油水分離状態の確認)
まず、上述した着色した水10mlに油1mlを加えた混合液を準備した。油は水の表層に浮かんでいる状態である。次に、表1に示した実施例1〜8(1−1〜8−2)、比較例1〜4(1−1〜4−1)の各種基材を中空状態で保持し、基材の上方から混合液を注ぎ、ろ過を行った。油は全量に当たる1mlを注ぎ、水は実施例についてはろ過されずに基材上に残るため、基材が水の重さに耐えられる概ね2mlの量を油と一緒に注ぎ込んでいる。混合液を注ぎ込む際には、先に油が出て、その後に純水が出てくる状況である。
1) Verification Experiment 1 (Confirmation of oil / water separation when a small amount of oil is mixed in water)
First, a mixed solution in which 1 ml of oil was added to 10 ml of the colored water described above was prepared. Oil is floating on the surface of the water. Next, various base materials of Examples 1 to 8 (1-1 to 8-2) and Comparative Examples 1 to 4 (1-1 to 4-1) shown in Table 1 are held in a hollow state, The mixture was poured from above and filtered. The oil is poured in 1 ml corresponding to the total amount, and the water remains on the substrate without being filtered in the examples. Therefore, an amount of approximately 2 ml that the substrate can withstand the weight of water is poured together with the oil. When the mixed solution is poured, the oil comes out first and then the pure water comes out.

実施例及び比較例の基材上に混合液を注ぎ込んだ直後と、10分経過後のメッシュ(フィルター)の状態を観察した。なお、片面のみ非晶質炭素膜を形成した実施例(1−2〜8−2)及び比較例(1−2〜3−2)については、非晶質炭素膜を形成した面側から混合液を注ぎ込んだ場合と、非晶質炭素膜を形成していない面側から混合液を注ぎ込んだ場合の双方について確認している。実施例1〜8については、非晶質炭素膜を形成する面や、混合液を注ぎ込む面にかかわらず、全ての実施例について、注ぎ込んだ直後に透明のミネラルスピリットのみがフィルターを通過し、下側の容器に溜まっていることが確認できた。比較例4−1については、透明なミネラルスピリットのみがシート中に拡散浸透し、吸収しきれない分がフィルターの4隅部分から下側の容器に達していることが確認でき、油の透過分離が困難であることが確認できた。水はフィルター上に残存していることが確認できた。また、実施例1〜8のいずれにおいても、赤く着色した水は10分経過後もフィルター上に残っていることが確認できた。なお、比較例3については混合液を注ぎ込んだ直後に水と油の両方がフィルターを通過した。また比較例1、2については、油が透過した後、水の一部はフィルター上にある程度溜まると抜け落ちて行き、残りの一部はフィルター上に留まるという様子が観察された。   The state of the mesh (filter) immediately after pouring the mixed solution onto the substrates of Examples and Comparative Examples and after 10 minutes was observed. For Examples (1-2 to 8-2) and Comparative Examples (1-2 to 3-2) in which an amorphous carbon film was formed only on one side, mixing was performed from the side on which the amorphous carbon film was formed. Both the case where the liquid is poured and the case where the mixed liquid is poured from the side where the amorphous carbon film is not formed are confirmed. For Examples 1 to 8, regardless of the surface on which the amorphous carbon film is formed or the surface into which the mixed solution is poured, for all the examples, only transparent mineral spirit passes through the filter immediately after pouring, It was confirmed that it was collected in the side container. For Comparative Example 4-1, only transparent mineral spirit diffused and penetrated into the sheet, and it was confirmed that the amount that could not be absorbed reached the lower container from the four corners of the filter. It was confirmed that this was difficult. It was confirmed that water remained on the filter. Moreover, in any of Examples 1 to 8, it was confirmed that the red colored water remained on the filter even after 10 minutes. In Comparative Example 3, both water and oil passed through the filter immediately after pouring the mixed solution. Further, in Comparative Examples 1 and 2, it was observed that after oil permeated, a part of the water fell off when accumulated to some extent on the filter, and the remaining part remained on the filter.

2)検証実験2(油の中に少量の水が混入してる場合の油水分離状態の確認)
まず、油10mlに着色した純水1mlを加えた混合液を準備した。水は油の底に沈んでいる状況である。次に、実施例1〜8(1−1〜8−2)、比較例1〜4(1−1〜4−1)の各種基材を中空状態で保持し、基材の上方から混合液を注ぎ、ろ過を行った。油、水の両方について全量を注ぎ込んでいる。混合液を注ぎ込む際には、先に油が出て、その後に純水が出てくる状況である。
2) Verification experiment 2 (confirmation of oil / water separation when a small amount of water is mixed in the oil)
First, a mixed solution was prepared by adding 1 ml of pure water colored to 10 ml of oil. Water is sinking to the bottom of the oil. Next, various base materials of Examples 1 to 8 (1-1 to 8-2) and Comparative Examples 1 to 4 (1-1 to 4-1) are held in a hollow state, and mixed liquid from above the base material. And filtered. The whole amount is poured for both oil and water. When the mixed solution is poured, the oil comes out first and then the pure water comes out.

実施例及び比較例の基材上に混合液を注ぎ込んだ直後と、10分経過後の状態を観察した。実施例1〜8については、注ぎ込んだ直後に透明のミネラルスピリットのみがフィルターを通過し、下側の容器に溜まっていることが確認できた。比較例4−1については透明なミネラルスピリットのみがシート中に拡散浸透し、吸収しきれない分がフィルターの4隅部分から下側の容器に達していることが確認できた。水はフィルター上に残存していることが確認できた。また、実施例1〜8のいずれにおいても、赤く着色した水は10分経過後もフィルター上に残っていることが確認できた。なお、比較例3については混合液を注ぎ込んだ直後に水と油の両方がフィルターを通過した。また比較例1、2については、油が透過した後、水の一部はフィルター上にある程度溜まると抜け落ちて行き、残りの水の一部はフィルター上に留まるという様子が観察された。   Immediately after pouring the mixed solution onto the base materials of the examples and comparative examples, the state after 10 minutes was observed. About Examples 1-8, it has confirmed that immediately after pouring, only the transparent mineral spirit passed through the filter and was accumulated in the lower container. In Comparative Example 4-1, it was confirmed that only transparent mineral spirit diffused and penetrated into the sheet, and the portion that could not be absorbed reached the lower container from the four corners of the filter. It was confirmed that water remained on the filter. Moreover, in any of Examples 1 to 8, it was confirmed that the red colored water remained on the filter even after 10 minutes. In Comparative Example 3, both water and oil passed through the filter immediately after pouring the mixed solution. Further, in Comparative Examples 1 and 2, it was observed that after oil permeated, a part of the water fell off when accumulated to some extent on the filter, and a part of the remaining water remained on the filter.

続いて、油10mlに着色しない純水1mlを加えた混合液を準備した。水は油の底に沈んでいる状況である。次に、実施例1〜8(1−1〜8−2)の各種メッシュを中空状態で保持し、メッシュの上方から混合液を注ぎ、ろ過を行った。油、水の両方について全量を注ぎ込んでいる。混合液を注ぎ込む際には、先に油が出て、その後に純水が出てくる状況である。実施例の基材上に注ぎ込んだ後、下側の容器にろ過され溜まった液体を、別に用意した油を満たしたビーカの中に注ぎ込み、ビーカの下側底部に水とみられる沈降物が無いことを確認した。   Then, the liquid mixture which added 1 ml of pure water which is not colored to 10 ml of oil was prepared. Water is sinking to the bottom of the oil. Next, the various meshes of Examples 1 to 8 (1-1 to 8-2) were held in a hollow state, and the mixed liquid was poured from above the mesh and filtered. The whole amount is poured for both oil and water. When the mixed solution is poured, the oil comes out first and then the pure water comes out. After pouring onto the base material of the example, the liquid collected by filtration in the lower container is poured into a beaker filled with separately prepared oil, and there is no sediment seen as water at the lower bottom of the beaker. It was confirmed.

3)検証実験3(油と水がエマルジョン化している場合の油水分離状態の確認)
まず、油10mlに赤く着色した純水10mlを蓋付き容器に入れて振って攪拌し、直後に、油と水が分離しない状態(エマルジョン状態)のままで、実施例1−1〜3−1、比較例3−1、4−1の各種基材(本検証は、両面に非晶質炭素膜を形成したもののみで行っている)を中空状態で保持し、基材の上方から混合液を注ぎ、ろ過を行った。油、水から作成したエマルジョンの総量中3ml分を注ぎ込んでいる。
3) Verification Experiment 3 (Confirmation of oil / water separation when oil and water are emulsified)
First, 10 ml of red water colored 10 ml of oil was placed in a container with a lid and shaken and stirred. Immediately after that, the oil and water were not separated (emulsion state). The various base materials of Comparative Examples 3-1 and 4-1 (this verification is performed only by forming an amorphous carbon film on both sides) are held in a hollow state, and mixed liquid from above the base material. And filtered. 3ml of the total amount of emulsion made from oil and water is poured.

実施例及び比較例の基材上に注ぎ込んだ直後と、10分経過後の状態を観察した。実施例1−1〜3−1については、メッシュ上に油水混合液が載った後、じわじわと油だけがメッシュを通過していった。分離できる油がなくなると、その後10分経過しても混合液(残った水)に変化は見られなかった。検証実験1及び2と比較すると、より多くの油がメッシュ上に残っているように見え、完全な油水の分離は出来ていないものの、粗分離は可能であることが確認できた。比較例4−1については、フィルター上に混合液が載った後、じわじわと油がフィルターに吸収され、フィルター上に残った混合液は10分経過後も変化は無かった。なお、比較例3−1については、混合液を注ぎ込んだ直後に水と油の両方がフィルターを通過した。   The state immediately after pouring on the base material of an Example and a comparative example and the state after 10-minute progress were observed. About Examples 1-1 to 3-1, after the oil / water mixture was placed on the mesh, only the oil gradually passed through the mesh. When there was no oil that could be separated, there was no change in the mixture (remaining water) even after 10 minutes. Compared with the verification experiments 1 and 2, it seemed that more oil was left on the mesh, and although complete oil-water separation was not possible, rough separation was possible. In Comparative Example 4-1, after the mixed solution was placed on the filter, the oil was gradually absorbed into the filter, and the mixed solution remaining on the filter remained unchanged after 10 minutes. In Comparative Example 3-1, both water and oil passed through the filter immediately after pouring the mixed solution.

4)接触角の確認
実施例及び比較例において、非晶質炭素膜を両面に形成した実施例1−1〜8−1、比較例1−1〜4−1について、水(純水)と検証に使用した赤い着色水の接触角を測定した。接触角の測定は、試料の任意の異なる10点において行い平均値を算出している。なお、接触角の測定条件は前述した通りであり、表2中の表記「無色」は着色していない純水、「赤色」は今回油水分離検証に使用したものと同様の組成の赤い着色水を意味する。測定結果を表2に示す。
4) Confirmation of the contact angle In Examples and Comparative Examples, with respect to Examples 1-1 to 8-1 and Comparative Examples 1-1 to 4-1 in which amorphous carbon films were formed on both surfaces, water (pure water) and The contact angle of red colored water used for verification was measured. The contact angle is measured at any 10 different points of the sample, and the average value is calculated. The contact angle measurement conditions are as described above. The notation “colorless” in Table 2 is pure water not colored, and “red” is red colored water having the same composition as that used for the oil-water separation verification this time. Means. The measurement results are shown in Table 2.

Figure 2014108399
Figure 2014108399

全ての比較例(多孔性シートの比較例4は除く、比較例3は水滴が落下してしまうため水滴(即ち、接触角)が形成できない状態)について純水も着色水も接触角が90°未満となり、水との接触角90°が油水分離の境界(メッシュが水を透過するか否かの境界)であることが確認できた。   For all the comparative examples (excluding Comparative Example 4 of the porous sheet, Comparative Example 3 is a state in which water droplets (that is, contact angle) cannot be formed because water droplets are dropped), the contact angle of pure water and colored water is 90 °. It was confirmed that the contact angle with water of 90 ° was the boundary of oil / water separation (the boundary of whether the mesh permeates water).

さらに、実施例1−2、3−2、8−2(非晶質炭素膜を片面側のみに形成した試料の成膜面側と未成膜面側)において水(純水)と検証に使用した赤い着色水の接触角を測定した。測定結果を表3に示す。表3中の表記「無色」は着色していない純水、「赤色」は今回油水分離検証に使用したものと同様の組成の赤い着色水を意味する。   Furthermore, in Examples 1-2, 3-2, and 8-2 (deposited surface side and non-deposited surface side of a sample in which an amorphous carbon film is formed only on one side), it is used for verification with water (pure water). The contact angle of the red colored water was measured. Table 3 shows the measurement results. The notation "colorless" in Table 3 means uncolored pure water, and "red" means red colored water having the same composition as that used for the oil-water separation verification this time.

Figure 2014108399
Figure 2014108399

いずれも110°近い接触角となり撥水性を示している。例えば実施形態におけるフィルターによりろ過分離を行う水が、異なる溶質を含み、その表面張力が通常の水に比べ大きくなっている場合、または、小さくなっている場合であっても、非晶質炭素膜を形成したメッシュの開口径や開口率、非晶質炭素膜の形成方法(面など)を予め調整することで、分離を行いたい水との接触角を90°を超えるようにしておくことで、多様な水と非極性溶媒との分離が可能になることが分かる。   In either case, the contact angle is close to 110 °, indicating water repellency. For example, even if the water that is filtered and separated by the filter in the embodiment contains different solutes and the surface tension is larger or smaller than that of normal water, the amorphous carbon membrane By adjusting in advance the opening diameter and opening ratio of the mesh formed and the formation method (surface, etc.) of the amorphous carbon film, the contact angle with water to be separated is set to exceed 90 °. It can be seen that a variety of water and nonpolar solvents can be separated.

10 フィルター
12 メッシュ
14 非晶質炭素膜
10 filter 12 mesh 14 amorphous carbon film

Claims (5)

水と非極性有機溶媒とを分離するフィルターであって、
繊維糸からなるメッシュと、
前記繊維糸を被覆し、前記メッシュに撥水性を付与する非晶質炭素膜と、
を備えるフィルター。
A filter for separating water from a non-polar organic solvent,
A mesh made of fiber yarn,
An amorphous carbon film that covers the fiber yarn and imparts water repellency to the mesh;
With a filter.
前記メッシュは、開口径が0.6mm以下である請求項1記載のフィルター。   The filter according to claim 1, wherein the mesh has an opening diameter of 0.6 mm or less. 前記メッシュは、メッシュカウントが30以上である請求項1又は2記載のフィルター。 The filter according to claim 1 or 2, wherein the mesh has a mesh count of 30 or more. 前記非晶質炭素膜は、前記メッシュの両面に形成されてなる請求項1ないし3いずれか記載のフィルター。   The filter according to claim 1, wherein the amorphous carbon film is formed on both surfaces of the mesh. 前記非晶質炭素膜は、前記メッシュの片面に形成されてなる請求項1ないし3いずれか記載のフィルター。   The filter according to claim 1, wherein the amorphous carbon film is formed on one side of the mesh.
JP2012264597A 2012-12-03 2012-12-03 Filter having a water-repellent amorphous carbon film Expired - Fee Related JP6204657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264597A JP6204657B2 (en) 2012-12-03 2012-12-03 Filter having a water-repellent amorphous carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264597A JP6204657B2 (en) 2012-12-03 2012-12-03 Filter having a water-repellent amorphous carbon film

Publications (2)

Publication Number Publication Date
JP2014108399A true JP2014108399A (en) 2014-06-12
JP6204657B2 JP6204657B2 (en) 2017-09-27

Family

ID=51029358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264597A Expired - Fee Related JP6204657B2 (en) 2012-12-03 2012-12-03 Filter having a water-repellent amorphous carbon film

Country Status (1)

Country Link
JP (1) JP6204657B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673508A (en) * 1979-11-22 1981-06-18 Sutemi Negishi Oil-water separating element and its manufacture
JP2003306389A (en) * 2002-04-12 2003-10-28 Nisshinbo Ind Inc Glassy carbon felt and water-repellent oil absorbent material and oil separation process using the same
JP2009297946A (en) * 2008-06-11 2009-12-24 Seiko Epson Corp Liquid droplet ejecting head, liquid droplet ejector carrying liquid droplet ejecting head, manufacturing method for liquid droplet ejecting head, and manufacturing method for liquid droplet ejector applying manufacturing method for liquid droplet ejecting head
JP2010230566A (en) * 2009-03-27 2010-10-14 Hitachi High-Technologies Corp Autoanalyzer and pipetting nozzle for autoanalyzer
JP2012006390A (en) * 2010-05-28 2012-01-12 Taiyo Kagaku Kogyo Kk Screen printing stencil having amorphous carbon film and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673508A (en) * 1979-11-22 1981-06-18 Sutemi Negishi Oil-water separating element and its manufacture
JP2003306389A (en) * 2002-04-12 2003-10-28 Nisshinbo Ind Inc Glassy carbon felt and water-repellent oil absorbent material and oil separation process using the same
JP2009297946A (en) * 2008-06-11 2009-12-24 Seiko Epson Corp Liquid droplet ejecting head, liquid droplet ejector carrying liquid droplet ejecting head, manufacturing method for liquid droplet ejecting head, and manufacturing method for liquid droplet ejector applying manufacturing method for liquid droplet ejecting head
JP2010230566A (en) * 2009-03-27 2010-10-14 Hitachi High-Technologies Corp Autoanalyzer and pipetting nozzle for autoanalyzer
JP2012006390A (en) * 2010-05-28 2012-01-12 Taiyo Kagaku Kogyo Kk Screen printing stencil having amorphous carbon film and its manufacturing method

Also Published As

Publication number Publication date
JP6204657B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
Yin et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation
Hu et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation
Ragesh et al. A review on ‘self-cleaning and multifunctional materials’
Si et al. A robust epoxy resins@ stearic acid-Mg (OH) 2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications
Yong et al. Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces
Wang et al. Environmental applications of interfacial materials with special wettability
Archer et al. Recent progress and future directions of multifunctional (super) wetting smooth/structured surfaces and coatings
He et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil–water separation membranes
Madaeni et al. Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane
Ganesh et al. A review on self-cleaning coatings
Lin et al. Cobweb-inspired superhydrophobic multiscaled gating membrane with embedded network structure for robust water-in-oil emulsion separation
Hou et al. Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation
Yu et al. Self-healing structured graphene surface with reversible wettability for oil–water separation
US20170056834A1 (en) Multilayer coatings and methods of making and using thereof
Ma et al. Plasma-controlled surface wettability: Recent advances and future applications
US10940438B2 (en) Omniphobic membranes and application thereof
Tie et al. Organic media superwettability: on-demand liquid separation by controlling surface chemistry
Lu et al. A slippery oil-repellent hydrogel coating
Pv et al. Recent developments in usage of fluorine-free nano structured materials in oil-water separation: A review
Saini et al. Engineered smart textiles and Janus microparticles for diverse functional industrial applications
Qahtan et al. Thermally sensitized membranes for crude oil–water remediation under visible light
Bazyar et al. Liquid-infused membranes with oil-in-water emulsions
Tang et al. Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation
Zuo et al. A superwetting stainless steel mesh with Janus surface charges for efficient emulsion separation
Barthwal et al. Superhydrophobic and superoleophobic copper plate fabrication using alkaline solution assisted surface oxidation methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees