JP2014107210A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2014107210A
JP2014107210A JP2012261177A JP2012261177A JP2014107210A JP 2014107210 A JP2014107210 A JP 2014107210A JP 2012261177 A JP2012261177 A JP 2012261177A JP 2012261177 A JP2012261177 A JP 2012261177A JP 2014107210 A JP2014107210 A JP 2014107210A
Authority
JP
Japan
Prior art keywords
electrode
separator
electrode plates
secondary battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012261177A
Other languages
Japanese (ja)
Other versions
JP6058987B2 (en
Inventor
Shinji Isoyama
伸治 磯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012261177A priority Critical patent/JP6058987B2/en
Publication of JP2014107210A publication Critical patent/JP2014107210A/en
Application granted granted Critical
Publication of JP6058987B2 publication Critical patent/JP6058987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having a high capacity usable as a stationary storage battery.SOLUTION: In a secondary battery having a cathode 11P, an anode 11N, a separator 13, and an electrolyte 14, the cathode 11P and/or the anode 11N are formed as comprising a plurality of electrode plates disposed so as to overlap each other via a gap through which the electrolyte 14 circulates, with current collectors 12P, 12N of the plurality of electrode plates being electrically connected together by collector connection parts 16P, 16N, whereby a secondary battery having a high capacity usable as a stationary storage battery is obtained.

Description

本発明は、定置用蓄電池等に使用される二次電池に関するものである。   The present invention relates to a secondary battery used for a stationary storage battery or the like.

近年、二次電池は、太陽光発電や風力発電などにより発電した電気を蓄えるための定置用蓄電池としてもその用途を広げている。定置用蓄電池として二次電池を使用する場合、要求される性能のひとつとして高容量化がある。   In recent years, secondary batteries have also been used as stationary storage batteries for storing electricity generated by solar power generation or wind power generation. When a secondary battery is used as a stationary storage battery, one of the required performances is an increase in capacity.

二次電池を高容量化する方法としては、まず、電極を厚くすることが考えられるが、電極を厚くすると電極の表面から離れた電極内部に位置する活物質が充放電に寄与しないため、電極に含まれる活物質の全てを活用することが困難となる。したがって、電極を厚くしてもその電極の厚さに比例した容量が得られないため、様々な手法で容量改善が図られている。   As a method of increasing the capacity of the secondary battery, it is conceivable that the electrode is first thickened. However, if the electrode is thickened, the active material located inside the electrode away from the surface of the electrode does not contribute to charge / discharge. It becomes difficult to utilize all of the active material contained in the. Therefore, even if the electrode is made thicker, a capacity proportional to the thickness of the electrode cannot be obtained, so that the capacity is improved by various methods.

例えば、特許文献1では、堆積膜もしくは焼結膜の電極に溝を形成し、電解液の流通経路を確保することで、容量改善を行っている。   For example, in Patent Document 1, a capacity is improved by forming a groove in an electrode of a deposited film or a sintered film and securing a flow path of an electrolytic solution.

特開2006−120445号公報JP 2006-120445 A

しかしながら、特許文献1の手法では、たとえば200μm以上の厚さの電極を形成するのは困難であり、厚さ方向に溝を形成できたとしても、溝周辺の活物質は充放電に寄与するが、溝から離れた活物質は充放電に寄与しないため、高容量化できないという問題があった。   However, in the method of Patent Document 1, it is difficult to form an electrode having a thickness of, for example, 200 μm or more. Even if a groove can be formed in the thickness direction, the active material around the groove contributes to charging and discharging. Since the active material away from the groove does not contribute to charging / discharging, there is a problem that the capacity cannot be increased.

本発明は上記の課題に鑑みなされたもので、定置用蓄電池として使用可能な高い容量を有する二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a secondary battery having a high capacity that can be used as a stationary storage battery.

本発明の二次電池は、正極、負極、セパレータおよび電解液を有し、前記正極および前記負極のうち少なくともいずれか一方が、それぞれ集電体を備えた複数の電極板と、該集電体を互いに電気的に接続する集電体接続部とを有するとともに、前記複数の電極板が間隙を介して互いに重なり合うように配置されたものであって、前記間隙に前記電解液を有することを特徴とする。   The secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolyte solution, and at least one of the positive electrode and the negative electrode includes a plurality of electrode plates each having a current collector, and the current collector And a plurality of electrode plates arranged so as to overlap each other via a gap, and having the electrolyte solution in the gap. And

本発明によれば、互いに重なりあうように配置された複数の電極板間の間隙に、電解液が流通することにより、定置用蓄電池として使用可能な高い容量を有する二次電池を提供することができる。   According to the present invention, it is possible to provide a secondary battery having a high capacity that can be used as a stationary storage battery by allowing an electrolytic solution to flow through a gap between a plurality of electrode plates arranged to overlap each other. it can.

本発明の二次電池の実施の形態の第1の例を示す断面図である。It is sectional drawing which shows the 1st example of embodiment of the secondary battery of this invention. 本発明の二次電池の実施の形態の第2の例を示す断面図である。It is sectional drawing which shows the 2nd example of embodiment of the secondary battery of this invention. 本発明の二次電池の実施の形態の第3の例を示す断面図である。It is sectional drawing which shows the 3rd example of embodiment of the secondary battery of this invention. 本発明の二次電池の実施の形態の第4の例を示す断面図である。It is sectional drawing which shows the 4th example of embodiment of the secondary battery of this invention. 従来の二次電池を示す断面図である。It is sectional drawing which shows the conventional secondary battery.

以下、本発明の二次電池について、図面を参照しつつ詳細に説明する。二次電池は、一般に図5に示すように、正極1P、負極1N、セパレータ3、電解液4とそれらを収納したケース5から構成される。正極1P、負極1Nは、たとえばそれぞれ正極活物質、負極活物質を含む塗布電極として、金属箔である正極側集電体2P、負極側集電体2Nの表面に形成されており、さらにリード7P、7Nを介して正極側外部端子8P、負極側外部端子8Nに電気的に接続されている。セパレータ3は、正極1Pと負極1Nの間に配置されている。ケース5には、正極1P、負極1Nおよびセパレータ3が収納されるとともに電解液4が満たされており、気密性を保つために蓋(図示せず)が設けられている。   Hereinafter, the secondary battery of the present invention will be described in detail with reference to the drawings. As shown in FIG. 5, the secondary battery generally includes a positive electrode 1 </ b> P, a negative electrode 1 </ b> N, a separator 3, an electrolyte solution 4, and a case 5 that houses them. The positive electrode 1P and the negative electrode 1N are formed on the surfaces of the positive electrode side current collector 2P and the negative electrode side current collector 2N, which are metal foils, for example, as application electrodes containing a positive electrode active material and a negative electrode active material, respectively, and lead 7P , 7N and are electrically connected to the positive external terminal 8P and the negative external terminal 8N. The separator 3 is disposed between the positive electrode 1P and the negative electrode 1N. The case 5 accommodates the positive electrode 1P, the negative electrode 1N, and the separator 3 and is filled with the electrolytic solution 4, and is provided with a lid (not shown) in order to maintain airtightness.

(実施の形態の第1の例)
本発明の二次電池の実施の形態の第1の例について説明する。本実施形態は、図1に示すように、正極11Pが3つの電極板11Pa、11Pbおよび11Pcから構成され、負極11Nも同様に3つの電極板11Na、11Nbおよび11Ncから構成されており、これらがセパレータ13、電解液14とともにケース15に収納されている。
(First example of embodiment)
A first example of the embodiment of the secondary battery of the present invention will be described. In the present embodiment, as shown in FIG. 1, the positive electrode 11P is composed of three electrode plates 11Pa, 11Pb and 11Pc, and the negative electrode 11N is similarly composed of three electrode plates 11Na, 11Nb and 11Nc. The separator 13 and the electrolytic solution 14 are housed in a case 15.

電極板11Pa、11Pbおよび11Pcは、正極活物質を含む塗布電極としてそれぞれ正極側集電体12Pa、12Pbおよび12Pcの表面に形成されており、正極側集電体12Pa、12Pbおよび12Pcの電極板11Pa、11Pbおよび11Pcが形成されていない部分は互いに接合され、正極側集電体接合部16Pを構成している。さらに正極側集電体接合部16Pは、リード17Pを介して正極側外部端子18Pに電気的に接続されている。   The electrode plates 11Pa, 11Pb, and 11Pc are formed on the surfaces of the positive electrode current collectors 12Pa, 12Pb, and 12Pc, respectively, as application electrodes that include a positive electrode active material. The electrode plates 11Pa of the positive electrode current collectors 12Pa, 12Pb, and 12Pc , 11Pb and 11Pc are joined to each other to constitute a positive electrode side current collector joint 16P. Furthermore, the positive electrode side current collector bonding portion 16P is electrically connected to the positive electrode side external terminal 18P through a lead 17P.

電極板11Na、11Nbおよび11Ncは、負極活物質を含む塗布電極としてそれぞれ負極側集電体12Na、12Nbおよび12Ncの表面に形成されており、負極側集電体12Na、12Nbおよび12Ncの負極側電極板11Na、11Nbおよび11Ncが形成されていない部分は互いに接合され、負極側集電体接合部16Nを構成している。さらに負極側集電体接合部6Nは、リード7Nを介して負極側外部端子18Nに電気的に接続されている。   The electrode plates 11Na, 11Nb, and 11Nc are formed on the surfaces of the negative electrode current collectors 12Na, 12Nb, and 12Nc, respectively, as coated electrodes that include a negative electrode active material. The negative electrode side current collectors 12Na, 12Nb, and 12Nc The portions where the plates 11Na, 11Nb, and 11Nc are not formed are joined together to form a negative electrode side current collector joint 16N. Further, the negative electrode side current collector joint portion 6N is electrically connected to the negative electrode side external terminal 18N via a lead 7N.

そして、正極11Pを構成する電極板11Pa、11Pbおよび11Pc、負極11Nを構成する電極板11Na、11Nbおよび11Nc(総じて単に電極板という場合もある。同様に、集電体12Pa〜12Pcおよび集電体12Na〜12Ncを総じて単に集電体という場合もある)を、間隙を介して互いに重なり合うように配置することにより、正極11Pおよび負極11Nの厚さを全体的に厚くしても、正極11Pおよび負極11Nを構成する各電極板の間隙に電解液を流通させることができ、電極板に含まれる活物質と電解液との接触面積が増加して活物質の充放電に対する寄与率が向上するため、容量を向上させることができる。なお、電極板と電極板と間に介在する間隙の大きさ(電極板間の距離)は、電解液の流通が可能な大きさであればよく、特に限定するものではない。   The electrode plates 11Pa, 11Pb and 11Pc constituting the positive electrode 11P, and the electrode plates 11Na, 11Nb and 11Nc constituting the negative electrode 11N (may be simply referred to as electrode plates as well. Similarly, the current collectors 12Pa to 12Pc and the current collectors) 12Na to 12Nc may be simply referred to as current collectors) so as to overlap each other with a gap between them, even if the thickness of the positive electrode 11P and the negative electrode 11N is increased overall, the positive electrode 11P and the negative electrode Since the electrolyte solution can be circulated through the gaps between the electrode plates constituting 11N, the contact area between the active material contained in the electrode plate and the electrolyte solution is increased, and the contribution ratio to charge / discharge of the active material is improved. Capacity can be improved. It should be noted that the size of the gap (distance between the electrode plates) interposed between the electrode plates is not particularly limited as long as the electrolyte solution can be circulated.

電極板は、たとえば塗布電極の場合、次のようにして作製すればよい。たとえば、活物質を80質量%、導電助剤としてアセチレンブラックを10質量%および結着剤としてポリフッ化ビニリデンを10質量%に、さらに溶媒として15質量%のNMP(N−メチルピロリドン)を添加してスラリーを作製する。作製したスラリーを、ドクターブレード法などの周知のシート成形法により、たとえば集電体となる金属箔上に塗布し溶剤を乾燥することで、活物質と導電助剤と結着剤とを含む電極板を作製できる。なお、金属箔上にスラリーを塗布・乾燥する工程を複数回繰り返してもよい。   For example, in the case of a coated electrode, the electrode plate may be produced as follows. For example, 80% by mass of an active material, 10% by mass of acetylene black as a conductive assistant, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent are added. To make a slurry. An electrode containing an active material, a conductive additive, and a binder by applying the prepared slurry to a metal foil serving as a current collector by a known sheet forming method such as a doctor blade method and drying the solvent. A plate can be produced. In addition, you may repeat the process of apply | coating and drying a slurry on metal foil in multiple times.

集電体の材料は、正極側については、正極の電位において溶解などの反応が発生しない耐食性を有する材料を用いればよい。このような材料としては、たとえば、ニッケル、アルミニウム、タンタル、ニオブ、チタン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。その中でもニッケル、アルミニウム、チタン、金、白金は耐食性に優れ、容易に入手できるため好ましい。特にアルミニウムは、表面に酸化被膜を形成して不動態化し、高い電位においても耐食性に優れる点から好ましい。   As the material of the current collector, a material having corrosion resistance that does not cause a reaction such as dissolution at the potential of the positive electrode may be used on the positive electrode side. Examples of such materials include metal materials and alloys including nickel, aluminum, tantalum, niobium, titanium, gold, platinum, etc., carbonaceous materials such as graphite, hard carbon, glassy carbon, ITO glass, tin oxide, etc. Inorganic conductive oxide materials can be used. Among these, nickel, aluminum, titanium, gold, and platinum are preferable because they have excellent corrosion resistance and can be easily obtained. Aluminum is particularly preferable because it is passivated by forming an oxide film on the surface and excellent in corrosion resistance even at a high potential.

負極側については、負極の電位においてLiやNaなどアルカリ金属との合金化などの副反応が発生しない材料を用いればよい。このような材料としては、たとえば、銅、ニッケル、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。特に、導電性が高く比較的安価な点から、アルミニウムまたはニッケルを用いることが好ましい。特にアルミニウムは、銅やニッケルと同様に導電性が高く比較的安価であり、Liに対しては合金を形成するため使用できないが、Naに対しては不活性であるため、正極および負極のいずれにも集電体として用いることが可能である。   For the negative electrode side, a material that does not cause side reactions such as alloying with an alkali metal such as Li or Na at the potential of the negative electrode may be used. Examples of such materials include metal materials and alloys including copper, nickel, brass, zinc, aluminum, stainless steel, tungsten, gold, platinum, carbonaceous materials such as graphite, hard carbon, and glassy carbon, ITO glass. An inorganic conductive oxide material such as tin oxide can be used. In particular, it is preferable to use aluminum or nickel from the viewpoint of high conductivity and relatively low cost. Aluminum, in particular, has high conductivity and is relatively inexpensive like copper and nickel, and cannot be used because it forms an alloy with Li, but is inactive with Na. Also, it can be used as a current collector.

これらの金属材料からなる箔やメッシュ、エキスパンドメタルなどを集電体として用いてもよいし、金属材料、炭素質材料またはITOガラスや酸化すずなどの無機導電性酸化物材料などをフィラーとした導電性インクなどを電極表面に塗布し、乾燥させたものを用いてもよい。また、白金やアルミニウム、チタンなどの金属を電極表面に蒸着したものであってもよいが、本実施形態においては、集電体として、貫通孔を有する金属箔(たとえばパンチングメタルなど)またはメッシュ状の金属を用いることが好ましい。   A foil, mesh, or expanded metal made of these metal materials may be used as a current collector, or a conductive material using a metal material, a carbonaceous material, or an inorganic conductive oxide material such as ITO glass or tin oxide as a filler. Alternatively, a conductive ink or the like applied to the electrode surface and dried may be used. Moreover, although metal, such as platinum, aluminum, and titanium, may be vapor-deposited on the electrode surface, in the present embodiment, a metal foil (for example, punching metal) having a through hole or a mesh shape is used as a current collector. It is preferable to use these metals.

通常、塗布膜などからなる電極板は、その体積の40〜50%の電解液を含有しており、電気伝導を担うイオン(以下、単にイオンという場合もある)が電極板内部を通過することが可能であるが、電極板が塗布されている集電体が金属箔であった場合、電気伝導を担うイオンは集電体内部を通過することはできず、イオンの流通経路は集電体の外周のみとなる。一方、集電体として貫通孔を有する金属箔やメッシュ状の金属を用いた場合、集電体の貫通孔やメッシュ開口部を介して電極板に電解液を流通させることができるとともに、電極板と電解液の接触面積が増大し、さらに容量を向上させることができる。   Usually, an electrode plate made of a coating film or the like contains an electrolyte solution of 40 to 50% of its volume, and ions responsible for electrical conduction (hereinafter sometimes simply referred to as ions) pass through the inside of the electrode plate. However, if the current collector on which the electrode plate is applied is a metal foil, ions that conduct electricity cannot pass through the current collector, and the ion flow path is the current collector. It becomes only the outer periphery. On the other hand, when a metal foil having a through-hole or a mesh-like metal is used as the current collector, the electrolyte solution can be circulated through the electrode plate through the through-hole or mesh opening of the current collector. And the contact area between the electrolyte solution and the capacity can be further improved.

さらに、セパレータ13近傍に配置された電極板11Pc、11Ncの集電体である12Pc、12Ncの貫通孔の大きさまたはメッシュ粗さを、セパレータ13から遠い側に配置された電極板11Pa、11Naの集電体である12Pa、12Naの貫通孔の大きさまたはメッシュ粗さよりも大きくすることが好ましい。   Further, the size or mesh roughness of the through holes of 12Pc and 12Nc, which are current collectors of the electrode plates 11Pc and 11Nc arranged in the vicinity of the separator 13, is set to be equal to that of the electrode plates 11Pa and 11Na arranged on the side far from the separator 13. It is preferable to make it larger than the size or the mesh roughness of the through holes of 12Pa and 12Na that are current collectors.

電気伝導を担うイオンは、二次電池の充放電の際にセパレータ13を介して正極側と負極側とを移動するが、セパレータ13近傍ではイオン濃度が高く、セパレータ13から離れるほどイオン濃度が低いため、電極板とセパレータ13との距離が大きいほど電極板の充放電効率は低下する。   Ions responsible for electrical conduction move between the positive electrode side and the negative electrode side via the separator 13 during charging / discharging of the secondary battery, but the ion concentration is high in the vicinity of the separator 13, and the ion concentration decreases as the distance from the separator 13 increases. Therefore, the charge / discharge efficiency of the electrode plate decreases as the distance between the electrode plate and the separator 13 increases.

セパレータ13近傍に位置する電極板11Pc、11Ncの集電体の貫通孔の大きさまたはメッシュ粗さを大きくすることで、イオン濃度の高いセパレータ13近傍から、イオン濃度の低いセパレータ13から離れた方へのイオンの移動が容易になり、セパレータ13から離れた電極板11Pa、11Naの活物質の活用率を向上することができ、容量が向上する。   The one away from the separator 13 with a low ion concentration from the vicinity of the separator 13 with a high ion concentration by increasing the size of the through-hole or the mesh roughness of the current collector of the electrode plates 11Pc and 11Nc located in the vicinity of the separator 13 The ions can easily move to the electrode plate, the utilization rate of the active materials of the electrode plates 11Pa and 11Na separated from the separator 13 can be improved, and the capacity is improved.

このように、セパレータ13近傍のイオンがセパレータ13から離れた方へ移動することを容易にする効果は、セパレータ13近傍に配置された電極板11Pc、11Ncの空孔率を、セパレータ13から遠い側に配置された電極板11Pa、11Naの空孔率よりも大きくすることでも得られる。   Thus, the effect of facilitating the movement of ions in the vicinity of the separator 13 away from the separator 13 is that the porosity of the electrode plates 11Pc and 11Nc arranged in the vicinity of the separator 13 It can also be obtained by making it larger than the porosity of the electrode plates 11Pa and 11Na arranged on the surface.

なお、集電体として金属箔またはメッシュ状の金属を用いる場合、その厚みは10〜300μmとすることが好ましい。また、金属箔を使用する場合は、電極との接着力向上のために、金属箔の表面を粗面化処理したものを用いてもよい。   In addition, when using metal foil or a mesh-shaped metal as a collector, it is preferable that the thickness shall be 10-300 micrometers. Moreover, when using metal foil, you may use what roughened the surface of metal foil in order to improve the adhesive force with an electrode.

また、集電体12Pa〜12Pc、12Na〜12Ncはそれぞれ電極板11Pa〜11Pc、11Na〜11Ncに埋設されてもよい。   Further, the current collectors 12Pa to 12Pc and 12Na to 12Nc may be embedded in the electrode plates 11Pa to 11Pc and 11Na to 11Nc, respectively.

正極11Pに用いる活物質としては、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどや、ナトリウムコバルト複合酸化物、ナトリウムマンガン複合酸化物、二酸化マンガン、ナトリウムニッケル複合酸化物、ナトリウムニッケル鉄複合酸化物、ナトリウム鉄複合酸化物、ナトリウムクロム複合酸化物などが挙げられる。   Examples of the active material used for the positive electrode 11P include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, and vanadium oxide. Examples thereof include sodium cobalt composite oxide, sodium manganese composite oxide, manganese dioxide, sodium nickel composite oxide, sodium nickel iron composite oxide, sodium iron composite oxide, and sodium chromium composite oxide.

負極11Nに用いる活物質は、電解液14に水系のものを用いるか非水系のものを用いるかにより異なる。水系の電解液を用いる場合には、活性炭やNaTi(POなどを用いることができ、非水系の電解液を用いる場合には、水系の電解液で使用可能な活物質以外に、SN−Sbコンポジットガラスなどのガラス材料や、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料、金属Li、金属Na、およびLiやNaを挿入脱離可能な合金、酸化チタン、酸化ニオブ、リチウムチタン複合酸化物、ナトリウムチタン複合酸化物などの酸化物材料を用いることができる。 The active material used for the negative electrode 11N differs depending on whether an aqueous or non-aqueous electrolyte solution 14 is used. When using an aqueous electrolyte, activated carbon or NaTi 2 (PO 4 ) 3 can be used. When using a non-aqueous electrolyte, in addition to an active material that can be used with an aqueous electrolyte, Glass materials such as SN-Sb composite glass, carbon materials such as graphite, hard carbon, and soft carbon, metal Li, metal Na, and alloys capable of inserting and removing Li and Na, titanium oxide, niobium oxide, lithium titanium composite An oxide material such as an oxide or a sodium titanium composite oxide can be used.

導電助剤は、アセチレンブラックの代わりにケッチェンブラックやカーボンナノチューブ、黒鉛、ハードカーボンなどの炭素材料、金属(アルミニウム、金、白金など)の粉末、無機導電性酸化物(酸化インジウムスズ(ITO)ガラス、酸化スズなど)など、使用電圧範囲において化学的に安定で導電性を示すものであればその材料はいずれでも良い。   Conductive aids include ketjen black, carbon nanotubes, carbon materials such as graphite and hard carbon instead of acetylene black, powders of metals (aluminum, gold, platinum, etc.), inorganic conductive oxides (indium tin oxide (ITO)) Any material may be used as long as it is chemically stable and conductive in the operating voltage range, such as glass and tin oxide.

結着材は、ポリフッ化ビニリデン以外にも、たとえばポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PAA)ポリイミド樹脂(PI)、ポリアミド樹脂、ポリアミドイミド樹脂、フッ素系ゴムなど、使用する電位領域で分解しない、用途に適したものを選んで使用できる。   In addition to polyvinylidene fluoride, for example, polytetrafluoroethylene (PTFE), carboxymethylcellulose (CMC), styrene butadiene rubber (SBR), polyacrylic acid (PAA) polyimide resin (PI), polyamide resin, polyamide It is possible to select and use an imide resin, a fluorine rubber, or the like that does not decompose in the potential region to be used and is suitable for the application.

活物質、導電助材および結着材の構成比率は、重量比でそれぞれ、50〜95%、3〜40%、2〜10%の範囲で適宜調整すればよい。   What is necessary is just to adjust suitably the structure ratio of an active material, a conductive support material, and a binder in the range of 50 to 95%, 3 to 40%, and 2 to 10% by weight ratio, respectively.

なお、電極板を、基材フィルム上にシート状に成形したものや圧粉体のように、電極板単独で作製した場合は、作製した電極板を集電体と電気的に接続する必要がある。電極板と集電体との接合方法としては、電極板と集電体とを圧着する方法、導電性の接着剤を用いて接合する方法、電極板表面に蒸着やCVD、メッキなどの方法により集電体を形成する方法など、周知の方法から適切なものを選べばよい。また、金属箔上に形成した塗布電極の上に、単独で作製した電極板を重ね合わせ、圧着などの方法により接合してもよい。   In addition, when the electrode plate is produced by itself, such as a sheet formed on a base film or a green compact, it is necessary to electrically connect the produced electrode plate to a current collector. is there. As a method of joining the electrode plate and the current collector, a method of pressure bonding the electrode plate and the current collector, a method of joining using a conductive adhesive, a method such as vapor deposition, CVD, or plating on the surface of the electrode plate An appropriate method may be selected from known methods such as a method of forming a current collector. Alternatively, a single electrode plate may be superimposed on the coated electrode formed on the metal foil, and bonded by a method such as pressure bonding.

また、電極板中における活物質の粒子の平均粒径は、これを用いる二次電池の電圧範囲や温度などの使用条件に応じて、たとえば0.1〜50μmの範囲から適正な範囲を選ん
で調整すればよい。
The average particle diameter of the active material particles in the electrode plate is selected from a range of 0.1 to 50 μm, for example, in accordance with the use conditions such as the voltage range and temperature of the secondary battery using the active battery. Adjust it.

なお、電極板中における活物質の粒子の平均粒径の制御は、塗布電極や圧粉体により電極板を形成する場合には活物質粉末の粒度調整により行うことができる。電極板中における活物質の粒子の平均粒径は、たとえば電極板の断面において、走査型電子顕微鏡(SEM)と波長分散型X線分析(WDS)により活物質の粒子を判別し、撮影した写真を画像解析して算出するなどして求めることができる。   The average particle size of the active material particles in the electrode plate can be controlled by adjusting the particle size of the active material powder when the electrode plate is formed by a coated electrode or a green compact. The average particle diameter of the active material particles in the electrode plate is, for example, a photograph taken by distinguishing the active material particles by a scanning electron microscope (SEM) and wavelength dispersive X-ray analysis (WDS) in the cross section of the electrode plate Can be obtained by image analysis.

電解液14は、水系電解液、非水系電解液のどちらでも使用できる。特に、水系電解液はイオン伝導度が大きく、本発明の電極構造を有する二次電池の電解液14として望ましい。   The electrolytic solution 14 can be either an aqueous electrolytic solution or a non-aqueous electrolytic solution. In particular, the aqueous electrolyte has a high ionic conductivity and is desirable as the electrolyte 14 of the secondary battery having the electrode structure of the present invention.

水系電解液としては、たとえば0.1〜10.0mol/Lの硫酸リチウムや硝酸リチ
ウム、水酸化リチウム、塩化リチウム、硫酸ナトリウム、硝酸ナトリウム、水酸化ナトリウム、塩化ナトリウムなどの水溶液を用いることができる。
As the aqueous electrolyte, for example, an aqueous solution of 0.1 to 10.0 mol / L lithium sulfate, lithium nitrate, lithium hydroxide, lithium chloride, sodium sulfate, sodium nitrate, sodium hydroxide, sodium chloride, or the like can be used. .

非水系電解液は、有機溶媒と電解質塩によって構成され、必要に応じて電極表面への被膜形成、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、たとえばLiBF4,LiPF6,LiClO4,LiCF3SO3,LiAsF6,LiN(CF3SO2)2,LiN(C2F5SO2)等のリチウム塩や、過塩素酸ナトリウム(NaClO)、四フッ化ホウ酸ナトリウム(NaBF)、六フッ化リン酸ナトリウム(NaPF)、NaN(FSO、NaN(CFSO、NaN(CSO等のナトリウム塩が挙げられ、0.1〜10.0mol/Lの濃度で用いること
ができる。なお、これらの電解質塩のうち、NaN(SOF)、NaN(CFSOおよびNaN(CSOは、他のアルカリ金属塩と混合して一定温度以上の環境で使用することで、溶融塩としても用いることができる。
The non-aqueous electrolyte is composed of an organic solvent and an electrolyte salt, and an additive for the purpose of forming a film on the electrode surface, preventing overcharge, imparting flame retardancy, or the like may be added as necessary. As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are preferably used. Examples of such materials include ethylene carbonate (EC), propylene carbonate, butylene carbonate, and γ-butyrolactone. , Sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, or a mixture of two or more thereof. It is done. As the electrolyte salt, for example LiBF4, LiPF6, LiClO4, LiCF3SO3, LiAsF6, LiN (CF3SO2) 2, or lithium salts such as LiN (C2F5SO2), sodium perchlorate (NaClO 4), tetrafluoride sodium borate (NaBF 4 ), Sodium hexafluorophosphate (NaPF 6 ), NaN (FSO 2 ) 2 , NaN (CF 3 SO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 and the like, and sodium salts such as 0.1 It can be used at a concentration of ˜10.0 mol / L. Of these electrolyte salts, NaN (SO 2 F) 2 , NaN (CF 3 SO 2 ) 2, and NaN (C 2 F 5 SO 2 ) 2 are mixed with other alkali metal salts to a certain temperature or higher. It can be used as a molten salt.

水系電解液や非水系電解液を含浸させるセパレータ13には、イオンを通し、かつ正負極のショートを防止することが求められる。具体的には、ポリオレフィン繊維性の不織布やポリオレフィン製の微多孔膜、ガラスフィルター、セラミックの多孔質材料などを用いることができる。ここで、ポリオレフィンとしてはポリエチレン、ポリプロピレンを挙げることができ、一般的にリチウムイオン電池などの二次電池に用いられるセパレータが適用可能である。   The separator 13 impregnated with the aqueous electrolyte solution or the non-aqueous electrolyte solution is required to pass ions and prevent a short circuit between the positive and negative electrodes. Specifically, a polyolefin fibrous nonwoven fabric, a polyolefin microporous film, a glass filter, a ceramic porous material, or the like can be used. Here, examples of the polyolefin include polyethylene and polypropylene, and a separator generally used for a secondary battery such as a lithium ion battery is applicable.

本実施形態では、図1において、正極11Pおよび負極11Nがいずれも3つの電極板から構成されている例を示したが、電極板の数については、正極11Pおよび負極11Nのいずれか一方が複数の電極板を有するものであれば、特に限定されるものではない。換言すれば、正極11Pおよび負極11Nのいずれか一方が複数の電極板を有していれば、他方は単一の電極板であっても構わない。   In the present embodiment, FIG. 1 shows an example in which each of the positive electrode 11P and the negative electrode 11N is composed of three electrode plates. However, as for the number of electrode plates, one of the positive electrode 11P and the negative electrode 11N is plural. As long as it has the electrode plate, there is no particular limitation. In other words, as long as one of the positive electrode 11P and the negative electrode 11N has a plurality of electrode plates, the other may be a single electrode plate.

(実施の形態の第2の例)
本発明の二次電池の実施の形態の第2の例は、上述した実施の形態の第1の例と同様、図2に示すように、正極21Pが3つの電極板21Pa、21Pbおよび21Pcから構成され、負極21Nが、3つの電極板21Na、21Nb、21Ncから構成されており
、これらがセパレータ23、電解液24とともにケース25に収納されている。
(Second example of embodiment)
As in the first example of the above-described embodiment, the second example of the embodiment of the secondary battery according to the present invention includes a positive electrode 21P having three electrode plates 21Pa, 21Pb, and 21Pc as shown in FIG. The negative electrode 21N is composed of three electrode plates 21Na, 21Nb, and 21Nc, which are housed in a case 25 together with the separator 23 and the electrolytic solution 24.

他の構成である集電体22Pa〜22Pc、22Na〜22Nc、集電体接合部26P、26N、外部端子28P、28Nとの接続構造等についても、前述の実施の形態と同様なので説明を省略する。   The other structures of the current collectors 22Pa to 22Pc, 22Na to 22Nc, the current collector junctions 26P and 26N, and the connection structure with the external terminals 28P and 28N are the same as those in the above-described embodiment, and thus the description thereof is omitted. .

本実施形態においては、さらに、各電極板の図2の上下方向における長さを、セパレータ23から遠い側に位置する電極板22Pa、22Naから、セパレータ23近傍に位置する電極板22Pc、22Ncにかけて順次短くなるように設定することにより、セパレータ23近傍に位置する電極板の主面の面積が、セパレータ23から遠い側に位置する電極板の主面の面積よりも小さくなっている。このように、イオン濃度の高いセパレータ23近傍に位置する電極板の面積を小さくすることで、イオン濃度の低いセパレータ23から離れた方へのイオンの移動が容易になり、セパレータ23から離れた電極板の活物質の活用率がより向上して、さらに容量が向上する。また、イオン濃度の低いセパレータ23から離れた側に位置する電極板の面積を大きくし、電極板と電解液24との接触面積を増やすことになり、セパレータ23から離れた電極板の活物質の活用率がより向上する。   In the present embodiment, the length of each electrode plate in the vertical direction in FIG. 2 is sequentially increased from the electrode plates 22Pa and 22Na located on the side far from the separator 23 to the electrode plates 22Pc and 22Nc located in the vicinity of the separator 23. By setting the length to be shorter, the area of the main surface of the electrode plate located near the separator 23 is smaller than the area of the main surface of the electrode plate located farther from the separator 23. In this way, by reducing the area of the electrode plate located in the vicinity of the separator 23 having a high ion concentration, ions can be easily moved away from the separator 23 having a low ion concentration. The utilization rate of the active material of the board is further improved, and the capacity is further improved. In addition, the area of the electrode plate located on the side away from the separator 23 having a low ion concentration is increased, and the contact area between the electrode plate and the electrolyte solution 24 is increased. Utilization rate is further improved.

(実施の形態の第3の例)
本発明の二次電池の実施の形態の第3の例は、上述した実施の形態の第1および第2の例と同様、図3に示すように、正極31Pが3つの電極板31Pa、31Pbおよび31Pcから構成され、負極31Nが、3つの電極板31Na、31Nb、31Ncから構成され、これらがセパレータ33、電解液34とともにケース35に収納されている。
(Third example of embodiment)
As in the first and second examples of the above-described embodiment, the third example of the embodiment of the secondary battery according to the present invention includes three electrode plates 31Pa and 31Pb as shown in FIG. The negative electrode 31N is composed of three electrode plates 31Na, 31Nb, and 31Nc, and these are housed in a case 35 together with the separator 33 and the electrolyte solution 34.

他の構成である集電体32Pa〜32Pc、32Na〜32Nc、集電体接合部36P、36N、外部端子38P、38Nとの接続構造等についても、前述の実施の形態と同様なので説明を省略する。   The other structures of the current collectors 32Pa to 32Pc, 32Na to 32Nc, current collector junctions 36P and 36N, and the connection structure with the external terminals 38P and 38N are also the same as those in the above-described embodiment, and thus the description thereof is omitted. .

本実施形態においては、さらに、セパレータ33近傍に位置する電極板31Pc、31Pb、31Ncおよび31Nbを、それぞれ複数の小電極板(31Pb’、31Nb’等)が同一平面上に互いに間隙39Pc、39Pb、39Ncおよび39Nbを有するように配置されたものとしている。このように、ひとつの電極板を複数の小電極板に分割し、小電極板同士の間に間隙を設けることにより、電極板の一方の主面と他方の主面との間でイオンの移動が容易になり、このような電極板がよりセパレータ33近傍に位置することにより、セパレータ33から遠い方へのイオンの移動が容易になり、セパレータ33から遠い方に位置する電極板の活物質の活用率が向上して、容量が向上する。   In the present embodiment, the electrode plates 31Pc, 31Pb, 31Nc and 31Nb positioned in the vicinity of the separator 33 are further divided into a plurality of small electrode plates (31Pb ′, 31Nb ′, etc.) on the same plane with the gaps 39Pc, 39Pb, It is assumed that they are arranged to have 39Nc and 39Nb. In this way, by dividing one electrode plate into a plurality of small electrode plates and providing a gap between the small electrode plates, ions move between one main surface and the other main surface of the electrode plate. Since such an electrode plate is located closer to the separator 33, the movement of ions further away from the separator 33 is facilitated, and the active material of the electrode plate located farther from the separator 33 can be reduced. The utilization rate is improved and the capacity is improved.

さらに、電極板31Pbと31Pcや、電極板31Nbと31Ncのように、互いに隣接する電極板がいずれも複数の小電極板から構成されている場合、例えば電極板31Pbの小電極板同士の間隙39Pbと、31Pcの小電極板同士の間隙39Pcとを、互いに対向しない位置に配置することが望ましい。このように間隙の位置をずらすことで、セパレータから遠い方に位置する電極板へのイオンの移動がより容易になるという効果がある。   Further, when the electrode plates adjacent to each other, such as the electrode plates 31Pb and 31Pc and the electrode plates 31Nb and 31Nc, are composed of a plurality of small electrode plates, for example, the gap 39Pb between the small electrode plates of the electrode plate 31Pb And the gap 39Pc between the 31Pc small electrode plates are preferably arranged at positions that do not face each other. By shifting the position of the gap in this way, there is an effect that the movement of ions to the electrode plate located farther from the separator becomes easier.

(実施の形態の第4の例)
本発明の二次電池の実施の形態の第4の例は、図4に示すように、正極41Pが5つの電極板41Pa、41Pb、41Pc、41Pdおよび41Peから構成され、負極41Nが、5つの電極板41Na、41Nb、41Nc、41Ndおよび41Neから構成されており、これらがセパレータ43、電解液44とともにケース45に収納されている。
(Fourth example of embodiment)
In the fourth example of the embodiment of the secondary battery of the present invention, as shown in FIG. 4, the positive electrode 41P is composed of five electrode plates 41Pa, 41Pb, 41Pc, 41Pd and 41Pe, and the negative electrode 41N is composed of five The electrode plates 41Na, 41Nb, 41Nc, 41Nd, and 41Ne are housed in a case 45 together with the separator 43 and the electrolytic solution 44.

他の構成である集電体42Pa〜42Pe、42Na〜42Ne、集電体接合部46P
46N、外部端子48P、48Nとの接続構造等についても、前述の実施の形態と同様なので説明を省略する。
Other configurations of current collectors 42Pa to 42Pe, 42Na to 42Ne, current collector junction 46P
The connection structure etc. with 46N and external terminals 48P and 48N are also the same as those in the above-described embodiment, and the description thereof will be omitted.

本実施形態においては、さらに、正極41P側の電極板41Pa〜41Peの主面と、セパレータ43の中心面43C(正極41Pと負極41Nから等距離にある中心面)とのなす角θが45°となっている。また、負極41N側の電極板41Na〜41Neの主面も同様に、セパレータ43の中心面43Cと45°の角度をなすとともに、正極41P側の電極板41Pa〜41Peの主面とは90°の角度をなしている。このように、複数の電極板を、電極板の主面とセパレータ43の中心面43Cとのなす角θが5〜90°となるように配置することにより、セパレータ43近傍とセパレータ43から遠い側とのイオンの移動がより容易になり、セパレータ43から遠くに位置する電極板の活物質の活用率が向上して、容量が向上する。   In the present embodiment, the angle θ formed between the main surface of the electrode plates 41Pa to 41Pe on the positive electrode 41P side and the central surface 43C of the separator 43 (the central surface equidistant from the positive electrode 41P and the negative electrode 41N) is 45 °. It has become. Similarly, the main surfaces of the electrode plates 41Na to 41Ne on the negative electrode 41N side form an angle of 45 ° with the central surface 43C of the separator 43, and 90 ° to the main surfaces of the electrode plates 41Pa to 41Pe on the positive electrode 41P side. It makes an angle. Thus, by arranging the plurality of electrode plates so that the angle θ formed by the main surface of the electrode plate and the center surface 43C of the separator 43 is 5 to 90 °, the vicinity of the separator 43 and the side far from the separator 43 The ions move more easily, the utilization of the active material of the electrode plate located far from the separator 43 is improved, and the capacity is improved.

なお、電極板の主面とセパレータの中心面とがなす角θは、直接角度を測定して確認してもよいし、電極板の主面とセパレータの中心面との距離を少なくとも2点測定し、その差分とセパレータまたは電極板における2点間の長さから算出してもよい。   The angle θ formed between the main surface of the electrode plate and the central surface of the separator may be confirmed by directly measuring the angle, or the distance between the main surface of the electrode plate and the central surface of the separator is measured at least two points. Then, the difference may be calculated from the length between two points on the separator or the electrode plate.

以下、本発明の二次電池について、実施例に基づき詳細に説明する。正極は、正極活物質であるマンガン酸ナトリウム(Na0.66MnO)粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリーを作製し、正極側集電体となるNiメッシュ(#80、厚さ200μm)の上にドクターブレード法により塗布し、溶媒を乾燥させ、更にその上に別途作成した圧粉体を重ね合わせて圧着し、必要な形状に切り出して電極板を作製した。電極板の厚さは、塗布条件および圧粉体の厚さや重ね合わせる枚数により調整した。 Hereinafter, the secondary battery of this invention is demonstrated in detail based on an Example. The positive electrode is 80% by mass of sodium manganate (Na 0.66 MnO 2 ) powder as a positive electrode active material, 10% by mass of acetylene black as a conductive additive, 10% by mass of polyvinylidene fluoride as a binder, and NMP ( N-methylpyrrolidone) is mixed to prepare a slurry, applied onto a Ni mesh (# 80, thickness 200 μm) serving as a positive electrode current collector by a doctor blade method, the solvent is dried, A separately prepared green compact was stacked thereon and pressure-bonded, and cut into a required shape to prepare an electrode plate. The thickness of the electrode plate was adjusted according to the coating conditions, the thickness of the green compact, and the number of sheets to be stacked.

作製した電極板を用いて、それぞれ構造の異なる5種類の正極(A〜E)を作製した。   Five types of positive electrodes (A to E) having different structures were produced using the produced electrode plates.

構造Aは、長さ50mm、幅25mmの単板の電極とした。電極の正極活物質量の含有量は、電極板の厚さの変更により調整した。   The structure A was a single plate electrode having a length of 50 mm and a width of 25 mm. The content of the positive electrode active material amount of the electrode was adjusted by changing the thickness of the electrode plate.

構造Bは、実施形態の第1の例に対応し、長さ50mm、幅25mm、厚さ0.5mmの電極板を複数配置したものである。電極の正極活物質量の含有量は、電極板の数により調整した。   The structure B corresponds to the first example of the embodiment, and includes a plurality of electrode plates having a length of 50 mm, a width of 25 mm, and a thickness of 0.5 mm. The content of the positive electrode active material amount of the electrode was adjusted by the number of electrode plates.

構造Cは、実施形態の第2の例に対応し、厚さが0.5mmで、幅が等しく長さが異なる3種類の電極板により構成され、電極板の長さが短いものほど、よりセパレータ近傍となるように配置したものである。   The structure C corresponds to the second example of the embodiment, and is configured by three types of electrode plates having a thickness of 0.5 mm, the same width and different lengths, and the shorter the length of the electrode plate, the more It arrange | positions so that it may become the separator vicinity.

構造Dは、実施形態の第3の例に対応し、単板の電極板と複数の小電極板からなる電極板とから構成され、セパレータから最も遠い側に単板の電極板を配置したものである。単板の電極板および複数の小電極板からなる電極板は、いずれも長さ50mm、厚さ0.5mmとし、小電極板は、長さ5mm、厚さ0.5mmで幅が電極板の幅と等しく、隣接する小電極板間の間隙は長さ方向に5mmとした。なお、小電極板のうち電極板の外縁に位置する(図3に図示した小電極板からなる電極板の最上部と最下部に位置する小電極板に相当する)小電極板は、長さ2.5mmとした。   Structure D corresponds to the third example of the embodiment, and is composed of a single plate electrode plate and an electrode plate composed of a plurality of small electrode plates, and the single plate electrode plate is disposed on the side farthest from the separator. It is. A single electrode plate and an electrode plate composed of a plurality of small electrode plates are both 50 mm long and 0.5 mm thick. The small electrode plate is 5 mm long and 0.5 mm thick and has a width of the electrode plate. It is equal to the width, and the gap between adjacent small electrode plates is 5 mm in the length direction. The small electrode plate located on the outer edge of the small electrode plate (corresponding to the small electrode plate located at the top and bottom of the electrode plate composed of the small electrode plates shown in FIG. 3) has a length of 2.5 mm.

構造Eは、実施形態の第4の例に対応し、正極活物質を1g含有する長さ25mm、幅50mm、厚さ0.5mmの複数の電極板を、各電極板の主面とセパレータの中心面との
なす角が45°となるように配置したものである。
The structure E corresponds to the fourth example of the embodiment, and includes a plurality of electrode plates each having a length of 25 mm, a width of 50 mm, and a thickness of 0.5 mm each containing 1 g of a positive electrode active material. The angle formed with the center plane is 45 °.

各電極構造の詳細を表1に示す。なお、いずれの構造においても、長さは対応する断面図の上下方向の長さ、幅は対応する断面図の面に垂直な方向の長さとし、複数の電極板を用いる場合の電極板間の間隙は0.5mmとした。   Details of each electrode structure are shown in Table 1. In any structure, the length is the length in the vertical direction of the corresponding cross-sectional view, the width is the length in the direction perpendicular to the plane of the corresponding cross-sectional view, and between the electrode plates when using a plurality of electrode plates The gap was 0.5 mm.

Figure 2014107210
Figure 2014107210

負極は、負極活物質である活性炭粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリーを作製した。このスラリーを、負極側集電層となるNiメッシュ(粗さ#80、厚さ200μm)の上にドクターブレード法により塗布し、溶媒を乾燥させ、更にその上に別途作成した圧粉体を重ね合わせ圧着することにより、上述した形状の正極の電極板に対して厚さのみが2倍となる負極の電極板を作製した。   The negative electrode is a mixture of 80% by mass of activated carbon powder as a negative electrode active material, 10% by mass of acetylene black as a conductive additive, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent. Thus, a slurry was prepared. This slurry is applied by a doctor blade method onto a Ni mesh (roughness # 80, thickness 200 μm) serving as a negative electrode side current collecting layer, the solvent is dried, and a green compact prepared separately is stacked thereon. By bonding and pressing, a negative electrode plate having a thickness only twice that of the positive electrode plate having the above-described shape was produced.

作製した正極とそれに対応する負極を用いて、表2に示すような構成の電池評価セルを作製し、電池特性を評価した。   Using the produced positive electrode and the corresponding negative electrode, a battery evaluation cell having a structure as shown in Table 2 was produced, and the battery characteristics were evaluated.

セパレータとしては、ガラス濾紙を用いた。水系電解液としては、濃度1mol/Lの硫酸ナトリウム水溶液を用いた。有機電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の比率を、体積比にしてEC:DEC=3:7とした混合溶媒に、1mol/LのNATSFIを溶解したものを用いた。   Glass filter paper was used as the separator. As the aqueous electrolyte, an aqueous sodium sulfate solution having a concentration of 1 mol / L was used. As the organic electrolyte, a solution obtained by dissolving 1 mol / L of NATSFI in a mixed solvent in which the ratio of ethylene carbonate (EC) and diethyl carbonate (DEC) was EC: DEC = 3: 7 as a volume ratio was used. .

作製したセルの充放電特性を、以下のような条件で確認し、放電容量を測定した。放電容量の測定結果を表2に示す
充放電電圧範囲:上限1.6V、下限0.1V(水系電解液)
上限3.8V、下限0.1V(有機電解液)
充放電電流値 :0.5mA/cm(定電流充放電)
測定温度 :30℃
The charge / discharge characteristics of the fabricated cell were confirmed under the following conditions, and the discharge capacity was measured. The measurement results of the discharge capacity are shown in Table 2. Charge / discharge voltage range: 1.6 V upper limit, 0.1 V lower limit (aqueous electrolyte)
Upper limit 3.8V, lower limit 0.1V (organic electrolyte)
Charge / discharge current value: 0.5 mA / cm 2 (constant current charge / discharge)
Measurement temperature: 30 ° C

Figure 2014107210
Figure 2014107210

表2より、単板の電極のみで構成した構造Aの試料No.1、4、9に対し、複数の電極板を間隙を介して互いに重なり合うように配置した試料No.2、3、5〜8、10〜13では、正極活物質の含有量が同じでも高容量が得られることが確認された。   From Table 2, the sample No. of the structure A composed of only a single plate electrode. Sample Nos. 1, 4, and 9 are arranged such that a plurality of electrode plates are arranged to overlap each other with a gap therebetween. In 2, 3, 5-8, and 10-13, it was confirmed that a high capacity was obtained even when the content of the positive electrode active material was the same.

1P、11P、21P、31P、41P : 正極
1N、11N、21N、31N、41N : 負極
31Pb’、31Nb’ : 小電極板
2P、12P、22P、32P、42P : 正極側集電体
2N、12N、22N、32N、42N : 負極側集電体
3、13、23、33、43 : セパレータ
43C : セパレータの中心面
4、14、24、34、44 : 電解液
5、15、25、35、45 : ケース
16P、26P、36P、46P : 正極側集電体接合部
16N、26N、36N、46N : 負極側集電体接合部
8P、18P、28P、38P、48P : 正極側外部端子
8N、18N、28N、38N、48N : 負極側外部端子
39Pb、39Pc、39Nb、39Nc: 小電極板間の間隙
1P, 11P, 21P, 31P, 41P: Positive electrodes 1N, 11N, 21N, 31N, 41N: Negative electrodes 31Pb ′, 31Nb ′: Small electrode plates 2P, 12P, 22P, 32P, 42P: Positive electrode side current collectors 2N, 12N, 22N, 32N, 42N: Negative electrode side current collector 3, 13, 23, 33, 43: Separator 43C: Separator center plane 4, 14, 24, 34, 44: Electrolyte solution 5, 15, 25, 35, 45: Cases 16P, 26P, 36P, 46P: Positive current collector junctions 16N, 26N, 36N, 46N: Negative current collector junctions 8P, 18P, 28P, 38P, 48P: Positive external terminals 8N, 18N, 28N , 38N, 48N: negative external terminals 39Pb, 39Pc, 39Nb, 39Nc: gaps between small electrode plates

Claims (9)

正極、負極、セパレータおよび電解液を有し、
前記正極および前記負極のうち少なくともいずれか一方が、
それぞれ集電体を備えた複数の電極板と、該集電体を互いに電気的に接続する集電体接続部とを有するとともに、前記複数の電極板が間隙を介して互いに重なり合うように配置されたものであって、
前記間隙に前記電解液を有することを特徴とする二次電池。
Having a positive electrode, a negative electrode, a separator and an electrolyte,
At least one of the positive electrode and the negative electrode is
Each of the plurality of electrode plates each having a current collector and a current collector connection portion that electrically connects the current collectors to each other, and the plurality of electrode plates are arranged to overlap each other with a gap therebetween. And
A secondary battery comprising the electrolytic solution in the gap.
前記集電体が、貫通孔を有する金属箔またはメッシュ状の金属からなることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the current collector is made of a metal foil having a through hole or a mesh-like metal. 前記セパレータ近傍に位置する前記電極板に備えられた前記集電体のメッシュ粗さが、前記セパレータから遠い側に位置する前記電極板に備えられた前記集電体のメッシュ粗さよりも大きいことを特徴とする請求項2に記載の二次電池。   The mesh roughness of the current collector provided in the electrode plate located in the vicinity of the separator is larger than the mesh roughness of the current collector provided in the electrode plate located on the side far from the separator. The secondary battery according to claim 2, characterized in that: 前記セパレータ近傍に位置する前記電極板の空孔率が、前記セパレータから遠い側に位置する前記電極板の空孔率よりも大きいことを特徴とする請求項1乃至3のいずれかに記載の二次電池。   The porosity of the said electrode plate located in the vicinity of the said separator is larger than the porosity of the said electrode plate located in the side far from the said separator, The two of Claim 1 thru | or 3 characterized by the above-mentioned. Next battery. 前記セパレータ近傍に位置する前記電極板の主面の面積が、前記セパレータから遠い側に位置する前記電極板の主面の面積よりも小さいことを特徴とする請求項1乃至4のいずれかに記載の二次電池。   The area of the main surface of the electrode plate located in the vicinity of the separator is smaller than the area of the main surface of the electrode plate located on the side far from the separator. Secondary battery. 前記複数の電極板のうち少なくとも前記セパレータ近傍に位置する電極板が、複数の小電極板を同一平面上に互いに間隙を有するように配置したものであって、前記小電極板間の前記間隙に電解液を有する
ことを特徴とする請求項1乃至5のいずれかに記載の二次電池。
Among the plurality of electrode plates, at least an electrode plate positioned in the vicinity of the separator is a plurality of small electrode plates arranged on the same plane so as to have a gap between each other, and the gap between the small electrode plates is The secondary battery according to claim 1, comprising an electrolytic solution.
前記複数の電極板のうち、互いに隣接するとともに、いずれも複数の小電極板を同一平面上に互いに間隙を有するように配置した前記電極板において、前記小電極板間の前記間隙が互いに対向しない位置に配置されている
ことを特徴とする請求項6に記載の二次電池。
Among the plurality of electrode plates, the electrode plates are adjacent to each other, and all of the plurality of small electrode plates are arranged so as to have a gap on the same plane, and the gaps between the small electrode plates do not face each other. The secondary battery according to claim 6, wherein the secondary battery is disposed at a position.
前記複数の電極板が、該電極板の主面と前記セパレータの中心面とが5〜90°の角度をなすように配置されていることを特徴とする請求項1乃至7のいずれかに記載の二次電池。   The plurality of electrode plates are arranged such that a main surface of the electrode plates and a central surface of the separator form an angle of 5 to 90 °. Secondary battery. 前記電解液が、水系の電解液であることを特徴とする請求項1乃至8のいずれかに記載の二次電池。   The secondary battery according to claim 1, wherein the electrolytic solution is an aqueous electrolytic solution.
JP2012261177A 2012-11-29 2012-11-29 Secondary battery Expired - Fee Related JP6058987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261177A JP6058987B2 (en) 2012-11-29 2012-11-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261177A JP6058987B2 (en) 2012-11-29 2012-11-29 Secondary battery

Publications (2)

Publication Number Publication Date
JP2014107210A true JP2014107210A (en) 2014-06-09
JP6058987B2 JP6058987B2 (en) 2017-01-11

Family

ID=51028505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261177A Expired - Fee Related JP6058987B2 (en) 2012-11-29 2012-11-29 Secondary battery

Country Status (1)

Country Link
JP (1) JP6058987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083206A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Tungsten mesh and electric cell

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150844A (en) * 1974-05-24 1975-12-03
JPS5999675A (en) * 1982-11-30 1984-06-08 Shin Kobe Electric Mach Co Ltd Alkaline storage battery
JPH07240229A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Clad-type sealed lead-acid battery and its manufacturing method
JPH09283133A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Nickel electrodefor alkaline storage battery and manufacture thereof
JPH09293496A (en) * 1996-04-26 1997-11-11 Pioneer Electron Corp Laminated battery
JP2000340251A (en) * 1999-03-25 2000-12-08 Sanyo Electric Co Ltd Square battery
JP2002141101A (en) * 2000-10-31 2002-05-17 Kawasaki Heavy Ind Ltd Three-dimensional battery
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2009105063A (en) * 2001-09-19 2009-05-14 Kawasaki Heavy Ind Ltd High output three-dimensional battery
JP2010219030A (en) * 2009-02-19 2010-09-30 Semiconductor Energy Lab Co Ltd Power storage device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150844A (en) * 1974-05-24 1975-12-03
JPS5999675A (en) * 1982-11-30 1984-06-08 Shin Kobe Electric Mach Co Ltd Alkaline storage battery
JPH07240229A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Clad-type sealed lead-acid battery and its manufacturing method
JPH09283133A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Nickel electrodefor alkaline storage battery and manufacture thereof
JPH09293496A (en) * 1996-04-26 1997-11-11 Pioneer Electron Corp Laminated battery
JP2000340251A (en) * 1999-03-25 2000-12-08 Sanyo Electric Co Ltd Square battery
JP2002141101A (en) * 2000-10-31 2002-05-17 Kawasaki Heavy Ind Ltd Three-dimensional battery
JP2009105063A (en) * 2001-09-19 2009-05-14 Kawasaki Heavy Ind Ltd High output three-dimensional battery
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2010219030A (en) * 2009-02-19 2010-09-30 Semiconductor Energy Lab Co Ltd Power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083206A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Tungsten mesh and electric cell

Also Published As

Publication number Publication date
JP6058987B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US9337492B2 (en) Electrochemical element
JP5289735B2 (en) Lithium secondary battery
WO2012111613A1 (en) Electrode for use in electrochemical device and manufacturing method therefor
KR101686600B1 (en) Battery Cell Having Hole for Electrolyte Wetting
JP6911774B2 (en) Water-based electrolyte and water-based lithium-ion secondary battery
US9184435B2 (en) Electrode for electrochemical element and method for producing the same
JP5545439B2 (en) Non-aqueous electrolyte battery
US8528375B2 (en) Method for producing electrode for electrochemical element
KR20140048153A (en) Lithium/sulphur accumulator
US11276861B2 (en) Positive electrode for air battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
US20130040046A1 (en) Method for producing electrode for electrochemical element
JP6674885B2 (en) Secondary battery and method of manufacturing secondary battery
KR102144442B1 (en) Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
JP2014229556A (en) Secondary battery
JP6283288B2 (en) Flat non-aqueous secondary battery
JP6058987B2 (en) Secondary battery
JP2012022792A (en) Nonaqueous electrolytic device for accumulating electric charge
US20130004854A1 (en) Electrode for electrochemical element
JP2019212909A (en) Power storage device
US20230299353A1 (en) Lithium ion conducting material and lithium ion secondary battery
JP2023049469A (en) Positive electrode for lithium sulfur secondary battery, lithium sulfur secondary battery, and method of manufacturing positive electrode for lithium sulfur secondary battery
JP2023073048A (en) Positive electrode and lithium ion battery
KR20240009474A (en) lithium secondary battery
JP2020053374A (en) Conductive aid for negative electrode of aqueous lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6058987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees