JP2014107035A - Battery and manufacturing method therefor - Google Patents

Battery and manufacturing method therefor Download PDF

Info

Publication number
JP2014107035A
JP2014107035A JP2012256973A JP2012256973A JP2014107035A JP 2014107035 A JP2014107035 A JP 2014107035A JP 2012256973 A JP2012256973 A JP 2012256973A JP 2012256973 A JP2012256973 A JP 2012256973A JP 2014107035 A JP2014107035 A JP 2014107035A
Authority
JP
Japan
Prior art keywords
electrode plate
insulating paste
battery
negative electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256973A
Other languages
Japanese (ja)
Other versions
JP5974853B2 (en
Inventor
Masakazu Umehara
将一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012256973A priority Critical patent/JP5974853B2/en
Publication of JP2014107035A publication Critical patent/JP2014107035A/en
Application granted granted Critical
Publication of JP5974853B2 publication Critical patent/JP5974853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery, or the like, which can bring close the generation timing of shut-down different dependent on the radial location, when a wound electrode body generates heat abnormally, and can appropriately prevent the wound electrode body from generating heat furthermore to have a high temperature.SOLUTION: A battery 10 includes a wound electrode body 30 formed by winding a strip positive electrode plate 31 and a strip negative electrode plate 41 while superposing them alternately with two porous strip separators 51 composed of thermoplastic resin interposed therebetween. Each separator 51 is made thicker at a site located on the farther radial inside VA of the wound electrode body 30, and made thinner at a site located on the farther radial outside VB.

Description

本発明は、帯状の正極板と帯状の負極板とを帯状のセパレータを介して交互に重ねて捲回した捲回型電極体を備える電池、及び、この電池の製造方法に関する。   The present invention relates to a battery including a wound electrode body obtained by alternately winding a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-like separator, and a method for manufacturing the battery.

電池の電極体は、正極板と負極板とこれらの間を電気的に絶縁するセパレータとから構成される。例えば特許文献1に、このような電極体を備える電池が開示されている。
セパレータとしては、多孔質で熱可塑性樹脂からなり、所定温度以上になると溶融して自身の空孔を塞ぐものを用いる。このセパレータを用いると、過充電などによって電極体が所定温度以上に異常発熱した場合に、セパレータが溶融して自身の空孔を塞ぐことにより、セパレータを介した電池反応を速やかにシャットダウンさせて、電極体が更に高温に発熱するのを抑制できるからである。
The electrode body of the battery is composed of a positive electrode plate, a negative electrode plate, and a separator that electrically insulates them. For example, Patent Document 1 discloses a battery including such an electrode body.
As the separator, a separator made of a thermoplastic resin that is porous and melts and closes its own pores when the temperature exceeds a predetermined temperature is used. When this separator is used, when the electrode body abnormally generates heat above a predetermined temperature due to overcharge or the like, the separator melts and closes its own pores, thereby quickly shutting down the battery reaction via the separator, This is because it is possible to suppress the electrode body from generating heat to a higher temperature.

特開2000−149906号公報JP 2000-149906 A

しかしながら、電極体として、帯状の正極板と帯状の負極板とを2つの帯状のセパレータを介して交互に重ねて捲回した捲回型電極体を用いる場合には、捲回型電極体の径方向内側の部位ほど熱がこもり易いため、径方向内側の部位ほど早期に温度上昇しかつ高温に、径方向外側の部位ほど温度上昇が遅れかつ低温になる。例えば、径方向の最内側部と最外側部とで30℃の温度差が生じることがある。このため、捲回型電極体が異常発熱した場合、セパレータのうち径方向内側に位置する部位ほど、早期に所定温度以上になり溶融して空孔を塞ぐシャットダウンが生じる。一方、セパレータのうち径方向外側に位置する部位ほど、所定温度以上になるまでに相対的に時間が掛かる(径方向内側の部位よりも遅れる)。このため、セパレータが溶融して空孔を塞ぐ(シャットダウン)までに相対的に時間が掛かる(径方向内側の部位よりも遅れる)。   However, in the case of using a wound electrode body in which a strip-like positive electrode plate and a strip-like negative electrode plate are alternately wound with two strip-shaped separators wound, the diameter of the wound electrode body is used. Since heat is more likely to accumulate in the inner part in the direction, the temperature rises earlier in the radially inner part and to a higher temperature, and the temperature rise is delayed and lower in the radially outer part. For example, a temperature difference of 30 ° C. may occur between the radially innermost part and the outermost part. For this reason, when the wound electrode body abnormally heats up, the part located radially inward of the separator is heated to a predetermined temperature or higher and shuts down to close the holes. On the other hand, it takes a relatively long time to reach a predetermined temperature or higher in a portion located on the outer side in the radial direction of the separator (delayed on the inner side in the radial direction). For this reason, it takes a relatively long time for the separator to melt and close the pores (shut down) (lag behind the radially inner portion).

このように、従来の捲回型電極体を有する電池では、異常発熱した場合に、捲回型電極体の径方向内外の場所によってシャットダウンの発生タイミングが異なる場合があった。このため、シャットダウンが遅れた部位では電池反応が継続して電流が集中し、捲回型電極体が更に発熱して高温になる場合があった。   As described above, in a battery having a conventional wound electrode body, when abnormal heat is generated, the timing of occurrence of shutdown may differ depending on locations inside and outside in the radial direction of the wound electrode body. For this reason, in the part where the shutdown is delayed, the battery reaction continues and the current concentrates, and the wound electrode body may further generate heat and become high temperature.

本発明は、かかる現状に鑑みてなされたものであって、捲回型電極体が異常発熱した場合に、径方向の場所によって異なるシャットダウンの発生タイミングを近づけることができ、捲回型電極体が更に発熱して高温になるのを適切に抑制できる電池、及び、電池の製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and when the wound electrode body abnormally heats up, it is possible to approach different shutdown occurrence timings depending on the location in the radial direction. Furthermore, it aims at providing the manufacturing method of the battery which can suppress appropriately heat_generation | fever and becoming high temperature, and a battery.

上記課題を解決するための本発明の一態様は、帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備える電池であって、前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる電池である。   One aspect of the present invention for solving the above problems is a winding in which a belt-like positive electrode plate and a belt-like negative electrode plate are alternately stacked with two strips made of a porous thermoplastic resin. Each of the separators is a battery that is thicker at a portion located on the radially inner side of the wound electrode body and thinner at a portion located on the outer side in the radial direction.

この電池に係るセパレータの厚みは、捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされている。このため、捲回型電極体が異常発熱した場合、径方向内側の部位ほど早期に所定温度に達するが、セパレータのうち径方向内側に位置する部位は厚みが厚いため、セパレータが厚み方向全体にわたって溶融して空孔が塞がれ、電池反応が生じなくなる(電流が流れなくなる)までに、時間を要する。一方、捲回型電極体の径方向外側の部位ほど相対的に所定温度に達するのが遅くなるものの、セパレータのうち径方向外側に位置する部位は厚みが薄いため、セパレータが厚み方向全体にわたって溶融して空孔が塞がれ、電池反応が生じなくなる(電流が流れなくなる)までの時間が短くて済む。   The thickness of the separator according to this battery is thicker at a portion located on the radially inner side of the wound electrode body and thinner at a portion located on the radially outer side. For this reason, when the wound electrode body abnormally heats up, the temperature reaches a predetermined temperature earlier in the radially inner portion, but the separator is thicker in the radially inner portion, so that the separator extends over the entire thickness direction. It takes time to melt and block the vacancies so that no battery reaction occurs (no current flows). On the other hand, although the portion of the wound electrode body on the radially outer side reaches a predetermined temperature relatively slowly, the portion of the separator located on the radially outer side is thin, so the separator is melted over the entire thickness direction. As a result, the time until the holes are closed and the battery reaction does not occur (the current stops flowing) can be shortened.

従って、この電池では、捲回型電極体が異常発熱した場合に、径方向の場所によって異なる(径方向内側の部位と径方向外側の部位とで異なる)シャットダウンの発生タイミングを、セパレータの厚みを径方向で均一とした従来よりも近づけることができ、捲回型電極体が更に発熱して高温になるのを適切に抑制できる。   Therefore, in this battery, when the wound electrode body abnormally heats up, the timing of occurrence of shutdown, which differs depending on the location in the radial direction (differed between the radially inner portion and the radially outer portion), the thickness of the separator It can be made closer to the conventional one that is uniform in the radial direction, and it is possible to appropriately prevent the wound electrode body from further generating heat and becoming high temperature.

なお、「捲回型電極体」の形態としては、円筒状、扁平状などが挙げられる。
また、「セパレータ」は、正極板及び負極板とは独立したシート状のセパレータでもよいし、後述するように、正極板及び負極板の少なくともいずれかの主面上に塗布形成されたセパレータ層でもよい。
また、セパレータの厚みを、捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くする形態としては、セパレータの厚みをその長手方向に徐々に変化させた形態のほか、セパレータの厚みを長手方向に階段状に変化させた形態が挙げられる。
Examples of the “winding electrode body” include a cylindrical shape and a flat shape.
The “separator” may be a sheet-like separator independent of the positive electrode plate and the negative electrode plate, or may be a separator layer applied and formed on at least one main surface of the positive electrode plate and the negative electrode plate, as will be described later. Good.
Moreover, the thickness of the separator is gradually changed in the longitudinal direction as a form in which the thickness of the separator is thicker at a portion located on the radially inner side of the wound electrode body and thinner at a portion located on the radially outer side. In addition to the form, a form in which the thickness of the separator is changed stepwise in the longitudinal direction can be mentioned.

更に、上記の電池であって、前記セパレータは、それぞれ、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布形成されたセパレータ層である電池とすると良い。   Furthermore, in the battery described above, the separator may be a battery that is a separator layer formed on a main surface of an electrode plate to be applied, at least one of the positive electrode plate and the negative electrode plate.

この電池に係るセパレータは、正極板及び負極板の少なくともいずれかの主面上に塗布形成されたセパレータ層であるため、容易かつ確実に、径方向内側ほどセパレータ層が厚く、径方向外側ほどセパレータ層が薄くされた捲回型電極体を備える電池とすることができる。
なお、2つのセパレータ層の具体的な配置形態としては、例えば、正極板の両主面上にそれぞれ形成した形態、負極板の両主面上にそれぞれ形成した形態、正極板の片方の主面上と負極板の片方の主面上にそれぞれ形成した形態が挙げられる。
Since the separator according to this battery is a separator layer coated and formed on at least one of the main surfaces of the positive electrode plate and the negative electrode plate, the separator layer is thicker toward the radially inner side and is separated toward the radially outer side. It can be set as a battery provided with the wound electrode body by which the layer was made thin.
As specific arrangement forms of the two separator layers, for example, forms formed on both main surfaces of the positive electrode plate, forms formed on both main surfaces of the negative electrode plate, and one main surface of the positive electrode plate, respectively. Examples include forms formed on the top and one main surface of the negative electrode plate, respectively.

また、他の態様は、帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備え、前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる電池の製造方法であって、グラビアロールを備えるグラビア塗工装置を用いて、熱可塑性樹脂粒子を溶媒に分散させた絶縁ペーストを、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布し、絶縁ペースト層を形成する塗工工程と、前記絶縁ペースト層を乾燥させて、前記セパレータであるセパレータ層を形成する乾燥工程と、を備え、前記グラビアロールは、その外周長が、前記被塗布電極板の長手方向の寸法以上の寸法を有し、その外周表面は、少なくとも前記被塗布電極板の長手方向の寸法以上の範囲について、前記グラビアロールの周方向の一方側から他方側に進むにつれて、この外周表面に保持される前記絶縁ペーストの量が多く又は少なくなる凹凸パターンを有し、前記塗工工程は、前記グラビアロールにより、前記絶縁ペースト層の厚みが前記被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に、前記絶縁ペースト層を形成する工程である電池の製造方法である。   Another embodiment includes a wound electrode body in which a belt-like positive electrode plate and a belt-like negative electrode plate are alternately stacked and wound through two separators made of a belt-like porous thermoplastic resin, The separator is a method for manufacturing a battery, in which a portion located on the radially inner side of the wound electrode body is thicker and a portion located on the radially outer side is thinner, and includes a gravure roll. And applying an insulating paste in which thermoplastic resin particles are dispersed in a solvent on the main surface of at least one of the positive electrode plate and the negative electrode plate to form an insulating paste layer. And a drying step of drying the insulating paste layer to form a separator layer that is the separator, and the gravure roll has an outer peripheral length that is less than a longitudinal dimension of the electrode plate to be coated. The outer peripheral surface of the gravure roll is held on the outer peripheral surface as it proceeds from one side to the other side in the circumferential direction of the gravure roll at least in the range of the dimension in the longitudinal direction of the electrode plate to be coated. In the coating process, the thickness of the insulating paste layer advances from one side in the longitudinal direction of the electrode plate to be applied to the other side by the gravure roll. This is a method for manufacturing a battery, which is a step of forming the insulating paste layer in a form that becomes thicker or thinner.

この電池の製造方法で用いるグラビア塗工装置のグラビアロールは、その外周長が被塗布電極板の長手方向の寸法以上の寸法を有し、外周表面が、少なくともこの長手方向の寸法以上の範囲について、グラビアロールの周方向の一方側から他方側に進むにつれて、外周表面に保持される絶縁ペーストの量が多く又は少なくなる凹凸パターンを有する。そして、塗工工程において、このグラビアロールにより、絶縁ペースト層の厚みが被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に絶縁ペースト層を形成する。これにより、径方向内側の部位ほどセパレータ層(セパレータ)が厚く、径方向外側の部位ほどセパレータ層(セパレータ)が薄い捲回型電極体を容易かつ確実に形成できる。   The gravure roll of the gravure coating apparatus used in this battery manufacturing method has an outer peripheral length that is greater than or equal to the longitudinal dimension of the electrode plate to be coated, and the outer peripheral surface is at least greater than or equal to the longitudinal dimension. As the gravure roll advances from one side in the circumferential direction to the other side, it has a concavo-convex pattern in which the amount of insulating paste held on the outer peripheral surface increases or decreases. In the coating process, the gravure roll forms the insulating paste layer so that the thickness of the insulating paste layer becomes thicker or thinner as it goes from one side to the other side in the longitudinal direction of the coated electrode plate. Thereby, the wound electrode body can be easily and reliably formed with a thicker separator layer (separator) at a radially inner portion and a thinner separator layer (separator) at a radially outer portion.

なお、「凹凸パターン」としては、後述するように、互いに独立した多数のセルで構成される形態や、多数の凹溝で構成される形態が挙げられる。
更に、「セル」の具体的な形態としては、平面視矩形状、平面視六角形状等の平面視多角形状のほか、平面視円状、平面視楕円形状、平面視長円形状などの形態が挙げられる。
また、「凹溝」の具体的な形態としては、グラビアロールの周方向に平行に延びる凹溝、グラビアロールの周方向に対して斜めに延びる凹溝、グラビアロールの幅方向(軸線方向)に平行に延びる凹溝が挙げられる。また、これらの凹溝を組み合わせてもよい。
The “concave / convex pattern” includes, as will be described later, a form constituted by a large number of cells independent from each other and a form constituted by a large number of concave grooves.
Further, specific examples of the “cell” include a rectangular shape in plan view, a polygonal shape in plan view such as a hexagonal shape in plan view, a circular shape in plan view, an elliptical shape in plan view, and an elliptical shape in plan view. Can be mentioned.
Further, as a specific form of the “concave groove”, a concave groove extending parallel to the circumferential direction of the gravure roll, a concave groove extending obliquely with respect to the circumferential direction of the gravure roll, and the width direction (axial direction) of the gravure roll A concave groove extending in parallel may be mentioned. Moreover, you may combine these concave grooves.

また、保持される絶縁ペーストの量がグラビアロールの周方向の一方側から他方側に進むにつれて多く又は少なくなる凹凸パターンとしては、保持される絶縁ペーストの量が周方向の一方側から他方側に進むにつれて、徐々に多く又は少なくなる形態や、階段状に多く又は少なくなる形態が挙げられる。具体的には、外周表面の単位面積当たりのセルの個数や個々のセルの面積や深さ或いは凹溝の幅や深さを、周方向の一方側から他方側に進むにつれて徐々に又は階段状に変えることにより、外周表面の単位面積当たりにおけるセル或いは凹溝の容量が、周方向の一方側から他方側に進むにつれて大きく又は小さくなる形態が挙げられる。   In addition, as an uneven pattern in which the amount of insulating paste retained increases or decreases as it proceeds from one side in the circumferential direction of the gravure roll to the other side, the amount of insulating paste retained is from one side in the circumferential direction to the other side. As it progresses, the form which gradually increases or decreases, and the form which increases or decreases stepwise are mentioned. Specifically, the number of cells per unit area on the outer peripheral surface, the area and depth of each cell, or the width and depth of the groove are gradually or stepwisely increased from one side to the other side in the circumferential direction. In other words, the capacity of the cell or the groove per unit area of the outer peripheral surface is increased or decreased as it proceeds from one side to the other side in the circumferential direction.

更に、上記の電池の製造方法であって、前記外周表面の前記凹凸パターンは、互いに独立した多数のセルで構成され、前記外周表面の単位面積当たりの前記セルの容量が、前記グラビアロールの周方向の一方側から他方側に進むにつれて大きく又は小さくなる形態である電池の製造方法とすると良い。   Further, in the battery manufacturing method, the uneven pattern on the outer peripheral surface is composed of a large number of cells independent from each other, and the capacity of the cell per unit area of the outer peripheral surface is determined by the circumference of the gravure roll. A method of manufacturing a battery that is larger or smaller as it proceeds from one side of the direction to the other side is preferable.

グラビアロールの外周表面の凹凸パターンをこのような形態とすることで、前述のように、保持される絶縁ペーストの量を周方向に変化させた凹凸パターンを、容易かつ確実に形成できる。   By adopting such a concavo-convex pattern on the outer peripheral surface of the gravure roll, it is possible to easily and reliably form the concavo-convex pattern in which the amount of the insulating paste to be held is changed in the circumferential direction as described above.

更に、上記のいずれかに記載の電池の製造方法であって、前記外周表面の前記凹凸パターンは、レーザ彫刻により形成されてなる電池の製造方法とすると良い。   Furthermore, in any of the above-described battery manufacturing methods, the uneven pattern on the outer peripheral surface may be a battery manufacturing method formed by laser engraving.

レーザ彫刻により凹凸パターンを形成することで、前述のように、保持される絶縁ペーストの量を周方向に変化させた凹凸パターンを、容易かつ確実に形成できる。   By forming the concavo-convex pattern by laser engraving, it is possible to easily and reliably form the concavo-convex pattern in which the amount of the insulating paste to be held is changed in the circumferential direction as described above.

また、他の態様は、帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備え、前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる電池の製造方法であって、グラビアロールを備えるグラビア塗工装置を用いて、熱可塑性樹脂粒子を溶媒に分散させた絶縁ペーストを、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布し、絶縁ペースト層を形成する塗工工程と、前記絶縁ペースト層を乾燥させて、前記セパレータであるセパレータ層を形成する乾燥工程と、を備え、前記グラビアロールは、その外周表面に、前記グラビアロールの幅方向及び周方向のうち少なくとも周方向に延びる多数の凹溝が一定間隔で並んだ凹凸パターンを有し、前記グラビア塗工装置は、前記外周表面上の前記絶縁ペーストを掻き取るドクターブレードと、前記グラビアロールと前記ドクターブレードとの間に貯められた前記絶縁ペーストに掛かる液圧を変化させるポンプと、を備え、前記塗工工程は、前記ポンプで前記液圧を変化させて、前記ドクターブレードで掻き取られた後の前記外周表面に保持される前記絶縁ペーストの量を増加又は減少させ、前記絶縁ペースト層の厚みが前記被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に、前記絶縁ペースト層を形成する工程である電池の製造方法である。   Another embodiment includes a wound electrode body in which a belt-like positive electrode plate and a belt-like negative electrode plate are alternately stacked and wound through two separators made of a belt-like porous thermoplastic resin, The separator is a method for manufacturing a battery, in which a portion located on the radially inner side of the wound electrode body is thicker and a portion located on the radially outer side is thinner, and includes a gravure roll. And applying an insulating paste in which thermoplastic resin particles are dispersed in a solvent on the main surface of at least one of the positive electrode plate and the negative electrode plate to form an insulating paste layer. And a drying step of drying the insulating paste layer to form a separator layer that is the separator. The gravure roll has, on its outer peripheral surface, a width direction and a circumference of the gravure roll. A plurality of concave grooves extending at least in the circumferential direction are arranged at regular intervals, and the gravure coating apparatus includes a doctor blade that scrapes off the insulating paste on the outer peripheral surface, and the gravure roll. And a pump for changing the hydraulic pressure applied to the insulating paste stored between the doctor blade and the coating process, the hydraulic pressure is changed by the pump and scraped off by the doctor blade. The amount of the insulating paste retained on the outer peripheral surface after the increase or decrease, and the thickness of the insulating paste layer becomes thicker or thinner as it advances from one side to the other side in the longitudinal direction of the electrode plate to be coated And a method of manufacturing a battery, which is a step of forming the insulating paste layer.

この電池の製造方法で用いるグラビア塗工装置のうちグラビアロールの外周表面は、少なくともグラビアロールの周方向に延びる多数の凹溝が一定間隔で並んだ凹凸パターンを有する。また、グラビア塗工装置は、グラビアロールの外周表面上の絶縁ペーストを掻き取るドクターブレードと、グラビアロールとドクターブレードとの間に貯められた絶縁ペーストに掛かる液圧を変化させるポンプとを備える。そして、塗工工程において、ポンプで絶縁ペーストの液圧を徐々に又は階段状に変化させて、ドクターブレードで掻き取られた後の外周表面に保持される絶縁ペーストの量(被塗布電極板の主面上に転写される絶縁ペーストの量)を増加又は減少させ、絶縁ペースト層の厚みが被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に絶縁ペースト層を形成する。   In the gravure coating apparatus used in this battery manufacturing method, the outer peripheral surface of the gravure roll has an uneven pattern in which a large number of concave grooves extending at least in the circumferential direction of the gravure roll are arranged at regular intervals. Further, the gravure coating apparatus includes a doctor blade that scrapes off the insulating paste on the outer peripheral surface of the gravure roll, and a pump that changes the hydraulic pressure applied to the insulating paste stored between the gravure roll and the doctor blade. In the coating process, the amount of the insulating paste retained on the outer peripheral surface after being scraped by the doctor blade by changing the hydraulic pressure of the insulating paste gradually or stepwise with a pump (of the electrode plate to be coated) The amount of insulating paste transferred onto the main surface is increased or decreased, and the insulating paste layer is formed so that the thickness of the insulating paste layer becomes thicker or thinner as it goes from one side to the other side in the longitudinal direction of the electrode plate to be coated. Form.

具体的には、グラビアロールとドクターブレードとの間に貯められた絶縁ペーストにポンプにより液圧を掛けると、ドクターブレードをくぐり周方向に延びる凹溝内を通じて、ドクターブレードよりもグラビアロールの回転進行方向側の凹溝の上に絶縁ペーストが押し出される。従って、この液圧を増減させると、被塗布電極板の主面上に転写される絶縁ペーストの量も増減する。そこで、液圧を増加或いは減少させることで、絶縁ペースト層の厚みが被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に絶縁ペースト層を形成できる。このようにすることで、径方向内側の部位ほどセパレータ層(セパレータ)が厚く、径方向外側の部位ほどセパレータ層(セパレータ)が薄い捲回型電極体を容易かつ確実に形成できる。   Specifically, when hydraulic pressure is applied to the insulating paste stored between the gravure roll and the doctor blade by a pump, the rotation of the gravure roll proceeds more than the doctor blade through the concave groove extending in the circumferential direction through the doctor blade. Insulating paste is extruded onto the groove on the direction side. Therefore, when the fluid pressure is increased or decreased, the amount of insulating paste transferred onto the main surface of the electrode plate to be applied also increases or decreases. Therefore, by increasing or decreasing the hydraulic pressure, the insulating paste layer can be formed in a form in which the thickness of the insulating paste layer increases or decreases as it advances from one side in the longitudinal direction of the coated electrode plate to the other side. By doing so, it is possible to easily and reliably form a wound electrode body having a thicker separator layer (separator) at a radially inner portion and a thinner separator layer (separator) at a radially outer portion.

なお、「凹溝」の具体的な形態としては、グラビアロールの周方向に平行に延びる凹溝、グラビアロールの周方向に対して斜めに延びる凹溝が挙げられる。また、これらを組み合わせてもよい。   Specific examples of the “concave groove” include a concave groove extending parallel to the circumferential direction of the gravure roll and a concave groove extending obliquely with respect to the circumferential direction of the gravure roll. Moreover, you may combine these.

実施形態1に係る電池の縦断面図である。1 is a longitudinal sectional view of a battery according to Embodiment 1. FIG. 実施形態1に係り、捲回型電極体の斜視図である。FIG. 4 is a perspective view of a wound electrode body according to the first embodiment. 実施形態1に係り、捲回型電極体の図2の上方から見た、正極板、負極板及びセパレータの配置を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically illustrating the arrangement of a positive electrode plate, a negative electrode plate, and a separator according to the first embodiment, as viewed from above in FIG. 2 of a wound electrode body. 実施形態1に係り、捲回型電極体の横断面の部分拡大断面図である。FIG. 3 is a partial enlarged cross-sectional view of a wound electrode body according to the first embodiment. 実施形態1に係り、正極板と、両主面上にセパレータ層を有する負極板とを互いに重ねた状態を示す部分平面図である。FIG. 4 is a partial plan view showing a state in which the positive electrode plate and the negative electrode plate having separator layers on both main surfaces are overlapped with each other according to the first embodiment. 実施形態1に係り、両主面上にセパレータ層を有する負極板の長手方向に沿う断面図である。It is sectional drawing which concerns on Embodiment 1 and follows the longitudinal direction of the negative electrode plate which has a separator layer on both main surfaces. 実施形態1に係り、塗工工程において負極板の主面上に絶縁ペーストを塗布する様子を示す説明図である。It is explanatory drawing which shows a mode that it concerns on Embodiment 1 and apply | coats an insulating paste on the main surface of a negative electrode plate in a coating process. 実施形態1のグラビアロールの外周表面に形成した凹凸パターンに係り、(a)はパターン平面図、(b)は(a)におけるA−A断面図である。It is related with the uneven | corrugated pattern formed in the outer peripheral surface of the gravure roll of Embodiment 1, (a) is a pattern top view, (b) is AA sectional drawing in (a). 実施形態2に係り、塗工工程において負極板の主面上に絶縁ペーストを塗布する様子を示す説明図である。It is explanatory drawing which shows a mode that it concerns on Embodiment 2 and apply | coats an insulating paste on the main surface of a negative electrode plate in a coating process. 実施形態2のグラビアロールの外周表面に形成した凹凸パターンに係り、(a)はパターン平面図、(b)は(a)におけるB−B断面図である。It is related with the uneven | corrugated pattern formed in the outer peripheral surface of the gravure roll of Embodiment 2, (a) is a pattern top view, (b) is BB sectional drawing in (a).

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係る円筒型の電池10を示す。図2〜図5に、この電池10を構成する円筒状の捲回型電極体30及びこれを展開した状態を示す。更に、図6に、両主面41a,41b上にセパレータ層51を有する負極板41を示す。この電池10は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される円筒型(18650型)のリチウムイオン二次電池である。その電池容量は、500mAhである。この電池10は、円筒状の電池ケース20と、この電池ケース20内に収容された円筒状の捲回型電極体30と、この捲回型電極体30に接続された正極集電板60及び負極集電板70等から構成されている(図1参照)。また、電池ケース20内には、非水系の電解液27が保持されている。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a cylindrical battery 10 according to the first embodiment. 2 to 5 show a cylindrical wound electrode body 30 constituting the battery 10 and a developed state thereof. Further, FIG. 6 shows a negative electrode plate 41 having a separator layer 51 on both main surfaces 41a and 41b. The battery 10 is a cylindrical (18650 type) lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle or a battery-powered device such as a hammer drill. The battery capacity is 500 mAh. The battery 10 includes a cylindrical battery case 20, a cylindrical wound electrode body 30 accommodated in the battery case 20, a positive electrode current collector plate 60 connected to the wound electrode body 30, and It is comprised from the negative electrode current collecting plate 70 grade | etc., (Refer FIG. 1). Further, a non-aqueous electrolyte solution 27 is held in the battery case 20.

このうち電池ケース20は、金属(具体的にはアルミニウム)により形成されている。この電池ケース20は、そのケース軸線KX方向の一方側KC(図1中、上方)が開口する一方、ケース軸線KX方向の他方側KD(図1中、下方)が閉塞した有底円筒状の本体部材21と、この本体部材21の開口部21hを封口する概略円板状の蓋部材23とから構成されている。具体的には、蓋部材23は、リング状のシール部材25を介して、本体部材21の開口部21hに加締め固定されている。本体部材21は、後述するように負極集電板70に電気的に接続しており、電池10の負極端子を兼ねている。一方、蓋部材23は、後述するように正極集電板60にリード部材61を介して電気的に接続しており、電池10の正極端子を兼ねている。   Among these, the battery case 20 is made of metal (specifically, aluminum). The battery case 20 has a bottomed cylindrical shape in which one side KC in the case axis KX direction (upward in FIG. 1) is open, and the other side KD in the case axis KX direction (down in FIG. 1) is closed. The main body member 21 and a substantially disk-shaped lid member 23 that seals the opening 21h of the main body member 21 are configured. Specifically, the lid member 23 is caulked and fixed to the opening 21 h of the main body member 21 via a ring-shaped seal member 25. The body member 21 is electrically connected to the negative electrode current collector plate 70 as will be described later, and also serves as the negative electrode terminal of the battery 10. On the other hand, the lid member 23 is electrically connected to the positive electrode current collector plate 60 via a lead member 61 as will be described later, and also serves as the positive electrode terminal of the battery 10.

次に、捲回型電極体30について説明する。この捲回型電極体30は、捲回軸AXを有する円筒状をなし、この捲回軸AXと前述のケース軸線KXが一致する形態で、電池ケース20内に収容されている(図1〜図4参照)。具体的には、捲回型電極体30は、その周囲が樹脂からなる円筒状の絶縁フィルム29で覆われた状態で電池ケース20内に収容されている。   Next, the wound electrode body 30 will be described. The wound electrode body 30 has a cylindrical shape having a winding axis AX, and is accommodated in the battery case 20 in a form in which the winding axis AX coincides with the above-described case axis KX (FIGS. 1 to 1). (See FIG. 4). Specifically, the wound electrode body 30 is accommodated in the battery case 20 in a state where the periphery is covered with a cylindrical insulating film 29 made of resin.

この捲回型電極体30は、帯状の正極板31と、両主面41a,41b上にそれぞれセパレータ層(セパレータ)51,51を有する帯状の負極板41(図6参照)とを、互いに重ねて(図5参照)、捲回軸AX周りに捲回したものである(図2〜図4参照)。なお、セパレータ層51を有する負極板41の長手方向NYの寸法La(具体的にはLa=1000mm)は、正極板31の長手方向の寸法(具体的には990mm)よりも長くされている。そして、負極板41及びセパレータ層51のうち、捲回型電極体30の最も径方向内側VAに位置する部位及び最も径方向外側VBに位置する部位は、それぞれ正極板31とは対向しない、いわゆる捨て巻きとされている(図3参照)。   This wound electrode body 30 includes a belt-like positive electrode plate 31 and a belt-like negative electrode plate 41 (see FIG. 6) having separator layers (separators) 51 and 51 on both main surfaces 41a and 41b, respectively. (See FIG. 5) and wound around the winding axis AX (see FIGS. 2 to 4). Note that the dimension La (specifically La = 1000 mm) in the longitudinal direction NY of the negative electrode plate 41 having the separator layer 51 is longer than the dimension (specifically, 990 mm) in the longitudinal direction of the positive electrode plate 31. In the negative electrode plate 41 and the separator layer 51, the portion located on the innermost radial direction VA and the portion located on the outermost radial direction VB of the wound electrode body 30 do not face the positive electrode plate 31, respectively. It is abandoned (see FIG. 3).

正極板31は、芯材として、アルミニウムからなる帯状の正極電極箔32を有する。この正極電極箔32の両主面のうち幅方向(図1、図2及び図5中、上下方向)の一部(図1、図2及び図5中、下方)の上には、それぞれ長手方向(図5中、左右方向)に帯状に延びる正極活物質層33,33が形成されている。この正極活物質層33は、正極活物質(具体的にはリチウム・コバルト・ニッケル・マンガン複合酸化物)と、導電材(具体的にはアセチレンブラック(AB))と、結着剤(具体的にはポリフッ化ビニリデン(PVDF))から形成されている。正極板31のうち、自身の厚み方向に正極電極箔32及び正極活物質層33が存在する帯状の部位が、正極部31wである。一方、正極板31のうち、自身の厚み方向に正極活物質層33が存在しないで正極電極箔32のみからなる帯状の部位が、正極集電部31mである。   The positive electrode plate 31 has a strip-shaped positive electrode foil 32 made of aluminum as a core material. On both main surfaces of the positive electrode foil 32, a part of the width direction (vertical direction in FIGS. 1, 2, and 5) (downward in FIGS. 1, 2, and 5) is disposed on the longitudinal direction. Positive electrode active material layers 33, 33 extending in a strip shape in the direction (left-right direction in FIG. 5) are formed. The positive electrode active material layer 33 includes a positive electrode active material (specifically, lithium, cobalt, nickel, manganese composite oxide), a conductive material (specifically, acetylene black (AB)), and a binder (specifically, Is made of polyvinylidene fluoride (PVDF). In the positive electrode plate 31, a belt-like portion where the positive electrode foil 32 and the positive electrode active material layer 33 are present in the thickness direction is the positive electrode portion 31 w. On the other hand, the positive electrode current collector 31m is a belt-shaped portion made of only the positive electrode foil 32 without the positive electrode active material layer 33 in the thickness direction of the positive electrode plate 31.

正極板31の幅方向の一部(正極集電部31mの一部)は、負極板41及びセパレータ層51から捲回軸AX方向の一方側AC(図1、図2及び図5中、上方)に渦巻き状をなして突出しており、円板状の正極集電板60と接続(溶接)している。この正極集電板60には、ケース軸線KX方向の一方側KCでリード部材61が接続(溶接)している。このリード部材61は、他方で電池ケース20の蓋部材23に接続(溶接)している。なお、正極集電板60と蓋部材23との間には、樹脂からなる円板状の絶縁板28が配置されている。   A part of the positive electrode plate 31 in the width direction (a part of the positive electrode current collector 31m) is one side AC in the winding axis AX direction from the negative electrode plate 41 and the separator layer 51 (in FIG. 1, FIG. 2, and FIG. ) In a spiral shape and is connected (welded) to the disc-shaped positive current collector plate 60. A lead member 61 is connected (welded) to the positive electrode current collector plate 60 at one side KC in the direction of the case axis KX. The lead member 61 is connected (welded) to the lid member 23 of the battery case 20 on the other side. A disc-shaped insulating plate 28 made of resin is disposed between the positive electrode current collector plate 60 and the lid member 23.

負極板41は、芯材として、銅からなる帯状の負極電極箔42を有する。この負極電極箔42の両主面のうち幅方向(図1、図2及び図5中、上下方向)の一部(図1、図2及び図5中、上方)の上には、それぞれ長手方向(図5中、左右方向)に帯状に延びる負極活物質層43,43が形成されている。この負極活物質層43は、負極活物質(具体的には黒鉛)と、結着剤(具体的にはスチレン・ブタジエンゴム(SBR))と、増粘剤(具体的にはカルボキシメチルセルロース(CMC))から形成されている。負極板41のうち、自身の厚み方向に負極電極箔42及び負極活物質層43が存在する帯状の部位が、負極部41wである。一方、負極板41のうち、自身の厚み方向に負極活物質層43が存在しないで負極電極箔42のみからなる帯状の部位が、負極集電部41mである。   The negative electrode plate 41 has a strip-shaped negative electrode foil 42 made of copper as a core material. On both main surfaces of the negative electrode foil 42, a part of the width direction (vertical direction in FIGS. 1, 2, and 5) (upward in FIGS. 1, 2, and 5) Negative electrode active material layers 43, 43 extending in a strip shape in the direction (left-right direction in FIG. 5) are formed. The negative electrode active material layer 43 includes a negative electrode active material (specifically, graphite), a binder (specifically, styrene-butadiene rubber (SBR)), and a thickener (specifically, carboxymethylcellulose (CMC). )). In the negative electrode plate 41, a strip-shaped portion where the negative electrode foil 42 and the negative electrode active material layer 43 exist in the thickness direction of the negative electrode plate 41 is the negative electrode portion 41w. On the other hand, in the negative electrode plate 41, a strip-shaped portion made only of the negative electrode foil 42 without the negative electrode active material layer 43 in the thickness direction of itself is the negative electrode current collector 41m.

負極板41の幅方向の一部(負極集電部41m)は、正極板31及びセパレータ層51から捲回軸AX方向の他方側AD(図1、図2及び図5中、下方)に渦巻き状をなして突出しており、円板状の負極集電板70と接続(溶接)している。この負極集電板70は、ケース軸線KX方向の他方側KDにおいて、電池ケース20の本体部材21に接続(溶接)されている。   A part of the negative electrode plate 41 in the width direction (negative electrode current collector 41m) spirals from the positive electrode plate 31 and the separator layer 51 to the other side AD (downward in FIGS. 1, 2, and 5) in the winding axis AX direction. It protrudes in a shape and is connected (welded) to the disc-shaped negative electrode current collector plate 70. The negative electrode current collector plate 70 is connected (welded) to the main body member 21 of the battery case 20 on the other side KD in the case axis KX direction.

負極板41の両主面41a,41b上、具体的には、負極活物質層43,43上には、それぞれ帯状のセパレータ層51,51が形成されている(図6参照)。これらのセパレータ層51,51は、捲回型電極体30を構成した状態において、正極板31と負極板41との間に介在している(図4参照)。セパレータ層51は、多孔質の熱可塑性樹脂(具体的にはポリエチレン(PE))からなり、所定温度(本実施形態1では130℃)以上になると溶融し空孔が塞いで、正極板31と負極板41との間を絶縁し、これらの間を流れる電流をシャットダウンする。   Band-shaped separator layers 51 and 51 are formed on both main surfaces 41a and 41b of the negative electrode plate 41, specifically on the negative electrode active material layers 43 and 43, respectively (see FIG. 6). These separator layers 51 and 51 are interposed between the positive electrode plate 31 and the negative electrode plate 41 in the state in which the wound electrode body 30 is configured (see FIG. 4). The separator layer 51 is made of a porous thermoplastic resin (specifically, polyethylene (PE)), and melts at a predetermined temperature (130 ° C. in the first embodiment) to close the pores. It insulates from the negative electrode plate 41, and the electric current which flows between these is shut down.

このセパレータ層51は、負極板41の長手方向NYのうち、一方側NAの部位から他方側NBの部位に向かうほど(図6では右側に進むほど)、その厚みtが薄くなる形態とされている。そして、捲回型電極体30を構成した状態において、負極板41を、セパレータ層51が径方向内側VAに位置する部位ほど厚く、径方向外側VBに位置する部位ほど薄くなるように配置してある。
なお、以下では、負極板41の長手方向NYのうち、捲回型電極体30を構成した状態において、径方向内側VAに位置させる向きを長手内側方向NA、径方向外側VBに位置させる向きを長手外側方向NBとする。これによれば、セパレータ層51は、長手内側方向NAの部位から長手外側方向NBの部位に向かうにつれて(捲回型電極体30の径方向内側VAの部位から径方向外側VBの部位に向かうにつれて)、徐々に厚みtが薄くされていると言える。
The separator layer 51 is configured such that its thickness t decreases as it goes from the site on one side NA to the site on the other side NB in the longitudinal direction NY of the negative electrode plate 41 (as it goes to the right in FIG. 6). Yes. In the state where the wound electrode body 30 is configured, the negative electrode plate 41 is disposed so that the portion where the separator layer 51 is located on the radially inner side VA is thicker and the portion where the separator layer 51 is located on the radially outer side VB is thinner. is there.
In the following, in the longitudinal direction NY of the negative electrode plate 41, in the state in which the wound electrode body 30 is configured, the orientation to be positioned on the radially inner side VA is the orientation to be positioned on the longitudinal inner direction NA and the radially outer side VB. The longitudinal outer direction NB is assumed. According to this, as the separator layer 51 goes from the site in the longitudinal inner direction NA toward the site in the longitudinal outer direction NB (as it goes from the site in the radial inner side VA to the site in the radial outer side VB of the wound electrode body 30). It can be said that the thickness t is gradually reduced.

本実施形態1の電池では、セパレータ層51のうち、長手内側方向NAの端部51a(捲回型電極体30において最も径方向内側VAに位置する部位)の厚みt1はt1=30μmであり、長手外側方向NBの端部51b(捲回型電極体30において最も径方向外側VBに位置する部位)の厚みt2はt2=25μmである。セパレータ層51の長手方向の寸法(負極板41の長手方向NYの寸法La)は、前述のようにLa=1000mm(=1.000m)であるので、5μm/mの割合で、セパレータ層51の厚みtが徐々に変化している。   In the battery of the first embodiment, the thickness t1 of the end portion 51a in the longitudinal inner direction NA (the portion located at the most radially inner side VA in the wound electrode body 30) of the separator layer 51 is t1 = 30 μm, The thickness t2 of the end portion 51b in the longitudinal outer side direction NB (the portion located on the most radially outer side VB in the wound electrode body 30) is t2 = 25 μm. Since the dimension in the longitudinal direction of the separator layer 51 (dimension La in the longitudinal direction NY of the negative electrode plate 41) is La = 1000 mm (= 1.000 m) as described above, the separator layer 51 has a ratio of 5 μm / m. The thickness t changes gradually.

以上で説明したように、この電池10では、セパレータ層51の厚みtを、捲回型電極体30の径方向内側VAに位置する部位ほど厚く、径方向外側VBに位置する部位ほど薄くしてある。このため、過充電などによって捲回型電極体30が異常発熱した場合、径方向内側VAの部位ほど早期に所定温度に達するが、セパレータ層51のうち径方向内側VAに位置する部位は厚みtが厚いため、セパレータ層51が厚み方向TY全体にわたって溶融して空孔が塞がれ、電池反応が生じなくなる(電流が流れなくなる)までに、時間を要する。一方、捲回型電極体30の径方向外側VBの部位ほど相対的に所定温度に達するのが遅くなるものの、セパレータ層51のうち径方向外側VBに位置する部位は厚みtが薄いため、セパレータ層51が厚み方向TY全体にわたって溶融して空孔が塞がれ、電池反応が生じなくなる(電流が流れなくなる)までの時間が短くて済む。   As described above, in the battery 10, the thickness t of the separator layer 51 is made thicker at a portion located on the radially inner side VA of the wound electrode body 30 and thinner at a portion located on the radially outer side VB. is there. For this reason, when the wound electrode body 30 abnormally heats up due to overcharge or the like, the part of the radially inner VA reaches a predetermined temperature earlier, but the part of the separator layer 51 located at the radially inner VA has a thickness t. Therefore, it takes time until the separator layer 51 is melted over the entire thickness direction TY and the vacancies are blocked, and the battery reaction does not occur (the current does not flow). On the other hand, although the portion of the wound electrode body 30 on the radially outer side VB relatively slowly reaches a predetermined temperature, the portion of the separator layer 51 located on the radially outer side VB has a small thickness t. The time until the layer 51 is melted over the entire thickness direction TY to close the vacancies and no battery reaction occurs (no current flows) can be shortened.

従って、この電池10では、捲回型電極体30が異常発熱した場合に、径方向VYの場所によって異なる(径方向内側VAの部位と径方向外側VBの部位とで異なる)シャットダウンの発生タイミングを、セパレータ層の厚みtを径方向VYで均一とした従来の電池に比して、近づけることができる。より具体的には、本実施形態1では、シャットダウンの発生タイミングを径方向で揃えることができ、捲回型電極体30が更に発熱して高温になるのを適切に抑制できる。   Therefore, in this battery 10, when the wound electrode body 30 abnormally generates heat, the timing of occurrence of shutdown differs depending on the location in the radial direction VY (differing between the location in the radial direction VA and the location in the radial direction VB). As compared with the conventional battery in which the thickness t of the separator layer is uniform in the radial direction VY, the separator layer can be made closer. More specifically, in the first embodiment, the shutdown occurrence timing can be aligned in the radial direction, and the wound electrode body 30 can be appropriately suppressed from further generating heat and becoming high temperature.

更に本実施形態1では、セパレータ51は、負極板41の両主面41a,41b上に塗布形成されたセパレータ層であるため、容易かつ確実に、径方向内側VAの部位ほどセパレータ層51が厚く、径方向外側VBの部位ほどセパレータ層51が薄くされた捲回型電極体30を備える電池10とすることができる。   Furthermore, in the first embodiment, the separator 51 is a separator layer that is applied and formed on both the main surfaces 41a and 41b of the negative electrode plate 41. Therefore, the separator layer 51 is thicker easily and reliably at a portion on the radially inner side VA. The battery 10 can be provided with the wound electrode body 30 in which the separator layer 51 is made thinner toward the radially outer side VB.

次いで、上記電池10の製造方法について説明する。まず、正極板31を製造する。即ち、帯状の正極電極箔32を用意する。そして、ダイコータを用いて、この正極電極箔32の一方の主面のうち幅方向の一部の上に、正極活物質、導電材及び結着剤を含む正極ペーストを塗布し、これを熱風により乾燥させて、正極活物質層33を形成する(図5参照)。同様に、正極電極箔32の反対側の主面にも、その幅方向の一部の上に上記正極ペーストを塗布し、これを熱風により乾燥させて、正極活物質層33を形成する。その後、加圧ロールにより正極活物質層33を圧縮して、その密度を高める。かくして、正極板31が形成される。   Next, a method for manufacturing the battery 10 will be described. First, the positive electrode plate 31 is manufactured. That is, a strip-shaped positive electrode foil 32 is prepared. Then, using a die coater, a positive electrode paste containing a positive electrode active material, a conductive material, and a binder is applied to a part of one main surface of the positive electrode electrode foil 32 in the width direction, and this is heated with hot air. It is made to dry and the positive electrode active material layer 33 is formed (refer FIG. 5). Similarly, the positive electrode paste is applied to a main surface on the opposite side of the positive electrode foil 32 on a part in the width direction, and dried with hot air to form the positive electrode active material layer 33. Thereafter, the positive electrode active material layer 33 is compressed by a pressure roll to increase its density. Thus, the positive electrode plate 31 is formed.

また別途、負極板41を製造する。即ち、帯状の負極電極箔42を用意する。そして、ダイコータを用いて、この負極電極箔42の一方の主面のうち幅方向の一部の上に、負極活物質、結着剤及び増粘剤を含む負極ペーストを塗布し、これを熱風により乾燥させて、負極活物質層43を形成する(図6参照)。同様に、負極電極箔42の反対側の主面にも、その幅方向の一部の上に上記負極ペーストを塗布し、これを熱風により乾燥させて、負極活物質層43を形成する。その後、加圧ロールにより負極活物質層43を圧縮して、その密度を高める。かくして、負極板41が形成される。   Separately, the negative electrode plate 41 is manufactured. That is, a strip-shaped negative electrode foil 42 is prepared. Then, using a die coater, a negative electrode paste containing a negative electrode active material, a binder, and a thickener is applied onto a part of one main surface of the negative electrode foil 42 in the width direction. To form a negative electrode active material layer 43 (see FIG. 6). Similarly, the negative electrode paste is applied to a main surface on the opposite side of the negative electrode foil 42 on a part in the width direction, and dried with hot air to form the negative electrode active material layer 43. Thereafter, the negative electrode active material layer 43 is compressed by a pressure roll to increase its density. Thus, the negative electrode plate 41 is formed.

次に、負極板(被塗布電極板)41の両主面41a,41b上にセパレータ層(セパレータ)51,51を形成する。まず、熱可塑性樹脂粒子を溶媒に分散させた絶縁ペーストZPを用意する。本実施形態1では、熱可塑性樹脂粒子としてポリエチレン(PE)粒子を、溶媒として水を用い、更に増粘剤を加えて、絶縁ペーストZPを作製した。そして、塗工工程において、グラビア塗工装置100を用いて、この絶縁ペーストZPを負極板41の一方の主面41a上(具体的には負極活物質層43上)に塗布し、絶縁ペースト層51pを形成する(図7及び図6参照)。   Next, separator layers (separators) 51, 51 are formed on both main surfaces 41 a, 41 b of the negative electrode plate (coated electrode plate) 41. First, an insulating paste ZP in which thermoplastic resin particles are dispersed in a solvent is prepared. In the first embodiment, polyethylene (PE) particles are used as thermoplastic resin particles, water is used as a solvent, and a thickener is further added to produce an insulating paste ZP. Then, in the coating process, using the gravure coating apparatus 100, this insulating paste ZP is applied onto one main surface 41a of the negative electrode plate 41 (specifically, on the negative electrode active material layer 43), and the insulating paste layer 51p is formed (see FIGS. 7 and 6).

このグラビア塗工装置100は、グラビアロール110と、ドクターブレード120と、液槽130と、圧胴ロール135とを備える(図7及び図8参照)。このうちグラビアロール110は、外周表面110aに保持した絶縁ペーストZPを、負極板41の主面41a上に転写して塗布する。ドクターブレード120は、グラビアロール110の外周表面110a上に付着した余分な絶縁ペーストZPを掻き取る。液槽130は、絶縁ペーストZPを貯留すると共に、絶縁ペーストZPをグラビアロール110の外周表面110aに供給する。また、圧胴ロール135は、ゴムからなり、絶縁ペーストZPがグラビアロール110から負極板41の主面41a上に適切に転写されるように、グラビアロール110の上で負極板41を押圧する。   The gravure coating apparatus 100 includes a gravure roll 110, a doctor blade 120, a liquid tank 130, and an impression cylinder roll 135 (see FIGS. 7 and 8). Among these, the gravure roll 110 transfers and applies the insulating paste ZP held on the outer peripheral surface 110 a onto the main surface 41 a of the negative electrode plate 41. The doctor blade 120 scrapes off the excess insulating paste ZP adhering to the outer peripheral surface 110a of the gravure roll 110. The liquid tank 130 stores the insulating paste ZP and supplies the insulating paste ZP to the outer peripheral surface 110 a of the gravure roll 110. The impression cylinder roll 135 is made of rubber, and presses the negative electrode plate 41 on the gravure roll 110 so that the insulating paste ZP is appropriately transferred from the gravure roll 110 onto the main surface 41a of the negative electrode plate 41.

グラビアロール110について更に説明する。このグラビアロール110は、その外周長Lbが、負極板41の長手方向NYの寸法La以上の寸法を有する。本実施形態1では、外周長Lb=1000mmであり、負極板41の長手方向NYの寸法La=1000mmと等しい。また、このグラビアロール110の外周表面110aは、周方向SHの全体にわたり、周方向SHの一方側SAから他方側SBに進むにつれて、外周表面110aに保持される絶縁ペーストZPの量が徐々に少なくなる凹凸パターン(彫刻)111を有する(図8参照)。   The gravure roll 110 will be further described. The gravure roll 110 has an outer peripheral length Lb that is greater than or equal to a dimension La in the longitudinal direction NY of the negative electrode plate 41. In the first embodiment, the outer peripheral length Lb = 1000 mm, which is equal to the dimension La = 1000 mm in the longitudinal direction NY of the negative electrode plate 41. Further, the outer peripheral surface 110a of the gravure roll 110 is gradually reduced in the amount of the insulating paste ZP held on the outer peripheral surface 110a as it proceeds from the one side SA in the circumferential direction SH to the other side SB in the entire circumferential direction SH. It has a concavo-convex pattern (engraving) 111 (see FIG. 8).

具体的には、この凹凸パターン111は、互いに独立した多数のセル112で構成されている。各々のセル112は平面視六角形状の凹部であり、これらが密に配置されて凹凸パターン111がハニカム状をなしている。各々のセル112は、周方向SHの一方側SAから他方側SBに進むにつれて、その大きさ(六角形の面積及び深さ)が徐々に小さくされており、これにより、外周表面110aの単位面積当たりのセル112の容量が、周方向SHの一方側SAから他方側SBに進むにつれて徐々に小さくなっている。具体的には、外周表面110aの単位面積当たりのセル112の容量は、最も大きい部位で100cm3/m2 、最も小さい部位で90cm3/m2 とされている。なお、この凹凸パターン111は、レーザ彫刻によって形成されている。 Specifically, the concavo-convex pattern 111 is composed of a large number of cells 112 independent of each other. Each of the cells 112 is a hexagonal recess in plan view, and these cells are densely arranged so that the uneven pattern 111 has a honeycomb shape. Each cell 112 is gradually reduced in size (hexagonal area and depth) from one side SA in the circumferential direction SH to the other side SB, whereby the unit area of the outer circumferential surface 110a. The capacity of the winning cell 112 is gradually reduced from the one side SA in the circumferential direction SH to the other side SB. Specifically, the capacity of the cell 112 per unit area of the outer peripheral surface 110a is 100 cm 3 / m 2 at the largest part and 90 cm 3 / m 2 at the smallest part. The uneven pattern 111 is formed by laser engraving.

塗工工程では、このグラビアロール110を用い、絶縁ペースト層51pの厚みが負極板41の長手方向NYの一方側(長手内側方向)NAから他方側(長手外側方向)NBに進むにつれて徐々に薄くなる形態に、絶縁ペースト層51pを形成する(図7及び図6参照)。前述したように、グラビアロール110の外周長Lbは負極板41の長手方向NYの寸法Laと等しくしているので、グラビアロール110が1回転する毎に、1個分の負極板41の長さにわたって絶縁ペースト層51pが形成される。
塗工工程後は、乾燥工程において、負極板41の主面41a上に形成した絶縁ペースト層51pを熱風により乾燥させて、セパレータ層51を形成する。
In the coating process, the gravure roll 110 is used, and the thickness of the insulating paste layer 51p is gradually reduced from one side (longitudinal inner direction) NA to the other side (longitudinal outer direction) NB of the negative electrode plate 41 in the longitudinal direction NY. An insulating paste layer 51p is formed in such a form (see FIGS. 7 and 6). As described above, since the outer peripheral length Lb of the gravure roll 110 is equal to the dimension La in the longitudinal direction NY of the negative electrode plate 41, the length of the negative electrode plate 41 for one revolution every time the gravure roll 110 rotates once. An insulating paste layer 51p is formed over the entire area.
After the coating process, in the drying process, the insulating paste layer 51p formed on the main surface 41a of the negative electrode plate 41 is dried with hot air to form the separator layer 51.

次に、塗工工程を再度行い、負極板41の反対側の主面41b上(負極活物質層43上)にも、グラビア塗工装置100を用いて絶縁ペーストZPを塗布し、絶縁ペースト層51pを形成する(図7及び図6参照)。その後、乾燥工程を行って、負極板41の主面41b上に形成した絶縁ペースト層51pを乾燥させて、セパレータ層51を形成する。その後、これを長手方向NYの寸法La毎に切断すれば、両主面41a,41b上にそれぞれ一方側NAから他方側NBに向かうにつれて徐々に厚みtが薄くなるセパレータ層51,51が形成された負極板41が得られる。   Next, the coating process is performed again, and the insulating paste ZP is applied to the main surface 41b on the opposite side of the negative electrode plate 41 (on the negative electrode active material layer 43) using the gravure coating apparatus 100, and the insulating paste layer 51p is formed (see FIGS. 7 and 6). Thereafter, a drying step is performed to dry the insulating paste layer 51p formed on the main surface 41b of the negative electrode plate 41, thereby forming the separator layer 51. Then, if this is cut for each dimension La in the longitudinal direction NY, separator layers 51 and 51 are formed on both main surfaces 41a and 41b, with thickness t gradually decreasing from one side NA to the other side NB. A negative electrode plate 41 is obtained.

次に、前述の正極板31と、セパレータ層51,51を形成した負極板41とを、互いに重ね(図5参照)、巻き芯を用いて捲回軸AX周りに捲回して、捲回型電極体30を形成する。
次に、正極集電板60を用意し、この捲回型電極体30の正極集電部31mに溶接する。更に、リード部材61と蓋部材23を用意し、リード部材61の一端側を正極集電板60に、他端側の蓋部材23に溶接する。その際、絶縁板28を正極集電板60と蓋部材23との間に介在させておく。また、負極集電板70を用意し、捲回型電極体30の負極集電部41mに溶接する。更に、捲回型電極体30の周囲を絶縁フィルム29で覆う。
Next, the positive electrode plate 31 and the negative electrode plate 41 on which the separator layers 51 and 51 are formed are overlapped with each other (see FIG. 5), wound around the winding axis AX using a winding core, and wound type The electrode body 30 is formed.
Next, the positive electrode current collector plate 60 is prepared and welded to the positive electrode current collector 31 m of the wound electrode body 30. Further, a lead member 61 and a lid member 23 are prepared, and one end side of the lead member 61 is welded to the positive electrode current collector plate 60 and the lid member 23 on the other end side. At that time, the insulating plate 28 is interposed between the positive electrode current collector plate 60 and the lid member 23. Moreover, the negative electrode current collecting plate 70 is prepared and welded to the negative electrode current collecting part 41 m of the wound electrode body 30. Further, the periphery of the wound electrode body 30 is covered with an insulating film 29.

次に、電池ケース20の本体部材21を用意し、この中に上述の正極集電板60等を接続した捲回型電極体30等を挿入する。その後、負極集電板70を本体部材21に溶接する。次に、本体部材21内に電解液27を注液し、その後、蓋部材23をシール部材25を介して加締め固定して、本体部材21の開口部21hを閉塞する。その後は、この電池について、初充電や各種検査を行う。かくして、電池10が完成する。   Next, the main body member 21 of the battery case 20 is prepared, and the wound electrode body 30 and the like connected with the positive current collector plate 60 and the like are inserted therein. Thereafter, the negative electrode current collector plate 70 is welded to the main body member 21. Next, the electrolyte solution 27 is injected into the main body member 21, and then the lid member 23 is swaged and fixed via the seal member 25 to close the opening 21 h of the main body member 21. Thereafter, the battery is subjected to initial charging and various inspections. Thus, the battery 10 is completed.

この電池10の製造方法で用いる前述のグラビア塗工装置100のグラビアロール110は、その外周長Lbが負極板41の長手方向NYの寸法Laを有し、外周表面110aが、周方向SHの全体にわたり、周方向SHの一方側SAから他方側SBに進むにつれて、外周表面110aに保持される絶縁ペーストZPの量が少なくなる凹凸パターン111を有する。そして、塗工工程において、このグラビアロール110により、絶縁ペースト層51pの厚みが負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて薄くなる形態に、絶縁ペースト層51pを形成する。このようにすることで、その後の乾燥工程で形成されるセパレータ層51は、負極板41の長手方向NYに進むにつれて、徐々にその厚みtが薄くなる。従って、このセパレータ層51を形成した負極板41を用いることで、径方向内側VAの部位ほどセパレータ層51が厚く、径方向外側VBの部位ほどセパレータ層51が薄い捲回型電極体30を容易かつ確実に形成できる。   The gravure roll 110 of the above-described gravure coating apparatus 100 used in the method for manufacturing the battery 10 has an outer peripheral length Lb having a dimension La in the longitudinal direction NY of the negative electrode plate 41, and an outer peripheral surface 110a having the entire circumferential direction SH. As a result, there is a concavo-convex pattern 111 in which the amount of the insulating paste ZP held on the outer peripheral surface 110a decreases as it proceeds from one side SA in the circumferential direction SH to the other side SB. In the coating process, the gravure roll 110 forms the insulating paste layer 51p in such a form that the thickness of the insulating paste layer 51p becomes thinner as it proceeds from one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. . By doing in this way, the thickness t of the separator layer 51 formed in the subsequent drying step gradually decreases as it proceeds in the longitudinal direction NY of the negative electrode plate 41. Therefore, by using the negative electrode plate 41 on which the separator layer 51 is formed, the wound electrode body 30 can be easily formed such that the separator layer 51 is thicker in the radially inner VA region and the separator layer 51 is thinner in the radially outer VB region. And it can be formed reliably.

更に本実施形態1では、グラビアロール110の凹凸パターン111が、互いに独立した多数のセル112で構成され、単位面積当たりのセル112の容量が、周方向SHの一方側SAから他方側SBに進むにつれて徐々に小さくなる形態とされている。特に本実施形態1では、凹凸パターン111がレーザ彫刻により形成されている。このため、前述のように保持される絶縁ペーストZPの量を周方向SHに変化させた凹凸パターン111を、容易かつ確実に形成できる。   Further, in the first embodiment, the concave / convex pattern 111 of the gravure roll 110 is composed of a large number of cells 112 independent from each other, and the capacity of the cell 112 per unit area advances from one side SA in the circumferential direction SH to the other side SB. It is made into the form which becomes small gradually as it goes. In particular, in the first embodiment, the uneven pattern 111 is formed by laser engraving. For this reason, the uneven | corrugated pattern 111 which changed the quantity of the insulation paste ZP hold | maintained as mentioned above to the circumferential direction SH can be formed easily and reliably.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係る電池10の製造方法では、セパレータ層(セパレータ)51の形成における塗工工程及びこれに用いるグラビア塗工装置200が、実施形態1に係る塗工工程及びグラビア塗工装置100と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
(Embodiment 2)
Next, a second embodiment will be described. In the manufacturing method of the battery 10 according to the second embodiment, the coating process in the formation of the separator layer (separator) 51 and the gravure coating apparatus 200 used therefor are the coating process and the gravure coating apparatus 100 according to the first embodiment. And different. Other than that, the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.

本実施形態2に係るグラビア塗工装置200は、グラビアロール210と、ドクターブレード220と、シールブレードと225、液槽230と、貯留タンク240と、ポンプ245と、圧力計250と、配管255,256とを備える(図9及び図10参照)。
このうちグラビアロール210は、外周表面210aに保持した絶縁ペーストZPを、負極板41の主面41a上に塗布する。この外周表面210aは、グラビアロール210の幅方向WH及び周方向SHのうち少なくとも周方向SHに延びる多数の凹溝212が一定間隔で並んだ凹凸パターン(彫刻)211を有する。本実施形態2では、各々の凹溝212は、断面がV字状で、周方向SHに対して斜めに直線的に延びる(θ=45°で交差する)形態を有する(図10参照)。各々の凹溝212は、一定間隔で並んでおり、外周表面210aの単位面積当たりの凹溝212の容量は、実施形態1に係るセル112の容量が周方向SHで変化するのとは異なり、場所によらず一定である。この凹凸パターン211も、レーザ彫刻によって形成されている。なお、母材を押し当てて凹凸パターンを作製する機械彫刻により凹凸パターン211を形成してもよい。
The gravure coating apparatus 200 according to the second embodiment includes a gravure roll 210, a doctor blade 220, a seal blade 225, a liquid tank 230, a storage tank 240, a pump 245, a pressure gauge 250, a pipe 255, and the like. 256 (see FIGS. 9 and 10).
Among these, the gravure roll 210 applies the insulating paste ZP held on the outer peripheral surface 210 a onto the main surface 41 a of the negative electrode plate 41. The outer peripheral surface 210a has a concavo-convex pattern (engraving) 211 in which a large number of concave grooves 212 extending in at least the circumferential direction SH among the width direction WH and the circumferential direction SH of the gravure roll 210 are arranged at regular intervals. In the second embodiment, each of the concave grooves 212 has a V-shaped cross section and linearly extends obliquely with respect to the circumferential direction SH (intersects at θ = 45 °) (see FIG. 10). The respective grooves 212 are arranged at regular intervals, and the capacity of the grooves 212 per unit area of the outer peripheral surface 210a is different from the capacity of the cell 112 according to the first embodiment changing in the circumferential direction SH. It is constant regardless of location. The uneven pattern 211 is also formed by laser engraving. Note that the concave / convex pattern 211 may be formed by mechanical engraving that presses the base material to produce the concave / convex pattern.

ドクターブレード220は、グラビアロール210の外周表面210a上に付着した余分な絶縁ペーストZPを掻き取る。液槽230は、絶縁ペーストZPを一時的に貯留してグラビアロール210の外周表面210aに供給する。シールブレード225は、ドクターブレード220と共にグラビアロール210と液槽230との間をシールして、液槽230内を外部から密閉する。貯留タンク240は、絶縁ペーストZPを貯留するものであり、配管255,256を介して液槽230に接続されている。   The doctor blade 220 scrapes off the excess insulating paste ZP adhering to the outer peripheral surface 210a of the gravure roll 210. The liquid tank 230 temporarily stores the insulating paste ZP and supplies it to the outer peripheral surface 210a of the gravure roll 210. The seal blade 225 seals the space between the gravure roll 210 and the liquid tank 230 together with the doctor blade 220 to seal the inside of the liquid tank 230 from the outside. The storage tank 240 stores the insulating paste ZP, and is connected to the liquid tank 230 via pipes 255 and 256.

ポンプ245は、貯留タンク240と液槽230との間に配置され、絶縁ペーストZPを配管256を通じて貯留タンク240から液槽230に送液する。また、このポンプ245の回転数を制御することにより、液槽230内の絶縁ペーストZPの液圧Pz(グラビアロール210とドクターブレード220との間に貯められた絶縁ペーストZPに掛かる液圧Pz)を変化させる。また、圧力計250は、ポンプ245と液槽230との間に配置され、絶縁ペーストZPに掛かる液圧Pzを検知する。   The pump 245 is disposed between the storage tank 240 and the liquid tank 230 and sends the insulating paste ZP from the storage tank 240 to the liquid tank 230 through the pipe 256. Further, by controlling the rotational speed of the pump 245, the hydraulic pressure Pz of the insulating paste ZP in the liquid tank 230 (the hydraulic pressure Pz applied to the insulating paste ZP stored between the gravure roll 210 and the doctor blade 220). To change. Moreover, the pressure gauge 250 is arrange | positioned between the pump 245 and the liquid tank 230, and detects the hydraulic pressure Pz applied to the insulation paste ZP.

本実施形態2の塗工工程では、ポンプ245で絶縁ペーストZPの液圧Pz、従って、グラビアロール210とドクターブレード220との間に貯められた絶縁ペーストZPに掛かる液圧Pzを徐々に低くする。具体的には、この液圧Pzを、1個分の負極板41の印刷時間にわたり、最大3.2kPaから最小2.1kPaまで徐々に低くする。そして、ドクターブレード220で掻き取られた後の外周表面210aに保持される絶縁ペーストZPの量を徐々に減少させる。このような液圧Pzの減少期と、液圧Pzを2.1kPaから3.2kPaに急激に上げる急増期とを繰り返した。これにより、絶縁ペースト層51pの厚みが負極板(被塗布電極板)41の長手方向NYの一方側(長手内側方向)NAから他方側(長手外側方向)NBに進むにつれて徐々に薄くなる形態に、絶縁ペースト層51pを形成する(図9及び図10参照)。   In the coating process of the second embodiment, the hydraulic pressure Pz of the insulating paste ZP, and hence the hydraulic pressure Pz applied to the insulating paste ZP stored between the gravure roll 210 and the doctor blade 220 is gradually lowered by the pump 245. . Specifically, the hydraulic pressure Pz is gradually lowered from a maximum of 3.2 kPa to a minimum of 2.1 kPa over the printing time of one negative electrode plate 41. Then, the amount of the insulating paste ZP held on the outer peripheral surface 210a after being scraped off by the doctor blade 220 is gradually reduced. Such a decrease period of the hydraulic pressure Pz and a rapid increase period in which the hydraulic pressure Pz is rapidly increased from 2.1 kPa to 3.2 kPa were repeated. As a result, the thickness of the insulating paste layer 51p is gradually reduced from one side (longitudinal inner direction) NA to the other side (longitudinal outer direction) NB in the longitudinal direction NY of the negative electrode plate (coated electrode plate) 41. Then, an insulating paste layer 51p is formed (see FIGS. 9 and 10).

具体的には、ポンプ245でグラビアロール210とドクターブレード220との間に貯められた絶縁ペーストZPに液圧Pzを掛けると、ドクターブレード220をくぐり周方向SHに延びる凹溝212内を通じて、ドクターブレード220よりもグラビアロール210の回転進行方向側RAの凹溝212の上に絶縁ペーストZPが押し出される。従って、この液圧Pzを増減させると、負極板41の主面41a上に転写される絶縁ペーストZPの量も増減する。そこで、液圧Pzを徐々に減少させることで、絶縁ペースト層51pの厚みが負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて徐々に薄くなる形態に、絶縁ペースト層51pを形成できる。
塗工工程後は、実施形態1と同様に乾燥工程を行って、負極板41の主面41a上に形成した絶縁ペースト層51pを乾燥させて、セパレータ層51を形成する。
Specifically, when the hydraulic pressure Pz is applied to the insulating paste ZP stored between the gravure roll 210 and the doctor blade 220 by the pump 245, the doctor blade 220 passes through the concave groove 212 extending in the circumferential direction SH. The insulating paste ZP is pushed out onto the concave groove 212 on the rotation traveling direction side RA of the gravure roll 210 relative to the blade 220. Therefore, when the hydraulic pressure Pz is increased or decreased, the amount of the insulating paste ZP transferred onto the main surface 41a of the negative electrode plate 41 is also increased or decreased. Therefore, by gradually reducing the hydraulic pressure Pz, the thickness of the insulating paste layer 51p is gradually reduced from the one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. Can be formed.
After the coating process, the drying process is performed in the same manner as in the first embodiment, and the insulating paste layer 51p formed on the main surface 41a of the negative electrode plate 41 is dried to form the separator layer 51.

また、塗工工程及び乾燥工程を再度行って、負極板41の反対側の主面41b上にも同様に、セパレータ層51を形成する。その後、これを長手方向NYの寸法La毎に切断すれば、両主面41a,41b上にそれぞれ長手方向NYの一方側NAから他方側NBに向かうにつれて徐々に厚みtが薄くなるセパレータ層51,51が形成された負極板41が得られる。その後は、実施形態1と同様にして電池10を完成させる。   Further, the coating process and the drying process are performed again, and the separator layer 51 is similarly formed on the main surface 41 b on the opposite side of the negative electrode plate 41. After that, if this is cut for each dimension La in the longitudinal direction NY, the separator layer 51, the thickness t of which gradually decreases from the one side NA to the other side NB in the longitudinal direction NY on both main surfaces 41a and 41b. A negative electrode plate 41 having 51 formed thereon is obtained. Thereafter, the battery 10 is completed in the same manner as in the first embodiment.

以上で説明したように、本実施形態2に係るグラビア塗工装置200のうちグラビアロール210の外周表面210aは、グラビアロール210の周方向SHに延びる多数の凹溝212が一定間隔で並んだ凹凸パターン211を有する。また、このグラビア塗工装置200は、ドクターブレード220と、グラビアロール210とドクターブレード220との間に貯められた絶縁ペーストZPに掛かる液圧Pzを変化させるポンプ245とを備える。   As described above, in the gravure coating apparatus 200 according to the second embodiment, the outer peripheral surface 210a of the gravure roll 210 is uneven with a large number of concave grooves 212 extending in the circumferential direction SH of the gravure roll 210 arranged at regular intervals. It has a pattern 211. The gravure coating apparatus 200 includes a doctor blade 220 and a pump 245 that changes a hydraulic pressure Pz applied to the insulating paste ZP stored between the gravure roll 210 and the doctor blade 220.

そして、塗工工程において、ポンプ245で絶縁ペーストZPの液圧Pzを徐々に変化させて、ドクターブレード220で掻き取られた後の外周表面210aに保持される絶縁ペーストZPの量(負極板41の主面41a,41b上に転写される絶縁ペーストZPの量)を徐々に減少させ、絶縁ペースト層51pの厚みが負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて徐々に薄くなる形態に、絶縁ペースト層51pを形成する。このようにすることで、その後の乾燥工程で形成されるセパレータ層51は、負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて、徐々にその厚みtが薄くなる。従って、このセパレータ層51を形成した負極板41を用いることで、径方向内側VAの部位ほどセパレータ層51が厚く、径方向外側VBの部位ほどセパレータ層51が薄い捲回型電極体30を容易かつ確実に形成できる。   In the coating process, the amount of the insulating paste ZP retained on the outer peripheral surface 210a after being scraped by the doctor blade 220 by gradually changing the hydraulic pressure Pz of the insulating paste ZP with the pump 245 (the negative electrode plate 41). The amount of the insulating paste ZP transferred onto the main surfaces 41a and 41b is gradually reduced, and the thickness of the insulating paste layer 51p gradually increases from one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. An insulating paste layer 51p is formed in a thinned form. By doing in this way, the separator layer 51 formed in the subsequent drying step gradually decreases in thickness t as it proceeds from one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. Therefore, by using the negative electrode plate 41 on which the separator layer 51 is formed, the wound electrode body 30 can be easily formed such that the separator layer 51 is thicker in the radially inner VA region and the separator layer 51 is thinner in the radially outer VB region. And it can be formed reliably.

(実施例及び比較例)
次いで、実施形態1,2に係る電池10及びその製造方法の効果を検証するために行った試験の結果について説明する。実施例1として、実施形態1に係る電池10(18650型、電池容量500mAh)を製造した。この電池10は、前述のように、セパレータ層51の厚みtが、捲回型電極体30の径方向内側VAに位置する部位ほど厚く、径方向外側VBに位置する部位ほど薄くされている。具体的には、セパレータ層51のうち、最も径方向内側VAに位置する端部51aの厚みt1がt1=30μmであり、最も径方向外側VBに位置する端部51bの厚みt2がt2=25μmである。なお、負極板41の長手方向NYの寸法La(セパレータ層の長手方向の寸法)はLa=1000mmであり、正極板31の長手方向の寸法は990mmである。
(Examples and Comparative Examples)
Next, the results of tests performed to verify the effects of the battery 10 and the manufacturing method thereof according to Embodiments 1 and 2 will be described. As Example 1, a battery 10 (18650 type, battery capacity 500 mAh) according to Embodiment 1 was manufactured. In the battery 10, as described above, the thickness t of the separator layer 51 is thicker at a portion located on the radially inner side VA of the wound electrode body 30 and thinner at a portion located on the radially outer side VB. Specifically, in the separator layer 51, the thickness t1 of the end portion 51a positioned at the innermost radial direction VA is t1 = 30 μm, and the thickness t2 of the end portion 51b positioned at the outermost radial direction VB is t2 = 25 μm. It is. The dimension La in the longitudinal direction NY of the negative electrode plate 41 (the dimension in the longitudinal direction of the separator layer) is La = 1000 mm, and the dimension in the longitudinal direction of the positive electrode plate 31 is 990 mm.

また、実施例2に係る電池では、負極板の長手方向NYの寸法LaをLa=800mm、正極板の長手方向の寸法を790mmとした。また、負極板に形成するセパレータ層を、厚みtが捲回型電極体の径方向内側VAに位置する部位ほど厚く(最も径方向内側VAに位置する部位の厚みt1がt1=29μm)、径方向外側VBに位置する部位ほど薄くなる(最も径方向外側VBに位置する部位の厚みt2がt2=25μm)形態とした。
また、実施例3に係る電池では、負極板の長手方向NYの寸法LaをLa=1200mm、正極板の長手方向の寸法を1190mmとした。また、負極板に形成するセパレータ層を、厚みtが捲回型電極体の径方向内側VAに位置する部位ほど厚く(最も径方向内側VAに位置する部位の厚みt1がt1=31μm)、径方向外側VBに位置する部位ほど薄くなる(最も径方向外側VBに位置する部位の厚みt2がt2=25μm)形態とした。
In the battery according to Example 2, the dimension La in the longitudinal direction NY of the negative electrode plate was La = 800 mm, and the dimension in the longitudinal direction of the positive electrode plate was 790 mm. Further, the separator layer formed on the negative electrode plate is thicker at the portion where the thickness t is located on the radially inner side VA of the wound electrode body (the thickness t1 of the portion located on the innermost radial direction VA is t1 = 29 μm), and the diameter The portion positioned on the outer side VB is thinner (the thickness t2 of the portion positioned on the outermost radial direction VB is t2 = 25 μm).
In the battery according to Example 3, the dimension La in the longitudinal direction NY of the negative electrode plate was La = 1200 mm, and the dimension in the longitudinal direction of the positive electrode plate was 1190 mm. Further, the thickness of the separator layer formed on the negative electrode plate is thicker in the portion where the thickness t is located on the radially inner side VA of the wound electrode body (the thickness t1 of the portion located on the innermost radial direction VA is t1 = 31 μm). The portion positioned on the outer side VB is thinner (the thickness t2 of the portion positioned on the outermost radial direction VB is t2 = 25 μm).

一方、比較例1に係る電池では、セパレータ層の厚みtを、捲回型電極体の径方向VYで場所によらず一定の厚み(具体的には25μm)とした。それ以外は、実施例1(実施形態1)に係る電池10と同様とした。   On the other hand, in the battery according to Comparative Example 1, the thickness t of the separator layer was set to a constant thickness (specifically 25 μm) regardless of the location in the radial direction VY of the wound electrode body. Otherwise, the battery 10 was the same as that of Example 1 (Embodiment 1).

Figure 2014107035
Figure 2014107035

そして、実施例1〜3及び比較例1に係る各電池について、「過充電試験」を行って、漏れ電流及び電池の最高温度をそれぞれ求めた。具体的には、5Cの電流値(2500mA)で電池電圧が10Vとなるまで、各電池に過充電した。過充電になると電解液の分解などに伴って内部放電が起こるので、電池電圧が10Vから5V程度まで一旦低下する。一方、電流は流れ続けるので、電池の発熱が続き、電池温度が上昇し続ける。その後、電池温度が高くなると、セパレータが溶融して自身の空孔を塞ぎ始めるので、セパレータを介した電池反応が急に生じなくなる(電流が急に殆ど流れなくなる)或いは電池反応が急に少なくなる(電流が急に少なくなる)。その一方で、5V程度であった電池電圧が10V程度にまで回復する。この過充電試験では、電池電圧が10V程度に回復してから5分経過した後に電流値を測定し、これを漏れ電流(mA)とした。また、電池電圧が10Vに回復してから電池の温度が下降傾向となるまで1秒間隔で電池の温度を測定し、その期間の電池の最高温度(℃)を求めた。その結果を表1に示す。   And about each battery which concerns on Examples 1-3 and Comparative Example 1, the "overcharge test" was done and the leakage current and the maximum temperature of the battery were calculated | required, respectively. Specifically, each battery was overcharged until the battery voltage reached 10 V at a current value of 5 C (2500 mA). When the battery is overcharged, internal discharge occurs with the decomposition of the electrolytic solution, and the battery voltage temporarily decreases from 10V to about 5V. On the other hand, since the current continues to flow, the battery continues to generate heat and the battery temperature continues to rise. After that, when the battery temperature rises, the separator melts and begins to block its own vacancies, so that the battery reaction via the separator does not suddenly occur (current suddenly stops almost flowing) or the battery reaction suddenly decreases. (The current suddenly decreases). On the other hand, the battery voltage, which was about 5V, recovers to about 10V. In this overcharge test, the current value was measured 5 minutes after the battery voltage recovered to about 10 V, and this was taken as the leakage current (mA). Further, the battery temperature was measured at intervals of 1 second until the battery temperature tended to decrease after the battery voltage recovered to 10 V, and the maximum battery temperature (° C.) during that period was determined. The results are shown in Table 1.

表1から判るように、比較例1に係る電池では、漏れ電流が大きく300mAであり、また、電池の最高温度が高く201℃であった(判定は不良で「×」)。その理由は、以下である。即ち、前述のように、捲回型電極体は、径方向内側VAの部位ほど熱がこもり易いため、径方向内側VAの部位ほど早期に温度上昇しかつ高温に、径方向外側VBの部位ほど温度上昇が遅れかつ低温になる。このため、上述の過充電試験で捲回型電極体が異常発熱したときに、セパレータのうち径方向内側VAに位置する部位ほど、早期に所定温度以上になり溶融して空孔を塞ぐ。一方、セパレータのうち径方向外側VBに位置する部位ほど、所定温度以上になるまでに相対的に時間が掛かる。このため、セパレータが溶融して空孔を塞ぐまでに相対的に時間が掛かる。従って、前述のように電池反応は急に少なくなるものの、未だ閉孔できていない径方向外側VBの部位を介して電池反応が継続するので、比較的大きな漏れ電流が流れたと考えられる。また、閉孔できていない部位に電流が集中し、捲回型電極体が更に発熱して高温になったと考えられる。   As can be seen from Table 1, the battery according to Comparative Example 1 had a large leakage current of 300 mA and the highest battery temperature was 201 ° C. (determination was poor and “x”). The reason is as follows. That is, as described above, in the wound electrode body, the heat is more likely to be accumulated in the radially inner VA portion, so that the temperature rises earlier in the radially inner VA portion and the temperature is higher in the radially outer VB portion. The temperature rise is delayed and the temperature becomes low. For this reason, when the wound electrode body heats up abnormally in the above-described overcharge test, the portion located on the radially inner side VA of the separator is heated to a predetermined temperature or higher and melts to close the holes. On the other hand, it takes a relatively long time to reach a predetermined temperature or higher as the portion located on the radially outer side VB of the separator. For this reason, it takes a relatively long time for the separator to melt and close the holes. Therefore, although the battery reaction suddenly decreases as described above, it is considered that a relatively large leakage current flows because the battery reaction continues through the portion of the radially outer side VB that has not been closed. In addition, it is considered that the current concentrated on the part where the hole was not closed, and the wound electrode body further generated heat and became high temperature.

これに対し、実施例1〜3に係る各電池では、漏れ電流がごく小さい2〜5mAであり、また、電池の最高温度が110〜120℃の低い値であった(判定は良好で「○」)。その理由は、以下である。これらの電池では、セパレータ層51等の厚みtが、捲回型電極体の径方向内側VAに位置する部位ほど厚く、径方向外側VBに位置する部位ほど薄くされている。このため、前述の過充電試験で捲回型電極体が異常発熱したときに、径方向内側VAの部位ほど早期に所定温度に達するが、セパレータのうち径方向内側VAに位置する部位は厚みが厚いため、セパレータが厚み方向全体にわたって溶融して空孔が塞がれるまでに、時間を要する。一方、捲回型電極体の径方向外側VBの部位ほど相対的に所定温度に達するのが遅くなるものの、セパレータのうち径方向外側VBに位置する部位は厚みが薄いため、セパレータが厚み方向全体にわたって溶融して空孔が塞がれるまでの時間が短くて済む。従って、過充電で捲回型電極体が異常発熱したときに、閉孔のタイミングを径方向で揃えることができた。よって、前述のように電池反応が急に生じなくなった(漏れ電流が殆ど流れなかった)と考えられる。また、捲回型電極体が更に発熱して高温になるのを適切に抑制できたと考えられる。   On the other hand, in each battery according to Examples 1 to 3, the leakage current was 2 to 5 mA, and the maximum temperature of the battery was a low value of 110 to 120 ° C. "). The reason is as follows. In these batteries, the thickness t of the separator layer 51 and the like is thicker at a portion located on the radially inner side VA of the wound electrode body and thinner at a portion located on the radially outer side VB. For this reason, when the wound electrode body abnormally generates heat in the overcharge test described above, the temperature reaches the predetermined temperature earlier in the radially inner VA region, but the portion of the separator located in the radially inner VA has a thickness. Since it is thick, it takes time for the separator to melt throughout the thickness direction and to close the pores. On the other hand, although the portion of the wound electrode body radially outside VB relatively slowly reaches a predetermined temperature, the portion of the separator located on the radially outer side VB is thin, so the separator is entirely in the thickness direction. It takes only a short time until the holes are melted and the holes are closed. Therefore, when the wound electrode body abnormally generated heat due to overcharging, the timing of closing the holes could be aligned in the radial direction. Therefore, it is considered that the battery reaction does not suddenly occur as described above (leakage current hardly flows). Moreover, it is thought that it was able to appropriately suppress the wound electrode body from further generating heat and becoming high temperature.

次に、実施例4として、実施例1(実施形態1)と同様にして負極板41を製造した。即ち、グラビア塗工装置100を用いて、絶縁ペースト層51pを負極板41上に塗布した。このグラビア塗工装置100のグラビアロール110の外周表面110aは、周方向SHの一方側SAから他方側SBに進むにつれて、保持される絶縁ペーストZPの量が徐々に少なくなる凹凸パターン111を有する。具体的には、外周表面110aの単位面積当たりのセル112の容量が、周方向SHの一方側SAから他方側SBに進むにつれて、最大(100cm3/m2 )から最小(90cm3/m2 )まで徐々に小さくされている。このようなグラビアロール110を用いることで、前述のように、厚みtが負極板41の一方側NAに位置する部位ほど厚く(最内側で30μm)、他方側NBに位置する部位ほど薄くなる(最外側で25μm)セパレータ層51を形成できた。 Next, as Example 4, a negative electrode plate 41 was manufactured in the same manner as Example 1 (Embodiment 1). That is, the insulating paste layer 51 p was applied on the negative electrode plate 41 using the gravure coating apparatus 100. The outer peripheral surface 110a of the gravure roll 110 of the gravure coating apparatus 100 has a concavo-convex pattern 111 in which the amount of the insulating paste ZP to be held gradually decreases as it advances from one side SA in the circumferential direction SH to the other side SB. Specifically, as the capacity of the cell 112 per unit area of the outer peripheral surface 110a proceeds from one side SA in the circumferential direction SH to the other side SB, the maximum (100 cm 3 / m 2 ) to the minimum (90 cm 3 / m 2). ) Is gradually reduced until. By using such a gravure roll 110, as described above, the thickness t is thicker at a portion located on one side NA of the negative electrode plate 41 (30 μm at the innermost side) and thinner at a portion located on the other side NB ( Separator layer 51 was able to be formed.

Figure 2014107035
Figure 2014107035

一方、比較例2では、グラビアロールの外周表面の凹凸パターンを、周方向SHの全体にわたり、外周表面に保持される絶縁ペーストZPの量が一定となる形態とした。具体的には、各々のセルの容積を等しくし、外周表面の全体にわたり単位面積当たりのセルの容積を等しく90cm3/m2 とした。このグラビアロールを用いた結果、セパレータ層の厚みtは、負極板の長手方向NYで場所によらず一定厚み(具体的には25μm)となった。なお、前述の比較例1に係る電池は、この負極板を用いて製造している。 On the other hand, in Comparative Example 2, the concavo-convex pattern on the outer peripheral surface of the gravure roll has a form in which the amount of the insulating paste ZP held on the outer peripheral surface is constant over the entire circumferential direction SH. Specifically, the volume of each cell was made equal, and the volume of the cell per unit area was made equal to 90 cm 3 / m 2 over the entire outer peripheral surface. As a result of using this gravure roll, the thickness t of the separator layer became a constant thickness (specifically 25 μm) regardless of the location in the longitudinal direction NY of the negative electrode plate. The battery according to Comparative Example 1 described above is manufactured using this negative electrode plate.

次に、実施例5として、実施形態2と同様にして負極板41を製造した。即ち、グラビア塗工装置200を用いて、絶縁ペーストZPを負極板41上に塗布した。具体的には、外周表面210aの凹凸パターン211を、グラビアロール210の周方向SHに対して斜めに延びる(θ=45°で交差する)多数の凹溝212が並んだ形態とした(表3の「凹凸パターン」においては「斜線」と示す)。外周表面210aの単位面積当たりの凹溝212の容量は、場所によらず一定である。また、ポンプ245で絶縁ペーストZPに掛かる液圧Pzを、最大3.2kPaから最小2.1kPaまで徐々に減少させて、外周表面210aに保持される絶縁ペーストZPの量を徐々に減少させた。これにより、前述のように、厚みtが負極板41の一方側NAに位置する部位ほど厚く(最内側で30μm)、他方側NBに位置する部位ほど薄くなる(最外側で25μm)セパレータ層51を形成できた。   Next, as Example 5, a negative electrode plate 41 was manufactured in the same manner as in Embodiment 2. That is, the insulating paste ZP was applied on the negative electrode plate 41 using the gravure coating apparatus 200. Specifically, the concavo-convex pattern 211 on the outer peripheral surface 210a has a configuration in which a large number of concave grooves 212 extending obliquely with respect to the circumferential direction SH of the gravure roll 210 (intersecting at θ = 45 °) are arranged (Table 3). In the “concave / convex pattern” in FIG. The capacity of the concave groove 212 per unit area of the outer peripheral surface 210a is constant regardless of the location. Further, the hydraulic pressure Pz applied to the insulating paste ZP by the pump 245 was gradually decreased from a maximum of 3.2 kPa to a minimum of 2.1 kPa, and the amount of the insulating paste ZP held on the outer peripheral surface 210a was gradually decreased. Thereby, as described above, the thickness t is thicker at the portion located on the one side NA of the negative electrode plate 41 (30 μm at the innermost side) and thinner at the portion located at the other side NB (25 μm at the outermost side). Could be formed.

Figure 2014107035
Figure 2014107035

また、実施例6として、グラビアロールの凹凸パターンを、グラビアロールの周方向SHに対して斜めに延びる(θ=45°で交差する)多数の凹溝が一定間隔で並ぶと共に、これらの凹溝と直交すると共に、グラビアロールの周方向SHに対して斜めに延びる(θ=45°で交差する)多数の凹溝が一定間隔で並んだ形態とした(表3の「凹凸パターン」においては「逆格子状」と示す)。外周表面の単位面積当たりの凹溝の容量は、
場所によらず一定で81.2cm3/m2 である。また、ポンプで絶縁ペーストZPに掛
かる液圧Pzを、最大3.1kPaから最小2.1kPaまで徐々に減少させて、外周表面に保持される絶縁ペーストZPの量を徐々に減少させた。それ以外は、実施例5と同様とした。その結果、厚みtが負極板41の一方側NAに位置する部位ほど厚く(最内側で29μm)、他方側NBに位置する部位ほど薄くなる(最外側で25μm)セパレータ層を形成できた。
Further, as Example 6, the concave-convex pattern of the gravure roll is arranged with a large number of concave grooves extending obliquely (intersecting at θ = 45 °) with respect to the circumferential direction SH of the gravure roll, and these concave grooves And a plurality of concave grooves extending at an angle with respect to the circumferential direction SH of the gravure roll (intersecting at θ = 45 °) are arranged at regular intervals (in the “concavo-convex pattern” in Table 3, “ Indicated as "reciprocal lattice"). The capacity of the groove per unit area of the outer peripheral surface is
It is 81.2 cm 3 / m 2 which is constant regardless of the place. Further, the hydraulic pressure Pz applied to the insulating paste ZP by the pump was gradually decreased from the maximum 3.1 kPa to the minimum 2.1 kPa, and the amount of the insulating paste ZP retained on the outer peripheral surface was gradually decreased. Otherwise, it was the same as Example 5. As a result, it was possible to form a separator layer having a thickness t that is thicker at a portion located on one side NA of the negative electrode plate 41 (29 μm at the innermost side) and thinner at a portion located at the other side NB (25 μm at the outermost side).

一方、比較例3では、実施形態2のグラビア塗工装置200を用いたが、絶縁ペーストZPに掛かる液圧Pzをポンプ245で一定(Pz=2.1kPa)として、絶縁ペーストZPを負極板41上に塗布した。この場合、ドクターブレード220で掻き取られた後の外周表面210aに保持される絶縁ペーストZPが一定となるので、絶縁ペースト層の厚みも負極板41の長手方向NYで場所によらず一定となる。従って、セパレータ層の厚みtは、負極板41の長手方向NYで場所によらず一定厚み(具体的には25μm)にしかならなかった。   On the other hand, in the comparative example 3, the gravure coating apparatus 200 of the second embodiment is used. However, the hydraulic pressure Pz applied to the insulating paste ZP is kept constant (Pz = 2.1 kPa) with the pump 245, and the insulating paste ZP is applied to the negative electrode plate 41. It was applied on top. In this case, since the insulating paste ZP retained on the outer peripheral surface 210a after being scraped off by the doctor blade 220 is constant, the thickness of the insulating paste layer is also constant regardless of the location in the longitudinal direction NY of the negative electrode plate 41. . Therefore, the thickness t of the separator layer was only a constant thickness (specifically 25 μm) regardless of the location in the longitudinal direction NY of the negative electrode plate 41.

また、比較例4では、グラビアロールの凹凸パターンを、平面視矩形状の凹部からなる多数のセルを格子状に配置したパターンとした(表3の「凹凸パターン」においては「格子状」と示す)。外周表面の単位面積当たりのセルの容量は、場所によらず一定で70.1cm3/m2 である。また、ポンプで絶縁ペーストZPに掛かる液圧Pzを、最大3.1kPaから最小2.0kPaまで徐々に減少させた。それ以外は、実施例5と同様とした。 Moreover, in Comparative Example 4, the uneven pattern of the gravure roll was a pattern in which a large number of cells each having a concave portion having a rectangular shape in plan view were arranged in a grid pattern (in the “uneven pattern” in Table 3, “lattice pattern” is shown). ). The capacity of the cell per unit area on the outer peripheral surface is 70.1 cm 3 / m 2 constant regardless of the location. Further, the hydraulic pressure Pz applied to the insulating paste ZP by the pump was gradually decreased from a maximum of 3.1 kPa to a minimum of 2.0 kPa. Otherwise, it was the same as Example 5.

この比較例4の場合、ポンプでグラビアロールとドクターブレードとの間に貯められた絶縁ペーストZPに液圧Pzを掛けても、各々独立したセルに保持された絶縁ペーストZPは周方向SHに移動できない。このため、ドクターブレードよりもグラビアロールの回転進行方向側RAの外周表面に絶縁ペーストZPが押し出されない。従って、この液圧Pzを増減させても、負極板41上に転写される絶縁ペーストZPの量は一定で、絶縁ペースト層の厚みも負極板41の長手方向NYで場所によらず一定となる。その結果、セパレータ層の厚みtは、負極板41の長手方向NYで場所によらずほぼ一定厚み(具体的には24〜25μm)にしかならなかった。   In the case of this comparative example 4, even if the hydraulic pressure Pz is applied to the insulating paste ZP stored between the gravure roll and the doctor blade by the pump, the insulating paste ZP held in each independent cell moves in the circumferential direction SH. Can not. For this reason, the insulating paste ZP is not pushed out to the outer peripheral surface of the rotation direction side RA of the gravure roll rather than the doctor blade. Therefore, even if the hydraulic pressure Pz is increased or decreased, the amount of the insulating paste ZP transferred onto the negative electrode plate 41 is constant, and the thickness of the insulating paste layer is also constant in the longitudinal direction NY of the negative electrode plate 41 regardless of the location. . As a result, the thickness t of the separator layer was only substantially constant (specifically, 24 to 25 μm) regardless of the location in the longitudinal direction NY of the negative electrode plate 41.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,2では、捲回型電極体として、円筒状の捲回型電極体30を例示したが、これに限らず、例えば扁平状の捲回型電極体とすることもできる。即ち、帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に互いに重ねて、軸線回りに扁平状に捲回した捲回型電極体としてもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the first and second embodiments, the cylindrical wound electrode body 30 is exemplified as the wound electrode body. However, the present invention is not limited to this, and for example, a flat wound electrode body may be used. That is, as a wound electrode body in which a belt-like positive electrode plate and a belt-like negative electrode plate are alternately overlapped with each other via two separators made of a belt-like porous thermoplastic resin, and wound in a flat shape around an axis. Also good.

例えば、実施形態1では、グラビアロール110の凹凸パターン111を、周方向SHの一方側SAから他方側SBに進むにつれて、外周表面110aに保持される絶縁ペーストZPの量が少なくなる形態とした。しかし、逆に、周方向SHの一方側SAから他方側SBに進むにつれて、外周表面に保持される絶縁ペーストZPの量が多くなる形態に、凹凸パターンを形成してもよい。この場合、塗工工程において、負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて厚くなる形態に、絶縁ペースト層が形成される。そして、負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて厚みtが厚くなるセパレータ層が形成される。このようなセパレータ層を有する負極板を用いても、径方向内側VAの部位ほどセパレータ層が厚く、径方向外側VBの部位ほどセパレータ層が薄い捲回型電極体を形成できる。   For example, in the first embodiment, the uneven pattern 111 of the gravure roll 110 is configured such that the amount of the insulating paste ZP held on the outer peripheral surface 110a decreases as it advances from the one side SA in the circumferential direction SH to the other side SB. However, conversely, the concavo-convex pattern may be formed in a form in which the amount of the insulating paste ZP held on the outer peripheral surface increases as it proceeds from the one side SA in the circumferential direction SH to the other side SB. In this case, in the coating process, the insulating paste layer is formed so as to increase in thickness as it proceeds from one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. And the separator layer whose thickness t becomes thick is formed as it progresses from the one side NA of the longitudinal direction NY of the negative electrode plate 41 to the other side NB. Even when such a negative electrode plate having a separator layer is used, it is possible to form a wound electrode body in which the separator layer is thicker in the radially inner VA region and the separator layer is thinner in the radially outer VB region.

また、実施形態2の塗工工程では、ポンプ245でグラビアロール210とドクターブレード220との間に貯められた絶縁ペーストZPに掛かる液圧Pzを徐々に低くして、ドクターブレード220で掻き取られた後の外周表面210aに保持される絶縁ペーストZPの量を徐々に減少させた。しかし、逆に、絶縁ペーストZPに掛かる液圧Pzを徐々に高くして、外周表面210aに保持される絶縁ペーストZPの量を徐々に増加させてもよい。この場合、負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて厚くなる形態に、絶縁ペースト層が形成される。そして、負極板41の長手方向NYの一方側NAから他方側NBに進むにつれて厚みtが厚くなるセパレータ層が形成される。このようなセパレータ層を有する負極板を用いても、径方向内側VAの部位ほどセパレータ層が厚く、径方向外側VBの部位ほどセパレータ層が薄い捲回型電極体を形成できる。   In the coating process of the second embodiment, the hydraulic pressure Pz applied to the insulating paste ZP stored between the gravure roll 210 and the doctor blade 220 by the pump 245 is gradually lowered and scraped off by the doctor blade 220. After that, the amount of the insulating paste ZP held on the outer peripheral surface 210a was gradually reduced. However, conversely, the hydraulic pressure Pz applied to the insulating paste ZP may be gradually increased to gradually increase the amount of the insulating paste ZP held on the outer peripheral surface 210a. In this case, the insulating paste layer is formed in a form that becomes thicker from the one side NA in the longitudinal direction NY of the negative electrode plate 41 to the other side NB. And the separator layer whose thickness t becomes thick is formed as it progresses from the one side NA of the longitudinal direction NY of the negative electrode plate 41 to the other side NB. Even when such a negative electrode plate having a separator layer is used, it is possible to form a wound electrode body in which the separator layer is thicker in the radially inner VA region and the separator layer is thinner in the radially outer VB region.

10 電池
30 捲回型電極体
31 正極板
41 負極板(被塗布電極板)
41a,41b (負極板の)主面
51 セパレータ層(セパレータ)
51p 絶縁ペースト層
100,200 グラビア塗工装置
110,210 グラビアロール
110a,210a (グラビアロールの)外周表面
111,211 (外周表面の)凹凸パターン
112 セル
212 凹溝
120,220 ドクターブレード
130,230 液槽
245 ポンプ
250 圧力計
AX (捲回型電極体の)捲回軸
VY (捲回型電極体の)径方向
VA (捲回型電極体の)径方向内側
VB (捲回型電極体の)径方向外側
NY (負極板の)長手方向
NA (負極板の)長手内側方向(一方側)
NB (負極板の)長手外側方向(他方側)
TY (負極板の)厚み方向
t (セパレータ層の)厚み
t1 (セパレータ層の長手内側方向の端の)厚み
t2 (セパレータ層の長手外側方向の端の)厚み
ZP 絶縁ペースト
La (負極板の長手方向の)寸法
Lb (グラビアロールの)外周長
SH (グラビアロールの)周方向
SA (周方向の)一方側
SB (周方向の)他方側
WH (グラビアロールの)幅方向
RA 回転進行方向側
10 Battery 30 Winding type electrode body 31 Positive electrode plate 41 Negative electrode plate (electrode plate to be coated)
41a, 41b (negative electrode plate) main surface 51 Separator layer (separator)
51p Insulating paste layer 100, 200 Gravure coating device 110, 210 Gravure roll 110a, 210a Peripheral surface 111, 211 (outer surface) uneven pattern 112 Cell 212 Concave groove 120, 220 Doctor blade 130, 230 Liquid Tank 245 Pump 250 Pressure gauge AX Winding axis VY (of wound electrode body) Radial direction VA (of wound electrode body) Radial inner side VB (of wound electrode body) Radially outer side NY (of negative electrode plate) longitudinal direction NA (of negative electrode plate) longitudinal inner side direction (one side)
NB Longitudinal direction (the other side) of the negative electrode plate
TY (negative electrode plate) thickness direction t (separator layer) thickness t1 (separator layer end in the longitudinal inner direction) thickness t2 (separator layer end in the longitudinal outer direction) thickness ZP insulating paste La (negative electrode plate longitudinal) Dimension Lb (in the direction of gravure roll) SH (in the direction of gravure roll) circumferential direction SA (in the direction of gravure roll) One side SB (in the circumferential direction) SB (in the circumferential direction) WH in the width direction RA (in the direction of gravure roll)

Claims (6)

帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備える電池であって、
前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる
電池。
A battery comprising a wound electrode body in which a belt-like positive electrode plate and a belt-like negative electrode plate are alternately overlapped and wound via two separators made of a belt-like porous thermoplastic resin,
Each of the separators is a battery that is thicker at a portion located on the radially inner side of the wound electrode body and thinner at a portion located on the radially outer side.
請求項1に記載の電池であって、
前記セパレータは、
それぞれ、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布形成されたセパレータ層である
電池。
The battery according to claim 1,
The separator is
Each battery is a separator layer coated and formed on the main surface of an electrode plate to be applied, which is at least one of the positive electrode plate and the negative electrode plate.
帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備え、
前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる
電池の製造方法であって、
グラビアロールを備えるグラビア塗工装置を用いて、熱可塑性樹脂粒子を溶媒に分散させた絶縁ペーストを、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布し、絶縁ペースト層を形成する塗工工程と、
前記絶縁ペースト層を乾燥させて、前記セパレータであるセパレータ層を形成する乾燥工程と、を備え、
前記グラビアロールは、
その外周長が、前記被塗布電極板の長手方向の寸法以上の寸法を有し、
その外周表面は、少なくとも前記被塗布電極板の長手方向の寸法以上の範囲について、前記グラビアロールの周方向の一方側から他方側に進むにつれて、この外周表面に保持される前記絶縁ペーストの量が多く又は少なくなる凹凸パターンを有し、
前記塗工工程は、
前記グラビアロールにより、前記絶縁ペースト層の厚みが前記被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に、前記絶縁ペースト層を形成する工程である
電池の製造方法。
A wound electrode body comprising a belt-like positive electrode plate and a belt-like negative electrode plate, which are wound in an alternating manner through two separators made of a belt-like porous thermoplastic resin,
Each of the separators is a battery manufacturing method in which the portion located on the radially inner side of the wound electrode body is thicker and the portion located on the radially outer side is thinner,
Using a gravure coating apparatus equipped with a gravure roll, an insulating paste in which thermoplastic resin particles are dispersed in a solvent is applied on the main surface of at least one of the positive electrode plate and the negative electrode plate, A coating process for forming an insulating paste layer;
Drying the insulating paste layer to form a separator layer that is the separator, and
The gravure roll is
The outer peripheral length has a dimension greater than or equal to the longitudinal dimension of the coated electrode plate,
The outer peripheral surface has an amount of the insulating paste held on the outer peripheral surface as it proceeds from one side to the other side in the circumferential direction of the gravure roll at least in the range of the dimension in the longitudinal direction of the electrode plate to be coated. Have more or less uneven patterns,
The coating process includes
A method for producing a battery, which is a step of forming the insulating paste layer in a form in which the thickness of the insulating paste layer is increased or decreased from one side in the longitudinal direction of the coated electrode plate to the other side by the gravure roll. .
請求項3に記載の電池の製造方法であって、
前記外周表面の前記凹凸パターンは、
互いに独立した多数のセルで構成され、前記外周表面の単位面積当たりの前記セルの容量が、前記グラビアロールの周方向の一方側から他方側に進むにつれて大きく又は小さくなる形態である
電池の製造方法。
A method of manufacturing a battery according to claim 3,
The uneven pattern on the outer peripheral surface is:
A battery manufacturing method comprising a large number of cells independent from each other, wherein the capacity of the cell per unit area of the outer peripheral surface increases or decreases from one side to the other side in the circumferential direction of the gravure roll .
請求項3または請求項4に記載の電池の製造方法であって、
前記外周表面の前記凹凸パターンは、レーザ彫刻により形成されてなる
電池の製造方法。
A method of manufacturing a battery according to claim 3 or claim 4,
The method for manufacturing a battery, wherein the uneven pattern on the outer peripheral surface is formed by laser engraving.
帯状の正極板と帯状の負極板とを帯状で多孔質の熱可塑性樹脂からなる2つのセパレータを介して交互に重ねて捲回した捲回型電極体を備え、
前記セパレータは、それぞれ、前記捲回型電極体の径方向内側に位置する部位ほど厚く、径方向外側に位置する部位ほど薄くされてなる
電池の製造方法であって、
グラビアロールを備えるグラビア塗工装置を用いて、熱可塑性樹脂粒子を溶媒に分散させた絶縁ペーストを、前記正極板及び前記負極板の少なくともいずれかの被塗布電極板の主面上に塗布し、絶縁ペースト層を形成する塗工工程と、
前記絶縁ペースト層を乾燥させて、前記セパレータであるセパレータ層を形成する乾燥工程と、を備え、
前記グラビアロールは、その外周表面に、前記グラビアロールの幅方向及び周方向のうち少なくとも周方向に延びる多数の凹溝が一定間隔で並んだ凹凸パターンを有し、
前記グラビア塗工装置は、
前記外周表面上の前記絶縁ペーストを掻き取るドクターブレードと、
前記グラビアロールと前記ドクターブレードとの間に貯められた前記絶縁ペーストに掛かる液圧を変化させるポンプと、を備え、
前記塗工工程は、
前記ポンプで前記液圧を変化させて、前記ドクターブレードで掻き取られた後の前記外周表面に保持される前記絶縁ペーストの量を増加又は減少させ、
前記絶縁ペースト層の厚みが前記被塗布電極板の長手方向の一方側から他方側に進むにつれて厚く又は薄くなる形態に、前記絶縁ペースト層を形成する工程である
電池の製造方法。
A wound electrode body comprising a belt-like positive electrode plate and a belt-like negative electrode plate, which are wound in an alternating manner through two separators made of a belt-like porous thermoplastic resin,
Each of the separators is a battery manufacturing method in which the portion located on the radially inner side of the wound electrode body is thicker and the portion located on the radially outer side is thinner,
Using a gravure coating apparatus equipped with a gravure roll, an insulating paste in which thermoplastic resin particles are dispersed in a solvent is applied on the main surface of at least one of the positive electrode plate and the negative electrode plate, A coating process for forming an insulating paste layer;
Drying the insulating paste layer to form a separator layer that is the separator, and
The gravure roll has a concavo-convex pattern in which a large number of concave grooves extending at least in the circumferential direction among the width direction and the circumferential direction of the gravure roll are arranged at regular intervals on the outer peripheral surface thereof,
The gravure coating apparatus is
A doctor blade that scrapes off the insulating paste on the outer peripheral surface;
A pump for changing a hydraulic pressure applied to the insulating paste stored between the gravure roll and the doctor blade,
The coating process includes
Changing the hydraulic pressure with the pump, increasing or decreasing the amount of the insulating paste retained on the outer peripheral surface after being scraped with the doctor blade,
A method for manufacturing a battery, which is a step of forming the insulating paste layer in a form in which the thickness of the insulating paste layer becomes thicker or thinner as it proceeds from one side in the longitudinal direction of the coated electrode plate to the other side.
JP2012256973A 2012-11-23 2012-11-23 Battery manufacturing method Active JP5974853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256973A JP5974853B2 (en) 2012-11-23 2012-11-23 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256973A JP5974853B2 (en) 2012-11-23 2012-11-23 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014107035A true JP2014107035A (en) 2014-06-09
JP5974853B2 JP5974853B2 (en) 2016-08-23

Family

ID=51028368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256973A Active JP5974853B2 (en) 2012-11-23 2012-11-23 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5974853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064361A (en) * 2014-09-25 2016-04-28 株式会社豊田自動織機 Cleaning device for power storage apparatus and method of manufacturing the power storage apparatus
KR20180037121A (en) 2016-10-03 2018-04-11 도요타지도샤가부시키가이샤 Separator-integrated electrode plate and capacitor element
JP2018060638A (en) * 2016-10-04 2018-04-12 トヨタ自動車株式会社 Method of manufacturing secondary battery
DE102017126424A1 (en) 2016-11-17 2018-05-17 Toyota Jidosha Kabushiki Kaisha Separator integrated electrode plate, electrode plate pair, stacked current storage element, and method of manufacturing a separator integrated electrode plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272473A (en) * 1986-05-21 1987-11-26 Toshiba Corp Nonaqueous solvent secondary battery
JPH0416264A (en) * 1990-05-10 1992-01-21 Konica Corp Apparatus and method for coating cards
JPH10134794A (en) * 1996-10-31 1998-05-22 Japan Storage Battery Co Ltd Cylindrical sealed lead-acid battery
JP2004174932A (en) * 2002-11-27 2004-06-24 National Printing Bureau Intaglio cylinder making method, gravure intaglio printing method and its print
JP2011216295A (en) * 2010-03-31 2011-10-27 Panasonic Corp Cylindrical nonaqueous electrolyte secondary battery
WO2011155060A1 (en) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 Lithium secondary battery and production method for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272473A (en) * 1986-05-21 1987-11-26 Toshiba Corp Nonaqueous solvent secondary battery
JPH0416264A (en) * 1990-05-10 1992-01-21 Konica Corp Apparatus and method for coating cards
JPH10134794A (en) * 1996-10-31 1998-05-22 Japan Storage Battery Co Ltd Cylindrical sealed lead-acid battery
JP2004174932A (en) * 2002-11-27 2004-06-24 National Printing Bureau Intaglio cylinder making method, gravure intaglio printing method and its print
JP2011216295A (en) * 2010-03-31 2011-10-27 Panasonic Corp Cylindrical nonaqueous electrolyte secondary battery
WO2011155060A1 (en) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 Lithium secondary battery and production method for same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064361A (en) * 2014-09-25 2016-04-28 株式会社豊田自動織機 Cleaning device for power storage apparatus and method of manufacturing the power storage apparatus
KR20180037121A (en) 2016-10-03 2018-04-11 도요타지도샤가부시키가이샤 Separator-integrated electrode plate and capacitor element
US10665843B2 (en) 2016-10-03 2020-05-26 Toyota Jidosha Kabushiki Kaisha Separator-integrated electrode plate and capacitor element
JP2018060638A (en) * 2016-10-04 2018-04-12 トヨタ自動車株式会社 Method of manufacturing secondary battery
DE102017126424A1 (en) 2016-11-17 2018-05-17 Toyota Jidosha Kabushiki Kaisha Separator integrated electrode plate, electrode plate pair, stacked current storage element, and method of manufacturing a separator integrated electrode plate
US10644288B2 (en) 2016-11-17 2020-05-05 Toyota Jidosha Kabushiki Kaisha Separator-integrated electrode plate, electrode plate pair, stacked electric power storage element, and method of manufacturing separator-integrated electrode plate

Also Published As

Publication number Publication date
JP5974853B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP4854112B2 (en) Lithium ion battery and control method thereof
JP6568532B2 (en) Cylindrical electrochemical cell and method for producing cylindrical electrochemical cell
EP3522263B1 (en) Secondary cell
CN103250281B (en) The manufacture method of lithium rechargeable battery
WO2020103014A1 (en) Smart battery and lithium battery core thereof
JP5634372B2 (en) Power storage device cell
JP5590333B2 (en) Lithium ion secondary battery and its positive electrode
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP5974853B2 (en) Battery manufacturing method
JP2007200795A (en) Lithium ion secondary battery
JP2010009983A (en) Charging unevenness reduction method and manufacturing method of secondary battery
US20160226056A1 (en) Method for producing an electrochemical bundle of a lithium battery
JP5386983B2 (en) Bipolar electrode and bipolar battery using the same
CN111433966B (en) Nonaqueous electrolyte secondary battery
JPWO2018168628A1 (en) Non-aqueous electrolyte secondary battery
JP7321158B2 (en) Non-aqueous electrolyte secondary battery
WO2020004135A1 (en) Nonaqueous electrolyte secondary battery
JP2016126901A (en) Secondary battery
JP7317823B2 (en) Non-aqueous electrolyte secondary battery
JP2012129123A (en) Method for manufacturing lithium-ion secondary battery
JP2015179625A (en) Sheet lamination type lithium ion secondary battery
JP7263340B2 (en) Non-aqueous electrolyte secondary battery
JPWO2018173899A1 (en) Non-aqueous electrolyte secondary battery
JP2015053113A (en) Secondary battery
WO2016158398A1 (en) Rectangular secondary battery and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151