JP2014106133A - Target detection device, and target detection method - Google Patents

Target detection device, and target detection method Download PDF

Info

Publication number
JP2014106133A
JP2014106133A JP2012259557A JP2012259557A JP2014106133A JP 2014106133 A JP2014106133 A JP 2014106133A JP 2012259557 A JP2012259557 A JP 2012259557A JP 2012259557 A JP2012259557 A JP 2012259557A JP 2014106133 A JP2014106133 A JP 2014106133A
Authority
JP
Japan
Prior art keywords
target
distance
particles
detection
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259557A
Other languages
Japanese (ja)
Other versions
JP5985372B2 (en
Inventor
Kenji Shinoda
賢司 篠田
Masaru Sato
賢 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012259557A priority Critical patent/JP5985372B2/en
Publication of JP2014106133A publication Critical patent/JP2014106133A/en
Application granted granted Critical
Publication of JP5985372B2 publication Critical patent/JP5985372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To maintain a target detection probability in a low-SNR environment even when using a TBD algorithm.SOLUTION: A target detection device includes: an analysis processor 15 which uses a TBD algorithm to convert a reception detection signal of a radar reflection wave to cell reception signals per resolution unit of distance and frequency of an observation area and analyzes the distance, frequency, and speed of each cell: a correlation processor 16 which uses a particle filter to determine a target estimation point of a target distance and a target speed at the current time in accordance with the cell reception signals and the analysis processing result at the preceding observation and determines whether the target estimation point is in a transmission blanking period or not; and a detection processor 17 which obtains a wake of a target on the basis of the analysis result of the analysis processor 15 and the transmission blanking period determination result about the target estimation point, of the correlation processor 16.

Description

本実施形態は、飛翔体にて、レーダ装置を用いて目標の距離や方向を求める目標検出装置及び目標検出方法に関する。   The present embodiment relates to a target detection apparatus and a target detection method for obtaining a target distance and direction using a radar device in a flying object.

飛翔体に搭載するレーダ装置を用いた目標検出装置では、小型化の観点から簡素な構造となっており、レーダ反射波の受信信号をフーリエ変換し、予め設定したしきい値を超えたものを目標と判定する。   The target detection device using the radar device mounted on the flying object has a simple structure from the viewpoint of miniaturization, and the received signal of the radar reflected wave is Fourier-transformed so that it exceeds the preset threshold value. Judge the goal.

周知のように、レーダ装置にあっては、低SNR(Signal to Noise Ratio:信号対雑音比)環境下では、誤検出を避けるためにしきい値を高くする必要があり、目標成分がしきい値を超えない場合には、その目標を検出することができない。しきい値を下げると、目標以外の誤検出が増えてしまう。地上レーダ装置で動きの遅い目標であれば、観測時間を延ばすことでSNRを改善できるが、飛翔体では目標との速い距離変化が起きるためその効果が得られない。   As is well known, in a radar apparatus, in a low SNR (Signal to Noise Ratio) environment, it is necessary to increase the threshold value in order to avoid false detection, and the target component is the threshold value. If it does not exceed, the target cannot be detected. When the threshold value is lowered, false detections other than the target increase. If the target is a slow-moving target in the ground radar apparatus, the SNR can be improved by extending the observation time. However, the effect of the flying object cannot be obtained because a rapid distance change from the target occurs.

この問題を解決する手段としては、観測を複数回繰り返し、TBD(Track Before Detect)アルゴリズムを用いて距離や速度の変化に対応する方法が考案されている。これらの方法であれば、従来の飛翔体とほぼ同じハードウェア規模で目標を検出することができる。   As means for solving this problem, a method has been devised in which observation is repeated a plurality of times and a change in distance or speed is dealt with using a TBD (Track Before Detect) algorithm. With these methods, the target can be detected with almost the same hardware scale as that of a conventional flying object.

飛翔体搭載のレーダ装置では、速度検出範囲の広い高PRF(Pulse Repetition Frequency:パルス繰り返し周波数)を採用することがある。高PRFでは、送信パルスを目標の距離に対して短い間隔(PRI:Pulse Repetition Interval)で送信するため、一定のPRIでは送信するタイミングで目標からの反射波が返ってきてしまい、受信できない期間(送信ブランキング期間)が生じる。そこで、目標の相対距離に応じてPRIを切り替え、送信と反射波の受信のタイミングが重ならないようにしている。   In a radar apparatus mounted on a flying object, a high PRF (Pulse Repetition Frequency) having a wide speed detection range may be employed. In a high PRIF, a transmission pulse is transmitted at a short interval (PRI: Pulse Repetition Interval) with respect to a target distance. Therefore, in a certain PRI, a reflected wave from the target is returned at the transmission timing, and a period during which reception is not possible ( Transmission blanking period) occurs. Therefore, the PRI is switched according to the target relative distance so that the transmission timing and the reception timing of the reflected wave do not overlap.

しかしながら、TBDアルゴリズムを用いた微小目標検出では、観測時に目標の詳細な位置が分からないため、PRIを切り替えることができず、目標からの反射波が得られない期間ができてしまう。そのため、その間の目標検出の動作が不安定となり、その結果ノイズを誤検出したり、反射波が再び受信できるようになっても目標が検出できなかったりしてしまう。   However, in the minute target detection using the TBD algorithm, since the detailed position of the target is not known at the time of observation, the PRI cannot be switched, and a period in which a reflected wave from the target cannot be obtained. Therefore, the target detection operation during that time becomes unstable, and as a result, noise is erroneously detected, or even if the reflected wave can be received again, the target cannot be detected.

特開2010-261734号公報JP 2010-261734 A 特開2011-117845号公報JP 2011-117845 A

樋口、「粒子フィルタ」、電子情報通信学会誌、Vol.88、No.12、pp.989-994、2005年12月Higuchi, “Particle Filter”, IEICE Journal, Vol.88, No.12, pp.989-994, December 2005

以上のように、TBDアルゴリズムを用いて目標検出を行う場合には、観測時に目標の詳細な位置が分からないため、PRIを切り替えることができず、目標からの反射波が得られない期間ができてしまい、その間の目標検出の動作が不安定となり、その結果ノイズを誤検出したり、反射波が再び受信できるようになっても目標が検出できなかったりしてしまう。   As described above, when the target detection is performed using the TBD algorithm, since the detailed position of the target is not known at the time of observation, the PRI cannot be switched, and there is a period during which the reflected wave from the target cannot be obtained. Consequently, the target detection operation during that time becomes unstable, and as a result, noise is erroneously detected, or even if the reflected wave can be received again, the target cannot be detected.

本実施形態は上記の問題を解決するためになされたもので、TBDアルゴリズムが用いられている場合でも、低SNR環境下での目標の検出確率を維持することのできる目標検出装置及び目標検出方法を提供することを目的とする。   The present embodiment has been made to solve the above problem, and a target detection apparatus and a target detection method capable of maintaining the target detection probability in a low SNR environment even when the TBD algorithm is used. The purpose is to provide.

上記の課題を解決するために、本実施形態に係る目標検出装置は、レーダ反射波の受信検波信号について、TBD(Track Before Detect)アルゴリズムを用いて目標の検出を行う目標検出装置であって、前記受信検波信号を観測領域の距離及び周波数の分解能単位毎のセル受信信号に変換し、各セルの距離、周波数、速度を解析する解析処理手段と、前記セル受信信号と前回の観測時刻の解析処理結果から、粒子フィルタを用いて現在時刻の目標距離と目標速度の目標推定点を決定し、その目標推定点が送信ブランキング期間か否かを判定する相関処理手段と、前記解析処理手段の解析結果及び相関処理手段の目標推定点の送信ブランキング期間判定結果に基づいて前記目標の航跡を求める検出処理器とを具備する態様とする。   In order to solve the above problem, the target detection apparatus according to the present embodiment is a target detection apparatus that detects a target using a TBD (Track Before Detect) algorithm for a received detection signal of a radar reflected wave, The reception detection signal is converted into a cell reception signal for each resolution unit of distance and frequency in the observation region, and analysis processing means for analyzing the distance, frequency, and speed of each cell, and analysis of the cell reception signal and the previous observation time From the processing results, a target estimation point of the target distance and target speed at the current time is determined using a particle filter, and correlation processing means for determining whether or not the target estimation point is a transmission blanking period; and the analysis processing means And a detection processor that obtains the track of the target based on the analysis result and the transmission blanking period determination result of the target estimation point of the correlation processing means.

また、本実施形態に係る目標検出方法は、レーダ反射波の受信検波信号について、TBD(Track Before Detect)アルゴリズムを用いて目標の検出を行う目標検出方法であって、前記受信検波信号を観測領域の距離及び周波数の分解能単位毎のセル受信信号に変換し、各セルの距離、周波数、速度を解析し、前記セル受信信号と前回の観測時刻の解析処理結果から、粒子フィルタを用いて現在時刻の目標距離と目標速度の目標推定点を決定し、その目標推定点が送信ブランキング期間か否かを判定し、前記解析処理結果及び前記目標推定点の送信ブランキング期間の判定結果に基づいて前記目標の航跡を求める態様とする。   The target detection method according to the present embodiment is a target detection method for detecting a target of a received detection signal of a radar reflected wave by using a TBD (Track Before Detect) algorithm, and the received detection signal is observed in an observation region. The distance, frequency, and speed of each cell are converted into cell reception signals, the distance, frequency, and speed of each cell are analyzed, and the current time using a particle filter is analyzed from the analysis processing results of the cell reception signals and the previous observation time. A target estimation point of the target distance and target speed is determined, it is determined whether the target estimation point is a transmission blanking period, and based on the analysis processing result and the determination result of the transmission blanking period of the target estimation point The target track is obtained.

本実施形態に係る目標検出装置が搭載される飛翔体の概略構成を示すブロック図。The block diagram which shows schematic structure of the flying body in which the target detection apparatus which concerns on this embodiment is mounted. 本実施形態に係る目標検出装置の構成を示すブロック図。The block diagram which shows the structure of the target detection apparatus which concerns on this embodiment. 図2に示す解析処理器によって得られる観測領域の距離、周波数の分解能単位(セル)毎の受信信号の解析例を示す分布図。FIG. 3 is a distribution diagram showing an analysis example of a received signal for each resolution unit (cell) of the observation area distance and frequency obtained by the analysis processor shown in FIG. 図2に示す相関処理器の処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the correlation processor shown in FIG. 図4に示す相関処理のブランキング判定対象区間の一例を示す分布図。FIG. 5 is a distribution diagram illustrating an example of a blanking determination target section of the correlation process illustrated in FIG. 4. 図4に示す相関処理のブランキング判定対象区間の他の例を示す分布図。FIG. 5 is a distribution diagram showing another example of the blanking determination target section of the correlation process shown in FIG. 4. 図4に示す相関処理において、送信部ランキング通過後に処理を再開させるときの粒子の位置を例示する分布図。In the correlation process shown in FIG. 4, the distribution diagram illustrating the position of the particles when the process is resumed after passing through the transmission unit ranking.

以下、実施形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は本実施形態に係る目標検出装置が搭載される飛翔体の概略構成を示すブロック図である。図1に示す飛翔体1は、目標Tの方向へ飛翔させるための誘導信号を生成する誘導装置2と、誘導信号に従って目標Tの方向へ飛翔姿勢を変える操舵装置3とを備える。また、上記誘導装置2は、目標Tを検出する目標検出装置4と、誘導信号を生成する目標追随装置5を備える。   FIG. 1 is a block diagram showing a schematic configuration of a flying object on which the target detection device according to the present embodiment is mounted. The flying object 1 shown in FIG. 1 includes a guidance device 2 that generates a guidance signal for flying in the direction of the target T, and a steering device 3 that changes the flying posture in the direction of the target T according to the guidance signal. The guidance device 2 includes a target detection device 4 that detects the target T and a target tracking device 5 that generates a guidance signal.

図2は上記目標検出装置4の具体的な構成を示すブロック図である。図2に示す目標検出装置4は、目標Tからのレーダ反射波を受信するアンテナ11と、反射波を検波する受信器12と、検波信号をデジタル信号に変換するA/D変換器13と、TBDアルゴリズムを用いてデジタル検波信号から目標の検出を行い、その航跡を求める目標検出器14から構成される。   FIG. 2 is a block diagram showing a specific configuration of the target detection device 4. 2 includes an antenna 11 that receives a radar reflected wave from the target T, a receiver 12 that detects the reflected wave, an A / D converter 13 that converts the detected signal into a digital signal, It comprises a target detector 14 that detects a target from a digital detection signal using the TBD algorithm and obtains its track.

目標検出器14は、デジタル検波信号の解析演算を行う解析処理器15と、解析処理結果について相関処理およびブランキング判定処理を行う相関処理器16と、相関処理・判定処理結果から目標を検出し航跡を求める検出処理器17を備える。   The target detector 14 detects the target from the analysis processor 15 that performs an analysis operation of the digital detection signal, the correlation processor 16 that performs correlation processing and blanking determination processing on the analysis processing result, and the correlation processing / determination processing result. A detection processor 17 for obtaining a wake is provided.

上記構成において、以下に目標検出装置4の動作を説明する。   In the above configuration, the operation of the target detection device 4 will be described below.

目標Tからのレーダ反射波はアンテナ11で受信され、受信器12で検波される。検波された信号はA/D変換器13でデジタル信号に変換される。デジタル検波信号は目標検出器14に取り込まれ、目標検出処理に供される。   The radar reflected wave from the target T is received by the antenna 11 and detected by the receiver 12. The detected signal is converted into a digital signal by the A / D converter 13. The digital detection signal is captured by the target detector 14 and used for target detection processing.

目標検出器14に取り込まれたデジタル検波信号は、解析処理器15にてフーリエ変換されて時間領域の信号から周波数領域の信号に変換され、図3に示す分布図のように、観測領域(1PRI相当)の距離、周波数の分解能単位(セル)毎の受信信号に変換される。解析処理器15は、セル毎の距離、周波数を解析すると共に、周波数のドップラシフト量を求めて速度を解析する。相関処理器16は解析処理器15で得られたセル毎の受信信号と前回観測時刻の解析処理結果から、粒子フィルタを用いて現在時刻の目標距離と目標速度の推定点(以下、目標推定点)を決定する。   The digital detection signal captured by the target detector 14 is Fourier-transformed by the analysis processor 15 and converted from a time domain signal to a frequency domain signal. As shown in the distribution diagram of FIG. Equivalent) and the received signal for each frequency resolution unit (cell). The analysis processor 15 analyzes the distance and frequency for each cell and calculates the Doppler shift amount of the frequency to analyze the speed. The correlation processor 16 uses the particle signal to obtain the target point of the target distance and target speed at the current time (hereinafter referred to as target target point) from the received signal for each cell obtained by the analysis processor 15 and the analysis result of the previous observation time. ).

ここで、相関処理器16の処理について、図4に示す相関処理フローチャートを参照して説明する。
まず、セル毎の受信信号と前回時刻の相関値を取得する(ステップS1)。
続いて、粒子フィルタ(公知文献1参照)による相関処理を行う(ステップS2〜S4)。すなわち、ステップS2にて、前回時刻に求まった粒子(目標推定点)について、今回の距離及び周波数の予測値を設定する。次に、ステップS3にて、各粒子の予測距離及び周波数に対応する入力(セル毎の受信信号)の値から、ゆう度を算出する。続いて、ステップS4にて、ゆう度の大きいものを抽出し、これを今回時刻の粒子とする。
Here, the processing of the correlation processor 16 will be described with reference to the correlation processing flowchart shown in FIG.
First, a correlation value between the received signal for each cell and the previous time is acquired (step S1).
Subsequently, correlation processing is performed using a particle filter (see publicly known document 1) (steps S2 to S4). That is, in step S2, predicted values of the current distance and frequency are set for the particles (target estimated points) obtained at the previous time. Next, in step S3, the likelihood is calculated from the value of the input (received signal for each cell) corresponding to the predicted distance and frequency of each particle. Then, in step S4, a thing with a high likelihood is extracted and this is made into the particle | grains of this time.

次に、ブランキング判定処理を行う(ステップS5〜S7)。まず、ステップS5にて、予め設定した対象区間内にある粒子の個数をカウントする。対象区間は、例えば図5に示すように、ブランキング領域にあたる距離レンジの隣(遠方側)2〜3レンジ分とする。周波数が高いほど目標の速度が速いので、図6に示すように、周波数に応じて対象区間を変え、低い周波数領域よりも高い周波数領域での対象区間を長く取るとしてもよい。   Next, blanking determination processing is performed (steps S5 to S7). First, in step S5, the number of particles in a preset target section is counted. For example, as shown in FIG. 5, the target section is for two to three ranges adjacent to the distance range corresponding to the blanking region (far side). Since the target speed is faster as the frequency is higher, as shown in FIG. 6, the target section may be changed according to the frequency, and the target section in the higher frequency region may be longer than the lower frequency region.

ステップS6にて、カウントした粒子数が予め設定した判定しきい値より多ければ、ステップS7の追加処理を、少なければステップS8を実行する。
ステップS7の追加処理は、ブランキング領域内に目標がいる間の対処のための処理である。追加処理は、例えば送信ブランキング通過まで処理を休止し、通過後に処理を再開する。再開時は、図7に示すように、粒子の分布(位置)をブランキング領域にあたる距離レンジの手前側にシフトさせる。休止する時間は、送信ブランキングの長さ(既知)と目標速度(観測・相関処理の過程で推定可能)から求める。
ステップS8にて予め設定した繰り返し数までステップS1〜S7の処理を繰り返す。
In step S6, if the counted number of particles is larger than a preset determination threshold value, the additional processing in step S7 is executed, and if it is less, step S8 is executed.
The additional process of step S7 is a process for coping while the target is in the blanking area. In the additional processing, for example, the processing is paused until transmission blanking passes, and the processing is resumed after passing. When restarting, as shown in FIG. 7, the particle distribution (position) is shifted to the front side of the distance range corresponding to the blanking region. The pause time is obtained from the length of transmission blanking (known) and the target speed (can be estimated in the process of observation and correlation processing).
Steps S1 to S7 are repeated up to the number of repetitions set in advance in step S8.

上記相関処理器16で検出された粒子の相関処理結果は検出処理器17に送られる。この検出処理器17では、予め設定したしきい値を超えるゆう度を持つ粒子または同一セルに予め設定したしきい値を超える個数が集まった粒子が目標として検出される。また、検出された粒子の相関処理の情報から、観測中の目標の航跡(速度・距離の変化)が求められる。距離情報と速度情報から、観測時間内の距離変化量から算出した速度と観測時間内の速度情報の平均値を比較して、その差が予め定めたしきい値より大きいときは目標ではなくノイズの誤検出をとみなし、検出結果から除外する。   The correlation processing result of the particles detected by the correlation processor 16 is sent to the detection processor 17. In this detection processor 17, particles having a likelihood exceeding a preset threshold or particles having a number exceeding the preset threshold in the same cell are detected as targets. In addition, the track of the target being observed (change in speed and distance) is obtained from the correlation processing information of the detected particles. From the distance information and the speed information, compare the average value of the speed information within the observation time and the speed calculated from the distance change during the observation time. Are considered false detections and excluded from the detection results.

ここで、上記粒子フィルタでは、観測値から粒子のゆう度を計算し、目標が存在すると思われるセルに粒子が徐々に集中していく。送信ブランキング期間に入るまでに粒子が1〜2セル程度に集中すれば目標がいると認識できるが、数セルに散らばった状態では目標と認識できない。しかし、粒子数を数える範囲を広めに許容することで「いるかもしれない」ということは認識できる。これを利用することで、送信ブランキング期間に目標が入ることを検知することにより、ブランキングを避けた処理を効果的に行うことができるようになる。   Here, in the above particle filter, the likelihood of particles is calculated from the observed values, and the particles are gradually concentrated in the cell where the target is supposed to exist. It can be recognized that there is a target if the particles are concentrated in about 1 to 2 cells before the transmission blanking period starts, but it cannot be recognized as a target in a state where the particles are scattered over several cells. However, it can be recognized that “maybe” by allowing a wider range for counting the number of particles. By utilizing this, it is possible to effectively perform processing that avoids blanking by detecting that the target is within the transmission blanking period.

以上から、本実施形態によれば、高PRFにおいても、TBDアルゴリズムを用いたときの低SNR環境であっても、目標の検出確率を維持・向上させることができる。   As described above, according to the present embodiment, it is possible to maintain and improve the target detection probability even in a high PRF, even in a low SNR environment when the TBD algorithm is used.

尚、本実施形態は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present embodiment is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…飛翔体、2…誘導装置、3…操舵装置、4…目標検出装置、5…目標追随装置、11…アンテナ、12…受信器、13…A/D変換器、14…目標検出部、15…解析処理器、16…相関処理器、17…検出処理器。 DESCRIPTION OF SYMBOLS 1 ... Flying object, 2 ... Guidance device, 3 ... Steering device, 4 ... Target detection device, 5 ... Target tracking device, 11 ... Antenna, 12 ... Receiver, 13 ... A / D converter, 14 ... Target detection part, 15 ... analysis processor, 16 ... correlation processor, 17 ... detection processor.

Claims (8)

レーダ反射波の受信検波信号について、TBD(Track Before Detect)アルゴリズムを用いて目標の検出を行う目標検出装置であって、
前記受信検波信号を観測領域の距離及び周波数の分解能単位毎のセル受信信号に変換し、当該セル受信信号から各セルの距離、周波数、速度を解析する解析処理手段と、
前記セル受信信号と前回の観測時刻の解析処理結果から、粒子フィルタを用いて現在時刻の目標距離と目標速度の目標推定点を決定し、その目標推定点が送信ブランキング期間か否かを判定する相関処理手段と、
前記解析処理手段の解析結果及び相関処理手段の目標推定点の送信ブランキング期間判定結果に基づいて前記目標の航跡を求める検出処理器と
を具備することを特徴とする目標検出装置。
A target detection apparatus for detecting a target using a TBD (Track Before Detect) algorithm for a received detection signal of a radar reflected wave,
An analysis processing means for converting the reception detection signal into a cell reception signal for each resolution unit of the observation area distance and frequency, and analyzing the distance, frequency, and speed of each cell from the cell reception signal;
From the analysis result of the cell reception signal and the previous observation time, the target estimation point of the target distance and target speed of the current time is determined using a particle filter, and it is determined whether or not the target estimation point is in the transmission blanking period Correlation processing means to
And a detection processor for obtaining a track of the target based on an analysis result of the analysis processing unit and a transmission blanking period determination result of the target estimation point of the correlation processing unit.
前記相関処理器は、
前記セル受信信号と前回時刻の相関値を取得し、
前記粒子フィルタによる相関処理として、前回時刻に求まった目標推定点である粒子について、今回の距離及び周波数の予測値を設定し、各粒子の予測距離及び周波数に対応するセル受信信号の値からゆう度を算出し、前記ゆう度の大きいものを抽出してこれを今回時刻の粒子とし、
予め設定したブランキング期間外の対象区間内にある粒子の個数をカウントし、
カウントした粒子数が予め設定した判定しきい値より多いか否かを判定し、
前記粒子数が判定しきい値より多ければ、送信ブランキング領域内に目標がいる間の対処のための追加処理を実行することを特徴とする請求項1記載の目標検出装置。
The correlation processor
Obtaining a correlation value between the cell reception signal and the previous time;
As the correlation processing by the particle filter, the predicted value of the current distance and frequency is set for the particle that is the target estimated point obtained at the previous time, and the value of the cell reception signal corresponding to the predicted distance and frequency of each particle is set. Calculate the degree, extract the one with the highest likelihood and use this as the particle at this time,
Count the number of particles in the target section outside the preset blanking period,
Determine whether the number of counted particles is greater than a preset decision threshold,
The target detection apparatus according to claim 1, wherein if the number of particles is larger than a determination threshold value, an additional process is performed to cope with a target in the transmission blanking region.
前記追加処理は、前記送信ブランキング領域の通過まで処理を休止し、通過後に処理を再開させるものとし、再開時は、前記粒子の分布を送信ブランキング領域にあたる距離レンジの手前側にシフトさせ、休止する時間は、前記送信ブランキング領域の期間の長さと目標速度から求めるようにしたことを特徴とする請求項2記載の目標検出装置。   The additional process is to pause the process until passing through the transmission blanking region, and restart the process after passing, and when restarting, the particle distribution is shifted to the near side of the distance range corresponding to the transmission blanking region, 3. The target detection apparatus according to claim 2, wherein the pause time is obtained from a length of the transmission blanking region and a target speed. 前記検出処理器は、
前記相関処理器で検出された粒子の相関処理結果を予め設定したしきい値と比較して、当該しきい値を超えるゆう度を持つ粒子または同じ点に当該しきい値を超える個数集まった粒子を目標として検出し、
前記検出された粒子の相関処理結果から、観測中の目標の距離及び速度の変化を示す航跡を求め、
前記目標の距離情報と速度情報から、観測時間内の距離変化量から算出した速度と観測時間内の速度情報の平均値を比較して、その差が予め定めたしきい値より大きいときは目標ではなくノイズの誤検出をとみなし、検出結果から除外することを特徴とする請求項1記載の目標検出装置。
The detection processor is:
Comparing the correlation processing result of the particles detected by the correlation processor with a preset threshold value, particles having a likelihood exceeding the threshold value or particles having a number exceeding the threshold value at the same point Is detected as a goal,
From the correlation processing result of the detected particles, a wake indicating the change in the distance and speed of the target being observed is obtained,
The average value of the speed information within the observation time is compared with the speed calculated from the distance change amount within the observation time from the distance information and speed information of the target, and when the difference is larger than a predetermined threshold value, the target The target detection apparatus according to claim 1, wherein the target detection device is regarded as a false detection of noise rather than being excluded from the detection result.
レーダ反射波の受信検波信号について、TBD(Track Before Detect)アルゴリズムを用いて目標の検出を行う目標検出方法であって、
前記受信検波信号を観測領域の距離及び周波数の分解能単位毎のセル受信信号に変換し、当該セル受信信号から各セルの距離、周波数、速度を解析し、
前記セル受信信号と前回の観測時刻の解析処理結果から、粒子フィルタを用いて現在時刻の目標距離と目標速度の目標推定点を決定し、その目標推定点が送信ブランキング期間か否かを判定し、
前記解析処理結果及び前記目標推定点の送信ブランキング期間の判定結果に基づいて前記目標の航跡を求めることを特徴とする目標検出方法。
A target detection method for detecting a target using a TBD (Track Before Detect) algorithm for a received detection signal of a radar reflected wave,
The received detection signal is converted into a cell reception signal for each unit of resolution of the observation area distance and frequency, and the distance, frequency, and speed of each cell are analyzed from the cell reception signal,
From the analysis result of the cell reception signal and the previous observation time, the target estimation point of the target distance and target speed of the current time is determined using a particle filter, and it is determined whether or not the target estimation point is in the transmission blanking period And
A target detection method, wherein a track of the target is obtained based on a result of the analysis processing and a determination result of a transmission blanking period of the target estimation point.
前記送信ブランキング期間の判定処理は、
前記セル受信信号と前回時刻の相関値を取得し、
前回時刻に求まった目標推定点である粒子について、今回の距離及び周波数の予測値を設定し、各粒子の予測距離及び周波数に対応するセル受信信号の値からゆう度を算出し、前記ゆう度の大きいものを抽出してこれを今回時刻の粒子とし、
予め設定したブランキング期間外の対象区間内にある粒子の個数をカウントし、
カウントした粒子数が予め設定した判定しきい値より多いか否かを判定し、
前記粒子数が判定しきい値より多ければ、送信ブランキング領域内に目標がいる間の対処のための追加処理を実行することを特徴とする請求項5記載の目標検出方法。
The determination process of the transmission blanking period includes
Obtaining a correlation value between the cell reception signal and the previous time;
For particles that are target estimation points obtained at the previous time, set the predicted value of the current distance and frequency, calculate the likelihood from the value of the cell reception signal corresponding to the predicted distance and frequency of each particle, and the likelihood Is extracted and used as the particle at the current time,
Count the number of particles in the target section outside the preset blanking period,
Determine whether the number of counted particles is greater than a preset decision threshold,
6. The target detection method according to claim 5, wherein if the number of particles is larger than a determination threshold value, an additional process is performed to cope with a target in the transmission blanking region.
前記追加処理は、前記送信ブランキング領域の通過まで処理を休止し、通過後に処理を再開させるものとし、再開時は、前記粒子の分布を送信ブランキング領域にあたる距離レンジの手前側にシフトさせ、休止する時間は、前記送信ブランキング領域の期間の長さと目標速度から求めるようにしたことを特徴とする請求項6記載の目標検出方法。   The additional process is to pause the process until passing through the transmission blanking region, and restart the process after passing, and when restarting, the particle distribution is shifted to the near side of the distance range corresponding to the transmission blanking region, 7. The target detection method according to claim 6, wherein the pause time is obtained from a length of the transmission blanking region and a target speed. 前記検出処理は、
前記相関処理器で検出された粒子の相関処理結果を予め設定したしきい値と比較して、当該しきい値を超えるゆう度を持つ粒子または同じ点に当該しきい値を超える個数集まった粒子を目標として検出し、
前記検出された粒子の相関処理結果から、観測中の目標の距離及び速度の変化を示す航跡を求め、
前記目標の距離情報と速度情報から、観測時間内の距離変化量から算出した速度と観測時間内の速度情報の平均値を比較して、その差が予め定めたしきい値より大きいときは目標ではなくノイズの誤検出をとみなし、検出結果から除外することを特徴とする請求項5記載の目標検出方法。
The detection process includes
Comparing the correlation processing result of the particles detected by the correlation processor with a preset threshold value, particles having a likelihood exceeding the threshold value or particles having a number exceeding the threshold value at the same point Is detected as a goal,
From the correlation processing result of the detected particles, a wake indicating the change in the distance and speed of the target being observed is obtained,
The average value of the speed information within the observation time is compared with the speed calculated from the distance change amount within the observation time from the distance information and speed information of the target, and when the difference is larger than a predetermined threshold value, the target The target detection method according to claim 5, wherein the target detection method is regarded as a false detection of noise rather than being excluded from the detection result.
JP2012259557A 2012-11-28 2012-11-28 Target detection apparatus and target detection method Active JP5985372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259557A JP5985372B2 (en) 2012-11-28 2012-11-28 Target detection apparatus and target detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259557A JP5985372B2 (en) 2012-11-28 2012-11-28 Target detection apparatus and target detection method

Publications (2)

Publication Number Publication Date
JP2014106133A true JP2014106133A (en) 2014-06-09
JP5985372B2 JP5985372B2 (en) 2016-09-06

Family

ID=51027745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259557A Active JP5985372B2 (en) 2012-11-28 2012-11-28 Target detection apparatus and target detection method

Country Status (1)

Country Link
JP (1) JP5985372B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714225A (en) * 2015-03-25 2015-06-17 电子科技大学 Dynamic programming tracking-before-detection method based on generalized likelihood ratios
CN104833964A (en) * 2015-04-28 2015-08-12 南京邮电大学 Object detection tracking integrated method and device aiming at radar/sonar system
CN105069272A (en) * 2015-06-10 2015-11-18 电子科技大学 Efficient particle filter based track before detect (EPF-TBD) method based on object existence probability slope
CN108254756A (en) * 2017-12-13 2018-07-06 北京空间机电研究所 A kind of satellite-bone laser radar no-coherence cumulating detection method based on projection convolution
CN108594201A (en) * 2018-07-24 2018-09-28 电子科技大学 Tracking before particle filter dim target detection based on Tabu algorithms
CN109991597A (en) * 2019-04-04 2019-07-09 中国人民解放军国防科技大学 Weak-expansion-target-oriented tracking-before-detection method
CN110187335A (en) * 2019-06-25 2019-08-30 电子科技大学 Tracking before being detected for the particle filter with discontinuous characteristic target
CN110376556A (en) * 2019-06-11 2019-10-25 杭州电子科技大学 A kind of preceding tracking of two-layered spherical particle filtering detection based on algorithm of tournament selection
CN115469270A (en) * 2022-08-16 2022-12-13 哈尔滨工程大学 Long baseline positioning method and system based on track before detection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656265B (en) * 2017-09-19 2021-03-30 电子科技大学 Particle filter fusion method for tracking short flight path before multi-frame detection
CN108469609B (en) * 2018-06-11 2022-02-18 成都纳雷科技有限公司 Detection information filtering method for radar target tracking
CN110058222B (en) * 2019-03-29 2020-11-24 杭州电子科技大学 Double-layer particle filter tracking-before-detection method based on sensor selection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027274A1 (en) * 2002-04-02 2004-02-12 Hans Driessen Multi-targets detection method applied in particular to surveillance radars with multi-beamforming in elevation
JP2005091174A (en) * 2003-09-17 2005-04-07 Tech Res & Dev Inst Of Japan Def Agency Radar system
JP2010210579A (en) * 2009-03-12 2010-09-24 Toshiba Corp Apparatus and method for detecting target
JP2010276475A (en) * 2009-05-28 2010-12-09 Toshiba Corp Target tracking apparatus and target tracking method
JP2011117845A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for detecting target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027274A1 (en) * 2002-04-02 2004-02-12 Hans Driessen Multi-targets detection method applied in particular to surveillance radars with multi-beamforming in elevation
JP2005091174A (en) * 2003-09-17 2005-04-07 Tech Res & Dev Inst Of Japan Def Agency Radar system
JP2010210579A (en) * 2009-03-12 2010-09-24 Toshiba Corp Apparatus and method for detecting target
JP2010276475A (en) * 2009-05-28 2010-12-09 Toshiba Corp Target tracking apparatus and target tracking method
JP2011117845A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for detecting target

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714225A (en) * 2015-03-25 2015-06-17 电子科技大学 Dynamic programming tracking-before-detection method based on generalized likelihood ratios
CN104833964A (en) * 2015-04-28 2015-08-12 南京邮电大学 Object detection tracking integrated method and device aiming at radar/sonar system
CN105069272A (en) * 2015-06-10 2015-11-18 电子科技大学 Efficient particle filter based track before detect (EPF-TBD) method based on object existence probability slope
CN108254756A (en) * 2017-12-13 2018-07-06 北京空间机电研究所 A kind of satellite-bone laser radar no-coherence cumulating detection method based on projection convolution
CN108594201A (en) * 2018-07-24 2018-09-28 电子科技大学 Tracking before particle filter dim target detection based on Tabu algorithms
CN109991597A (en) * 2019-04-04 2019-07-09 中国人民解放军国防科技大学 Weak-expansion-target-oriented tracking-before-detection method
CN110376556A (en) * 2019-06-11 2019-10-25 杭州电子科技大学 A kind of preceding tracking of two-layered spherical particle filtering detection based on algorithm of tournament selection
CN110376556B (en) * 2019-06-11 2021-05-11 杭州电子科技大学 Double-layer particle filter track-before-detect method based on tournament selection
CN110187335A (en) * 2019-06-25 2019-08-30 电子科技大学 Tracking before being detected for the particle filter with discontinuous characteristic target
CN110187335B (en) * 2019-06-25 2021-03-16 电子科技大学 Particle filter tracking-before-detection method for target with discontinuous characteristic
CN115469270A (en) * 2022-08-16 2022-12-13 哈尔滨工程大学 Long baseline positioning method and system based on track before detection

Also Published As

Publication number Publication date
JP5985372B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5985372B2 (en) Target detection apparatus and target detection method
CN108490410B (en) Two-coordinate radar sea target joint detection and tracking method
JP5398288B2 (en) Radar signal processing apparatus and target judgment method thereof
JP4670446B2 (en) Radar signal processing apparatus and CFAR processing method used therefor
JP5072694B2 (en) Target detection device
JP5390264B2 (en) Target tracking device and target tracking method
JP2009250616A (en) Radar signal processing device
US20140240169A1 (en) Radar apparatus using image change detector and method of operating the same
JP2015180858A (en) Radar system
JP2017156219A (en) Tracking device, tracking method, and program
JP5422355B2 (en) Target detection apparatus and target detection method
RU2505934C1 (en) Method of searching for noise-like phase-shift keyed signals and radio receiver for realising said method
KR102011959B1 (en) Method and Apparatus for Processing Radar Received Signal for Detecting Interference Signals in Pulse Compression Process
JP4781382B2 (en) Pulse Doppler radar device
JP4779128B2 (en) Bistatic radar device
JP2010210579A (en) Apparatus and method for detecting target
JP4881209B2 (en) Target detection device
JP5036392B2 (en) Target detection device
JP2005337732A (en) Radar device
JP2008089504A (en) Radar device
JP2010019623A (en) Signal processing circuit
JP2009250925A (en) Radar signal processing device
JP2009264900A (en) Target detector
JP5996325B2 (en) Pulse detector
JP2017125749A (en) Signal processing device, radar receiver, signal processing method, and program

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20140415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R151 Written notification of patent or utility model registration

Ref document number: 5985372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151