JP2014105991A - Gas cell - Google Patents

Gas cell Download PDF

Info

Publication number
JP2014105991A
JP2014105991A JP2012256528A JP2012256528A JP2014105991A JP 2014105991 A JP2014105991 A JP 2014105991A JP 2012256528 A JP2012256528 A JP 2012256528A JP 2012256528 A JP2012256528 A JP 2012256528A JP 2014105991 A JP2014105991 A JP 2014105991A
Authority
JP
Japan
Prior art keywords
cylindrical body
plane mirror
window plate
light
light transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256528A
Other languages
Japanese (ja)
Other versions
JP5954136B2 (en
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012256528A priority Critical patent/JP5954136B2/en
Publication of JP2014105991A publication Critical patent/JP2014105991A/en
Application granted granted Critical
Publication of JP5954136B2 publication Critical patent/JP5954136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas cell which achieves easy maintenance.SOLUTION: A gas cell 40 includes: a cylindrical body 10 into which a sample gas is introduced; a first plane mirror 2 arranged in a manner to close one end of the cylindrical body 10; an entrance window 21 letting the light which heads for a reflecting surface of the first plane mirror 2 inside the cylindrical body 10 enter, and an exit window 22 letting the light exit from the inside of the cylindrical body 10. A first optically-transparent aperture plate 31 can be arranged in front of the reflecting surface of the first plane mirror 2.

Description

本発明は、種々の気体中における微量成分の濃度の測定を行うためのガスセルに関する。   The present invention relates to a gas cell for measuring the concentration of trace components in various gases.

環境汚染や大気汚染の原因となる排気ガス中にはHSやSO等のイオウ化合物、NOやNH等の窒素化合物、種々の炭化水素等が含まれており、環境状態、特に住民の健康状態に対するこれらの物質の影響が指摘され、空気中におけるこれらの物質の濃度の測定が重要視されている。また、温室効果ガスとして、空気中における二酸化炭素やメタン等の物質の濃度の測定も益々広く行われている。 The exhaust gas that causes environmental pollution and air pollution contains sulfur compounds such as H 2 S and SO x , nitrogen compounds such as NO x and NH 3 , various hydrocarbons, etc. The influence of these substances on the health status of residents has been pointed out, and the measurement of the concentration of these substances in the air is regarded as important. In addition, as a greenhouse gas, measurement of the concentration of substances such as carbon dioxide and methane in the air is being performed more and more widely.

空気中における微量成分の濃度の測定では、ガスセルに試料ガスを充填し、試料ガスに光を透過させ、目的成分による光吸収を測定し、Lambert-Beerの法則を用いた下記式(1)によって目的成分の濃度を算出している。   In measuring the concentration of trace components in air, the sample gas is filled into the gas cell, light is transmitted through the sample gas, the light absorption by the target component is measured, and the following equation (1) using Lambert-Beer's law is used. The concentration of the target component is calculated.

Figure 2014105991
Figure 2014105991

なお、I(ν)は周波数νにおいて目的成分の吸収を受けなかった場合の光強度、I(ν)は周波数νにおける透過光強度、c(mol/cm)は目的成分の数密度、L(cm)は試料ガスを通過する光路の長さ、S(T)(cm−1/(mol/cm−2))は所定の吸収線強度におけるガス温度Tの関数である。 Here, I 0 (ν) is the light intensity when the target component is not absorbed at the frequency ν, I (ν) is the transmitted light intensity at the frequency ν, c (mol / cm 3 ) is the number density of the target component, L (cm) is the length of the optical path passing through the sample gas, and S (T) (cm −1 / (mol / cm −2 )) is a function of the gas temperature T at a predetermined absorption line intensity.

このとき、比較的少量の試料ガスを用いて、できる限り高感度で測定するために、光路長Lを拡大する多重反射式ガスセルが使用されている(例えば、特許文献1参照)。   At this time, in order to perform measurement with as high sensitivity as possible using a relatively small amount of sample gas, a multiple reflection gas cell that expands the optical path length L is used (for example, see Patent Document 1).

図5は、従来の多重反射式ガスセルの一例を示す概略構成図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
ガス分析装置101は、レーザ光源51と検出器52と有する分析ボックス50と、試料ガスが流通する流路中に取り付けられる多重反射式ガスセル140とを備える。
FIG. 5 is a schematic configuration diagram showing an example of a conventional multiple reflection gas cell. One direction horizontal to the ground is defined as an X direction, a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction.
The gas analyzer 101 includes an analysis box 50 having a laser light source 51 and a detector 52, and a multiple reflection gas cell 140 attached in a flow path through which a sample gas flows.

多重反射式ガスセル140は、筒状体110と、筒状体110の左端部に配置された第一平面鏡ホルダ3と、筒状体110の右端部に配置された第二平面鏡ホルダ4と、第一平面鏡ホルダ3に保持された第一平面鏡2と、第二平面鏡ホルダ4に保持された第二平面鏡6とを備える。   The multi-reflection gas cell 140 includes a cylindrical body 110, a first plane mirror holder 3 disposed at the left end of the cylindrical body 110, a second plane mirror holder 4 disposed at the right end of the cylindrical body 110, A first plane mirror 2 held by one plane mirror holder 3 and a second plane mirror 6 held by a second plane mirror holder 4 are provided.

筒状体110は、直方体形状のブロックに直径rの円柱形状の空洞が形成されたものであり、円柱形状の空洞の中心軸が水平方向(X方向)となるように配置され、上方(−Z方向)に試料ガスを筒状体110内部に導入するための円筒状のガス導入孔111と、下方(Z方向)に試料ガスを筒状体110内部から排出するための円筒状のガス排出孔112とが設けられている。これにより、筒状体110内部に試料ガスがZ方向に流れる流通流路が形成されている。 Tubular member 110, which cavity block in a cylindrical shape with a diameter r 1 of a rectangular parallelepiped shape is formed, the central axis of the cavity of the cylindrical shape is disposed such that the horizontal direction (X direction), the upper ( A cylindrical gas introduction hole 111 for introducing the sample gas into the cylindrical body 110 in the -Z direction, and a cylindrical gas for discharging the sample gas from the cylindrical body 110 downward (in the Z direction). A discharge hole 112 is provided. Thereby, a circulation channel through which the sample gas flows in the Z direction is formed inside the cylindrical body 110.

第一平面鏡ホルダ3は、四角形の板状体であり、筒状体110の左端部を塞ぐようにボルト9で取り付けられている。そして、第一平面鏡ホルダ3の右端面に、円板状の第一平面鏡2の背面が接着等で保持されている。また、第二平面鏡ホルダ4は、四角形の板状体であり、筒状体110の右端部を塞ぐようにボルト(図示せず)で取り付けられている。そして、第二平面鏡ホルダ4の左端面には、円板状の第二平面鏡6の背面が接着等で保持されている。これにより、第一平面鏡2の反射面と第二平面鏡6の反射面とが対向して配置されている。   The first plane mirror holder 3 is a rectangular plate-like body, and is attached with a bolt 9 so as to close the left end portion of the tubular body 110. And the back surface of the disk-shaped 1st plane mirror 2 is hold | maintained on the right end surface of the 1st plane mirror holder 3 by adhesion | attachment etc. The second plane mirror holder 4 is a rectangular plate-like body, and is attached with a bolt (not shown) so as to close the right end portion of the cylindrical body 110. The back surface of the disk-shaped second plane mirror 6 is held on the left end surface of the second plane mirror holder 4 by bonding or the like. Thereby, the reflective surface of the 1st plane mirror 2 and the reflective surface of the 2nd plane mirror 6 are arrange | positioned facing.

また、第二平面鏡ホルダ4と第二平面鏡6とには、筒状体110内部にレーザ光が入射するための入射窓孔21と、筒状体110内部からレーザ光が出射するための出射窓孔22とが設けられ、入射窓孔21と出射窓孔22とには、それぞれ光透過性の窓板7が窓板押え及びガスケット(図示せず)によって気密保持されている。
なお、筒状体110内部の気密性を確保するため、第一平面鏡ホルダ3と筒状体110の接触部や、第二平面鏡ホルダ4と筒状体110の接触部や、第二平面鏡ホルダ4と窓板7との接触部には、ガスケット3aが挟持されている。
In addition, the second plane mirror holder 4 and the second plane mirror 6 are provided with an incident window hole 21 through which laser light enters the cylindrical body 110 and an emission window through which laser light exits from the cylindrical body 110. The light transmitting window plate 7 is airtightly held in the incident window hole 21 and the emission window hole 22 by a window plate holder and a gasket (not shown), respectively.
In addition, in order to ensure the airtightness inside the cylindrical body 110, the contact part of the 1st plane mirror holder 3 and the cylindrical body 110, the contact part of the 2nd plane mirror holder 4 and the cylindrical body 110, or the 2nd plane mirror holder 4 A gasket 3 a is sandwiched between the contact portions of the window plate 7 and the window plate 7.

このようなガス分析装置101によれば、まず、試料ガスがポンプやバルブ等の手段(図示せず)でガス導入孔111を通じて導入され、筒状体110内部を満たす。そして、筒状体110内部に試料ガスを満たした状態で、レーザ光源51からの所定波長νのレーザ光が入射窓孔21から窓板7を通して筒状体110内部に略X方向で入射する。入射したレーザ光は第一平面鏡2の反射面と第二平面鏡6の反射面との間をある回数だけ反復反射した後、出射窓孔22から窓板7を通して筒状体110外部へ略−X方向で出射する。出射されたレーザ光の強度I(ν)、I(ν)は、検出器52で検出される。 According to such a gas analyzer 101, first, the sample gas is introduced through the gas introduction hole 111 by means (not shown) such as a pump or a valve to fill the inside of the cylindrical body 110. Then, in a state in which the cylindrical body 110 is filled with the sample gas, laser light having a predetermined wavelength ν from the laser light source 51 enters the cylindrical body 110 in the substantially X direction through the window plate 7 from the incident window hole 21. The incident laser light is repeatedly reflected a certain number of times between the reflecting surface of the first plane mirror 2 and the reflecting surface of the second plane mirror 6, and then substantially -X from the exit window hole 22 to the outside of the cylindrical body 110 through the window plate 7. Exit in the direction. Intensities I (ν) and I 0 (ν) of the emitted laser light are detected by the detector 52.

特開2006−58009号公報JP 2006-58009 A

ところで、上述したようなガス分析装置101では、筒状体110内部に試料ガスが導入されるため、第一平面鏡2や第二平面鏡6の反射面が汚れることがある。第一平面鏡2や第二平面鏡6の反射面が汚れた際には、ボルト9を取り外して、第一平面鏡ホルダ3や第二平面鏡ホルダ4を取り外した後、新しい第一平面鏡ホルダ3や第二平面鏡ホルダ4をボルト9で取り付けるメンテナンスが行われる。なお、図6は、多重反射式ガスセル140のメンテナンスについて説明するための図である。   By the way, in the gas analyzer 101 as described above, since the sample gas is introduced into the cylindrical body 110, the reflection surfaces of the first plane mirror 2 and the second plane mirror 6 may become dirty. When the reflecting surfaces of the first plane mirror 2 and the second plane mirror 6 are soiled, the bolts 9 are removed, the first plane mirror holder 3 and the second plane mirror holder 4 are removed, and then the new first plane mirror holder 3 and second Maintenance for attaching the plane mirror holder 4 with the bolts 9 is performed. FIG. 6 is a view for explaining maintenance of the multiple reflection gas cell 140.

しかしながら、互いに対向する第一平面鏡2の光軸と第二平面鏡6の光軸とが正確に一致している場合にのみ、入射窓孔21から入射したレーザ光が、第一平面鏡2の反射面と第二平面鏡6の反射面との間で所定の回数反射した後、出射窓孔22から正確に取り出されるため、第一平面鏡ホルダ3や第二平面鏡ホルダ4に関する位置決めは極めて精度よく行う必要がある。また図6より明らかなように、光源側の鏡を取り外すには周辺部材を多数取り外す必要がある。そのため、第一平面鏡ホルダ3や第二平面鏡ホルダ4を取り付ける作業は非常に手間がかかっていた。
そこで、本発明は、容易にメンテナンスすることができるガスセルを提供することを目的とする。
However, only when the optical axis of the first plane mirror 2 and the optical axis of the second plane mirror 6 facing each other exactly coincide with each other, the laser light incident from the incident window hole 21 is reflected on the reflection surface of the first plane mirror 2. And the reflecting surface of the second plane mirror 6 are reflected a predetermined number of times and then accurately taken out from the exit window hole 22. Therefore, it is necessary to position the first plane mirror holder 3 and the second plane mirror holder 4 with extremely high accuracy. is there. As is clear from FIG. 6, it is necessary to remove a number of peripheral members in order to remove the light source side mirror. Therefore, the work of attaching the first plane mirror holder 3 and the second plane mirror holder 4 is very laborious.
Accordingly, an object of the present invention is to provide a gas cell that can be easily maintained.

上記課題を解決するためになされた本発明のガスセルは、試料ガスが内部に導入される筒状体と、前記筒状体の一端部を塞ぐように配置される第一面鏡とを備え、前記筒状体の内部の第一面鏡の反射面に向かう光が入射するための入射窓と、前記筒状体の内部から光が出射するための出射窓とが形成されたガスセルであって、前記第一面鏡の反射面の前方には、第一光透過性窓板を配置することが可能となっていることを特徴としている。   The gas cell of the present invention made to solve the above problems includes a cylindrical body into which sample gas is introduced, and a first mirror that is arranged so as to close one end of the cylindrical body, A gas cell in which an incident window for entering light toward the reflecting surface of the first mirror inside the cylindrical body and an exit window for emitting light from the inside of the cylindrical body are formed. The first light transmissive window plate can be disposed in front of the reflecting surface of the first mirror.

本発明のガスセルによれば、試料ガスを測定する際には、第一面鏡の反射面の前方に第一光透過性窓板を配置しておく。これにより、第一面鏡の反射面より第一光透過性窓板が先に試料ガスに触れるため、第一面鏡の反射面の汚染を極力少なくすることができる。そして、試料ガスが導入され筒状体内部を満たす。そして、筒状体内部に試料ガスを満たした状態で、光源からの所定波長の光が入射窓から筒状体内部に入射する。入射した光は、第一光透過性窓板を透過し第一面鏡の反射面で反射した後、出射窓から筒状体外部へ出射することになる。   According to the gas cell of the present invention, when measuring the sample gas, the first light transmissive window plate is arranged in front of the reflecting surface of the first mirror. Thereby, since a 1st light transmissive window board touches sample gas previously rather than the reflective surface of a 1st surface mirror, contamination of the reflective surface of a 1st surface mirror can be reduced as much as possible. Then, the sample gas is introduced to fill the inside of the cylindrical body. And the light of the predetermined wavelength from a light source injects into a cylindrical body inside from an incident window in the state which filled the sample gas inside the cylindrical body. The incident light passes through the first light transmissive window plate and is reflected by the reflection surface of the first mirror, and then exits from the exit window to the outside of the cylindrical body.

その後、第一光透過性窓板が汚れた際には、汚れた第一光透過性窓板を取り外した後、清掃済または新品の第一光透過性窓板を取り付けるメンテナンスを行う。このとき、第一面鏡は直接光学反射面となるので、第一面鏡の配置位置誤差や面精度誤差があれば性能への影響が避けられないが、第一光透過性窓板は透過させるものであって第一光透過性窓板の配置位置や面精度誤差は性能に影響しないため、第一光透過性窓板を取り付けるメンテナンスを非常に簡単に行うことができる。また、第一面鏡を再利用することは難しいが、第一光透過性窓板は透過させるものであるので、第一光透過性窓板を洗浄したり表面研磨したりして再利用することができる。   Thereafter, when the first light transmissive window plate is soiled, after the soiled first light transmissive window plate is removed, maintenance is performed to attach a cleaned or new first light transmissive window plate. At this time, since the first mirror is a direct optical reflecting surface, if there is an arrangement position error or surface accuracy error of the first mirror, the influence on the performance is inevitable, but the first light transmissive window plate is transmissive. Since the arrangement position and surface accuracy error of the first light transmissive window plate do not affect the performance, the maintenance for attaching the first light transmissive window plate can be performed very easily. In addition, it is difficult to reuse the first mirror, but the first light-transmitting window plate is made to transmit, so the first light-transmitting window plate is reused by cleaning or surface polishing. be able to.

以上のように、本発明のガスセルによれば、容易にメンテナンスを行うことができる。さらに、第一面鏡の交換を長期間行う必要がなくなるので、ランニングコストを抑えることができる。   As described above, according to the gas cell of the present invention, maintenance can be easily performed. Furthermore, since it is not necessary to replace the first mirror for a long time, the running cost can be suppressed.

(他の課題を解決するための手段及び効果)
また、上記の発明では、前記筒状体の他端部を塞ぐように配置される第二面鏡を備え、前記第二面鏡の反射面の前方には、第二光透過性窓板を配置することが可能となっているようにしてもよい。
(Means and effects for solving other problems)
Moreover, in said invention, it has the 2nd surface mirror arrange | positioned so that the other end part of the said cylindrical body may be obstruct | occluded, and the 2nd light transmissive window board is ahead of the reflective surface of the said 2nd surface mirror. It may be possible to arrange them.

本発明のガスセルによれば、試料ガスを測定する際には、第二面鏡の反射面の前方に第二光透過性窓板を配置しておく。これにより、第二面鏡の反射面より第二光透過性窓板が先に試料ガスに触れるため、第二面鏡の反射面の汚染を極力少なくすることができる。そして、試料ガスが導入され筒状体内部を満たす。そして、筒状体内部に試料ガスを満たした状態で、光源からの所定波長の光が入射窓から筒状体内部に入射する。入射した光は、第二光透過性窓板を透過し第二面鏡の反射面で反射した後、出射窓から筒状体外部へ出射することになる。   According to the gas cell of the present invention, when measuring the sample gas, the second light transmissive window plate is arranged in front of the reflecting surface of the second mirror. Accordingly, since the second light transmitting window plate comes into contact with the sample gas before the reflecting surface of the second mirror, the contamination of the reflecting surface of the second mirror can be minimized. Then, the sample gas is introduced to fill the inside of the cylindrical body. And the light of the predetermined wavelength from a light source injects into a cylindrical body inside from an incident window in the state which filled the sample gas inside the cylindrical body. The incident light passes through the second light transmissive window plate, is reflected by the reflecting surface of the second mirror, and then exits from the exit window to the outside of the cylindrical body.

その後、第二光透過性窓板が汚れた際には、汚れた第二光透過性窓板を取り外した後、清掃済または新品の第二光透過性窓板を取り付けるメンテナンスを行う。このとき、第二面鏡は直接光学反射面となるので、第二面鏡の配置位置誤差や面精度誤差があれば性能への影響が避けられないが、第二光透過性窓板は透過させるものであって第二光透過性窓板の配置位置や面精度誤差は性能に影響しないため、第二光透過性窓板を取り付けるメンテナンスを非常に簡単に行うことができる。また、第二面鏡を再利用することは難しいが、第二光透過性窓板は透過させるものであるので、第二光透過性窓板を洗浄したり表面研磨したりして再利用することができる。   Thereafter, when the second light-transmitting window plate is soiled, the dirty second light-transmitting window plate is removed, and maintenance is performed to attach a cleaned or new second light-transmitting window plate. At this time, since the second mirror is a direct optical reflecting surface, if there is an arrangement position error or surface accuracy error of the second mirror, the influence on the performance is unavoidable, but the second light transmissive window plate is transmissive. Since the arrangement position and surface accuracy error of the second light transmissive window plate do not affect the performance, the maintenance for attaching the second light transmissive window plate can be performed very easily. In addition, it is difficult to reuse the second mirror, but the second light transmissive window plate transmits light, so the second light transmissive window plate is reused by cleaning or polishing the surface. be able to.

以上のように、本発明のガスセルによれば、容易にメンテナンスを行うことができる。さらに、第二面鏡の交換を長期間行う必要がなくなるので、ランニングコストを安くすることができる。   As described above, according to the gas cell of the present invention, maintenance can be easily performed. Furthermore, since it is not necessary to replace the second mirror for a long time, the running cost can be reduced.

さらに、上記の発明において、前記入射窓及び前記出射窓は、前記第二面鏡に形成されており、前記第一光透過性窓板及び前記第二光透過性窓板は、前記筒状体の中心軸と垂直な方向から出し入れが可能となっているようにしてもよい。   Furthermore, in the above invention, the entrance window and the exit window are formed in the second surface mirror, and the first light transmissive window plate and the second light transmissive window plate are the cylindrical body. It may be possible to insert and remove from a direction perpendicular to the central axis.

本発明の一実施形態であるガス分析装置の一例を示す概略構成図。The schematic block diagram which shows an example of the gas analyzer which is one Embodiment of this invention. 図1に示すA−A線の断面図。Sectional drawing of the AA line shown in FIG. ガス分析装置の水平方向の断面図。The sectional view of the horizontal direction of a gas analyzer. 本発明の多重反射式ガスセルのメンテナンスに係る説明図。Explanatory drawing which concerns on the maintenance of the multiple reflection type gas cell of this invention. 従来の多重反射式ガスセルの一例を示す概略構成図。The schematic block diagram which shows an example of the conventional multiple reflection type gas cell. 従来の多重反射式ガスセルのメンテナンスに係る説明図。Explanatory drawing which concerns on the maintenance of the conventional multiple reflection type gas cell.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and includes various modes without departing from the spirit of the present invention.

図1は、本発明の一実施形態であるガス分析装置の一例を示す概略構成図である。また、図2は、図1に示すA−A線の断面図であり、図3は、ガス分析装置の水平方向の断面図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。また、上述した従来のガス分析装置101と同様のものについては、同じ符号を付している。
ガス分析装置1は、レーザ光源51と検出器52と有する分析ボックス50と、試料ガスが流通する流路中に取り付けられる多重反射式ガスセル40とを備える。
FIG. 1 is a schematic configuration diagram illustrating an example of a gas analyzer according to an embodiment of the present invention. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and FIG. 3 is a horizontal cross-sectional view of the gas analyzer. One direction horizontal to the ground is defined as an X direction, a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction. The same reference numerals are assigned to the same components as those of the conventional gas analyzer 101 described above.
The gas analyzer 1 includes an analysis box 50 having a laser light source 51 and a detector 52, and a multiple reflection gas cell 40 attached in a flow path through which a sample gas flows.

多重反射式ガスセル40は、筒状体10と、筒状体10の左端部に配置された第一平面鏡ホルダ3と、筒状体10の右端部に配置された第二平面鏡ホルダ4と、第一平面鏡ホルダ3に保持された第一平面鏡2と、第二平面鏡ホルダ4に保持された第二平面鏡6と、第一平面鏡2の前方(−X方向)に配置された第一光透過性窓板31と、第二平面鏡6の前方(X方向)に配置された第二光透過性窓板32とを備える。   The multi-reflection gas cell 40 includes a cylindrical body 10, a first plane mirror holder 3 disposed at the left end of the cylindrical body 10, a second plane mirror holder 4 disposed at the right end of the cylindrical body 10, The first plane mirror 2 held by the one plane mirror holder 3, the second plane mirror 6 held by the second plane mirror holder 4, and the first light transmissive window disposed in front of the first plane mirror 2 (−X direction). The board 31 and the 2nd light transmissive window board 32 arrange | positioned ahead (X direction) of the 2nd plane mirror 6 are provided.

第一光透過性窓板31は、直径r(>r)の円板状体であり、レーザ光を透過する材料で形成されている。レーザ光を透過する材料としては、光透過性や対候性の点から、例えば、フッ素樹脂、ポリエチレン、ポリプロピレン、ポリイミド等が挙げられ、また第一光透過性窓板31の表面には対象波長の光に対する反射防止コーティングが施されていることが好ましい。また、第一光透過性窓板31の厚さは、自立可能かつ通常の取り扱いで割れない強度を有する程度に薄いほうが好ましく(約2mm以下)、板状体でなくフィルムであってもよい。
なお、第二光透過性窓板32も、第一光透過性窓板31と同様の構造となっている。
The first light transmissive window plate 31 is a disk-shaped body having a diameter r 2 (> r 1 ), and is formed of a material that transmits laser light. Examples of the material that transmits laser light include, for example, fluororesin, polyethylene, polypropylene, and polyimide from the viewpoint of light transmittance and weather resistance, and the surface of the first light transmissive window plate 31 has a target wavelength. It is preferable that an antireflective coating for light is applied. Further, the thickness of the first light transmissive window plate 31 is preferably thin (about 2 mm or less) to the extent that it has a strength that can be self-supported and is not broken by normal handling, and may be a film instead of a plate-like body.
The second light transmissive window plate 32 also has the same structure as the first light transmissive window plate 31.

筒状体10は、直方体形状のブロックに直径rの円柱形状の空洞が形成されたものであり、円柱形状の空洞の中心軸が水平方向(X方向)となるように配置され、上方(−Z方向)に試料ガスを筒状体10内部に導入するための円筒状のガス導入孔11と、下方(Z方向)に試料ガスを筒状体10内部から排出するための円筒状のガス排出孔12と、前方(Y方向)に第一光透過性窓板31と第二光透過性窓板32とを筒状体10内部に挿入するための四角形状の開口部13とが設けられている。開口部13には、四角形の板状体の蓋14がボルト14bで取り付けられている。なお、筒状体10内部の気密性を確保するため、蓋14と筒状体10の接触部には、四角環状のOリング14aが挟持されている。 Cylindrical body 10, which cavity block in a cylindrical shape with a diameter r 1 of a rectangular parallelepiped shape is formed, the central axis of the cavity of the cylindrical shape is disposed such that the horizontal direction (X direction), the upper ( A cylindrical gas introduction hole 11 for introducing the sample gas into the cylindrical body 10 in the -Z direction, and a cylindrical gas for discharging the sample gas from the cylindrical body 10 downward (in the Z direction). The discharge hole 12 and a rectangular opening 13 for inserting the first light transmissive window plate 31 and the second light transmissive window plate 32 into the cylindrical body 10 are provided in the front (Y direction). ing. A rectangular plate-like lid 14 is attached to the opening 13 with a bolt 14b. In addition, in order to ensure the airtightness inside the cylindrical body 10, a rectangular annular O-ring 14 a is sandwiched between the contact portions of the lid 14 and the cylindrical body 10.

また、筒状体10の左端部から中央部に向かって所定の距離となる内周面には、第一光透過性窓板31を取り付けるための所定の深さの第一溝(スロット)16が形成されるとともに、筒状体10の右端部から中央部に向かって所定の距離となる内周面には、第二光透過性窓板32を取り付けるための所定の深さの第二溝(スロット)17が形成されている。所定の距離は、鏡に近いが接触しない距離、例えば1mm以上2mm以下であることが好ましい。このとき、第一光透過性窓板31と筒状体10の接触部や、第二光透過性窓板32と筒状体10の接触部には、気密性は必要なく等圧性を保つため、空気が通る隙間16aが形成されている。なお、隙間16aでは抵抗が大きくなるので、第一光透過性窓板31と第一平面鏡2との間や、第二光透過性窓板32と第二平面鏡2との間に、試料ガスが入り込む量は極わずかとなる。   Further, a first groove (slot) 16 having a predetermined depth for attaching the first light transmitting window plate 31 is provided on the inner peripheral surface having a predetermined distance from the left end portion toward the central portion of the cylindrical body 10. Is formed, and a second groove having a predetermined depth for attaching the second light transmissive window plate 32 is formed on the inner peripheral surface having a predetermined distance from the right end portion toward the central portion of the cylindrical body 10. (Slot) 17 is formed. The predetermined distance is preferably a distance close to the mirror but not in contact, for example, 1 mm or more and 2 mm or less. At this time, the contact portion between the first light transmissive window plate 31 and the tubular body 10 and the contact portion between the second light transmissive window plate 32 and the tubular body 10 are not required to be airtight and maintain isobaric properties. A gap 16a through which air passes is formed. In addition, since resistance becomes large in the clearance gap 16a, sample gas is between the 1st light transmissive window plate 31 and the 1st plane mirror 2, and between the 2nd light transmissive window plate 32 and the 2nd plane mirror 2. FIG. The amount of entry is negligible.

このような多重反射式ガスセル40によれば、ボルト14bを取り外して、開口部13から蓋14を取り外した後、第一溝16に第一光透過性窓板31を−Y方向に挿入したり、第一溝16から第一光透過性窓板31をY方向に引き出したりすることができるようになっている。また、第二溝17に第二光透過性窓板32を−Y方向に挿入したり、第二溝17から第二光透過性窓板32をY方向に引き出したりすることができるようになっている。図4は、多重反射式ガスセル40のメンテナンスについて説明するための図である。   According to such a multiple reflection type gas cell 40, after removing the bolt 14b and removing the lid 14 from the opening 13, the first light transmitting window plate 31 is inserted into the first groove 16 in the -Y direction. The first light transmissive window plate 31 can be pulled out from the first groove 16 in the Y direction. Further, the second light transmissive window plate 32 can be inserted into the second groove 17 in the −Y direction, and the second light transmissive window plate 32 can be pulled out from the second groove 17 in the Y direction. ing. FIG. 4 is a view for explaining maintenance of the multiple reflection gas cell 40.

そして、このようなガス分析装置1を用いて試料ガスを測定する際によく行われる方法としては、セルの片方のガス導入口を閉じて、真空ポンプをセルのもう一方のガス導入口に接続してセル内部を引圧にする。その後バルブ(図示せず)を閉じてセル内部を引圧に保ち、試料ガスにガス導入口を曝した状態でガス導入口を開けると試料ガスが筒状体10内部に満たされる。このとき、第一平面鏡2の反射面より第一光透過性窓板31が先に試料ガスに触れるとともに、第二平面鏡6の反射面より第二光透過性窓板32が先に試料ガスに触れるため、第一平面鏡2の反射面と第二平面鏡6の反射面との汚染を極力少なくすることができる。そして、筒状体10内部に試料ガスを満たした状態で、レーザ光源51からの所定波長νのレーザ光が入射窓孔21から窓板7を通して筒状体10内部に略X方向で入射する。入射したレーザ光は、第一光透過性窓板31や第二光透過性窓板32を透過しながら、第一平面鏡2の反射面と第二平面鏡6の反射面との間をある回数だけ反復反射した後、出射窓孔22から窓板7を通して筒状体10外部へ略−X方向で出射する。出射したレーザ光の強度I(ν)、I(ν)は、検出器52で検出される。また、真空ポンプでセル内部を引圧にした場合でも光透過窓の両面の圧は同一であるため、光透過窓は大気圧に耐える材質、厚みを有する必要がない。 As a method often used when measuring the sample gas using such a gas analyzer 1, one of the gas inlets of the cell is closed and a vacuum pump is connected to the other gas inlet of the cell. Then, the inside of the cell is pulled. Thereafter, the valve (not shown) is closed to keep the inside of the cell at a vacuum, and when the gas inlet is opened with the gas inlet exposed to the sample gas, the sample gas is filled into the cylindrical body 10. At this time, the first light transmissive window plate 31 touches the sample gas before the reflecting surface of the first plane mirror 2, and the second light transmissive window plate 32 contacts the sample gas before the reflecting surface of the second plane mirror 6. Since it touches, contamination with the reflective surface of the 1st plane mirror 2 and the reflective surface of the 2nd plane mirror 6 can be decreased as much as possible. Then, with the sample gas filled in the cylindrical body 10, laser light having a predetermined wavelength ν from the laser light source 51 enters the cylindrical body 10 from the incident window hole 21 through the window plate 7 in the approximately X direction. The incident laser light passes through the first light transmissive window plate 31 and the second light transmissive window plate 32 and passes between the reflection surface of the first plane mirror 2 and the reflection surface of the second plane mirror 6 a certain number of times. After repeated reflection, the light is emitted from the emission window hole 22 through the window plate 7 to the outside of the cylindrical body 10 in a substantially −X direction. Intensities I (ν) and I 0 (ν) of the emitted laser light are detected by the detector 52. In addition, even when the inside of the cell is pulled by a vacuum pump, the pressure on both surfaces of the light transmission window is the same, and therefore the light transmission window does not need to have a material and thickness that can withstand atmospheric pressure.

その後、第一光透過性窓板31や第二光透過性窓板32が汚れた際には、ボルト14bを取り外して、開口部13から蓋14を取り外した後、汚れた第一光透過性窓板31や第二光透過性窓板32を引き出す。そして、清掃済または新品の第一光透過性窓板31や第二光透過性窓板32を挿入するメンテナンスを行う。このとき、第一平面鏡2の反射面や第二平面鏡6の反射面は直接光学反射面となるので、第一平面鏡2や第二平面鏡6の配置位置誤差や面精度誤差があれば性能への影響が避けられないが、第一光透過性窓板31や第二光透過性窓板32は透過させるものであって第一光透過性窓板31や第二光透過性窓板32の配置位置や面精度誤差は性能に影響しないため、第一光透過性窓板31や第二光透過性窓板32を取り付けるメンテナンスを非常に簡単に行うことができる。また、第一平面鏡2や第二平面鏡6を再利用することは難しいが、第一光透過性窓板31や第二光透過性窓板32は透過させるものであるので、第一光透過性窓板31や第二光透過性窓板32を洗浄したり表面研磨したりして再利用することができる。   Thereafter, when the first light transmissive window plate 31 or the second light transmissive window plate 32 is soiled, the bolt 14b is removed, the lid 14 is removed from the opening 13, and the soiled first light transmissive property. The window plate 31 and the second light transmissive window plate 32 are pulled out. And the maintenance which inserts the cleaned 1st light permeable window board 31 and the 2nd light transmissive window board 32 is performed. At this time, the reflecting surface of the first plane mirror 2 and the reflecting surface of the second plane mirror 6 are directly optical reflecting surfaces. Therefore, if there is an arrangement position error or a surface accuracy error of the first plane mirror 2 or the second plane mirror 6, performance is improved. Although the influence is inevitable, the first light transmissive window plate 31 and the second light transmissive window plate 32 are transmissive, and the first light transmissive window plate 31 and the second light transmissive window plate 32 are arranged. Since the position and surface accuracy errors do not affect the performance, the maintenance for attaching the first light transmissive window plate 31 and the second light transmissive window plate 32 can be performed very easily. In addition, it is difficult to reuse the first plane mirror 2 and the second plane mirror 6, but the first light transmission window plate 31 and the second light transmission window plate 32 transmit the first light transmission window. The window plate 31 and the second light transmissive window plate 32 can be reused by washing or surface polishing.

以上のように、ガス分析装置1によれば、容易にメンテナンスを行うことができる。さらに、第一平面鏡2や第二平面鏡6の交換を長期間行う必要がなくなるので、ランニングコストを抑えることができる。   As described above, according to the gas analyzer 1, maintenance can be easily performed. Furthermore, since it is not necessary to replace the first plane mirror 2 and the second plane mirror 6 for a long period of time, the running cost can be suppressed.

<他の実施形態>
(1)上述したガス分析装置1において、第一平面鏡2や第二平面鏡6を用いる構成としたが、第一凹面鏡や第二凹面鏡を用いるような構成としてもよい。
(2)上述したガス分析装置1において、平面を有する第一光透過性窓板31や平面を有する第二光透過性窓板32を用いる構成としたが、曲面を有する第一光透過性窓板や曲面を有する第二光透過性窓板を用いるような構成としてもよい。
<Other embodiments>
(1) In the gas analyzer 1 described above, the first plane mirror 2 and the second plane mirror 6 are used. However, the first concave mirror and the second concave mirror may be used.
(2) In the gas analyzer 1 described above, the first light transmissive window plate 31 having a flat surface and the second light transmissive window plate 32 having a flat surface are used. However, the first light transmissive window having a curved surface is used. It is good also as a structure which uses the 2nd light transmissive window plate which has a board and a curved surface.

本発明は、種々の気体中における微量成分の濃度の測定を行うためのガスセル等に利用することができる。   The present invention can be used for a gas cell or the like for measuring the concentration of a trace component in various gases.

1 ガス分析装置
2 第一平面鏡
10 筒状体
21 入射窓孔
22 出射窓孔
31 第一光透過性窓板
40 多重反射式ガスセル
DESCRIPTION OF SYMBOLS 1 Gas analyzer 2 First plane mirror 10 Cylindrical body 21 Entrance window hole 22 Outgoing window hole 31 1st light transmittance window board 40 Multiple reflection type gas cell

Claims (3)

試料ガスが内部に導入される筒状体と、
前記筒状体の一端部を塞ぐように配置される第一面鏡とを備え、
前記筒状体の内部の第一面鏡の反射面に向かう光が入射するための入射窓と、前記筒状体の内部から光が出射するための出射窓とが形成されたガスセルであって、
前記第一面鏡の反射面の前方には、第一光透過性窓板を配置することが可能となっていることを特徴とするガスセル。
A cylindrical body into which the sample gas is introduced;
A first mirror arranged to close one end of the cylindrical body,
A gas cell in which an incident window for entering light toward the reflecting surface of the first mirror inside the cylindrical body and an exit window for emitting light from the inside of the cylindrical body are formed. ,
A gas cell characterized in that a first light-transmissive window plate can be disposed in front of the reflecting surface of the first mirror.
前記筒状体の他端部を塞ぐように配置される第二面鏡を備え、
前記第二面鏡の反射面の前方には、第二光透過性窓板を配置することが可能となっていることを特徴とする請求項1に記載のガスセル。
A second mirror arranged to close the other end of the cylindrical body;
The gas cell according to claim 1, wherein a second light transmissive window plate can be disposed in front of the reflecting surface of the second mirror.
前記入射窓及び前記出射窓は、前記第二面鏡に形成されており、
前記第一光透過性窓板及び前記第二光透過性窓板は、前記筒状体の中心軸と垂直な方向から出し入れが可能となっていることを特徴とする請求項2に記載のガスセル。
The entrance window and the exit window are formed on the second mirror.
The gas cell according to claim 2, wherein the first light transmissive window plate and the second light transmissive window plate can be taken in and out from a direction perpendicular to a central axis of the cylindrical body. .
JP2012256528A 2012-11-22 2012-11-22 Gas cell Expired - Fee Related JP5954136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256528A JP5954136B2 (en) 2012-11-22 2012-11-22 Gas cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256528A JP5954136B2 (en) 2012-11-22 2012-11-22 Gas cell

Publications (2)

Publication Number Publication Date
JP2014105991A true JP2014105991A (en) 2014-06-09
JP5954136B2 JP5954136B2 (en) 2016-07-20

Family

ID=51027629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256528A Expired - Fee Related JP5954136B2 (en) 2012-11-22 2012-11-22 Gas cell

Country Status (1)

Country Link
JP (1) JP5954136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052972A (en) * 2017-09-15 2019-04-04 スガ試験機株式会社 Optical characteristic measuring device
WO2022190555A1 (en) * 2021-03-12 2022-09-15 株式会社堀場エステック Gas analyzing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120187A1 (en) * 2019-12-20 2021-06-24 徐州旭海光电科技有限公司 Compact sensor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482279A (en) * 1977-12-14 1979-06-30 Fujitsu Ltd Method and apparatus for gas analysing
JPS6150250U (en) * 1984-09-07 1986-04-04
US5291265A (en) * 1992-06-03 1994-03-01 Aerodyne Research, Inc. Off-axis cavity absorption cell
US5468961A (en) * 1991-10-08 1995-11-21 Fisher & Paykel Limited Infrared gas analyser and humidity sensor
JP2001188038A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer
JP2004053405A (en) * 2002-07-19 2004-02-19 Horiba Ltd In-line gas analyzer
JP2011242281A (en) * 2010-05-19 2011-12-01 Shimadzu Corp Gas cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482279A (en) * 1977-12-14 1979-06-30 Fujitsu Ltd Method and apparatus for gas analysing
JPS6150250U (en) * 1984-09-07 1986-04-04
US5468961A (en) * 1991-10-08 1995-11-21 Fisher & Paykel Limited Infrared gas analyser and humidity sensor
US5291265A (en) * 1992-06-03 1994-03-01 Aerodyne Research, Inc. Off-axis cavity absorption cell
JP2001188038A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer
JP2004053405A (en) * 2002-07-19 2004-02-19 Horiba Ltd In-line gas analyzer
JP2011242281A (en) * 2010-05-19 2011-12-01 Shimadzu Corp Gas cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052972A (en) * 2017-09-15 2019-04-04 スガ試験機株式会社 Optical characteristic measuring device
WO2022190555A1 (en) * 2021-03-12 2022-09-15 株式会社堀場エステック Gas analyzing device

Also Published As

Publication number Publication date
JP5954136B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
US8934101B2 (en) Gas analysis apparatus
US9304079B2 (en) Gas analyser
US7659980B1 (en) Nephelometric turbidity sensor device
US7593107B2 (en) Method and system for diffusion attenuated total reflection based concentration sensing
US8379192B2 (en) Apparatus for optical measurement of substance concentrations
EP1998164B1 (en) Exhaust gas analyzer comprising a sensor unit
US20140183380A1 (en) Measuring unit and gas analyzing apparatus
JP5954136B2 (en) Gas cell
JP2012215567A (en) Non-extractive gas analyzer
JP5397316B2 (en) Gas cell
US11391668B2 (en) Concentration measurement device
US9222883B2 (en) Optical measuring system having a cell holder to accommodate flow through cells of different dimensions in the direction of optical path
US8077316B2 (en) Chlorine dioxide sensor
JP4214526B2 (en) Gas component / concentration measuring method and apparatus
CN201917519U (en) On-site absorption spectrum gas analysis system
CN213121592U (en) Spectrum water quality probe and spectrum water quality detection device
JP3151670U (en) Gas cell
CN207866708U (en) A kind of ammonia on-Line Monitor Device
JPH07198590A (en) Gas sensor using gas cell
US11686670B2 (en) Isolation of fluid sample in multi-pass optical system
EP3011309B1 (en) Alignment system for laser spectroscopy
KR102435656B1 (en) Multi-Wavelength Fluorescence Measurement Sensor
US20230324282A1 (en) Optical measuring cell
CN102037345B (en) Modular absorption measuring system
CN103575672A (en) Microphotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5954136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees