JP2014105758A - Solenoid valve device for high-pressure fluid - Google Patents

Solenoid valve device for high-pressure fluid Download PDF

Info

Publication number
JP2014105758A
JP2014105758A JP2012258244A JP2012258244A JP2014105758A JP 2014105758 A JP2014105758 A JP 2014105758A JP 2012258244 A JP2012258244 A JP 2012258244A JP 2012258244 A JP2012258244 A JP 2012258244A JP 2014105758 A JP2014105758 A JP 2014105758A
Authority
JP
Japan
Prior art keywords
magnetic
guide cylinder
gaseous fuel
valve device
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012258244A
Other languages
Japanese (ja)
Inventor
Akira Ishibashi
石橋  亮
Akira Takagi
章 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012258244A priority Critical patent/JP2014105758A/en
Publication of JP2014105758A publication Critical patent/JP2014105758A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid valve device for a high-pressure fluid capable of preventing fracture of a guide cylinder filled with the high-pressure fluid.SOLUTION: A fixed core 35 is disposed on an opening 208 of a guide cylinder 20 in which a movable core 30 is reciprocatably accommodated. The fixed core 35 is composed of a large diameter portion 351 fixed in the guide cylinder 20, and a small diameter portion 352 projecting outside in the axial direction of the guide cylinder 20. The small diameter portion 352 is provided with a first thread groove 353 to be screwed with a second thread groove 454 formed on a small diameter portion 453 of a cover portion 45. When the cover portion 45 and the fixed core 35 are screwed, rotating torque for rotating the cover portion 45 acts on the fixed core 35. Thus deformation of a magnetic blocking portion 21 formed with a relatively thin thickness in the guide cylinder 20 can be prevented, when the cover portion 45 is rotated with large rotating torque. Accordingly, fracture of the guide cylinder 20 filled with a gas fuel of high-pressure can be prevented.

Description

本発明は、高圧流体の流れを遮断または許容する高圧流体用電磁弁装置に関する。   The present invention relates to an electromagnetic valve device for high pressure fluid that blocks or allows the flow of high pressure fluid.

内燃機関(以下、「エンジン」という)に供給する気体燃料の圧力を燃料タンク内の高圧から気体燃料用インジェクタが噴射可能な低圧に減圧する気体燃料供給システムが知られている。気体燃料供給システムが備える気体燃料用電磁弁装置は、通電により磁力を発生するコイル、固定コア、可動コア、および可動コアを往復移動可能に収容するガイド筒などからなる弁駆動部と、可動コアと一体に移動する弁体、および弁座などからなる弁部材部とから構成され、高圧の気体燃料の流れを断続し、高圧の気体燃料が気体燃料用インジェクタに流れることを防止する。   There is known a gaseous fuel supply system that reduces the pressure of gaseous fuel supplied to an internal combustion engine (hereinafter referred to as “engine”) from a high pressure in a fuel tank to a low pressure that can be injected by a gaseous fuel injector. An electromagnetic valve device for gaseous fuel provided in a gaseous fuel supply system includes a coil that generates a magnetic force when energized, a fixed core, a movable core, a valve drive unit that accommodates the movable core in a reciprocating manner, and a movable core. And a valve member portion composed of a valve seat and the like, and the flow of the high-pressure gaseous fuel is interrupted to prevent the high-pressure gaseous fuel from flowing into the gaseous fuel injector.

気体燃料用電磁弁装置は、燃料タンクから供給される気体燃料の圧力を利用し弁体と弁座との間の気密性を高めるセルフシール機能を有している。このため、気体燃料用電磁弁装置のガイド筒内には弁体を閉弁方向に付勢するように高圧の気体燃料が充満する。また、気体燃料の外部への漏出を防止するため、ガイド筒は高い耐圧性を有する。
一方、弁体を弁座から離間させるときガイド筒内の気体燃料の圧力に抗する磁気吸引力を可動コアと固定コアとの間に発生させるため、可動コアの直径は大きくなる。
The electromagnetic valve device for gaseous fuel has a self-sealing function that increases the airtightness between the valve body and the valve seat by using the pressure of the gaseous fuel supplied from the fuel tank. For this reason, the guide cylinder of the gaseous fuel solenoid valve device is filled with high-pressure gaseous fuel so as to urge the valve body in the valve closing direction. Moreover, in order to prevent leakage of gaseous fuel to the outside, the guide tube has high pressure resistance.
On the other hand, when the valve body is separated from the valve seat, a magnetic attraction force against the pressure of the gaseous fuel in the guide cylinder is generated between the movable core and the fixed core, so that the diameter of the movable core increases.

このように、気体燃料用電磁弁装置では、ガイド筒は直径が大きい可動コアを往復移動可能に収容しつつ高い耐圧性を有しなければならないため、内部に高圧流体を充満させないガイド筒に比べて肉厚が厚くなる。一般的に非磁性材料で形成されるガイド筒の肉厚が厚くなると、コイルに通電される電流値の大きさに対して発生する磁気吸引力の大きさが低下する。可動コアと固定コアとの間の磁気吸引力を高めるため、コイルに通電する電流値を大きくするか、またはコイルの巻数を多くする。しかしながら、コイルに通電する電流値を大きくするとエネルギー消費量が増加し、また、コイルの巻数を多くすると電磁弁装置の体格が大きくなる。特許文献1には、非磁性材料で形成されるガイド筒の径方向外側の一部に磁性材料で形成される磁界形成補助部材を備える高圧電磁弁が記載されている。特許文献2には、磁性材料で形成されプランジャを往復移動可能に収容するステータコアにプランジャとの間での磁気の受け渡しをおこなうため磁気遮断部を有するリニアソレノイドが記載されている。   As described above, in the solenoid valve device for gaseous fuel, the guide cylinder must have a high pressure resistance while accommodating a movable core having a large diameter so as to be able to reciprocate, so that the guide cylinder is not filled with a high-pressure fluid inside. The wall thickness becomes thick. In general, when the thickness of a guide cylinder formed of a nonmagnetic material is increased, the magnitude of the magnetic attractive force generated with respect to the magnitude of the current value supplied to the coil is reduced. In order to increase the magnetic attractive force between the movable core and the fixed core, the value of the current supplied to the coil is increased or the number of turns of the coil is increased. However, when the current value energized to the coil is increased, the energy consumption increases, and when the number of turns of the coil is increased, the physique of the electromagnetic valve device is increased. Patent Document 1 describes a high-pressure solenoid valve that includes a magnetic field forming auxiliary member formed of a magnetic material on a part of a radially outer side of a guide tube formed of a nonmagnetic material. Patent Document 2 describes a linear solenoid having a magnetic blocking portion for transferring magnetism to and from a plunger in a stator core that is formed of a magnetic material and accommodates the plunger so as to be reciprocally movable.

特許4871207号明細書Japanese Patent No. 4871207 特開2011−108781号公報JP 2011-108781 A

しかしながら、特許文献1に記載の高圧電磁弁では、ガイド筒は非磁性材料から形成されておりコイルに通電される電流値の大きさに対して発生する磁気吸引力を大幅に大きくすることはできないため、高圧電磁弁の体格を大幅に小さくすることはできない。また、弁駆動部を覆う蓋部を組み付けるときの回転トルクも大きくなるため、高圧電磁弁が破損するおそれがある。また、特許文献2に記載のリニアソレノイドは、作動圧力範囲が比較的低圧の作動流体の流れを切り換える場合に用いられ、作動流体であるオイルの外部への漏れが許容されており、セルフシール機能を有していない。このため、特許文献2に記載のリニアソレノイドの構成を高圧流体用電磁弁装置に適用させることはできない。   However, in the high-pressure solenoid valve described in Patent Document 1, the guide cylinder is made of a non-magnetic material, and the magnetic attractive force generated with respect to the magnitude of the current value supplied to the coil cannot be significantly increased. For this reason, the physique of the high pressure solenoid valve cannot be significantly reduced. Moreover, since the rotational torque when assembling the cover part which covers a valve drive part also becomes large, there exists a possibility that a high voltage | pressure solenoid valve may be damaged. The linear solenoid described in Patent Document 2 is used when switching the flow of a working fluid whose working pressure range is relatively low, and allows leakage of oil as the working fluid to the outside. Does not have. For this reason, the configuration of the linear solenoid described in Patent Document 2 cannot be applied to the electromagnetic valve device for high pressure fluid.

本発明の目的は、高圧流体が充満するガイド筒の破損を防止可能な高圧流体用電磁弁装置を提供することにある。   An object of the present invention is to provide a high-pressure fluid electromagnetic valve device capable of preventing damage to a guide cylinder filled with high-pressure fluid.

本発明は、高圧流体の流れを電磁弁で遮断または許容する高圧流体用電磁弁装置であって、通電により磁力を発生するコイルアッセンブリと、磁性材料からなり軸方向の所定位置の全周にわたって磁気を遮断する磁気遮断部および磁気を透過する磁気透過部を形成し内部を高圧流体で充満可能なガイド筒と、磁性材料からなりガイド筒の一方の開口が形成される端部に固定され一方の開口からガイド筒の外部に突出する突出部を形成しコイルアッセンブリが磁力を発生するとき励磁される固定コアと、磁性材料からなりガイド筒内を往復移動可能に設けられコイルアッセンブリが磁力を発生するとき固定コアに吸引される可動コアと、磁性材料からなり固定コアの突出部に形成される第1ねじ溝とねじ結合する第2ねじ溝を有する蓋部と、可動コアに連結する弁体と、弁体が当接または離間するとき高圧流体の流れを遮断または許容する弁座を形成するシート部材と、を備え、コイルアッセンブリが磁力を発生するとき、ガイド筒の磁気透過部と可動コアとの間に磁気遮断部を迂回して磁気回路が形成されることを特徴とする。   The present invention relates to an electromagnetic valve device for high-pressure fluid that interrupts or allows a flow of high-pressure fluid with an electromagnetic valve, and includes a coil assembly that generates a magnetic force when energized, and a magnetic material that covers the entire circumference of a predetermined axial position. A guide cylinder that can be filled with a high-pressure fluid, and a guide cylinder made of a magnetic material and fixed to an end where one opening of the guide cylinder is formed. A projecting portion that protrudes from the opening to the outside of the guide cylinder is formed, and a fixed core that is excited when the coil assembly generates a magnetic force, and a coil assembly that is made of a magnetic material and that can be reciprocated in the guide cylinder generates a magnetic force. A movable core that is sometimes attracted to the fixed core, a lid having a second screw groove made of a magnetic material and screwed to the first screw groove formed on the protruding portion of the fixed core; A valve body connected to the core, and a seat member that forms a valve seat that blocks or allows the flow of high-pressure fluid when the valve body abuts or separates, and when the coil assembly generates a magnetic force, A magnetic circuit is formed between the magnetic transmission part and the movable core, bypassing the magnetic shielding part.

本発明の高圧流体用電磁弁装置では、磁性材料からなる蓋部は、ガイド筒の一方の開口から突出する固定コアの突出部にねじ結合する。ガイド筒には強度が磁気透過部に劣る磁気遮断部が形成されており、蓋部をガイド筒にねじ結合すると、蓋部を回転させる回転トルクにより磁気遮断部が変形するおそれがある。本発明の高圧流体用電磁弁装置では、ガイド筒に固定されている固定コアを介して蓋部をガイド筒に対して固定する。これにより、ガイド筒の破損を防止することができる。   In the electromagnetic valve device for high-pressure fluid of the present invention, the lid portion made of a magnetic material is screwed to the protruding portion of the fixed core protruding from one opening of the guide cylinder. The guide cylinder is formed with a magnetic shielding part whose strength is inferior to the magnetic transmission part. When the lid part is screwed to the guide cylinder, the magnetic shielding part may be deformed by a rotational torque that rotates the lid part. In the electromagnetic valve device for high-pressure fluid of the present invention, the lid is fixed to the guide cylinder via a fixed core fixed to the guide cylinder. Thereby, damage to the guide tube can be prevented.

また、磁性材料で形成されている蓋部と固定コアとはねじ結合しているため、可動コアと固定コアとの間に形成され可動コアが固定コアの方向に移動するときに磁気吸引力を発生する磁気回路の磁束が固定コアと蓋部との間を通る。蓋部と固定コアとがねじ結合している部位は当接する面積も大きいため、当該磁気回路の磁気面積を大きくすることができる。これにより、可動コアと固定コアとの間の磁気吸引力を維持することができる。   In addition, since the lid portion made of a magnetic material and the fixed core are screw-coupled, the magnetic attraction force is generated when the movable core moves in the direction of the fixed core formed between the movable core and the fixed core. The generated magnetic circuit magnetic flux passes between the fixed core and the lid. Since the area where the lid portion and the fixed core are screw-coupled has a large contact area, the magnetic area of the magnetic circuit can be increased. Thereby, the magnetic attraction between the movable core and the fixed core can be maintained.

本発明の第1実施形態による気体燃料用電磁弁装置を適用した気体燃料供給システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a gaseous fuel supply system to which a solenoid valve device for gaseous fuel by a 1st embodiment of the present invention is applied. 本発明の第1実施形態による気体燃料用電磁弁装置の断面図である。It is sectional drawing of the solenoid valve apparatus for gaseous fuel by 1st Embodiment of this invention. 本発明の第1実施形態による気体燃料用電磁弁装置の図2とは異なる作動を示す断面図である。It is sectional drawing which shows the operation | movement different from FIG. 2 of the solenoid valve apparatus for gaseous fuel by 1st Embodiment of this invention. 本発明の第1実施形態による気体燃料用電磁弁装置の図2、3とは異なる作動を示す断面図である。It is sectional drawing which shows the operation | movement different from FIG. 2, 3 of the solenoid valve apparatus for gaseous fuel by 1st Embodiment of this invention. 本発明の第2実施形態による気体燃料用電磁弁装置の断面図である。It is sectional drawing of the solenoid valve apparatus for gaseous fuel by 2nd Embodiment of this invention.

以下、本発明の複数の実施形態について図面に基づいて説明する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
本発明の第1実施形態による気体燃料用電磁弁装置1を図1〜4に基づいて説明する。
最初に、気体燃料用電磁弁装置1を適用する気体燃料供給システムの概略構成を図1に基づいて説明する。気体燃料供給システム5は、例えば、圧縮天然ガスを燃料とする車両に搭載される。気体燃料供給システム5は、ガス充填口10、燃料タンク12、気体燃料用電磁弁装置1、気体燃料用圧力制御弁15、「噴射手段」としての気体燃料用インジェクタ17、およびECU9等を備える。
(First embodiment)
The electromagnetic valve device 1 for gaseous fuel by 1st Embodiment of this invention is demonstrated based on FIGS. 1-4.
First, a schematic configuration of a gaseous fuel supply system to which the gaseous fuel electromagnetic valve device 1 is applied will be described with reference to FIG. The gaseous fuel supply system 5 is mounted on a vehicle that uses compressed natural gas as fuel, for example. The gaseous fuel supply system 5 includes a gas filling port 10, a fuel tank 12, a gaseous fuel electromagnetic valve device 1, a gaseous fuel pressure control valve 15, a gaseous fuel injector 17 as “injecting means”, an ECU 9, and the like.

外部からガス充填口10を通して供給される高圧の気体燃料は、供給管6を通って燃料タンク12に貯留される。ガス充填口10は、逆流防止機能を有しており、ガス充填口10から供給される気体燃料が外部に逆流しないようになっている。供給管6には、ガス充填弁11が設けられる。   High-pressure gaseous fuel supplied from the outside through the gas filling port 10 is stored in the fuel tank 12 through the supply pipe 6. The gas filling port 10 has a backflow prevention function so that the gaseous fuel supplied from the gas filling port 10 does not flow back to the outside. The supply pipe 6 is provided with a gas filling valve 11.

燃料タンク12には、燃料タンク弁13が設けられている。燃料タンク弁13は、燃料タンク12からガス充填口10への逆流防止機能、規定量以上の気体燃料が供給管7を流れるとき燃料タンク12からの気体燃料の流れを遮断する過流防止機能、および燃料タンク12内の圧力上昇時に燃料タンク12内の圧力を外部に開放することで燃料タンク12の破裂を防ぐ加圧防止安全機能を有する。
燃料タンク弁13は、供給管7を介して気体燃料用電磁弁装置1に接続される。供給管7には、手動による供給管7の遮断が可能な元弁14が設けられている。
The fuel tank 12 is provided with a fuel tank valve 13. The fuel tank valve 13 has a backflow prevention function from the fuel tank 12 to the gas filling port 10, an overflow prevention function that blocks the flow of the gaseous fuel from the fuel tank 12 when a specified amount or more of gaseous fuel flows through the supply pipe 7, Also, it has a pressurization preventive safety function that prevents the fuel tank 12 from bursting by releasing the pressure in the fuel tank 12 to the outside when the pressure in the fuel tank 12 rises.
The fuel tank valve 13 is connected to the gaseous fuel electromagnetic valve device 1 via the supply pipe 7. The supply pipe 7 is provided with a main valve 14 that can manually shut off the supply pipe 7.

気体燃料用電磁弁装置1は、気体燃料用圧力制御弁15の上流側、すなわち燃料タンク12側に設けられる。気体燃料用電磁弁装置1は、気体燃料用圧力制御弁15の下流側を流れる気体燃料の圧力が所定の圧力以上になると、ECU9からの指令により気体燃料用圧力制御弁15に流入する気体燃料の流れを遮断する。   The gaseous fuel electromagnetic valve device 1 is provided on the upstream side of the gaseous fuel pressure control valve 15, that is, on the fuel tank 12 side. When the pressure of the gaseous fuel flowing on the downstream side of the gaseous fuel pressure control valve 15 becomes equal to or higher than a predetermined pressure, the gaseous fuel electromagnetic valve device 1 flows into the gaseous fuel pressure control valve 15 according to a command from the ECU 9. To block the flow.

気体燃料用圧力制御弁15は、供給管7を通って供給される気体燃料の圧力を気体燃料用インジェクタ17が供給可能な圧力まで減圧する。例えば、気体燃料用圧力制御弁15は、燃料タンク12内の「高圧」である20MPaの気体燃料を気体燃料用インジェクタ17に供給可能な圧力である「低圧」である0.2〜0.65MPaまで減圧する。   The gaseous fuel pressure control valve 15 reduces the pressure of the gaseous fuel supplied through the supply pipe 7 to a pressure that can be supplied by the gaseous fuel injector 17. For example, the pressure control valve 15 for gaseous fuel is 0.2 to 0.65 MPa that is “low pressure” that is a pressure at which 20 MPa gaseous fuel that is “high pressure” in the fuel tank 12 can be supplied to the injector 17 for gaseous fuel. Depressurize until.

気体燃料用圧力制御弁15で減圧された気体燃料は、オイルフィルタ16によってオイルが除去され、供給管8を通って気体燃料用インジェクタ17に供給される。気体燃料用インジェクタ17は、電気的に接続するECU9の指示に応じて吸気管18内に気体燃料を噴射する。気体燃料用インジェクタ17には、図示しない温度センサおよび圧力センサが設けられる。温度センサおよび圧力センサが検出する気体燃料の温度および圧力に関する情報は、ECU9に出力される。   The gaseous fuel decompressed by the gaseous fuel pressure control valve 15 is supplied with oil by the oil filter 16 and supplied to the gaseous fuel injector 17 through the supply pipe 8. The gaseous fuel injector 17 injects gaseous fuel into the intake pipe 18 in accordance with an instruction from the electrically connected ECU 9. The gaseous fuel injector 17 is provided with a temperature sensor and a pressure sensor (not shown). Information on the temperature and pressure of the gaseous fuel detected by the temperature sensor and the pressure sensor is output to the ECU 9.

吸気管18内に噴射される気体燃料は、大気から導入される空気と混合され、吸気管18が接続する「内燃機関」としてのエンジン19の吸気ポートからシリンダ191内に導入される。エンジン19では、ピストン192の上昇による気体燃料および空気の混合気体の圧縮および爆発により回転トルクが発生する。
気体燃料供給システム5は、このようにして燃料タンク12内の気体燃料を気体燃料用圧力制御弁15により気体燃料用インジェクタ17に供給可能な圧力に減圧して気体燃料用インジェクタ17よりエンジン19に供給する。
The gaseous fuel injected into the intake pipe 18 is mixed with air introduced from the atmosphere, and is introduced into the cylinder 191 from an intake port of the engine 19 as an “internal combustion engine” to which the intake pipe 18 is connected. In the engine 19, rotational torque is generated by compression and explosion of a mixed gas of gaseous fuel and air due to the rise of the piston 192.
In this way, the gaseous fuel supply system 5 depressurizes the gaseous fuel in the fuel tank 12 to a pressure that can be supplied to the gaseous fuel injector 17 by the gaseous fuel pressure control valve 15, and sends the gaseous fuel to the engine 19 from the gaseous fuel injector 17. Supply.

次に、気体燃料用電磁弁装置1の詳細構造について図2〜4に基づいて説明する。なお、図2〜4中の実線矢印Lは、気体燃料が流れる方向を示す。   Next, the detailed structure of the electromagnetic valve device 1 for gaseous fuel is demonstrated based on FIGS. In addition, the solid line arrow L in FIGS. 2-4 shows the direction through which gaseous fuel flows.

気体燃料用電磁弁装置1は、ガイド筒20、弁体25、弁座155を形成する支持部材151の一部、可動コア30、固定コア35、およびコイルアッセンブリ40などから構成されている。気体燃料用電磁弁装置1は、気体燃料が流れる導入通路152や導出通路153を形成する支持部材151の外壁に設けられる。第1実施形態による気体燃料用電磁弁装置1では、支持部材151は下流側に接続される気体燃料用圧力制御弁15の弁ボディであるが、これに限定されず、気体燃料用圧力制御弁15の弁ボディとは別異に設けてもよい。   The electromagnetic valve device 1 for gaseous fuel includes a guide cylinder 20, a valve body 25, a part of a support member 151 that forms a valve seat 155, a movable core 30, a fixed core 35, a coil assembly 40, and the like. The electromagnetic valve device 1 for gaseous fuel is provided on the outer wall of the support member 151 that forms the introduction passage 152 and the outlet passage 153 through which gaseous fuel flows. In the gaseous fuel electromagnetic valve device 1 according to the first embodiment, the support member 151 is the valve body of the gaseous fuel pressure control valve 15 connected to the downstream side, but is not limited to this, and the gaseous fuel pressure control valve It may be provided separately from the 15 valve bodies.

導入通路152は、供給管7を介して燃料タンク12内の気体燃料が供給される。導出通路153は、下流側の気体燃料用圧力制御弁15に向けて気体燃料を排出する。導入通路152と導出通路153との間には導入通路152と導出通路153とを連通する凹部154が形成されている。   The introduction passage 152 is supplied with gaseous fuel in the fuel tank 12 through the supply pipe 7. The outlet passage 153 discharges the gaseous fuel toward the gaseous fuel pressure control valve 15 on the downstream side. A recess 154 that connects the introduction passage 152 and the lead-out passage 153 is formed between the introduction passage 152 and the lead-out passage 153.

凹部154は、支持部材151の外壁に開口を有するように形成される。凹部154の内壁であって導出通路153の開口の縁部にはテーパ状に弁座155が形成されている。すなわち、第1実施形態による気体燃料用電磁弁装置1では、弁座155を形成する特許請求の範囲に記載の「シート部材」と支持部材151とは一体に形成されている。また、支持部材151の外壁と略垂直な凹部154の内壁にはねじ溝156が形成されている。凹部154には、ねじ溝156を利用してガイド筒20がねじ結合される。   The recess 154 is formed to have an opening in the outer wall of the support member 151. A valve seat 155 is formed in a tapered shape on the inner wall of the recess 154 and at the edge of the opening of the outlet passage 153. That is, in the electromagnetic valve device 1 for gaseous fuel according to the first embodiment, the “seat member” and the support member 151 described in the claims forming the valve seat 155 are integrally formed. Further, a thread groove 156 is formed in the inner wall of the recess 154 that is substantially perpendicular to the outer wall of the support member 151. The guide tube 20 is screwed to the recess 154 using a screw groove 156.

ガイド筒20は、略筒状の磁性材料、例えばクロムの含有率が13〜17%の磁性ステンレス鋼で形成され、支持部材151側から大径部201、中径部204、鍔部205、第1小径部206、磁気遮断部21、および第2小径部207から構成される。第1実施形態による気体燃料用電磁弁装置1のガイド筒20では、大径部201、中径部204、鍔部205、第1小径部206、磁気遮断部21、および第2小径部207が一体に形成される。ガイド筒20は、可動コア30を軸方向に摺動可能なように収容しつつ、導入通路152から凹部154を介して導出通路153に流れる高圧の気体燃料の一部が内部に充満可能でありかつ外部に漏出しないように形成されている。   The guide tube 20 is formed of a substantially cylindrical magnetic material, for example, magnetic stainless steel having a chromium content of 13 to 17%. From the support member 151 side, the large diameter portion 201, the medium diameter portion 204, the flange portion 205, The first small-diameter portion 206, the magnetic shielding portion 21, and the second small-diameter portion 207 are configured. In the guide cylinder 20 of the electromagnetic valve device 1 for gaseous fuel according to the first embodiment, the large diameter part 201, the medium diameter part 204, the flange part 205, the first small diameter part 206, the magnetic shielding part 21, and the second small diameter part 207 are provided. It is integrally formed. The guide tube 20 accommodates the movable core 30 so as to be slidable in the axial direction, and a part of the high-pressure gaseous fuel flowing from the introduction passage 152 to the lead-out passage 153 through the recess 154 can be filled inside. And it is formed so as not to leak to the outside.

大径部201は、略筒状に形成されており、開口202およびねじ溝203を有する。開口202では可動コア30または弁体25がガイド筒20内部と外部とを出入りする。ねじ溝203は、大径部201の径方向外側に形成され、支持部材151のねじ溝156とねじ結合する。   The large diameter portion 201 is formed in a substantially cylindrical shape and has an opening 202 and a thread groove 203. In the opening 202, the movable core 30 or the valve body 25 enters and exits the guide tube 20 inside and outside. The thread groove 203 is formed on the radially outer side of the large diameter portion 201 and is screw-coupled with the thread groove 156 of the support member 151.

中径部204は、外径が大径部201より小さい略筒状に形成されている。中径部204の一端は大径部201の開口202が形成される端部とは反対側に接続する。中径部204の径方向外側には、大径部201の外径より外径が大きい鍔部205が設けられる。
鍔部205は、ガイド筒20を支持部材151に組み付けるとき、またはガイド筒20を支持部材151から取り外すとき、工具等による回転トルクが作用する。鍔部205と支持部材151との間には凹部154からの気体燃料の漏出を防止するシール部材157が設けられている。
The medium diameter portion 204 is formed in a substantially cylindrical shape whose outer diameter is smaller than that of the large diameter portion 201. One end of the medium diameter portion 204 is connected to the side opposite to the end where the opening 202 of the large diameter portion 201 is formed. A flange portion 205 having an outer diameter larger than the outer diameter of the large diameter portion 201 is provided on the radially outer side of the medium diameter portion 204.
When the guide tube 20 is assembled to the support member 151 or when the guide tube 20 is removed from the support member 151, the collar 205 is subjected to rotational torque by a tool or the like. A seal member 157 that prevents leakage of gaseous fuel from the recess 154 is provided between the flange portion 205 and the support member 151.

第1小径部206は、外径が中径部204より小さい略筒状に形成されている。第1小径部206の一端は中径部204の大径部201と接続する側とは反対側に接続する。第1小径部206は、特許請求の範囲に記載の「磁気透過部」に相当する。   The first small diameter portion 206 is formed in a substantially cylindrical shape having an outer diameter smaller than the medium diameter portion 204. One end of the first small diameter portion 206 is connected to the opposite side of the medium diameter portion 204 that is connected to the large diameter portion 201. The first small diameter portion 206 corresponds to a “magnetic transmission portion” recited in the claims.

磁気遮断部21は、その一端を第1小径部206の中径部204と接続する側の反対側に接続する略筒状に形成されている。磁気遮断部21は、弁体25が弁座155に当接しているとき、可動コア30の固定コア35側の端部である他方の端部32の近傍に設けられる。磁気遮断部21は、その内径が第1小径部206および第2小径部207と同じである一方、その外径が第1小径部206および第2小径部207より小さい。すなわち、磁気遮断部21は、第1小径部206および第2小径部207に比べて肉厚が薄くなるように形成されている。第1実施形態による気体燃料用電磁弁装置1では、磁気遮断部21はその肉厚を0.6〜0.9mmとなるように形成されている。   The magnetic shielding part 21 is formed in a substantially cylindrical shape having one end connected to the side opposite to the side connected to the middle diameter part 204 of the first small diameter part 206. When the valve body 25 is in contact with the valve seat 155, the magnetic blocker 21 is provided in the vicinity of the other end 32 that is the end of the movable core 30 on the fixed core 35 side. The magnetic shielding part 21 has the same inner diameter as the first small diameter part 206 and the second small diameter part 207, while the outer diameter is smaller than the first small diameter part 206 and the second small diameter part 207. That is, the magnetic shielding part 21 is formed to be thinner than the first small diameter part 206 and the second small diameter part 207. In the electromagnetic valve device 1 for gaseous fuel according to the first embodiment, the magnetic blocking part 21 is formed so that its thickness is 0.6 to 0.9 mm.

第2小径部207は、外径が中径部204より小さく、かつ磁気遮断部21より大きい略筒状に形成されている。第2小径部207は、一端を磁気遮断部21に接続し、他端に「一方の開口」としての開口208を有する。開口208には固定コア35が設けられる。開口208を形成する第2小径部207の外壁は、蓋部45と嵌合可能なように形成されている。第2小径部207は、特許請求の範囲に記載の「端部」に相当する。   The second small diameter portion 207 is formed in a substantially cylindrical shape having an outer diameter smaller than the medium diameter portion 204 and larger than the magnetic shielding portion 21. The second small diameter portion 207 has one end connected to the magnetic shielding portion 21 and the other end having an opening 208 as “one opening”. A fixed core 35 is provided in the opening 208. The outer wall of the second small-diameter portion 207 that forms the opening 208 is formed so as to be fitted with the lid portion 45. The second small diameter portion 207 corresponds to an “end portion” described in the claims.

弁体25は、当接部26、小径部27および大径部28などから構成される。当接部26、小径部27および大径部28は非磁性材料で一体に形成される。弁体25は、可動コア30の往復移動に合わせて弁座155に当接または離間する。   The valve body 25 includes a contact portion 26, a small diameter portion 27, a large diameter portion 28, and the like. The contact part 26, the small diameter part 27, and the large diameter part 28 are integrally formed of a nonmagnetic material. The valve body 25 contacts or separates from the valve seat 155 in accordance with the reciprocating movement of the movable core 30.

当接部26は、略円錐台状に形成され、当接部26の斜面261は弁座155に当接または離間可能なように形成されている。斜面261には、環状に断面が凹状の収容室262が形成されている。収容室262はシール部材263を収容する。シール部材263は、斜面261が弁座155に当接するとき、凹部154と導出通路153との気密を維持する。   The contact portion 26 is formed in a substantially truncated cone shape, and the inclined surface 261 of the contact portion 26 is formed so as to be able to contact or separate from the valve seat 155. The inclined surface 261 is formed with an accommodation chamber 262 having an annular cross section. The storage chamber 262 stores the seal member 263. The seal member 263 maintains the airtightness between the recess 154 and the outlet passage 153 when the inclined surface 261 contacts the valve seat 155.

小径部27は、当接部26の斜面261とは反対側に接続する。小径部27の外径は当接部26の最大外径および後述する大径部28の外径より小さい。   The small diameter portion 27 is connected to the opposite side of the inclined surface 261 of the contact portion 26. The outer diameter of the small diameter portion 27 is smaller than the maximum outer diameter of the contact portion 26 and the outer diameter of the large diameter portion 28 described later.

大径部28は、小径部27の小径部27が当接部26と接続する側とは反対側に接続する。大径部28には小径部27と接続する側に段差面281が形成されている。大径部28の段差面281と反対側にはシール部材312に当接可能な端面282を形成されている。   The large diameter portion 28 is connected to the side opposite to the side where the small diameter portion 27 of the small diameter portion 27 is connected to the contact portion 26. A step surface 281 is formed on the large diameter portion 28 on the side connected to the small diameter portion 27. An end surface 282 that can contact the seal member 312 is formed on the side opposite to the step surface 281 of the large diameter portion 28.

弁体25には軸方向に貫通孔29が形成されている。貫通孔29の開口は、当接部26の小径部27と接続する側とは反対側の端面264、および大径部28の端面282に形成されている。   A through hole 29 is formed in the valve body 25 in the axial direction. The opening of the through hole 29 is formed in the end surface 264 opposite to the side connected to the small diameter portion 27 of the contact portion 26 and the end surface 282 of the large diameter portion 28.

可動コア30は、磁性材料、例えば磁性ステンレス鋼で形成されている棒状部材である。可動コア30は、ガイド筒20内を往復移動可能に収容されている。可動コア30のガイド筒20と摺動する径方向外側の側壁には非磁性めっき膜が形成されている。   The movable core 30 is a rod-shaped member made of a magnetic material, for example, magnetic stainless steel. The movable core 30 is accommodated so as to be capable of reciprocating within the guide cylinder 20. A nonmagnetic plating film is formed on the radially outer side wall that slides with the guide tube 20 of the movable core 30.

可動コア30の一方の端部31は凹状に形成され、その内部に弁体25の小径部27の一部および大径部28を収容している。このとき、大径部28の外壁と一方の端部31の内壁との間には隙間が形成されている。一方の端部31の先端側の内壁には環状の規制部材311が設けられている。弁体25が可動コア30から離れる方向に移動するとき、規制部材311が段差面281に当接する。これにより、弁体25は可動コア30に対する相対移動の距離が規制される。また、一方の端部31の内壁にはシール部材312を収容する収容室313が形成されている。
可動コア30の他方の端部32は、凹状に形成され、スプリング33の一端を係止する。
One end 31 of the movable core 30 is formed in a concave shape, and a part of the small diameter portion 27 and the large diameter portion 28 of the valve body 25 are accommodated therein. At this time, a gap is formed between the outer wall of the large diameter portion 28 and the inner wall of the one end portion 31. An annular regulating member 311 is provided on the inner wall on the distal end side of one end portion 31. When the valve body 25 moves in a direction away from the movable core 30, the regulating member 311 contacts the step surface 281. Thereby, the distance of relative movement of the valve body 25 with respect to the movable core 30 is regulated. A storage chamber 313 for storing the seal member 312 is formed on the inner wall of the one end portion 31.
The other end 32 of the movable core 30 is formed in a concave shape and engages one end of the spring 33.

固定コア35は、磁性材で形成され第2小径部207に固定される棒状部材である。固定コア35は、第2小径部207内に固定される大径部351、および大径部351からガイド筒20の軸方向の外部に突出するように形成される「突出部」としての小径部352から構成される。大径部351の可動コア30側の端部は凹状に形成され、スプリング33の他端が係止される。小径部352は大径部351より外径が小さく形成され、その外壁には第1ねじ溝353が形成される。   The fixed core 35 is a rod-shaped member that is formed of a magnetic material and is fixed to the second small diameter portion 207. The fixed core 35 has a large-diameter portion 351 fixed in the second small-diameter portion 207 and a small-diameter portion as a “projection portion” formed so as to protrude from the large-diameter portion 351 to the outside in the axial direction of the guide cylinder 20. 352. The end of the large-diameter portion 351 on the movable core 30 side is formed in a concave shape, and the other end of the spring 33 is locked. The small diameter portion 352 has a smaller outer diameter than the large diameter portion 351, and a first screw groove 353 is formed on the outer wall thereof.

スプリング33は、ガイド筒20の可動コア30と固定コア35との間に設けられる。スプリング33は、可動コア30と固定コア35とを離す方向に可動コア30を付勢する   The spring 33 is provided between the movable core 30 and the fixed core 35 of the guide cylinder 20. The spring 33 biases the movable core 30 in a direction in which the movable core 30 and the fixed core 35 are separated.

コイルアッセンブリ40は、ガイド筒20の径外方向にガイド筒20を囲むように設けられる。コイルアッセンブリ40は、コイル41、ボビン42、カバー43、およびヨーク44などから構成される。
コイル41は、コイルアッセンブリ40の径方向外側に設けられるコネクタ411を介して供給される電流によりコイル41周辺に磁界を形成する。
ボビン42およびカバー43は、コイル41を覆うように設けられる非磁性部材である。ボビン42およびカバー43の径方向外側に磁性材料で形成されるヨーク44が設けられる。ヨーク44は、両端をかしめることにより、コイル41、ボビン42およびカバー43を内部に収容する。
The coil assembly 40 is provided so as to surround the guide tube 20 in the radially outward direction of the guide tube 20. The coil assembly 40 includes a coil 41, a bobbin 42, a cover 43, a yoke 44, and the like.
The coil 41 forms a magnetic field around the coil 41 by a current supplied via a connector 411 provided on the radially outer side of the coil assembly 40.
The bobbin 42 and the cover 43 are nonmagnetic members provided so as to cover the coil 41. A yoke 44 made of a magnetic material is provided outside the bobbin 42 and the cover 43 in the radial direction. The yoke 44 accommodates the coil 41, the bobbin 42 and the cover 43 inside by caulking both ends.

蓋部45は、略凹状の磁性材で形成される。蓋部45は、フランジ部451、鍔部452、および小径部453から構成される。
フランジ部451は、可動コア30側に設けられ、コイルアッセンブリ40の弾性部材442に当接可能である。
鍔部452は、その外径をフランジ部451の外径より大きくなるようにフランジ部451と一体に形成される。鍔部452は、蓋部45を固定コア35とねじ結合するとき、回転トルクが作用する。
The lid 45 is made of a substantially concave magnetic material. The lid part 45 includes a flange part 451, a flange part 452, and a small diameter part 453.
The flange portion 451 is provided on the movable core 30 side and can contact the elastic member 442 of the coil assembly 40.
The flange portion 452 is formed integrally with the flange portion 451 so that its outer diameter is larger than the outer diameter of the flange portion 451. When the lid portion 452 is screw-coupled with the fixed core 35, rotational torque acts on the flange portion 452.

小径部453は、鍔部452と一体に形成される。小径部453の内壁には固定コア35の第1ねじ溝353にねじ結合可能な第2ねじ溝454が形成されている。蓋部45を固定コア35に組み付けるとき、第1ねじ溝353と第2ねじ溝454とがねじ結合する。このとき、蓋部45のねじ込み具合によりフランジ部451が弾性部材442を介してコイル41、ボビン42、カバー43、およびヨーク44をガイド筒20の鍔部205の方向に付勢する。このように、蓋部45はコイルアッセンブリ40のヨーク44が鍔部205に当接した状態を維持する。   The small diameter portion 453 is formed integrally with the flange portion 452. A second thread groove 454 that can be screw-coupled to the first thread groove 353 of the fixed core 35 is formed on the inner wall of the small diameter portion 453. When the lid portion 45 is assembled to the fixed core 35, the first screw groove 353 and the second screw groove 454 are screwed together. At this time, the flange portion 451 biases the coil 41, the bobbin 42, the cover 43, and the yoke 44 toward the flange portion 205 of the guide tube 20 via the elastic member 442 due to the screwing condition of the lid portion 45. Thus, the lid 45 maintains the state in which the yoke 44 of the coil assembly 40 is in contact with the flange 205.

次に、気体燃料用電磁弁装置1の作用について図2〜4に基づいて説明する。   Next, the operation of the gaseous fuel electromagnetic valve device 1 will be described with reference to FIGS.

気体燃料用電磁弁装置1のコイル41に電流が流れていないとき、可動コア30にはスプリング33の付勢力のみが作用し、可動コア30は図2の紙面の左方向に付勢される。また、凹部154は導入通路152と連通し、凹部154は高圧の気体燃料が充満している。これにより、弁体25の端面282はシール部材312に当接しつつ、可動コア30に支持されている弁体25の斜面261は、弁座155に当接している。したがって、導入通路152と導出通路153とは遮断されている。   When no current is flowing through the coil 41 of the gaseous fuel solenoid valve device 1, only the urging force of the spring 33 acts on the movable core 30, and the movable core 30 is urged to the left in FIG. The recess 154 communicates with the introduction passage 152, and the recess 154 is filled with high-pressure gaseous fuel. As a result, the end surface 282 of the valve body 25 is in contact with the seal member 312, and the slope 261 of the valve body 25 supported by the movable core 30 is in contact with the valve seat 155. Accordingly, the introduction passage 152 and the outlet passage 153 are blocked.

コイル41に電流が流れると、コイル41の周辺には磁気回路が形成される。そのうちの1つである磁気回路M1は、図3、4に示すように、ヨーク44、ガイド筒20の第1小径部206、可動コア30の他方の端部32、固定コア35、および蓋部45を通ってヨーク44に戻る磁気回路である。   When a current flows through the coil 41, a magnetic circuit is formed around the coil 41. As shown in FIGS. 3 and 4, the magnetic circuit M <b> 1 as one of them includes a yoke 44, a first small diameter portion 206 of the guide cylinder 20, the other end portion 32 of the movable core 30, a fixed core 35, and a lid portion. The magnetic circuit returns to the yoke 44 through 45.

また、コイル41に流れる電流が小さい場合、ヨーク44、第1小径部206、磁気遮断部21、第2小径部207、および蓋部45を通ってヨーク44に戻る磁気回路が形成される。しかしながら、磁気遮断部21は、肉厚が第1小径部206および第2小径部207に比べて薄く磁気飽和しやすいため、コイル41に流れる電流が大きくなると、磁気遮断部21を迂回するように、ヨーク44、第1小径部206、可動コア30の他方の端部32、第2小径部207、および蓋部45を通ってヨーク44に戻る磁気回路が形成される。さらに、コイル41を流れる電流が大きくなると、可動コア30と第2小径部207との間が磁気飽和し、ヨーク44および第1小径部206を通る磁束は、可動コア30内を通り、可動コア30の他方の端部32の固定コア35側の端面321から第2小径部207を通って蓋部45からヨーク44に戻る磁気回路が形成される。図3、4に示す磁気回路M2は、ヨーク44、ガイド筒20の第1小径部206、可動コア30の他方の端部32の端面321、ガイド筒20の第2小径部207、および蓋部45を通ってヨーク44に戻る磁気回路である。   Further, when the current flowing through the coil 41 is small, a magnetic circuit that returns to the yoke 44 through the yoke 44, the first small diameter portion 206, the magnetic blocking portion 21, the second small diameter portion 207, and the lid portion 45 is formed. However, since the magnetic interrupting part 21 is thinner than the first small-diameter part 206 and the second small-diameter part 207 and is likely to be magnetically saturated, when the current flowing through the coil 41 is increased, the magnetic interrupting part 21 is bypassed. A magnetic circuit that returns to the yoke 44 through the yoke 44, the first small diameter portion 206, the other end 32 of the movable core 30, the second small diameter portion 207, and the lid portion 45 is formed. Further, when the current flowing through the coil 41 becomes large, the magnetic core is saturated between the movable core 30 and the second small diameter portion 207, and the magnetic flux passing through the yoke 44 and the first small diameter portion 206 passes through the movable core 30 to move the movable core. A magnetic circuit is formed that returns from the end surface 321 of the other end portion 32 of the 30 on the fixed core 35 side to the yoke 44 through the second small diameter portion 207 and the lid portion 45. 3 and 4, the magnetic circuit M2 includes a yoke 44, a first small diameter portion 206 of the guide cylinder 20, an end surface 321 of the other end 32 of the movable core 30, a second small diameter section 207 of the guide cylinder 20, and a lid portion. The magnetic circuit returns to the yoke 44 through 45.

磁気回路M1が形成されると、可動コア30と固定コア35との間は磁気吸引力F1が発生する。磁気吸引力F1は、図3、4に示すようにガイド筒20の中心軸φに対して平行な磁気吸引力である。また、磁気回路M2が形成されると、可動コア30と第2小径部207との間には磁気吸引力F2が発生する。磁気吸引力F2はガイド筒20の中心軸φに対して傾斜している磁気吸引力である。   When the magnetic circuit M <b> 1 is formed, a magnetic attractive force F <b> 1 is generated between the movable core 30 and the fixed core 35. The magnetic attraction force F1 is a magnetic attraction force parallel to the central axis φ of the guide cylinder 20 as shown in FIGS. In addition, when the magnetic circuit M2 is formed, a magnetic attractive force F2 is generated between the movable core 30 and the second small diameter portion 207. The magnetic attractive force F <b> 2 is a magnetic attractive force that is inclined with respect to the central axis φ of the guide cylinder 20.

このように、コイル41に電流が流れると、磁気吸引力F1、F2により可動コア30はスプリング33の付勢力に抗して固定コア35の方向に移動する。可動コア30が固定コア35の方向に移動すると、図3に示すように弁体25の端面282とシール部材312とが離間する。凹部154に充満している高圧の気体燃料は、規制部材311と小径部27の外壁との隙間、および可動コア30の一方の端部31の内壁と弁体25の大径部28の外壁との隙間を通って弁体25の端面282とシール部材312とにより形成される隙間314に流入する。隙間314の気体燃料は、貫通孔29を通って導出通路153に流れる。これにより、凹部154の圧力と導出通路153の圧力との差が小さくなる。   As described above, when a current flows through the coil 41, the movable core 30 moves in the direction of the fixed core 35 against the urging force of the spring 33 by the magnetic attractive forces F 1 and F 2. When the movable core 30 moves in the direction of the fixed core 35, the end face 282 of the valve body 25 and the seal member 312 are separated from each other as shown in FIG. The high-pressure gaseous fuel filling the recess 154 includes a gap between the regulating member 311 and the outer wall of the small diameter portion 27, an inner wall of one end portion 31 of the movable core 30, and an outer wall of the large diameter portion 28 of the valve body 25. Flows into a gap 314 formed by the end surface 282 of the valve body 25 and the seal member 312. The gaseous fuel in the gap 314 flows through the through hole 29 to the outlet passage 153. Thereby, the difference between the pressure of the recess 154 and the pressure of the outlet passage 153 is reduced.

さらに、可動コア30が固定コア35の方向に移動すると、規制部材311が弁体25の段差面281に当接する。可動コア30がさらに固定コア35の方向に移動すると、弁体25は可動コア30とともに固定コア35の方向に移動し、図4に示すように斜面261が弁座155から離間する。これにより、凹部154の気体燃料は、斜面261と弁座155との間の隙間を通って導出通路153に流れる。   Further, when the movable core 30 moves in the direction of the fixed core 35, the regulating member 311 contacts the step surface 281 of the valve body 25. When the movable core 30 further moves in the direction of the fixed core 35, the valve body 25 moves in the direction of the fixed core 35 together with the movable core 30, and the inclined surface 261 is separated from the valve seat 155 as shown in FIG. As a result, the gaseous fuel in the recess 154 flows through the gap between the inclined surface 261 and the valve seat 155 to the outlet passage 153.

(1)従来、気体燃料用電磁弁装置では、ガイド筒の一方の開口を覆う蓋部はガイド筒にねじ結合されている。このため、蓋部をねじ込み過ぎると、ガイド筒の強度の弱い部分に蓋部を回す回転トルクが作用し、破損するおそれがあった。一方、第1実施形態による気体燃料用電磁弁装置1では、蓋部45はガイド筒20から突出する固定コア35の小径部352にねじ結合するように形成されている。これにより、蓋部45でガイド筒20の開口208を覆うように組み付けるとき、蓋部45を回す回転トルクによりガイド筒20の他の部分よりも薄く形成されている磁気遮断部21の変形を防止することができる。したがって、高圧流体が充満するガイド筒20の破損を防止することができる。   (1) Conventionally, in a gas fuel solenoid valve device, a lid portion covering one opening of a guide cylinder is screwed to the guide cylinder. For this reason, if the lid portion is screwed too much, there is a risk that the rotating torque that turns the lid portion will act on the weak portion of the guide tube, causing damage. On the other hand, in the electromagnetic valve device 1 for gaseous fuel according to the first embodiment, the lid portion 45 is formed so as to be screwed to the small diameter portion 352 of the fixed core 35 protruding from the guide tube 20. Accordingly, when the cover portion 45 is assembled so as to cover the opening 208 of the guide tube 20, the deformation of the magnetic shielding portion 21 formed thinner than the other portions of the guide tube 20 is prevented by the rotational torque that rotates the cover portion 45. can do. Therefore, it is possible to prevent the guide cylinder 20 that is filled with the high-pressure fluid from being damaged.

(2)また、気体燃料用電磁弁装置1では、固定コア35の小径部352は、その外径がガイド筒20内に固定されている大径部351の外径より小さく形成されている。蓋部45は、この比較的小径の小径部352にねじ結合する。これにより、蓋部45を回す回転トルクは、小径部352を介してガイド筒20に作用するため、ガイド筒20に作用する回転トルクの影響は小さくなる。したがって、蓋部45を回す回転トルクによるガイド筒20の破損をさらに防止することができる。   (2) In the gaseous fuel electromagnetic valve device 1, the small diameter portion 352 of the fixed core 35 is formed so that the outer diameter thereof is smaller than the outer diameter of the large diameter portion 351 fixed in the guide tube 20. The lid 45 is screwed to the relatively small diameter portion 352. As a result, the rotational torque that rotates the lid 45 acts on the guide cylinder 20 via the small-diameter portion 352, so the influence of the rotational torque that acts on the guide cylinder 20 is reduced. Therefore, it is possible to further prevent the guide tube 20 from being damaged by the rotational torque that rotates the lid 45.

(3)また、磁性材料で形成されている蓋部45には、磁気吸引力F1を発生する磁気回路M1の磁束が流れる。蓋部45と固定コア35とはねじ結合しているため、蓋部45と固定コア35との間の当接する面積は大きくなり、磁気回路M1の磁気面積を大きくすることができる。これにより、可動コア30と固定コア35との間の磁気吸引力F1の大きさを維持することができる。   (3) Further, the magnetic flux of the magnetic circuit M1 that generates the magnetic attractive force F1 flows through the lid portion 45 formed of a magnetic material. Since the lid portion 45 and the fixed core 35 are screw-coupled, the contact area between the lid portion 45 and the fixed core 35 is increased, and the magnetic area of the magnetic circuit M1 can be increased. Thereby, the magnitude | size of the magnetic attraction force F1 between the movable core 30 and the fixed core 35 is maintainable.

(4)気体燃料用電磁弁装置1では、コイル41への通電時、2つの磁気回路M1、M2が形成される。このうち、磁気回路M2は、ガイド筒20の磁気遮断部21を迂回し第2小径部207、可動コア30の他方の端部32、および第1小径部206を通るように形成される。このとき、ガイド筒20と可動コア30の他方の端部32との間にはガイド筒20の中心軸φに対して傾斜している磁気吸引力F2が発生する。磁気吸引力F2の中心軸φに対する平行な成分により可動コア30は固定コア35の方向に移動する。すなわち、気体燃料用電磁弁装置1では、磁気回路M1により発生する磁気吸引力F1だけでなく、磁気回路M2により発生する磁気吸引力F2によっても可動コア30は固定コア35の方向に移動する。これにより、同じ吸引力を発生する場合、固定コアと可動コアとの間の磁気回路で発生する磁気吸引力のみにより移動する可動コアを有する高圧流体用電磁弁装置に比べて、固定コア35に対する可動コア30の対向面積を小さくすることができる。したがって、可動コア30の直径が小さくなり、気体燃料用電磁弁装置1の体格を小さくすることができる。   (4) In the electromagnetic valve device 1 for gaseous fuel, when the coil 41 is energized, two magnetic circuits M1 and M2 are formed. Among these, the magnetic circuit M <b> 2 is formed so as to bypass the magnetic blocking portion 21 of the guide cylinder 20 and pass through the second small diameter portion 207, the other end portion 32 of the movable core 30, and the first small diameter portion 206. At this time, a magnetic attractive force F2 that is inclined with respect to the central axis φ of the guide cylinder 20 is generated between the guide cylinder 20 and the other end 32 of the movable core 30. The movable core 30 moves in the direction of the fixed core 35 by a component parallel to the central axis φ of the magnetic attractive force F2. That is, in the gaseous fuel electromagnetic valve device 1, the movable core 30 moves in the direction of the fixed core 35 not only by the magnetic attractive force F1 generated by the magnetic circuit M1, but also by the magnetic attractive force F2 generated by the magnetic circuit M2. As a result, when the same attractive force is generated, the high pressure fluid electromagnetic valve device having a movable core that moves only by the magnetic attractive force generated by the magnetic circuit between the fixed core and the movable core is compared with the fixed core 35. The facing area of the movable core 30 can be reduced. Therefore, the diameter of the movable core 30 is reduced, and the physique of the gaseous fuel electromagnetic valve device 1 can be reduced.

(5)また、可動コア30の直径が小さくなるため、ガイド筒20内に充満する高圧の気体燃料に対する耐圧性を有するためのガイド筒20の肉厚を相対的に薄くすることができる。
具体的には、ガイド筒20内の気体燃料の圧力をP(Pa)、ガイド筒20の内径をD(m)、肉厚をt(m)とすると、中心軸φ方向の応力σ1(N)および径方向の応力σ2(N)は、以下の式で表される。
σ1=(P×D)/(4×t) ・・・式1
σ2=(P×D)/(2×t) ・・・式2
式1、2より、内径Dが大きくなると、中心軸φ方向の応力σ1および径方向の応力σ2は大きくなり、肉厚tを大きくする必要がある。第1実施形態による気体燃料用電磁弁装置1では、比較的内径Dが小さくなるため、中心軸φ方向の応力σ1および径方向の応力σ2が小さくなる。これにより、肉厚tを薄くすることができる。したがって、気体燃料用電磁弁装置1の体格をさらに小さくすることができる。
(5) Moreover, since the diameter of the movable core 30 becomes small, the thickness of the guide cylinder 20 for having pressure resistance against the high-pressure gaseous fuel that fills the guide cylinder 20 can be made relatively thin.
Specifically, when the pressure of the gaseous fuel in the guide cylinder 20 is P (Pa), the inner diameter of the guide cylinder 20 is D (m), and the wall thickness is t (m), the stress σ1 (N ) And radial stress σ2 (N) are expressed by the following equations.
σ1 = (P × D) / (4 × t) Equation 1
σ2 = (P × D) / (2 × t) Equation 2
From Equations 1 and 2, when the inner diameter D increases, the stress σ1 in the central axis φ direction and the stress σ2 in the radial direction increase, and the thickness t needs to be increased. In the electromagnetic valve device 1 for gaseous fuel according to the first embodiment, since the inner diameter D is relatively small, the stress σ1 in the central axis φ direction and the stress σ2 in the radial direction are small. Thereby, the thickness t can be reduced. Therefore, the physique of the gaseous fuel electromagnetic valve device 1 can be further reduced.

(6)また、気体燃料用電磁弁装置1では、その肉厚が第1小径部206および第2小径部207より薄く形成されている磁気遮断部21は、ガイド筒20と支持部材151とが接続する箇所から比較的離れた位置に設けられている。これにより、気体燃料用電磁弁装置1に外部から外力が加えられる場合、ガイド筒20と支持部材151とが接続する箇所を中心とする磁気遮断部21に作用する力のモーメントを低減することができる。したがって、気体燃料用電磁弁装置1の破損を防止することができる。   (6) Moreover, in the electromagnetic valve device 1 for gaseous fuel, the magnetic shielding part 21 whose thickness is formed thinner than the first small diameter part 206 and the second small diameter part 207 includes the guide cylinder 20 and the support member 151. It is provided at a position relatively distant from the connection location. Thereby, when an external force is applied to the electromagnetic valve device 1 for gaseous fuel from the outside, the moment of the force acting on the magnetic blocking portion 21 centering on the location where the guide tube 20 and the support member 151 are connected can be reduced. it can. Therefore, damage to the gaseous fuel electromagnetic valve device 1 can be prevented.

(7)可動コア30と固定コア35との間に設けられるスプリング33は、可動コア30と固定コア35とを離す方向に可動コア30を付勢する。これにより、コイル41への通電が0となり磁気吸引力F1、F2が0となるとき、可動コア30は迅速に支持部材151の方向に移動し、弁体25が弁座155に当接する。したがって、気体燃料用電磁弁装置1での閉弁を迅速に行うことができる。   (7) The spring 33 provided between the movable core 30 and the fixed core 35 urges the movable core 30 in a direction in which the movable core 30 and the fixed core 35 are separated. As a result, when the coil 41 is de-energized and the magnetic attractive forces F1 and F2 are zero, the movable core 30 quickly moves in the direction of the support member 151, and the valve body 25 contacts the valve seat 155. Therefore, the valve closing in the gaseous fuel electromagnetic valve device 1 can be performed quickly.

(8)可動コア30は、飽和磁束密度が高い磁性ステンレス鋼を母材としつつ、ガイド筒20と摺動する径方向外側の側壁には耐摩耗性が高い非磁性めっき膜を施されている。これにより、可動コア30は、磁気回路を形成しやすい高い磁気透過性および変形しにくい耐摩耗性の2つの機能を両立する。したがって、気体燃料用電磁弁装置1の体格を小さくしつつ、摩耗による変形を防止することができる。   (8) The movable core 30 is made of a magnetic stainless steel having a high saturation magnetic flux density, and a nonmagnetic plating film having high wear resistance is applied to the radially outer side wall that slides with the guide tube 20. . Thereby, the movable core 30 has two functions of high magnetic permeability that is easy to form a magnetic circuit and wear resistance that is difficult to deform. Therefore, deformation due to wear can be prevented while reducing the physique of the electromagnetic valve device 1 for gaseous fuel.

(第2実施形態)
次に、本発明の第2実施形態による気体燃料用電磁弁装置を図5に基づいて説明する。第2実施形態は、第1実施形態と異なり、固定コアの形状が異なる。なお、第1実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
(Second Embodiment)
Next, a solenoid valve device for gaseous fuel according to a second embodiment of the present invention will be described with reference to FIG. The second embodiment differs from the first embodiment in the shape of the fixed core. In addition, the same code | symbol is attached | subjected to the site | part substantially the same as 1st Embodiment, and description is abbreviate | omitted.

第2実施形態による気体燃料用電磁弁装置2では、図5に示すように、固定コア35は、大径部351およびねじ部354から構成されている。
ねじ部354は、その外径が大径部351と同じ、すなわち、ガイド筒20の内径と同じである。「突出部」としてのねじ部354の径方向外側の外壁には第1ねじ溝355が形成される。
In the electromagnetic valve device 2 for gaseous fuel according to the second embodiment, as shown in FIG. 5, the fixed core 35 includes a large diameter portion 351 and a screw portion 354.
The outer diameter of the screw portion 354 is the same as that of the large diameter portion 351, that is, the same as the inner diameter of the guide tube 20. A first screw groove 355 is formed on the outer wall on the radially outer side of the screw portion 354 as the “projection portion”.

蓋部45は、略凹状の磁性材で形成される。蓋部45は、フランジ部451、鍔部452、およびねじ部455から構成される。   The lid 45 is made of a substantially concave magnetic material. The lid portion 45 includes a flange portion 451, a flange portion 452, and a screw portion 455.

ねじ部455は、鍔部452と一体に形成される。ねじ部455の内壁には固定コア35の第1ねじ溝355にねじ結合可能な第2ねじ溝456が形成されている。蓋部45を固定コア35に組み付けるとき、第1ねじ溝355と第2ねじ溝456とがねじ結合する。このとき、蓋部45のねじ込み具合によりフランジ部451が弾性部材442を介してコイルアッセンブリ40をガイド筒20の鍔部205の方向に付勢する。このように、蓋部45はコイルアッセンブリ40のヨーク44が鍔部205に当接した状態を維持する。   The screw portion 455 is formed integrally with the flange portion 452. A second screw groove 456 that can be screw-coupled to the first screw groove 355 of the fixed core 35 is formed on the inner wall of the screw portion 455. When the lid 45 is assembled to the fixed core 35, the first screw groove 355 and the second screw groove 456 are screwed together. At this time, the flange portion 451 biases the coil assembly 40 toward the flange portion 205 of the guide tube 20 via the elastic member 442 due to the screwing condition of the lid portion 45. Thus, the lid 45 maintains the state in which the yoke 44 of the coil assembly 40 is in contact with the flange 205.

気体燃料用電磁弁装置2では、蓋部45は固定コア35のねじ部455にねじ結合される。これにより、第2実施形態による気体燃料用電磁弁装置2は、第1実施形態の効果(1)、(3)〜(8)を奏することができる。   In the gaseous fuel electromagnetic valve device 2, the lid portion 45 is screwed to the screw portion 455 of the fixed core 35. Thereby, the solenoid valve device 2 for gaseous fuel by 2nd Embodiment can show the effects (1) and (3)-(8) of 1st Embodiment.

(他の実施形態)
(ア)上述の実施形態では、気体燃料用電磁弁装置は、気体燃料をエンジンに供給する気体燃料供給システムに適用され、気体燃料の流れを遮断または許容するとした。しかしながら、本発明の高圧流体用電磁弁装置が適用されるシステムはこれに限定されない。高圧流体を供給する供給システムであればよい。
(Other embodiments)
(A) In the above-described embodiment, the electromagnetic valve device for gaseous fuel is applied to a gaseous fuel supply system that supplies gaseous fuel to the engine, and interrupts or allows the flow of gaseous fuel. However, the system to which the electromagnetic valve device for high pressure fluid of the present invention is applied is not limited to this. Any supply system that supplies high-pressure fluid may be used.

(イ)上述の実施形態では、気体燃料用電磁弁装置は、弁体に貫通孔が形成され、弁体の斜面が座面より離間する前に貫通孔を介して導入通路と導出通路とが連通するパイロット弁であるとした。しかしながら、気体燃料用電磁弁装置はこれに限定されない。   (A) In the above-described embodiment, the solenoid valve device for gaseous fuel has a through hole formed in the valve body, and the introduction passage and the discharge passage are formed through the through hole before the inclined surface of the valve body is separated from the seat surface. It is assumed that the pilot valve is in communication. However, the solenoid valve device for gaseous fuel is not limited to this.

(ウ)上述の実施形態では、弁座を形成する「シート部材」と支持部材とは一体に形成されているとした。しかしながら、「シート部材」と支持部材とは別部材で形成されてもよい。   (C) In the above-described embodiment, the “seat member” forming the valve seat and the support member are integrally formed. However, the “sheet member” and the support member may be formed as separate members.

(エ)上述の実施形態では、可動コアおよびガイド筒は磁性ステンレス鋼から形成されるとした。しかしながら、可動コアおよびガイド筒を形成する材料はこれに限定されない。磁性材料であればよい。   (D) In the above-described embodiment, the movable core and the guide tube are formed of magnetic stainless steel. However, the material forming the movable core and the guide tube is not limited to this. Any magnetic material may be used.

(オ)上述の実施形態では、ガイド筒は、13〜17wt%のクロムを含有しているとした。しかしながら、ガイド筒のクロム含有量はこれに限定されない。   (E) In the above embodiment, the guide cylinder contains 13 to 17 wt% chromium. However, the chromium content of the guide tube is not limited to this.

(カ)上述の実施形態では、可動コアのガイド筒と摺動する径方向外側の側壁には非磁性めっき膜が形成されているとした。しかしながら、非磁性めっき膜は施されていなくてもよい。   (F) In the above-described embodiment, the nonmagnetic plating film is formed on the radially outer side wall that slides with the guide tube of the movable core. However, the nonmagnetic plating film may not be applied.

以上、本発明はこのような実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。   As mentioned above, this invention is not limited to such embodiment, It can implement with a various form in the range which does not deviate from the summary.

1、2 ・・・気体燃料用電磁弁装置(高圧流体用電磁弁装置)、
151 ・・・支持部材(シート部材)、
155 ・・・弁座、
20 ・・・ガイド筒、
208 ・・・開口(一方の開口)、
206 ・・・第1小径部(磁気透過部)、
207 ・・・第2小径部(磁気透過部)、
21 ・・・磁気遮断部、
25 ・・・弁体、
30 ・・・可動コア、
35 ・・・固定コア、
352 ・・・小径部(突出部)、
353、355 ・・・第1ねじ溝、
354 ・・・ねじ部(突出部)、
40 ・・・コイルアッセンブリ、
45 ・・・蓋部、
454、456 ・・・第2ねじ溝、
M1、M2 ・・・磁気回路。
1, 2 ... Gas fuel solenoid valve device (high pressure fluid solenoid valve device),
151... Support member (sheet member),
155 ... valve seat,
20 ... guide tube,
208 ... opening (one opening),
206 ... 1st small diameter part (magnetic transmission part),
207 ... 2nd small diameter part (magnetic transmission part),
21 ... Magnetic shielding part,
25 ・ ・ ・ Valve,
30 ... movable core,
35 ... fixed core,
352... Small diameter part (protrusion part),
353, 355 ... first thread groove,
354 ・ ・ ・ Screw part (protrusion part),
40: Coil assembly,
45 .. lid part,
454, 456 ... second thread groove,
M1, M2 ... Magnetic circuits.

Claims (3)

高圧流体の流れを電磁弁で遮断または許容する高圧流体用電磁弁装置であって、
通電により磁力を発生するコイルアッセンブリ(40)と、
磁性材料からなり、前記コイルアッセンブリが磁力を発生するとき形成される磁気を軸方向の所定位置の全周にわたって遮断する磁気遮断部(21)、および磁気を透過する磁気透過部(206、207)を形成し、内部を高圧流体で充満可能なガイド筒(20)と、
磁性材料からなり、前記ガイド筒の一方の開口(208)が形成される端部(207)に固定され、前記一方の開口から前記ガイド筒の外部に突出する突出部(352、354)を形成し、前記コイルアッセンブリが磁力を発生するとき励磁される固定コア(35)と、
磁性材料からなり、前記ガイド筒内を往復移動可能に設けられ、前記コイルアッセンブリが磁力を発生するとき前記固定コアに吸引される可動コア(30)と、
磁性材料からなり、前記ガイド筒の前記端部を覆い、前記固定コアの前記突出部に形成される第1ねじ溝(353、355)とねじ結合する第2ねじ溝(454、456)を有する蓋部(45)と、
前記可動コアに連結する弁体(25)と、
前記弁体が当接または離間するとき高圧流体の流れを遮断または許容する弁座(155)を形成するシート部材(151)と、
を備え、
前記コイルアッセンブリが磁力を発生するとき、前記ガイド筒の前記磁気透過部と前記可動コアとの間に前記磁気遮断部を迂回して磁気回路(M2)が形成されることを特徴とする高圧流体用電磁弁装置。
A solenoid valve device for high pressure fluid that blocks or allows a flow of high pressure fluid with a solenoid valve,
A coil assembly (40) that generates a magnetic force when energized;
A magnetic shielding part (21) that is made of a magnetic material and shields the magnetism formed when the coil assembly generates a magnetic force over the entire circumference in a predetermined position in the axial direction, and a magnetic transmission part (206, 207) that transmits the magnetism A guide cylinder (20) that can be filled with a high-pressure fluid,
Made of magnetic material, fixed to an end (207) where one opening (208) of the guide cylinder is formed, and forming protrusions (352, 354) protruding from the one opening to the outside of the guide cylinder A fixed core (35) that is excited when the coil assembly generates a magnetic force;
A movable core (30) made of a magnetic material, provided so as to be reciprocally movable in the guide cylinder, and attracted to the fixed core when the coil assembly generates a magnetic force;
The second screw groove (454, 456) is made of a magnetic material, covers the end of the guide tube, and is screw-coupled with the first screw groove (353, 355) formed in the protruding portion of the fixed core. A lid (45);
A valve body (25) connected to the movable core;
A seat member (151) forming a valve seat (155) that blocks or allows the flow of high-pressure fluid when the valve body abuts or separates;
With
When the coil assembly generates a magnetic force, a magnetic circuit (M2) is formed between the magnetic transmission part of the guide cylinder and the movable core so as to bypass the magnetic blocking part. Solenoid valve device.
前記磁気遮断部は、径方向の厚みが前記磁気透過部の径方向の厚みより薄く形成されていることを特徴とする請求項1に記載の高圧流体用電磁弁装置。   2. The electromagnetic valve device for high-pressure fluid according to claim 1, wherein the magnetic blocking portion is formed such that a radial thickness is thinner than a radial thickness of the magnetic transmission portion. 前記突出部(352)は、外径が前記ガイド筒の内径より小さいことを特徴とする請求項1または2に記載の高圧流体用電磁弁装置。   The electromagnetic valve device for high pressure fluid according to claim 1 or 2, wherein the protrusion (352) has an outer diameter smaller than an inner diameter of the guide cylinder.
JP2012258244A 2012-11-27 2012-11-27 Solenoid valve device for high-pressure fluid Pending JP2014105758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258244A JP2014105758A (en) 2012-11-27 2012-11-27 Solenoid valve device for high-pressure fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258244A JP2014105758A (en) 2012-11-27 2012-11-27 Solenoid valve device for high-pressure fluid

Publications (1)

Publication Number Publication Date
JP2014105758A true JP2014105758A (en) 2014-06-09

Family

ID=51027446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258244A Pending JP2014105758A (en) 2012-11-27 2012-11-27 Solenoid valve device for high-pressure fluid

Country Status (1)

Country Link
JP (1) JP2014105758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump
CN107709749A (en) * 2015-06-25 2018-02-16 日立汽车系统株式会社 Flow control valve and high-pressure fuel feed pump
JPWO2016208359A1 (en) * 2015-06-25 2018-03-29 日立オートモティブシステムズ株式会社 Flow control valve and high-pressure fuel supply pump
CN107709749B (en) * 2015-06-25 2020-03-27 日立汽车系统株式会社 Flow control valve and high-pressure fuel supply pump
US10731615B2 (en) 2015-06-25 2020-08-04 Hitachi Automotive Systems, Ltd. Flow rate control valve and high-pressure fuel supply pump

Similar Documents

Publication Publication Date Title
JP5733581B2 (en) Solenoid valve device for high pressure fluid
JP2014105753A (en) Solenoid valve device for high-pressure fluid
JP2014105754A (en) Solenoid valve device for high pressure fluid
US9583248B2 (en) Solenoid and hydraulic pressure control apparatus having the same
US8973894B2 (en) Solenoid and solenoid valve
US7290564B2 (en) Solenoid valve
US9297471B2 (en) Solenoid valve
US20150078922A1 (en) High pressure pump
US11022232B2 (en) Valve with proportional electromagnetic actuator
US20140291564A1 (en) Electromagnetic linear valve
JP7123246B2 (en) tank device for storing gaseous media
JP5664873B2 (en) Valve for supplying fluid
RU2559865C2 (en) Pressure control for fuel feeding, and fuel feeding system containing control unit consisting of such pressure controls
EP2535626A1 (en) Solenoid device
JP6311011B2 (en) Solenoid valve, high-pressure fuel supply pump equipped with this solenoid valve as a suction valve mechanism
JP2014105757A (en) Solenoid valve device for high-pressure fluid
US9970398B2 (en) Fuel injection device
US11346307B2 (en) Fluid injector and needle for a fluid injector
US20180038317A1 (en) Gas fuel supply apparatus
JP2014105758A (en) Solenoid valve device for high-pressure fluid
JP5998874B2 (en) Electromagnetic valve device for high-pressure fluid and method for manufacturing electromagnetic valve device for high-pressure fluid
JP2012026421A (en) Pressure reducing valve
JP2014169782A (en) High pressure fluid valve device
JP5850256B2 (en) Pressure control device for gaseous fuel
JP5157976B2 (en) Flow control solenoid valve