JP2014105633A - Turbine rotor blade - Google Patents

Turbine rotor blade Download PDF

Info

Publication number
JP2014105633A
JP2014105633A JP2012259388A JP2012259388A JP2014105633A JP 2014105633 A JP2014105633 A JP 2014105633A JP 2012259388 A JP2012259388 A JP 2012259388A JP 2012259388 A JP2012259388 A JP 2012259388A JP 2014105633 A JP2014105633 A JP 2014105633A
Authority
JP
Japan
Prior art keywords
blade
turbine
turbine rotor
blade tip
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259388A
Other languages
Japanese (ja)
Other versions
JP6086583B2 (en
Inventor
Ichiro Miyoshi
市朗 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012259388A priority Critical patent/JP6086583B2/en
Publication of JP2014105633A publication Critical patent/JP2014105633A/en
Application granted granted Critical
Publication of JP6086583B2 publication Critical patent/JP6086583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbine rotor blade capable of suppressing energy loss of a working fluid due to interference with part of a working fluid passing through a blade tip clearance.SOLUTION: In a turbine rotor blade 34 attached to a rotational shaft 33 and rotating inside a turbine casing 31, flow f flowing from a side of a pressure surface 56 and to a side of a negative pressure surface 57 in a blade tip clearance g between a blade tip 63 of the turbine rotor blade 34 and the turbine rotor blade 34 is decelerated by applying a swirling component f'' at a recess part 64 provided on the blade tip surface 63, and thereby a region A where the flow f flowing in the blade tip clearance g and the mainstream of a working fluid on the side of the negative pressure surface 57 are mixed is controlled, and energy loss of the mainstream is suppressed.

Description

本発明はタービン動翼に関する。   The present invention relates to a turbine rotor blade.

タービン動翼は回転軸の外周部に取り付けられてタービンロータを構成する。このタービンロータはケーシング内で回転する。したがって、静止体であるケーシングの内周壁とこれに対向するタービン動翼の先端面との間には間隙(以下、翼先端間隙と記載する)が介在する。翼先端間隙を通ってタービン動翼の圧力面側から負圧面側に移動する一部の作動流体は、作動流体の主流に干渉して主流のエネルギーを損失させる。そこで、タービン動翼の先端面にリブを立てて翼先端間隙をシールするものがある(特許文献1等参照)。   The turbine rotor blade is attached to the outer peripheral portion of the rotating shaft to constitute a turbine rotor. This turbine rotor rotates in the casing. Therefore, a gap (hereinafter referred to as a blade tip gap) is interposed between the inner peripheral wall of the casing, which is a stationary body, and the tip surface of the turbine rotor blade facing the casing. A part of the working fluid that moves from the pressure surface side of the turbine blade to the suction surface side through the blade tip gap interferes with the main flow of the working fluid and loses the main flow energy. In view of this, there is a type in which a rib is provided on the tip surface of the turbine blade to seal the blade tip gap (see Patent Document 1, etc.).

特開2008−51096号公報JP 2008-51096 A

しかし、翼先端間隙をリブでシールする構成では、タービン動翼の厚みがある場合には効果的だが、薄いタービン動翼ではシール効果が小さく、翼先端間隙を通過して作動流体の主流に混合する流れの流速を十分に抑えられない。翼先端間隙を通過する作動流体の流量が多い場合には作動流体を整流化することができず、全圧損失を増大させる渦(二次流れ)を翼の前縁で発生させ、タービン動翼に作用する流体力が減少する。   However, the configuration in which the blade tip gap is sealed with ribs is effective when the thickness of the turbine blade is large, but the sealing effect is small with a thin turbine blade, and it mixes with the main flow of working fluid through the blade tip gap. The flow velocity of the flow is not sufficiently suppressed. When the flow rate of the working fluid passing through the blade tip clearance is large, the working fluid cannot be rectified, and a vortex (secondary flow) that increases the total pressure loss is generated at the leading edge of the blade. The fluid force acting on the is reduced.

また、高温の燃焼ガスを作動流体とする場合には、翼先端における流れ場の乱れはタービン動翼に少なからず影響を与える。すなわち、流れ場の乱れは流体側から翼型部への熱流速を増加させて熱負荷を増大させ、タービン動翼を劣化させ得る。   In addition, when a high-temperature combustion gas is used as a working fluid, the disturbance of the flow field at the blade tip has a considerable influence on the turbine rotor blade. That is, the disturbance of the flow field can increase the heat flow rate from the fluid side to the airfoil, increase the thermal load, and deteriorate the turbine blade.

本発明はこうした背景の下になされたもので、翼先端間隙を通過する一部の作動流体との干渉による作動流体のエネルギー損失を抑制することができるタービン動翼を提供することを目的とする。   The present invention has been made under such a background, and an object thereof is to provide a turbine rotor blade capable of suppressing energy loss of the working fluid due to interference with a part of the working fluid passing through the blade tip clearance. .

上記目的を達成するために、本発明は、回転軸に取り付けられてタービンケーシング内部で回転するタービン動翼において、このタービン動翼の翼先端部とタービン動翼との間の翼先端間隙を圧力面側から負圧面側に流れる流れを、翼先端面に設けた凹部で旋回成分を付与して減速させることにより、翼先端間隙を流れる流れと負圧面側の作動流体の主流とが混合する領域を抑制し、主流のエネルギー損失を抑制する。   In order to achieve the above object, the present invention provides a turbine rotor blade that is attached to a rotary shaft and rotates inside a turbine casing, wherein the blade tip gap between the blade tip of the turbine rotor blade and the turbine rotor blade is pressurized. The region where the flow flowing from the blade side to the suction surface side is decelerated by applying a swirling component at the recess provided on the blade tip surface to mix the flow flowing through the blade tip gap and the main flow of the working fluid on the suction surface side Suppresses mainstream energy loss.

本発明によれば、翼先端間隙を通過する一部の作動流体との干渉による作動流体のエネルギー損失を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the energy loss of the working fluid by interference with the one part working fluid which passes a blade tip clearance gap can be suppressed.

本発明に係るタービン動翼を適用するガスタービンの一構成例の部分側断面図である。It is a fragmentary sectional side view of the example of 1 structure of the gas turbine to which the turbine rotor blade concerning this invention is applied. 本発明の第1の実施の形態に係るタービン動翼の斜視図である。1 is a perspective view of a turbine rotor blade according to a first embodiment of the present invention. 図2中のIII−III線による矢視断面図である。It is arrow sectional drawing by the III-III line in FIG. タービン中心軸に直交する面で切断した本発明の第1の実施の形態に係るタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade which concerns on the 1st Embodiment of this invention cut | disconnected by the surface orthogonal to a turbine central axis. 本発明の第1の実施の形態に係るタービン動翼の翼先端面をタービン径方向外側から見た図である。It is the figure which looked at the blade tip surface of the turbine rotor blade concerning a 1st embodiment of the present invention from the turbine radial direction outside. 翼先端間隙を通過して圧力面側から負圧面側に移動する作動流体の影響を考慮しない場合における本発明の第1の実施の形態に係るタービン動翼の翼先端面の外縁の翼面マッハ数を示した図である。The blade surface Mach at the outer edge of the blade tip surface of the turbine rotor blade according to the first embodiment of the present invention when the influence of the working fluid moving from the pressure surface side to the suction surface side through the blade tip gap is not considered It is the figure which showed the number. 翼先端間隙を通過して圧力面側から負圧面側に移動する作動流体の影響を考慮した場合における本発明の第1の実施の形態に係るタービン動翼の翼先端面の外縁の翼面マッハ数を示した図である。The blade surface Mach at the outer edge of the blade tip surface of the turbine rotor blade according to the first embodiment of the present invention in consideration of the influence of the working fluid passing through the blade tip gap and moving from the pressure surface side to the suction surface side It is the figure which showed the number. 比較例に係るタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade which concerns on a comparative example. 本発明の第2の実施の形態に係るタービン動翼を含むタービン段落を表す図である。It is a figure showing the turbine stage containing the turbine bucket which concerns on the 2nd Embodiment of this invention. タービン中心軸に直交する面で切断した本発明の第2の実施の形態に係るタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade which concerns on the 2nd Embodiment of this invention cut | disconnected by the surface orthogonal to a turbine central axis. 本発明の第2の実施の形態に係るタービン動翼の翼先端面をタービン径方向外側から見た図である。It is the figure which looked at the blade front end surface of the turbine rotor blade concerning the 2nd Embodiment of this invention from the turbine radial direction outer side. 図9の図示に領域Aを重ねて図示した図である。It is the figure which overlapped and illustrated the area | region A on illustration of FIG.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
1.ガスタービン
図1は本発明に係るタービン動翼を適用するガスタービンの一構成例の部分側断面図である。
(First embodiment)
1. Gas Turbine FIG. 1 is a partial sectional side view of a structural example of a gas turbine to which a turbine blade according to the present invention is applied.

同図に示したガスタービンは、圧縮機10、燃焼器20、及びタービン30を備えている。圧縮機10は、圧縮機ケーシング11と圧縮機ロータ12を備えている。圧縮機ロータ12は、回転軸13の外周部に複数の圧縮機動翼14からなる動翼翼列を軸方向に複数列設けて構成してある。また、圧縮機ケーシング11の内周壁には、各動翼翼列の上流側に位置するように複数の圧縮機静翼15からなる静翼翼列が軸方向に複数列設けてある。静翼翼列とその下流側の動翼翼列とで1つの段落を構成する。タービン30は、タービンケーシング31とタービンロータ32を備えている。タービンロータ32は、回転軸33の外周部に複数のタービン動翼34からなる動翼翼列を軸方向に複数列設けて構成してある。また、タービンケーシング31の内周壁には、各動翼翼列の上流側に位置するように複数のタービン静翼35からなる静翼翼列が軸方向に複数列設けてある。静翼翼列とその下流側の動翼翼列とで1つの段落を構成する。圧縮機ロータ12とタービンロータ32は、互いの回転軸13,33が同軸に連結されていて一体のロータ40を構成している。圧縮機ロータ12又はタービンロータ32には発電機等の負荷機器(図示せず)が接続される。   The gas turbine shown in the figure includes a compressor 10, a combustor 20, and a turbine 30. The compressor 10 includes a compressor casing 11 and a compressor rotor 12. The compressor rotor 12 is configured by providing a plurality of moving blade cascades each including a plurality of compressor moving blades 14 in the axial direction on the outer peripheral portion of the rotating shaft 13. Further, on the inner peripheral wall of the compressor casing 11, a plurality of stator blade cascades composed of a plurality of compressor stator blades 15 are provided in the axial direction so as to be positioned upstream of each rotor blade cascade. A stationary blade cascade and a moving blade cascade downstream thereof constitute one paragraph. The turbine 30 includes a turbine casing 31 and a turbine rotor 32. The turbine rotor 32 is configured by providing a plurality of rows of moving blade cascades including a plurality of turbine rotor blades 34 in the axial direction on the outer peripheral portion of the rotating shaft 33. Further, a plurality of stationary blade cascades including a plurality of turbine stationary blades 35 are provided on the inner peripheral wall of the turbine casing 31 in the axial direction so as to be located upstream of each rotor blade cascade. A stationary blade cascade and a moving blade cascade downstream thereof constitute one paragraph. The compressor rotor 12 and the turbine rotor 32 constitute an integral rotor 40 in which the rotary shafts 13 and 33 are connected coaxially. A load device (not shown) such as a generator is connected to the compressor rotor 12 or the turbine rotor 32.

上記構成のガスタービンにあって、圧縮機10に吸い込まれた空気は圧縮機10によって圧縮されて燃焼器20に流入する。圧縮機10からの圧縮空気は燃焼器20において燃料とともに燃焼される。燃焼器20で発生した高温の作動流体(燃焼ガス)はタービン30に流入し、タービンロータ32を駆動する。こうしてタービン30で得られた回転動力は、負荷機器(図示しせず)に伝達されて負荷機器を駆動する。   In the gas turbine configured as described above, the air sucked into the compressor 10 is compressed by the compressor 10 and flows into the combustor 20. The compressed air from the compressor 10 is combusted with fuel in the combustor 20. The hot working fluid (combustion gas) generated in the combustor 20 flows into the turbine 30 and drives the turbine rotor 32. The rotational power thus obtained by the turbine 30 is transmitted to a load device (not shown) to drive the load device.

2.タービン動翼
(1)翼型部
図2はタービン動翼34の斜視図、図3は図2中のIII−III線による矢視断面図である。
2. Turbine Blade (1) Airfoil Part FIG. 2 is a perspective view of the turbine blade 34, and FIG. 3 is a cross-sectional view taken along line III-III in FIG.

タービン動翼34は、タブテール形翼根部50、プラットフォーム部51、及びプラットフォーム部51の上面52からタービン半径方向の外側に延びる翼型部53を有している。タブテール形翼根部50は、タービン動翼34をタービンロータ32に取付けるための部位である。プラットフォーム部51の上面52は、タービン径方向の外側から見てタービン中心軸を対称軸として線対称となるように形成されている。図3に示すように、翼型部53の断面における凹形状の圧力面56と凸形状の負圧面57との中間点を通る面を翼中心面58とすると、翼型部53は翼中心面58に沿って翼前縁54から中央部にかけて厚みを増し、中央部から翼後縁55に向かって薄くなる形状をしている。   The turbine rotor blade 34 includes a tab tail-shaped blade root portion 50, a platform portion 51, and an airfoil portion 53 that extends outward from the upper surface 52 of the platform portion 51 in the turbine radial direction. The tab tail blade root 50 is a part for attaching the turbine blade 34 to the turbine rotor 32. The upper surface 52 of the platform 51 is formed so as to be line symmetric with respect to the turbine central axis as viewed from the outside in the turbine radial direction. As shown in FIG. 3, if a plane passing through an intermediate point between the concave pressure surface 56 and the convex negative pressure surface 57 in the cross section of the airfoil portion 53 is a blade center surface 58, the airfoil portion 53 has the blade center surface. A thickness is increased from the blade leading edge 54 to the center along the blade 58, and becomes thinner from the center toward the blade trailing edge 55.

(2)翼先端面
図4はタービン中心軸に直交する面で切断したタービン動翼34の断面図、図5はタービン動翼34の翼先端面63をタービン径方向外側から見た図である。なお、図4は図5中のIV−IV線による部分矢視断面図に相当する。
(2) Blade Tip Surface FIG. 4 is a cross-sectional view of the turbine blade 34 cut along a plane orthogonal to the turbine central axis, and FIG. 5 is a view of the blade tip surface 63 of the turbine blade 34 as viewed from the outside in the turbine radial direction. . 4 corresponds to a partial cross-sectional view taken along line IV-IV in FIG.

図4において、タービン動翼34の翼先端面63とタービンケーシング31との間隙(以下、翼先端間隙g)を通って圧力面56側から負圧面57側へ移動する一部の作動流体の流れが太線矢印で示されている。R軸はタービン径方向に採った座標軸であり、径方向外側に向かう方向を正としている。X軸はタービン中心軸に平行な座標軸であり、作動流体の主流の流通方向の上流から下流へ向かう方向を正としている。θ軸はタービン回転方向に採った座標軸である。   In FIG. 4, the flow of a part of the working fluid moving from the pressure surface 56 side to the negative pressure surface 57 side through the gap between the blade tip surface 63 of the turbine rotor blade 34 and the turbine casing 31 (hereinafter referred to as blade tip gap g). Is indicated by a thick arrow. The R axis is a coordinate axis taken in the turbine radial direction, and the direction toward the radially outer side is positive. The X axis is a coordinate axis parallel to the turbine central axis, and the direction from upstream to downstream in the flow direction of the main flow of the working fluid is positive. The θ axis is a coordinate axis taken in the turbine rotation direction.

図4及び図5に示すように、翼先端面63は、当該翼先端面63の外縁に沿って環状に形成された平坦部67、及び平坦部67の内側の凹部64からなっている。翼先端面63は翼型部53のタービン径方向外側の面であって、タービンケーシング31の内周面に対向する面である。   As shown in FIGS. 4 and 5, the blade tip surface 63 includes a flat portion 67 formed in an annular shape along the outer edge of the blade tip surface 63, and a concave portion 64 inside the flat portion 67. The blade tip surface 63 is a surface on the outer side in the turbine radial direction of the airfoil portion 53 and is a surface facing the inner peripheral surface of the turbine casing 31.

凹部64は、平坦部67からタービン径方向内側に採った深さが最も深くなる最深部65が翼中心面58よりも圧力面56側に位置している。また、コード長方向に軸をとって翼前縁54の位置を0%、翼後縁55の位置を100%としたとき、最深部65(最深部65が面積を持つ場合には少なくともその一部)は30%−80%の範囲に位置している。翼前縁54及び翼後縁55の付近においても翼先端面63の外縁部には平坦部67が必要であるため、コード長方向における最深部65の存在範囲は30%−80%の範囲が適当である。   In the concave portion 64, the deepest portion 65 where the depth taken from the flat portion 67 inward in the turbine radial direction is the deepest is located on the pressure surface 56 side with respect to the blade center surface 58. Further, when taking the axis in the cord length direction and setting the position of the blade leading edge 54 to 0% and the position of the blade trailing edge 55 to 100%, the deepest portion 65 (if the deepest portion 65 has an area, at least one of them). Part) is located in the range of 30% -80%. Even in the vicinity of the blade leading edge 54 and the blade trailing edge 55, the flat portion 67 is necessary at the outer edge portion of the blade tip surface 63, and therefore the existence range of the deepest portion 65 in the cord length direction is in the range of 30% -80%. Is appropriate.

凹部64の深さは、最深部65から翼中心面58を跨いで単調に減少している。したがって、翼先端間隙gは、翼中心面58よりも圧力面56側で最大値gmaxをとり、負圧面57側に向かうにつれて小さくなる。凹部64の底面は翼中心面58に対して負圧面57側に向かって凹部64が浅くなるように傾斜して交差しているため、凹部64の底面における翼中心面58との交差部66は最深部65よりも浅くなっている。本実施の形態では、図4に示したように凹部64の底面は、最深部65を始端として負圧面57側に向かうタービン径方向内側に凸形状の部分、及びこの内側に凸形状の部分から負圧面57側に向かうタービン径方向外側に凸形状の部分を滑らかに連続させた形状をしている。つまり、凹部64の底面は、変曲点を介して最深部65から負圧面57側に向かって単調に増加する形状である。また、凹部64における最深部65よりも圧力面56側の底面は、最深部65を始端として圧力面56側に向かってタービン径方向内側に凸形状をしている。   The depth of the concave portion 64 monotonously decreases across the blade center plane 58 from the deepest portion 65. Therefore, the blade tip gap g takes the maximum value gmax on the pressure surface 56 side relative to the blade center surface 58 and becomes smaller toward the negative pressure surface 57 side. Since the bottom surface of the concave portion 64 is inclined and intersects with the blade center surface 58 so that the concave portion 64 becomes shallower toward the suction surface 57 side, the intersecting portion 66 of the bottom surface of the concave portion 64 with the blade center surface 58 is It is shallower than the deepest portion 65. In the present embodiment, as shown in FIG. 4, the bottom surface of the concave portion 64 is formed from a convex portion on the inner side in the turbine radial direction toward the negative pressure surface 57 starting from the deepest portion 65, and a convex portion on the inner side. It has a shape in which convex portions are smoothly continued outward in the turbine radial direction toward the negative pressure surface 57 side. That is, the bottom surface of the concave portion 64 has a shape that monotonously increases from the deepest portion 65 toward the negative pressure surface 57 via the inflection point. Further, the bottom surface of the concave portion 64 closer to the pressure surface 56 than the deepest portion 65 has a convex shape inward in the turbine radial direction from the deepest portion 65 toward the pressure surface 56 side.

なお、図4中のRtipはタービンケーシング31の内周壁のR軸上における半径方向位置、R’tipは凹部64の最深部65の半径方向位置を示す。   4, Rtip indicates the radial position on the R axis of the inner peripheral wall of the turbine casing 31, and R′tip indicates the radial position of the deepest portion 65 of the recess 64.

3.比較例
図6は翼先端間隙gを通過して圧力面側から負圧面側に移動する作動流体の影響を考慮しない場合におけるタービン動翼の翼先端面の外縁の翼面マッハ数を示した図、図7は翼先端間隙gを通過して圧力面側から負圧面側に移動する作動流体の影響を考慮した場合におけるタービン動翼の翼先端面の外縁の翼面マッハ数を示した図、図8は比較例に係るタービン動翼の断面図である。図8は図4と対応させて図示してある。
3. Comparative Example FIG. 6 is a view showing the blade surface Mach number of the outer edge of the blade tip surface of the turbine rotor blade when the influence of the working fluid that passes through the blade tip gap g and moves from the pressure surface side to the suction surface side is not considered. FIG. 7 is a diagram showing the blade surface Mach number of the outer edge of the blade tip surface of the turbine rotor blade when the influence of the working fluid moving from the pressure surface side to the suction surface side through the blade tip gap g is considered. FIG. 8 is a cross-sectional view of a turbine blade according to a comparative example. FIG. 8 is shown corresponding to FIG.

図6においては、負圧面側における翼先端面の翼前縁から翼後縁にかけての翼面マッハ数をMsで示し、圧力面側における翼先端面の翼前縁から翼後縁にかけての翼面マッハ数をMpで示している。同図に示すように、負圧面の翼面マッハ数Msは、翼前縁と翼後縁の中間部で最大翼面マッハ数Mmaxとなり、中間部から翼後縁にかけて減少している。一方、圧力面の翼面マッハ数Mpは、翼前縁と翼後縁の中間部で最小翼面マッハ数Mminとなり、中間部から翼後縁にかけて上昇している。この負圧面と圧力面での翼面マッハ数の差により圧力面と負圧面との圧力差が発生し翼型部に作動流体の主流の流体力が作用し、ロータが回転駆動する。   In FIG. 6, the blade surface Mach number from the leading edge of the blade tip surface to the trailing edge of the blade on the suction surface side is indicated by Ms, and the blade surface from the leading edge of the blade tip surface to the trailing edge of the blade on the pressure surface side is shown. The Mach number is indicated by Mp. As shown in the figure, the blade surface Mach number Ms of the suction surface becomes the maximum blade surface Mach number Mmax at the intermediate portion between the blade leading edge and the blade trailing edge, and decreases from the intermediate portion to the blade trailing edge. On the other hand, the blade surface Mach number Mp of the pressure surface becomes the minimum blade surface Mach number Mmin at the intermediate portion between the blade leading edge and the blade trailing edge, and increases from the intermediate portion to the blade trailing edge. Due to the difference in blade surface Mach number between the suction surface and the pressure surface, a pressure difference between the pressure surface and the suction surface is generated, and the main fluid force of the working fluid acts on the airfoil portion to drive the rotor to rotate.

しかし、実際には一部の作動流体が翼先端間隙gを通って高圧の圧力面側から低圧の負圧面側に移動することにより、負圧面の最大翼面マッハ数は図7に示したようにMmaxから低下してM’maxとなり、圧力面と負圧面との圧力差が減少する。翼先端間隙gを通過した一部の作動流体が翼間を通過する作動流体の主流と干渉することで、作動流体の主流のエネルギーが損失して主流の膨張が阻害され、翼型部の翼先端面における全圧損失が大きくなるためである。   However, in practice, a part of the working fluid moves from the high pressure surface side to the low pressure surface side through the blade tip gap g, so that the maximum blade surface Mach number of the suction surface is as shown in FIG. It decreases from Mmax to M'max, and the pressure difference between the pressure surface and the suction surface decreases. Part of the working fluid that has passed through the blade tip gap g interferes with the main flow of the working fluid that passes between the blades, so that the energy of the main flow of the working fluid is lost and the expansion of the main flow is hindered. This is because the total pressure loss at the front end surface increases.

具体的には、図8に示すように、圧力面に作用する一部の作動流体fが翼先端間隙gに流入し、翼先端間隙gを通過して負圧面側の点aで巻き下がり、負圧面に添って二次流れf’を形成する。この二次流れf’は作動流体の主流に干渉し主流の流れを一部阻害するとともに、主流と混合することで作動流体のエネルギー損失に繋がる。いわゆるブロッケージ効果である。すなわち、二次流れf’が作動流体の主流と混合することで作動流体のエネルギーが低くなっている領域Aが大きいほど作動流体のエネルギーがタービンロータの回転エネルギーに変換される割合が低下する。   Specifically, as shown in FIG. 8, a part of the working fluid f acting on the pressure surface flows into the blade tip gap g, passes through the blade tip gap g, and is rolled down at a point a on the suction surface side. A secondary flow f ′ is formed along the suction surface. This secondary flow f 'interferes with the main flow of the working fluid and partially obstructs the flow of the main flow, and is mixed with the main flow, leading to energy loss of the working fluid. This is a so-called blockage effect. That is, as the region A in which the energy of the working fluid is reduced by mixing the secondary flow f 'with the main flow of the working fluid is larger, the rate at which the energy of the working fluid is converted into the rotational energy of the turbine rotor is reduced.

4.作用
本実施の形態においては、図4及び図5に示したように、翼中心面58よりも圧力面56側にある最深部65から負圧面57に向かって徐々に浅くなる凹部64を翼先端面63に設けたことにより、翼先端間隙gに流入した作動流体に早い段階で旋回成分f”を付与して減速させ、さらに翼先端間隙gの残りのストロークで翼先端間隙gを流通する流れを減速させた上で負圧面57側に噴出させることにより、二次流れf’を弱めることができる。これにより作動流体の主流に二次流れf’が混合する領域Aを小さくすることができ、翼先端間隙gを通過する一部の作動流体との干渉による作動流体の主流のエネルギー損失を抑制し、タービン動翼34で作動流体のエネルギーがタービンロータ32の回転エネルギーに変換する割合を増加させることができる。
4). In the present embodiment, as shown in FIGS. 4 and 5, the recess 64 gradually becomes shallower from the deepest portion 65 on the pressure surface 56 side to the negative pressure surface 57 with respect to the blade center surface 58. By providing the surface 63, the working fluid flowing into the blade tip gap g is decelerated by adding a swirling component f "at an early stage, and further flows through the blade tip gap g with the remaining stroke of the blade tip gap g. And the secondary flow f ′ can be weakened by jetting it toward the suction surface 57. This makes it possible to reduce the region A where the secondary flow f ′ is mixed with the main flow of the working fluid. , The energy loss of the main flow of the working fluid due to the interference with a part of the working fluid passing through the blade tip gap g is suppressed, and the rate at which the working fluid energy is converted into the rotational energy of the turbine rotor 32 by the turbine rotor blade 34 is increased. It can be.

また、翼先端部におけるブロッケージ効果を小さくすることができるので、作動流体の熱膨張仕事の翼型部53の半径方向の位置による偏差を抑制することができる。   Further, since the blockage effect at the blade tip portion can be reduced, deviation due to the radial position of the airfoil portion 53 of the thermal expansion work of the working fluid can be suppressed.

また、翼先端間隙をシールする構成と異なり、翼先端面63の翼前縁54或いは圧力面56の付近における二次流れの発生を助長することもないので、圧力面56に作用する流体力の減少を抑制することもできる。   Further, unlike the configuration in which the blade tip gap is sealed, the generation of a secondary flow in the vicinity of the blade leading edge 54 or the pressure surface 56 of the blade tip surface 63 is not facilitated. Reduction can also be suppressed.

また、領域Aを縮小することにより、作動流体の主流から翼型部53に流入する熱流速を抑制し、ひいてはタービン動翼34の劣化を抑制することができる。   Further, by reducing the area A, it is possible to suppress the heat flow velocity flowing from the main flow of the working fluid into the airfoil portion 53, and thus suppress the deterioration of the turbine rotor blade 34.

(第2の実施の形態)
図9は本発明の第2の実施の形態に係るタービン動翼を含むタービン段落を表す図、図10はタービン中心軸に直交する面で切断したタービン動翼の断面図、図11はタービン動翼34の翼先端面63をタービン径方向外側から見た図である。なお、図9では、タービン動翼34については翼中心面58で切断した断面図で表してある。また、図10は図11中のX−X線による部分矢視断面図に相当する。
(Second Embodiment)
FIG. 9 is a view showing a turbine stage including a turbine blade according to the second embodiment of the present invention, FIG. 10 is a cross-sectional view of the turbine blade cut along a plane orthogonal to the turbine central axis, and FIG. It is the figure which looked at the blade front end surface 63 of the blade | wing 34 from the turbine radial direction outer side. In FIG. 9, the turbine rotor blade 34 is represented by a cross-sectional view taken along the blade center plane 58. 10 corresponds to a partial cross-sectional view taken along the line XX in FIG.

本実施の形態が第1の実施の形態と相違する点は、タービン動翼34が内部に冷却空気流路71,72を有していて、冷却空気流路71,72に冷却空気を流してタービン動翼34を内部から冷却する構成である点である。   This embodiment is different from the first embodiment in that the turbine rotor blade 34 has cooling air passages 71 and 72 inside, and the cooling air is allowed to flow through the cooling air passages 71 and 72. This is a configuration in which the turbine rotor blade 34 is cooled from the inside.

図9中の太線矢印は冷却空気の流れを示し、ブロック矢印は作動流体の主流の流れを示している。冷却空気流路71,72には冷却空気とタービン動翼34との間で効果的に熱交換するためにフィンが設けられている。但し、熱交換を促進する構造は対流冷却や他の冷却手段で代替することもできる。これら冷却空気流路71,72を流通する冷却空気は、圧縮機10(図1参照)から抽気されて、ロータ40の回転中心に設けた中心孔(図示せず)を通って導かれる。   The thick arrow in FIG. 9 indicates the flow of the cooling air, and the block arrow indicates the main flow of the working fluid. The cooling air flow paths 71 and 72 are provided with fins for effective heat exchange between the cooling air and the turbine rotor blades 34. However, the structure that promotes heat exchange can be replaced by convection cooling or other cooling means. The cooling air flowing through the cooling air flow paths 71 and 72 is extracted from the compressor 10 (see FIG. 1) and guided through a center hole (not shown) provided at the rotation center of the rotor 40.

冷却空気流路71は、翼型部53の翼前縁54側の部分をタービン径方向に貫通し、終端が翼先端面63に開口していて、翼先端面63から冷却空気を排出する。本実施の形態では図11に示したように冷却空気流路71が凹部64の翼前縁54側の平坦部67に開口しているが、凹部64に開口する構成であっても良い。冷却空気流路72は翼型部53の翼後縁55側の部分の内部に形成されたサーペンタイン流路であり、翼後縁55の部分に設けた複数の排出孔を介して冷却空気を作動流体の主流に放出する。なお、本実施の形態においては、図10に示したように、翼先端面63の負圧面57側の平坦面67の縁部には段差部73が設けられている。   The cooling air flow path 71 penetrates a portion on the blade leading edge 54 side of the airfoil portion 53 in the turbine radial direction, and the terminal end is open to the blade tip surface 63, and the cooling air is discharged from the blade tip surface 63. In the present embodiment, as shown in FIG. 11, the cooling air flow path 71 opens in the flat portion 67 on the blade leading edge 54 side of the recess 64, but a configuration in which it opens in the recess 64 may be used. The cooling air flow path 72 is a serpentine flow path formed inside a portion of the airfoil portion 53 on the blade trailing edge 55 side, and operates the cooling air through a plurality of discharge holes provided in the blade trailing edge 55 portion. Release into the main stream of fluid. In the present embodiment, as shown in FIG. 10, a stepped portion 73 is provided at the edge of the flat surface 67 on the negative pressure surface 57 side of the blade tip surface 63.

その他の構成は第1の実施の形態と同様であり、第1の実施の形態と同様の部分については図9−図11において第1の実施の形態と同様の符号を付して説明を省略する。   Other configurations are the same as those of the first embodiment, and portions similar to those of the first embodiment are denoted by the same reference numerals as in the first embodiment in FIGS. To do.

上記構成において、冷却空気流路71から翼先端間隙gに冷却空気fc1が排出され、翼先端間隙gを通る一部の作動流体fと混合して負圧面57に向かって流れて作動流体の主流に混合する。このとき、本実施の形態においては、冷却空気流路71から出た冷却空気fc1は翼先端面63に沿って凹部64に流入し、凹部64内の旋回成分f”と混合することで減速して負圧面57側へ流れて流速を落とす。この効果により、翼先端間隙gに冷却空気fc1を流しても、翼先端間隙gを流れる流体と作動流体の主流が混合する領域Aを小さく抑えることができ、第1の実施の形態と同様の効果を得ることができる。   In the above configuration, the cooling air fc1 is discharged from the cooling air flow path 71 to the blade tip gap g, mixed with a part of the working fluid f passing through the blade tip gap g, and flows toward the negative pressure surface 57 to be the main flow of the working fluid. To mix. At this time, in the present embodiment, the cooling air fc1 exiting from the cooling air passage 71 flows into the recess 64 along the blade tip surface 63 and is decelerated by mixing with the swirling component f ″ in the recess 64. As a result, the flow velocity is decreased by flowing toward the negative pressure surface 57. By this effect, even if the cooling air fc1 flows through the blade tip gap g, the region A where the fluid flowing through the blade tip gap g and the main flow of the working fluid are mixed is kept small. And the same effects as those of the first embodiment can be obtained.

図12は図9の図示に領域Aを重ねて図示した図である。同図においては、領域Aを明示するため、断面のハッチングは省略してある。   FIG. 12 is a diagram showing the region A superimposed on the illustration of FIG. In the same figure, in order to clearly show the region A, cross-sectional hatching is omitted.

翼先端間隙gを流通する一部の作動流体fは冷却空気fc1と混合して冷却され、同図に示した領域Aで負圧面57側を流れる作動流体の主流と混合する。回転方向から見た場合、領域Aは作動流体の主流との混合により同図に示すように主流の流れ方向の上流側に比べて下流側がタービン径方向内側に広くなる。この領域Aの広がりが凹部64を設けたことによって抑制される点は前述した通りである。   A part of the working fluid f flowing through the blade tip gap g is mixed with the cooling air fc1 to be cooled and mixed with the main flow of the working fluid flowing on the negative pressure surface 57 side in the region A shown in FIG. When viewed from the rotational direction, the region A becomes wider on the inner side in the radial direction of the turbine than the upstream side in the flow direction of the main flow as shown in the figure due to mixing with the main flow of the working fluid. As described above, the spread of the region A is suppressed by providing the concave portion 64.

サーペンタイン状の冷却空気流路72を流れる冷却空気fc2は冷却空気流路72を流れる過程で昇温するので、翼後縁55に近付くにつれて冷却空気fc2による翼型部53の冷却効率は低下する。これに対し、翼先端間隙gを流れる一部の作動流体fは翼前縁54側の冷却空気流路71から排出された冷却空気fc1と混ざり合うことで温度を下げ、かつ凹部64を設けたことによって領域Aのタービン径方向内側への広がりが抑制されるため、領域Aにおいて作動流体の主流から翼型部53への熱の流入を一層効果的に抑制することができる。そして、領域Aは翼前縁54側に比べて翼後縁55側がタービン径方向に広いため、冷却空気fc1による冷却効果は、冷却空気流路72を流通する冷却空気fc2の昇温による前述した翼後縁55側における冷却効率の低下を抑制する役割を果たし得る。   Since the cooling air fc2 flowing through the serpentine cooling air flow path 72 rises in the process of flowing through the cooling air flow path 72, the cooling efficiency of the airfoil portion 53 by the cooling air fc2 decreases as it approaches the blade trailing edge 55. On the other hand, a part of the working fluid f flowing through the blade tip gap g is mixed with the cooling air fc1 discharged from the cooling air flow channel 71 on the blade leading edge 54 side to lower the temperature, and the recess 64 is provided. As a result, since the spread of the region A toward the inner side in the turbine radial direction is suppressed, the inflow of heat from the main flow of the working fluid to the airfoil portion 53 can be more effectively suppressed in the region A. In the region A, the blade trailing edge 55 side is wider in the turbine radial direction than the blade leading edge 54 side. Therefore, the cooling effect by the cooling air fc1 is as described above due to the temperature rise of the cooling air fc2 flowing through the cooling air flow path 72. It can play a role of suppressing a decrease in cooling efficiency on the blade trailing edge 55 side.

(その他)
以上の実施の形態は本発明の一実施の形態に過ぎず、本発明のタービン動翼は発明の技術思想を逸脱しない範囲において適宜設計変更可能である。例えば、上記タービン動翼34はタービン30の全段落に適用することもできるが、複数の段落のうちの少なくとも1つの段落に適用することもできる。また、図1では一軸タービンを例示的に図示したが、互いの回転軸が分離した高圧タービン及び低圧タービンを有する二軸タービンに本発明を適用することもできる。二軸タービンの場合、通常、高圧タービン、低圧タービンには圧縮機ロータ、負荷機器がそれぞれ連結され、低圧タービンは高圧タービンを駆動した燃焼ガスで駆動する。このような二軸タービンの高圧タービン、低圧タービンの少なくとも一方における少なくとも1つの段落のタービン動翼に本発明を適用することができる。また、必要があれば、蒸気タービンのタービン動翼に本発明を適用することもできる。
(Other)
The above embodiment is merely one embodiment of the present invention, and the design of the turbine rotor blade of the present invention can be changed as appropriate without departing from the technical idea of the present invention. For example, the turbine rotor blade 34 can be applied to all the stages of the turbine 30, but can also be applied to at least one of a plurality of stages. In addition, although the single-shaft turbine is illustrated in FIG. 1 as an example, the present invention can be applied to a two-shaft turbine having a high-pressure turbine and a low-pressure turbine in which the rotation shafts are separated from each other. In the case of a two-shaft turbine, a compressor rotor and a load device are usually connected to the high-pressure turbine and the low-pressure turbine, respectively, and the low-pressure turbine is driven by the combustion gas that has driven the high-pressure turbine. The present invention can be applied to at least one stage of the turbine rotor blade in at least one of the high-pressure turbine and the low-pressure turbine of the two-shaft turbine. If necessary, the present invention can be applied to a turbine rotor blade of a steam turbine.

10 圧縮機
20 燃焼器
30 タービン
31 タービンケーシング
33 回転軸
34 タービン動翼
53 翼型部
54 翼前縁
55 翼後縁
56 圧力面
57 負圧面
58 翼中心面
63 翼先端面
64 凹部
65 最深部
71 冷却空気孔
DESCRIPTION OF SYMBOLS 10 Compressor 20 Combustor 30 Turbine 31 Turbine casing 33 Rotating shaft 34 Turbine rotor blade 53 Airfoil part 54 Blade front edge 55 Blade rear edge 56 Pressure surface 57 Negative pressure surface 58 Blade center surface 63 Blade tip surface 64 Recess 65 Deepest part 71 Cooling air hole

Claims (6)

回転軸に取り付けられてタービンケーシング内部で回転するタービン動翼であって、
翼型部の前記タービンケーシングと対向する翼先端面に凹部を有し、
前記凹部のタービン径方向内側に採った深さが最も深くなる最深部が、圧力面と負圧面の中心である翼中心面よりも圧力面側に位置し、
前記凹部の深さが、前記翼中心面を跨いで前記最深部から前記負圧面に向かって単調に減少している
ことを特徴とするタービン動翼。
A turbine blade attached to a rotating shaft and rotating inside a turbine casing,
Having a recess in the blade tip surface facing the turbine casing of the airfoil,
The deepest part where the depth taken inside the turbine radial direction of the recess is the deepest is located on the pressure surface side than the blade center surface which is the center of the pressure surface and the suction surface,
The turbine rotor blade according to claim 1, wherein the depth of the concave portion monotonously decreases from the deepest portion toward the suction surface across the blade center surface.
請求項1のタービン動翼において、
前記凹部の底面が、前記最深部から前記負圧面側に向かってタービン径方向外側に傾斜して前記翼中心面と交差していることを特徴とするタービン動翼。
The turbine rotor blade according to claim 1,
The turbine rotor blade according to claim 1, wherein a bottom surface of the recess is inclined outward in the turbine radial direction from the deepest portion toward the suction surface side and intersects the blade center surface.
請求項1のタービン動翼において、
前記翼型部の内部を通り前記翼先端面に開口する冷却空気孔を有することを特徴とするタービン動翼。
The turbine rotor blade according to claim 1,
A turbine rotor blade having a cooling air hole passing through the inside of the airfoil portion and opening in the blade tip surface.
請求項1のタービン動翼において、
コード長方向に軸をとって翼前縁の位置を0%、翼後縁の位置を100%としたとき、前記最深部が30%−80%の範囲に位置していることを特徴とするタービン動翼。
The turbine rotor blade according to claim 1,
Taking the axis in the cord length direction, the deepest part is located in the range of 30% -80% when the blade leading edge position is 0% and the blade trailing edge position is 100%. Turbine blade.
吸い込んだ空気を圧縮する圧縮機と、
この圧縮機で圧縮された圧縮空気を燃料とともに燃焼する燃焼器と、
この燃焼器で発生した燃焼ガスで駆動するタービンとを備え、
前記タービンが請求項1のタービン動翼を備えていることを特徴とするガスタービン。
A compressor for compressing the sucked air;
A combustor for combusting compressed air compressed by the compressor together with fuel;
A turbine driven by combustion gas generated in the combustor,
A gas turbine comprising the turbine rotor blade according to claim 1.
回転軸に取り付けられてタービンケーシング内部で回転するタービン動翼において、このタービン動翼の翼先端部とタービン動翼との間の翼先端間隙を圧力面側から負圧面側に流れる流れを、前記翼先端面に設けた凹部で旋回成分を付与して減速させることにより、前記翼先端間隙を流れる流れと負圧面側の作動流体の主流とが混合する領域を抑制し、前記主流のエネルギー損失を抑制することを特徴とするタービンの効率改善方法。   In the turbine blade that is attached to the rotating shaft and rotates inside the turbine casing, the flow that flows from the pressure surface side to the suction surface side through the blade tip gap between the blade tip portion of the turbine blade and the turbine blade, By applying a swirling component in the recess provided on the blade tip surface and decelerating, the region where the flow flowing through the blade tip gap and the main flow of the working fluid on the suction surface side are suppressed, and the energy loss of the main flow is reduced. A method for improving the efficiency of a turbine, comprising suppressing the turbine.
JP2012259388A 2012-11-28 2012-11-28 Turbine blade Active JP6086583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259388A JP6086583B2 (en) 2012-11-28 2012-11-28 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259388A JP6086583B2 (en) 2012-11-28 2012-11-28 Turbine blade

Publications (2)

Publication Number Publication Date
JP2014105633A true JP2014105633A (en) 2014-06-09
JP6086583B2 JP6086583B2 (en) 2017-03-01

Family

ID=51027354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259388A Active JP6086583B2 (en) 2012-11-28 2012-11-28 Turbine blade

Country Status (1)

Country Link
JP (1) JP6086583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042866A (en) * 2017-10-17 2019-04-25 두산중공업 주식회사 Blade airfoil, turbine and gas turbine comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098554A1 (en) * 2008-07-24 2010-04-22 Rolls-Royce Plc Blade for a rotor
JP2011163123A (en) * 2010-02-04 2011-08-25 Ihi Corp Turbine moving blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098554A1 (en) * 2008-07-24 2010-04-22 Rolls-Royce Plc Blade for a rotor
JP2011163123A (en) * 2010-02-04 2011-08-25 Ihi Corp Turbine moving blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042866A (en) * 2017-10-17 2019-04-25 두산중공업 주식회사 Blade airfoil, turbine and gas turbine comprising the same
KR101997979B1 (en) * 2017-10-17 2019-07-08 두산중공업 주식회사 Blade airfoil, turbine and gas turbine comprising the same

Also Published As

Publication number Publication date
JP6086583B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
EP2725195B1 (en) Turbine blade and corresponding rotor stage
JP4876043B2 (en) Flared tip turbine blade
JP6514511B2 (en) High-wing blade with two partial span shrouds and a curved dovetail
US10107108B2 (en) Rotor blade having a flared tip
EP3064713B1 (en) Turbine rotor blade and corresponding turbine section
US10082031B2 (en) Rotor of a turbine of a gas turbine with improved cooling air routing
JP2010156335A (en) Method and device concerning contour of improved turbine blade platform
JP2017048789A (en) Configurations for turbine rotor blade tips
JP2016125496A (en) Gas turbine sealing
US20160177833A1 (en) Engine and method for operating said engine
JP2015092076A (en) Method and system for providing cooling for turbine assembly
JP2016125486A (en) Gas turbine sealing
JP2015224634A (en) Rotor blade coolant flow
WO2014041619A1 (en) Gas turbine
EP2687682B1 (en) Transition duct of a gas turbine
JP2010285878A (en) Gas turbine blade and gas turbine
JP6830999B2 (en) Turbine blades and gas turbines
EP3704353B1 (en) Turbine blade with tip trench
US20160201571A1 (en) Turbomachine having a gas flow aeromechanic system and method
JPWO2017158637A1 (en) Turbine and turbine vane
JP6086583B2 (en) Turbine blade
EP3421754B1 (en) Variable geometry turbocharger
JP5852191B2 (en) End wall member and gas turbine
JP2010169047A (en) Axial flow turbine
JP5404187B2 (en) End wall member and gas turbine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6086583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250