JP2014105329A - Sealing material - Google Patents

Sealing material Download PDF

Info

Publication number
JP2014105329A
JP2014105329A JP2012262126A JP2012262126A JP2014105329A JP 2014105329 A JP2014105329 A JP 2014105329A JP 2012262126 A JP2012262126 A JP 2012262126A JP 2012262126 A JP2012262126 A JP 2012262126A JP 2014105329 A JP2014105329 A JP 2014105329A
Authority
JP
Japan
Prior art keywords
sealing material
mass
polyolefin
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012262126A
Other languages
Japanese (ja)
Other versions
JP6079173B2 (en
Inventor
Hiroshi Ishida
浩 石田
Takahide Yoshioka
孝英 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012262126A priority Critical patent/JP6079173B2/en
Publication of JP2014105329A publication Critical patent/JP2014105329A/en
Application granted granted Critical
Publication of JP6079173B2 publication Critical patent/JP6079173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyolefin-based resin crosslinked foamed sealing material which is highly softened by improving an expansion ratio to the utmost limit, and is flexible and excellent in sealing properties by holding a closed-cell structure.SOLUTION: A sealing material is formed from a crosslinked foamed body which is obtained from a resin composition that contains a polyolefin-based resin as a main component, and has 50% compressive hardness of 50 kPa or less and a closed-cell rate of 70% or more.

Description

本発明は、独立気泡構造を保持しながら発泡倍率を極限まで高めることにより、柔軟で且つシール性に優れたポリオレフィン系樹脂架橋発泡シーリング材に関する。   The present invention relates to a polyolefin-based resin-crosslinked foamed sealing material that is flexible and excellent in sealing properties by increasing the expansion ratio to the limit while maintaining the closed cell structure.

発泡体を使用したシーリング材は、自動車、土木、住設、家電用に様々用いられている。これらのシーリング材は主に止水や気密を目的に使用されている。シーリング材には一般的にEPDMやポリウレタンに代表される連続気泡構造を有する発泡体が使用され、ゴム素材の柔軟性と連続気泡での気体逃散による反発抑制で柔軟性を付与している。これら発泡体は柔軟性に優れるため、型の間隙に追従しやすく、複雑な形状への装着が容易である半面、連続気泡構造であるため高圧縮状態にしなければ高い止水性能や気密性能を発揮することができなかった。   Sealing materials using foams are variously used for automobiles, civil engineering, housing, and home appliances. These sealing materials are mainly used for water stop and airtight purposes. As the sealing material, a foam having an open cell structure such as EPDM or polyurethane is generally used, and flexibility is imparted by flexibility of a rubber material and suppression of repulsion due to gas escape in open cells. Since these foams are excellent in flexibility, they can easily follow the gaps in the mold and can be easily attached to complex shapes. I couldn't do it.

この問題を解決するため、特許文献1には、EPDMの両表面に独立気泡層を有し、かつ厚さ方向の中央部分に連続気泡層を有する発泡体とすることにより、柔軟性に優れるとともに高い止水性を有するシーリング材が提案されている。しかしながら、このようなシーリング材では、独立気泡層の厚みと連続気泡層の厚みの変動によって柔軟性や止水性が大きく変化するため、生産安定性に劣る懸念があった。   In order to solve this problem, Patent Document 1 discloses that the foam has a closed cell layer on both surfaces of the EPDM and has an open cell layer in the center in the thickness direction, thereby providing excellent flexibility. Sealing materials having high water-stopping properties have been proposed. However, in such a sealing material, there is a concern that the production stability is inferior because the flexibility and water stoppage change greatly due to the variation of the thickness of the closed cell layer and the thickness of the open cell layer.

また特許文献2には、ポリウレタン原料としてダイマー酸ポリオールを用いることで撥水性を向上させ、更にセルの微細化により止水性を向上させることで、連続気泡構造で且つ低密度でありながら、高い止水性能を有するシーリング材が提案されている。しかしながら、ポリウレタンは耐候性や耐加水分解性に劣るため、長期の使用によってシーリング材の表面劣化や機械的強度の低下が生じる問題があった。   Further, Patent Document 2 discloses that a dimer acid polyol is used as a polyurethane raw material to improve water repellency, and further, by improving the water stopping property by miniaturization of the cell, it has an open cell structure and a low density, but has a high water stopping property. Sealing materials with water performance have been proposed. However, since polyurethane is inferior in weather resistance and hydrolysis resistance, there has been a problem that the surface of the sealing material is deteriorated and the mechanical strength is lowered due to long-term use.

特開2005−350571号公報JP 2005-350571 A 特開2009−173806号公報JP 2009-173806 A

本発明は、かかる従来技術の背景に鑑み、独立気泡構造を保持しながら発泡倍率を極限まで高めることにより、柔軟で且つシール性に優れたポリオレフィン系樹脂架橋発泡シーリング材を提供せんとするものである。   In view of the background of the prior art, the present invention is intended to provide a polyolefin-based resin-crosslinked foamed sealing material that is flexible and excellent in sealing properties by increasing the expansion ratio to the limit while maintaining the closed cell structure. is there.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明のポリオレフィン系樹脂架橋発泡シーリング材は以下である。
(1) ポリオレフィン系樹脂を主成分とする樹脂組成物から得られ、50%圧縮硬さが50kPa以下、独立気泡率が70%以上である架橋発泡体からなることを特徴とするシーリング材。
(2) 前記架橋発泡体の80%圧縮永久歪みが20%以下であることを特徴とする(1)に記載のシーリング材。
(3) 前記樹脂組成物が、ポリオレフィン系樹脂100質量部に対し、アゾジカルボンアミドを15質量部以上35質量部以下含有し、
該アゾジカルボンアミドが、以下の条件(A)及び(B)を満たすことを特徴とする(1)または(2)に記載のシーリング材。
The present invention employs the following means in order to solve such problems. That is, the polyolefin resin cross-linked foam sealant of the present invention is as follows.
(1) A sealing material comprising a cross-linked foam obtained from a resin composition containing a polyolefin resin as a main component, having a 50% compression hardness of 50 kPa or less and a closed cell ratio of 70% or more.
(2) The sealing material according to (1), wherein the crosslinked foam has an 80% compression set of 20% or less.
(3) The resin composition contains 15 parts by mass or more and 35 parts by mass or less of azodicarbonamide with respect to 100 parts by mass of the polyolefin resin.
The sealing material according to (1) or (2), wherein the azodicarbonamide satisfies the following conditions (A) and (B).

(A):分解温度が197〜207℃
(B):190℃における発生ガス速度が20〜50ml/min
(4) 前記ポリオレフィン系樹脂が、エチレン−酢酸ビニル共重合体を含むことを特徴とする(1)〜(3)のいずれかに記載のシーリング材。
(A): Decomposition temperature is 197 to 207 ° C
(B): Generated gas velocity at 190 ° C. is 20 to 50 ml / min
(4) The sealing material according to any one of (1) to (3), wherein the polyolefin resin contains an ethylene-vinyl acetate copolymer.

本発明によれば、独立気泡構造を保持しながら発泡倍率を極限まで高めることにより、柔軟で且つシール性に優れたポリオレフィン系樹脂架橋発泡シーリング材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polyolefin-type resin bridge | crosslinking foaming sealing material which is flexible and excellent in the sealing performance can be provided by raising foaming magnification to the maximum, maintaining a closed cell structure.

以下本発明を具体的に説明する。   The present invention will be specifically described below.

本発明のシーリング材は、シーリング材用途であれば特に限定されない。シーリング材用途のなかでも好ましくは、雨水・排水等の埋設配管継手部分のシーリング材や、ユニットバスの壁隙間のシーリング材、業務用空調機部品のシーリング材など、柔軟性や止水性、気密性が要求される用途に用いられる。   The sealing material of this invention will not be specifically limited if it is a sealing material use. Among sealing material applications, preferably, sealing materials for buried piping joints such as rainwater and drainage, sealing materials for wall spaces in unit baths, sealing materials for commercial air conditioner parts, etc. Is used for applications that require.

これらのシーリング材にあっては、本来のシール性はもちろんのこと、低密度でも安定したシール性を発揮することが望まれる。低密度、即ち高発泡倍率フォームであれば、シーリング材のコストを低減することができ、また、シーリング構造の軽量化にも有効である。   These sealing materials are desired to exhibit stable sealing performance even at low density as well as the original sealing performance. If the foam has a low density, that is, a high expansion ratio, the cost of the sealing material can be reduced, and it is also effective for reducing the weight of the sealing structure.

本発明のシーリング材である架橋発泡体を製造するために用いる樹脂組成物は、ポリオレフィン系樹脂およびアゾジカルボンアミドを含むが、その含有量は、ポリオレフィン系樹脂100質量部に対して15質量部以上35質量部以下の範囲であることが好ましい。更に好ましくは20質量部以上30質量部以下の範囲である。アゾジカルボンアミドの含有量が15質量部以下であると、発生ガス量が少ないため高発泡倍率化が困難となり、柔軟性が低下するため好ましくない。また、35質量部以上であると高発泡倍率化は可能となるものの、一部の気泡が連泡化し独立気泡率が低下して、止水性が悪化するため好ましくない。   The resin composition used for producing the cross-linked foam which is the sealing material of the present invention contains a polyolefin resin and azodicarbonamide, and the content thereof is 15 parts by mass or more with respect to 100 parts by mass of the polyolefin resin. The range is preferably 35 parts by mass or less. More preferably, it is the range of 20 to 30 mass parts. If the content of azodicarbonamide is 15 parts by mass or less, the amount of generated gas is small, so that it is difficult to achieve a high expansion ratio and flexibility is lowered. On the other hand, if it is 35 parts by mass or more, a high expansion ratio can be achieved. However, some of the bubbles are connected to each other and the closed cell ratio is lowered, resulting in deterioration of the water-stopping property.

また、架橋発泡体を製造するために用いる樹脂組成物中のアゾジカルボンアミドは、分解温度が197〜207℃の範囲であることが好ましい。更に好ましくは分解温度が200〜205℃である。アゾジカルボンアミドの分解温度が197℃未満であると、樹脂粘度が大きい状態で発泡が開始され、高発泡倍率化が困難となり柔軟性が低下するため好ましくない。また、207℃より高いと高発泡倍率化は可能となるものの、一部の気泡が連泡化し独立気泡率が低下して、止水性が悪化するため好ましくない。   Moreover, it is preferable that the decomposition temperature of the azodicarbonamide in the resin composition used for producing the crosslinked foamed material is in a range of 197 to 207 ° C. More preferably, the decomposition temperature is 200 to 205 ° C. When the decomposition temperature of azodicarbonamide is lower than 197 ° C., foaming is started in a state where the resin viscosity is high, and it is difficult to achieve a high expansion ratio and flexibility is lowered. On the other hand, when the temperature is higher than 207 ° C., it is possible to increase the expansion ratio.

また、架橋発泡体を製造するために用いる樹脂組成物中のアゾジカルボンアミドは、190℃における発生ガス速度が20〜50ml/minが好ましく、更に好ましくは190℃における発生ガス速度が30〜45ml/minである。190℃における発生ガス速度が20ml/min未満であると、高発泡倍率化が困難となり柔軟性が低下するため好ましくない。また、190℃における発生ガス速度が50ml/minを超えると、急激に発生ガスが生じるため一部の気泡膜が破壊されて連泡化し、独立気泡率が低下して止水性が悪化するため好ましくない。   Further, the azodicarbonamide in the resin composition used for producing the crosslinked foamed material preferably has a generated gas velocity at 190 ° C. of 20 to 50 ml / min, more preferably a generated gas velocity at 190 ° C. of 30 to 45 ml / min. min. If the generated gas velocity at 190 ° C. is less than 20 ml / min, it is not preferable because it is difficult to increase the expansion ratio and the flexibility is lowered. Further, when the generated gas velocity at 190 ° C. exceeds 50 ml / min, the generated gas is suddenly generated, so that part of the bubble film is broken and closed, and the closed cell rate is lowered and the water stoppage is deteriorated. Absent.

本発明のシーリング材である架橋発泡体は、50%圧縮硬さが50kPa以下であることが好ましい。50kPaより大きいとシーリング材として使用したときに型の形状によっては圧縮率が異なる部分がある場合にその部分がシールできないで水や空気を通してしまうことがあるので好ましくない。更に好ましくは40kPa以下である。また、シーリング材の50%圧縮硬さの下限は特に限定されないが、好ましくは15kPa以上である。15kPaより低い場合、そのようなシーリング材をロール状に巻き上げたときに、張力により発泡体が潰され、長手方向での厚みムラが起こりやすくなるために好ましくない。   The cross-linked foam, which is the sealing material of the present invention, preferably has a 50% compression hardness of 50 kPa or less. If it is higher than 50 kPa, when there is a part with different compressibility depending on the shape of the mold when used as a sealing material, the part cannot be sealed and water or air may be passed through, which is not preferable. More preferably, it is 40 kPa or less. The lower limit of the 50% compression hardness of the sealing material is not particularly limited, but is preferably 15 kPa or more. When the pressure is lower than 15 kPa, when such a sealing material is rolled up, the foam is crushed by tension, and thickness unevenness in the longitudinal direction tends to occur, which is not preferable.

本発明のシーリング材である架橋発泡体は、80%圧縮永久歪みが20%以下であることが好ましい。20%より大きいとヘタリが大きくなることから、長期シール性が低下することがあり好ましくない。   The crosslinked foam which is the sealing material of the present invention preferably has an 80% compression set of 20% or less. If it is larger than 20%, the settling becomes large, so that the long-term sealing performance may be lowered, which is not preferable.

本発明のシーリング材である架橋発泡体を製造するために用いる樹脂組成物中のポリオレフィン系樹脂は、とくに限定されないが、例えば、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、超低密度ポリエチレンなどに代表されるポリエチレン系樹脂(ここでいう密度の定義は以下の通り。超低密度:0.910g/cm未満、低密度:0.910g/cm以上0.940g/cm以下、高密度:0.940g/cm以上0.965g/cm以下)や、エチレン共重合体などが挙げられ、またこれらの混合物のいずれでもよい。エチレン共重合体としては、例えばエチレンと炭素数4つ以上のα−オレフィン(例えば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン等が挙げられる)を重合して得られるエチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体等を挙げることができる。ポリオレフィン系樹脂としては、より好ましくは低密度ポリエチレン、線状低密度ポリエチレン、超低密度ポリエチレン、エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体である。更に好ましくは低密度ポリエチレン、線状低密度ポリエチレン、エチレン−酢酸ビニル共重合体である。これらのポリオレフィン系樹脂は、1種もしくは2種以上の混合物のいずれでも良い。本発明のシーリング材である架橋発泡体を製造するために用いる樹脂組成物中のポリオレフィン系樹脂は、エチレン−酢酸ビニル共重合体を含むことが最も好ましい。該樹脂組成物中のポリオレフィン系樹脂がエチレン−酢酸ビニル共重合体を含む場合、該ポリオレフィン系樹脂100質量%中のエチレン−酢酸ビニル共重合体の含有量は、70質量%以上100質量%以下であることが好ましい。この組み合わせにおいては、50%圧縮硬さと80%圧縮永久歪みが小さくなるため、柔軟性と長期シール性に優れたシーリング材となる。 The polyolefin resin in the resin composition used for producing the cross-linked foam which is the sealing material of the present invention is not particularly limited, and examples thereof include low density polyethylene, high density polyethylene, linear low density polyethylene, and ultra low density. Polyethylene resin typified by polyethylene and the like (the definition of density here is as follows. Ultra-low density: less than 0.910 g / cm 3 , low density: 0.910 g / cm 3 or more and 0.940 g / cm 3 or less , density: 0.940 g / cm 3 or more 0.965 g / cm 3 or less) or ethylene copolymer. the may be any of these mixtures. Examples of the ethylene copolymer include ethylene and an α-olefin having 4 or more carbon atoms (for example, ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-heptene, An ethylene-α-olefin copolymer, an ethylene-vinyl acetate copolymer, and the like obtained by polymerizing octene). The polyolefin resin is more preferably a low density polyethylene, a linear low density polyethylene, an ultra low density polyethylene, an ethylene-α-olefin copolymer, or an ethylene-vinyl acetate copolymer. More preferred are low density polyethylene, linear low density polyethylene, and ethylene-vinyl acetate copolymer. These polyolefin resins may be either one kind or a mixture of two or more kinds. Most preferably, the polyolefin-based resin in the resin composition used for producing the crosslinked foam which is the sealing material of the present invention contains an ethylene-vinyl acetate copolymer. When the polyolefin resin in the resin composition contains an ethylene-vinyl acetate copolymer, the content of the ethylene-vinyl acetate copolymer in 100 mass% of the polyolefin resin is 70 mass% or more and 100 mass% or less. It is preferable that In this combination, 50% compression hardness and 80% compression set are reduced, so that the sealing material is excellent in flexibility and long-term sealability.

なお、本発明の特徴を損なわない範囲で、発泡剤の分解促進剤、気泡核調整剤、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、無機充填剤等の各種添加剤を、本発明のシーリング材の原料であるポリオレフィン樹脂組成物は含むことができる。   Various additives such as a foaming agent decomposition accelerator, a cell nucleus modifier, an antioxidant, a heat stabilizer, a colorant, a flame retardant, an antistatic agent, and an inorganic filler, as long as the characteristics of the present invention are not impaired. Can be contained in the polyolefin resin composition which is a raw material of the sealing material of the present invention.

本発明のシーリング材である架橋発泡体は、ポリオレフィン系樹脂を主成分とする樹脂組成物から得られることが重要である。ここで主成分とは、シーリング材において質量的に最も大きい成分を意味する。より好ましくは、シーリング材の全成分100質量部において、ポリオレフィン系樹脂は50質量部以上99.5質量部以下である。前述のポリオレフィン系樹脂以外の添加剤などは、シーリング材の全成分100質量部において、0質量部以上50質量部以下である。   It is important that the cross-linked foam, which is the sealing material of the present invention, be obtained from a resin composition containing a polyolefin resin as a main component. Here, the main component means the largest component in mass in the sealing material. More preferably, the polyolefin resin is 50 parts by mass or more and 99.5 parts by mass or less based on 100 parts by mass of all components of the sealing material. Additives other than the polyolefin-based resin described above are 0 parts by mass or more and 50 parts by mass or less in 100 parts by mass of all components of the sealing material.

本発明のシーリング材である架橋発泡体の独立気泡率は特に限定されないが、70%以上が好適に用いられる。更に好ましくは80%以上である。独立気泡率は大きいほど好ましく、上限値は特にない。独立気泡率が70%未満であると止水性が悪化するため好ましくない。   The closed cell ratio of the cross-linked foam which is the sealing material of the present invention is not particularly limited, but 70% or more is preferably used. More preferably, it is 80% or more. The larger the closed cell ratio, the better. There is no upper limit. If the closed cell rate is less than 70%, the water-stopping property is deteriorated, which is not preferable.

本発明では、例えば、ポリエチレン系樹脂、アゾジカルボンアミドと各種添加剤を含有させたポリオレフィン系樹脂組成物を所定形状に成形した後、架橋・発泡することでポリオレフィン系樹脂架橋シーリング材を製造する。   In the present invention, for example, a polyolefin resin cross-linking sealant is produced by molding a polyolefin resin composition containing a polyethylene resin, azodicarbonamide and various additives into a predetermined shape, followed by crosslinking and foaming.

具体的には、例えば、下記の製造方法が挙げられる。前記ポリオレフィン系樹脂組成物の所定量を、単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、ミキシングロール等の混練装置を用いて、アゾジカルボンアミドの分解温度未満で均一に溶融混練し、これをシート状に成形する。   Specifically, the following manufacturing method is mentioned, for example. A predetermined amount of the polyolefin-based resin composition is uniformly melt kneaded at a temperature lower than the decomposition temperature of azodicarbonamide using a kneading apparatus such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader mixer, a mixing roll, or the like. This is formed into a sheet shape.

次いで、得られたシートに電離性放射線の照射を行い、この発泡性シートを構成する樹脂を架橋させる。電離性放射線としては、電子線、X線、β線、γ線等が使用される。なお、本発明のシーリング材の架橋度は特に限定されないが、10〜40%が好適に用いられる。更に好ましくは15〜35%である。架橋度が10%未満であると発泡時に発生ガスの保持力が弱くなるため表面より発生ガスが散逸し所定の発泡倍率にならなかったり、表面形態の悪化を招き、止水性が悪化する場合がある。一方、40%を超えると架橋が密になり発泡性や表面の平滑性の点では好ましいが、架橋が密になり過ぎて発生ガスの保持力が過度になり部分的に気泡の破壊が生じるため、止水性が悪化する場合がある。ここで示す架橋度は以下の手順で測定する。シーリング材を、約0.5mm四方に切断し、約100mgを0.1mgの単位で秤量する。130℃のテトラリン200mlに3時間浸漬した後、100メッシュのステンレス製金網で自然濾過し、金網上の不溶解分を1時間120℃下で熱風オーブンにて乾燥する。次いで、シリカゲルを入れたデシケータ内で10分間冷却し、この不溶解分の質量を精密に秤量し、以下の式に従って架橋度を百分率で算出する。   Next, the resulting sheet is irradiated with ionizing radiation to crosslink the resin constituting the foamable sheet. As the ionizing radiation, electron beam, X-ray, β-ray, γ-ray and the like are used. In addition, although the crosslinking degree of the sealing material of this invention is not specifically limited, 10 to 40% is used suitably. More preferably, it is 15 to 35%. If the degree of cross-linking is less than 10%, the holding power of the generated gas becomes weak at the time of foaming. is there. On the other hand, if it exceeds 40%, the cross-linking becomes dense, which is preferable in terms of foamability and surface smoothness. However, the cross-linking becomes too dense and the retention force of the generated gas becomes excessive, resulting in partial destruction of bubbles. In some cases, the water stoppage may deteriorate. The degree of crosslinking shown here is measured by the following procedure. The sealing material is cut into about 0.5 mm square, and about 100 mg is weighed in units of 0.1 mg. After immersing in 200 ml of tetralin at 130 ° C. for 3 hours, it is naturally filtered through a 100 mesh stainless steel wire mesh, and the insoluble matter on the wire mesh is dried in a hot air oven at 120 ° C. for 1 hour. Next, the mixture is cooled in a desiccator containing silica gel for 10 minutes, the mass of this insoluble matter is accurately weighed, and the degree of crosslinking is calculated as a percentage according to the following formula.

架橋度(%)={不溶解分の質量(mg)/秤量したポリオレフィン樹脂発泡体の質量(mg)}×100
樹脂が架橋された発泡性シートは、例えば、熱風、赤外線、メタルバス、オイルバス、ソルトバス等により、アゾジカルボンアミドの分解温度以上で且つ樹脂の融点以上の温度、例えば190℃〜290℃に加熱し、発泡剤の分解ガスによって樹脂を発泡させ、こうしてシーリング材を得る。
Degree of crosslinking (%) = {mass of insoluble matter (mg) / weight of weighed polyolefin resin foam (mg)} × 100
The resin-crosslinked foamable sheet is heated to a temperature higher than the decomposition temperature of azodicarbonamide and higher than the melting point of the resin, for example, 190 ° C. to 290 ° C. by hot air, infrared rays, metal bath, oil bath, salt bath, etc. The resin is foamed by heating and decomposing gas of the foaming agent, and thus a sealing material is obtained.

本発明で得られたシーリング材は自動車、土木、住設、家電用のシーリング材として好適に用いられる。シーリング材としての必要特性は止水性、気密性があることは勿論、継ぎ目の形状に追従する柔軟性が必要である。これまで追従性に優れた連続気泡の発泡体が多く用いられてきたが、高圧縮を行わないと止水性、気密性を発揮することはかなわなかった。しかし、本発明で得られたシーリング材は、分解温度と発生ガス速度が制御されたアゾジカルボンアミドを使用することで、独立気泡構造を保持しながら発泡倍率を極限まで高めることにより、柔軟で追従性がよく、独立気泡特有の優れた止水性・気密性を併せ持つことを特徴としており、低圧縮でありながらシール性を発揮し、且つ低密度であるために経済的に有利となる。   The sealing material obtained in the present invention is suitably used as a sealing material for automobiles, civil engineering, housing, and home appliances. The necessary properties as a sealing material are water-tightness and airtightness, as well as flexibility to follow the shape of the seam. Until now, many open-cell foams having excellent followability have been used. However, unless high compression is performed, water-stopping and airtightness cannot be exhibited. However, the sealing material obtained by the present invention is flexible and follows by using azodicarbonamide whose decomposition temperature and generated gas velocity are controlled, and by increasing the expansion ratio to the limit while maintaining the closed cell structure. It is characterized by having good water tightness and airtightness peculiar to closed cells, and it is economically advantageous because it exhibits sealing properties while being low in compression and low density.

以下の方法によって、物性を評価した。 The physical properties were evaluated by the following methods.

(1)厚さ
ISO 1923(1981)「発泡プラスチック及びゴム一線寸法の測定方法」に従って測定した。
(1) Thickness: Measured according to ISO 1923 (1981) “Measurement method for foamed plastic and rubber alignment”.

(2)密度
JIS K6767(1999)「発泡プラスチック−ポリエチレン−試験方法」に従って測定した。5サンプルの測定により得られた値から上下限値を除いた3点の平均値を、密度とした。
(2) Density The density was measured in accordance with JIS K6767 (1999) “Foamed plastic-polyethylene test method”. The average value of 3 points obtained by removing the upper and lower limit values from the values obtained by the measurement of 5 samples was defined as the density.

(3)50%圧縮硬さ
JIS K6767(1999)「発泡プラスチック−ポリエチレン−試験方法」に従って測定した。具体的には、総厚さが25mm以上となるように発泡体を積み重ね、これを総厚さの50%分圧縮させたときの抗力を測定する。測定機器としては、ここでは株式会社オリエンテック製テンシロン万能試験機UCT−500を用いる。
(3) 50% compression hardness
Measured according to JIS K6767 (1999) “Foamed plastics-polyethylene test method”. Specifically, the foams are stacked so that the total thickness is 25 mm or more, and the drag when the foams are compressed by 50% of the total thickness is measured. As the measuring device, here, Tensilon universal testing machine UCT-500 manufactured by Orientec Co., Ltd. is used.

(4)80%圧縮永久歪み
JIS K6767(1999)「発泡プラスチック−ポリエチレン−試験方法」に従って測定した。具体的には、長さ50mm、幅50mmの発泡体を総厚さが25mm以上となるように発泡体を積み重ね、この厚みを精密に測定し、所定の試験装置に挟み、試験片の厚さの80%だけ圧縮固定して、標準状態の場所に連続22時間放置する。その後、試験片を取り外し、標準状態の場所に24時間放置した後、前と同じ箇所の厚さを測定し、以下の式に従い算出する。
(4) 80% compression set Measured according to JIS K6767 (1999) “Foamed plastics-polyethylene test method”. Specifically, foams having a length of 50 mm and a width of 50 mm are stacked so that the total thickness is 25 mm or more, the thickness is measured accurately, sandwiched between predetermined test devices, and the thickness of the test piece. The sample is compressed and fixed by 80% of that and left in a standard state for 22 hours. Then, after removing a test piece and leaving it to stand in the place of a standard state for 24 hours, the thickness of the same location as before is measured, and it calculates according to the following formula | equation.

C=(t0−t1)/t0×100
ここで、C:80%圧縮永久歪み(%)
t0:試験片の初めの厚さ(mm)
t1:試験片の試験後の厚さ(mm)である。
C = (t0−t1) / t0 × 100
Where C: 80% compression set (%)
t0: initial thickness (mm) of the test piece
t1: Thickness (mm) after the test of the test piece.

(5)独立気泡率
JIS K7138(2006)「硬質発泡プラスチック−連続気泡率及び独立気泡率の求め方」に従って測定した。以下の式に従い算出した。
見掛けの独立気泡率=100−ω
ω=((V−V)/V)×100
ω:見掛けの連続気泡率
:幾何学的体積
:非通気体積
(6)止水性
幅10mm、長さ30cmのU字型に打ち抜いた試験片を作製し、この試験片をU字型を維持するようにして2枚のアクリル樹脂板間に挟み、2枚のアクリル樹脂板の隙間を試験片の圧縮率が50%、70%、90%となるように挟めた。次に、U字開口部が上になるように立て、U字型の内側に高さ10cmの水を入れ、これを室温で管理し、30分後の漏水の有無を確認した。
評価基準
○:指定圧縮率まで圧縮でき、かつ30分後の漏水がないもの
×:30分以内に漏水があるもの、または力を掛けても指定圧縮率までの圧縮ができないもの
(7)分解温度
アゾジカルボンアミドの分解温度は、BUCHI社製 融点測定器 B-540型を用い、装置の昇温プログラムを開始温度170℃、昇温速度5℃/min、終了温度215℃として、観察によりサンプルが分解し膨張した時の温度を測定した。サンプルは室温25℃、湿度50%の室内に24時間保存した発泡剤を使用した。
(5) Closed cell ratio Measured according to JIS K7138 (2006) "Rigid foamed plastic-Determination of open cell ratio and closed cell ratio". Calculation was performed according to the following formula.
Apparent closed cell ratio = 100−ω r
ω r = ((V g −V i ) / V g ) × 100
ω r : Apparent open cell ratio V g : Geometric volume V i : Non-ventilated volume (6) A test piece punched into a U shape having a water blocking width of 10 mm and a length of 30 cm was prepared. The shape was maintained and sandwiched between two acrylic resin plates, and the gap between the two acrylic resin plates was sandwiched so that the compression rate of the test piece was 50%, 70%, and 90%. Next, the U-shaped opening was stood up, and water having a height of 10 cm was placed inside the U-shape, which was controlled at room temperature, and the presence or absence of water leakage after 30 minutes was confirmed.
Evaluation criteria ○: Compressible to the specified compression rate and no leakage after 30 minutes ×: Leakage within 30 minutes, or compression to the specified compression rate even when force is applied (7) Decomposition The decomposition temperature of the temperature azodicarbonamide was a sample by observation using a melting point measuring instrument B-540 manufactured by BUCHI, with the temperature rising program of the apparatus set to a starting temperature of 170 ° C., a heating rate of 5 ° C./min, and an end temperature of 215 ° C. The temperature was measured when swelled and expanded. The sample used was a foaming agent stored for 24 hours in a room with a room temperature of 25 ° C. and a humidity of 50%.

(8)発生ガス量
アゾジカルボンアミドの発生ガス量は以下の手順で測定した。サンプル0.50gを試験管に入れ、流動パラフィン(試薬一級)約10mlを加える。試験管は、190℃に加熱したシリコンオイルバスにて加熱し、発生したガスをガスビュレットで捕集する。ガスビュレットの水面と水準器の水面とを合わせ、ガスビュレットの水面位置のメモリを読み、発生ガス量(実測値)V1を測定する。加熱1分後から20分後に発生したガスを、次式により発生ガス量として算出する。
V2=V1×((P1−P2)/101.32)×(273/(273+35))×1/S
V1:実測値の発生ガス量 (ml/0.5g)
V2:標準状態の発生ガス量 (ml/g)
P1:大気圧 (kPa)
P2:水温35℃の時の水の蒸気圧 (kPa)
S :試料量 (g)
(9)発生ガス速度
(8)発生ガス量の測定において、加熱1min後からの発生ガス量と時間をグラフにプロットし、このグラフを用い次式により発生ガス速度として算出する。
R=((V90−V10)/(T90−T10))×S
R :発生ガス速度 (ml/min)
90 :発生ガス量の90% (ml/g)
10 :発生ガス量の10% (ml/g)
90 :発生ガス量が90%の時の時間 (min)
10 :発生ガス量が10%の時の時間 (min)
S :試料量 (g)

実施例1
ポリオレフィン系樹脂として低密度ポリエチレン(MFR:6.7〜9.3g/10min、融点:118℃、密度:0.922〜0.926g/cm)100質量部に、アゾジカルボンアミドを30質量部(分解温度200℃、発生ガス速度40ml/min)、熱安定剤としてフェノール系酸化防止剤を0.1質量部とをヘンシェルミキサーにて混合し、60φ押出機に投入、シリンダー内温度が150℃となるように温調した状態で、溶融・混練したのち厚さ4mmにシート成形を行ったものを一旦巻き上げる。
このポリオレフィン系樹脂発泡シートを電子線照射機を用いて、電離性放射線を照射せしめた後、ソルト塩浴上(塩浴温度230℃)で発泡させた結果、表2に記載の特性を有する発泡体を得た。
実施例2〜5
実施例2〜5は、ポリオレフィン系樹脂として、実施例1の低密度ポリエチレンのほか、線状低密度ポリエチレン(MFR:6.7〜9.3g/10min、融点:123℃、密度:0.923〜0.927g/cm)やエチレン−酢酸ビニル共重合体(MFR:1.5g/10min、融点:90℃、密度:0.936g/cm、酢酸ビニル含有率:15%)を、表1に記載の通りに混合し、その他については実施例1と同様の方法により発泡体を作製した。その結果、表2に記載の特性を有する発泡体を得た。
比較例1〜4
比較例1〜4は、ポリオレフィン系樹脂、熱安定剤、電離性放射線などは実施例1と同様であるが、発泡剤においては実施例1とは異なる分解温度、発生ガス速度のアゾジカルボンアミドを混合し、その他については実施例1と同様の方法により発泡体を作製した。その結果、表2に記載の特性を有する発泡体を得た。
比較例5
比較例5は、ポリオレフィン系樹脂、熱安定剤、電離性放射線などは実施例1と同様であるが、発泡剤においては実施例1に比べて更に10質量部のアゾジカルボンアミドを加え、その他については実施例1と同様の方法により発泡体を作製した。その結果、表2に記載の特性を有する発泡体を得た。
(8) Generated gas amount The generated gas amount of azodicarbonamide was measured by the following procedure. Place 0.50 g of sample in a test tube and add about 10 ml of liquid paraffin (first grade reagent). The test tube is heated in a silicon oil bath heated to 190 ° C., and the generated gas is collected by a gas burette. The water surface of the gas burette and the water surface of the spirit level are combined, the memory of the water surface position of the gas burette is read, and the generated gas amount (actual value) V1 is measured. Gas generated after 1 minute of heating and after 20 minutes is calculated as the amount of generated gas by the following equation.
V2 = V1 × ((P1−P2) /101.32) × (273 / (273 + 35)) × 1 / S
V1: Generated gas volume (ml / 0.5g)
V2: Generated gas amount in the standard state (ml / g)
P1: Atmospheric pressure (kPa)
P2: Vapor pressure of water at a water temperature of 35 ° C (kPa)
S: Sample amount (g)
(9) Generated gas velocity (8) In the measurement of the generated gas amount, the generated gas amount and time after heating for 1 min are plotted on a graph, and this graph is used to calculate the generated gas velocity by the following equation.
R = ((V 90 -V 10 ) / (T 90 -T 10)) × S
R: generated gas velocity (ml / min)
V 90 : 90% of the amount of generated gas (ml / g)
V 10 : 10% of the amount of generated gas (ml / g)
T 90 : Time when the amount of generated gas is 90% (min)
T 10 : Time when the amount of generated gas is 10% (min)
S: Sample amount (g)

Example 1
100 parts by mass of low density polyethylene (MFR: 6.7 to 9.3 g / 10 min, melting point: 118 ° C., density: 0.922 to 0.926 g / cm 3 ) as polyolefin resin, 30 parts by mass of azodicarbonamide (Decomposition temperature 200 ° C., generated gas rate 40 ml / min), 0.1 parts by weight of phenolic antioxidant as a heat stabilizer are mixed in a Henschel mixer, put into a 60φ extruder, and the temperature in the cylinder is 150 ° C. In a state where the temperature is adjusted so as to become, after melting and kneading, a sheet having a thickness of 4 mm is once wound up.
This polyolefin resin foamed sheet was irradiated with ionizing radiation using an electron beam irradiator and then foamed on a salt salt bath (salt bath temperature 230 ° C.). As a result, foam having the characteristics shown in Table 2 was obtained. Got the body.
Examples 2-5
In Examples 2 to 5, as the polyolefin resin, in addition to the low density polyethylene of Example 1, linear low density polyethylene (MFR: 6.7 to 9.3 g / 10 min, melting point: 123 ° C., density: 0.923) ˜0.927 g / cm 3 ) and ethylene-vinyl acetate copolymer (MFR: 1.5 g / 10 min, melting point: 90 ° C., density: 0.936 g / cm 3 , vinyl acetate content: 15%), A foam was prepared in the same manner as in Example 1 except that mixing was performed as described in 1. As a result, a foam having the characteristics shown in Table 2 was obtained.
Comparative Examples 1-4
In Comparative Examples 1 to 4, polyolefin resin, heat stabilizer, ionizing radiation and the like are the same as in Example 1. However, in the foaming agent, azodicarbonamide having a decomposition temperature different from that in Example 1 and a generated gas velocity is used. A foam was prepared by the same method as in Example 1 with mixing. As a result, a foam having the characteristics shown in Table 2 was obtained.
Comparative Example 5
In Comparative Example 5, polyolefin resin, heat stabilizer, ionizing radiation and the like are the same as in Example 1. However, in the foaming agent, 10 parts by mass of azodicarbonamide is added as compared with Example 1, and the others. Produced a foam by the same method as in Example 1. As a result, a foam having the characteristics shown in Table 2 was obtained.

実施例及び比較例について、原料組成と発泡体(シーリング材)物性をそれぞれ表1、表2に示した。   About an Example and a comparative example, the raw material composition and the foam (sealing material) physical property were shown in Table 1, Table 2, respectively.

Figure 2014105329
Figure 2014105329

Figure 2014105329
Figure 2014105329

本発明のシーリング材は、雨水・排水等の埋設配管継手部分のシーリング材や、ユニットバスの壁隙間のシーリング材、業務用空調機部品のシーリング材など、柔軟性や止水性、気密性が要求される用途に用いられる可能性がある。   The sealing material of the present invention requires flexibility, water tightness, and airtightness such as sealing material for buried pipe joints such as rainwater and drainage, sealing material for wall gaps of unit baths, sealing material for commercial air conditioner parts, etc. May be used for certain applications.

Claims (4)

ポリオレフィン系樹脂を主成分とする樹脂組成物から得られ、50%圧縮硬さが50kPa以下、独立気泡率が70%以上である架橋発泡体からなることを特徴とするシーリング材。   A sealing material comprising a crosslinked foam obtained from a resin composition containing a polyolefin resin as a main component and having a 50% compression hardness of 50 kPa or less and a closed cell ratio of 70% or more. 前記架橋発泡体の80%圧縮永久歪みが20%以下であることを特徴とする請求項1に記載のシーリング材。   The sealing material according to claim 1, wherein the crosslinked foam has an 80% compression set of 20% or less. 前記樹脂組成物が、ポリオレフィン系樹脂100質量部に対し、アゾジカルボンアミドを15質量部以上35質量部以下含有し、
該アゾジカルボンアミドが、以下の条件(A)及び(B)を満たすことを特徴とする請求項1または2に記載のシーリング材。
(A):分解温度が197〜207℃
(B):190℃における発生ガス速度が20〜50ml/min
The resin composition contains 15 parts by mass or more and 35 parts by mass or less of azodicarbonamide with respect to 100 parts by mass of the polyolefin resin.
The sealing material according to claim 1 or 2, wherein the azodicarbonamide satisfies the following conditions (A) and (B).
(A): Decomposition temperature is 197 to 207 ° C
(B): Generated gas velocity at 190 ° C. is 20 to 50 ml / min
前記ポリオレフィン系樹脂が、エチレン−酢酸ビニル共重合体を含むことを特徴とする請求項1〜3のいずれかに記載のシーリング材。   The sealing material according to claim 1, wherein the polyolefin-based resin contains an ethylene-vinyl acetate copolymer.
JP2012262126A 2012-11-30 2012-11-30 Sealing material Active JP6079173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262126A JP6079173B2 (en) 2012-11-30 2012-11-30 Sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262126A JP6079173B2 (en) 2012-11-30 2012-11-30 Sealing material

Publications (2)

Publication Number Publication Date
JP2014105329A true JP2014105329A (en) 2014-06-09
JP6079173B2 JP6079173B2 (en) 2017-02-15

Family

ID=51027106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262126A Active JP6079173B2 (en) 2012-11-30 2012-11-30 Sealing material

Country Status (1)

Country Link
JP (1) JP6079173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057628A1 (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103896A (en) * 1998-09-24 2000-04-11 Norton Sa Performance Plastics Soft crosslinked polyolefin foam article
JP2011052044A (en) * 2009-08-31 2011-03-17 Toray Ind Inc Polyolefin-based resin crosslinking foam
JP2012224695A (en) * 2011-04-18 2012-11-15 Toray Ind Inc Resin composition for foam body and method for producing resin crosslinked foam body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103896A (en) * 1998-09-24 2000-04-11 Norton Sa Performance Plastics Soft crosslinked polyolefin foam article
JP2011052044A (en) * 2009-08-31 2011-03-17 Toray Ind Inc Polyolefin-based resin crosslinking foam
JP2012224695A (en) * 2011-04-18 2012-11-15 Toray Ind Inc Resin composition for foam body and method for producing resin crosslinked foam body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057628A1 (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape
US11352525B2 (en) 2015-09-29 2022-06-07 Sekisui Chemical Co., Ltd. Polyolefin resin foamed sheet and adhesive tape

Also Published As

Publication number Publication date
JP6079173B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5919140B2 (en) Ethylene / propylene / diene rubber foam and sealing material
JP5913000B2 (en) Ethylene / propylene / diene rubber foam, method for producing the same, and sealing material
JP5116448B2 (en) Open cell foam and method for producing the same
WO2013042657A1 (en) Sound absorbing material and sealing material
JP5746622B2 (en) Sealing material
JP6069053B2 (en) Cushioning material and sealing material
WO2013042656A1 (en) Sound insulating material and sealing material
JP5460795B2 (en) Ethylene / propylene / diene rubber foam and sealing material
JP5969819B2 (en) SEALING MATERIAL COMPOSITION AND SEALING MATERIAL USING THE SAME
JPWO2012120944A1 (en) Polyolefin resin cross-linked foam
JP6079173B2 (en) Sealing material
EP2843023B1 (en) Sealing material
WO2019167701A1 (en) Rubber sponge and foamable rubber composition
JP2011052044A (en) Polyolefin-based resin crosslinking foam
JP6076162B2 (en) Ethylene / propylene / diene rubber foam and sealing material
JP6680477B2 (en) Water-expandable foam waterproof material and method for producing the same
JP5913013B2 (en) Sound insulation and sealing materials
JP2014051561A (en) Sound absorption material and sealing material
JP2007332177A (en) Polyolefin resin open-cell foam sheet
JP4615112B2 (en) Rubber foam
JP5928131B2 (en) Manufacturing method of sealing material and sealing material
KR20200001900A (en) Thermosetting foam, method of producing the same, and insulating material
JP2017125103A (en) Water cut-off material
JP6010509B2 (en) Method for producing flame retardant polyethylene resin cylindrical foam and flame retardant polyethylene resin cylindrical foam obtained by the production method
JP2018002903A (en) Rubber composition for rubber foam, rubber foam obtained by foaming the same, and seal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151