JP2014105246A - Kerosene base material and kerosene composition - Google Patents

Kerosene base material and kerosene composition Download PDF

Info

Publication number
JP2014105246A
JP2014105246A JP2012257816A JP2012257816A JP2014105246A JP 2014105246 A JP2014105246 A JP 2014105246A JP 2012257816 A JP2012257816 A JP 2012257816A JP 2012257816 A JP2012257816 A JP 2012257816A JP 2014105246 A JP2014105246 A JP 2014105246A
Authority
JP
Japan
Prior art keywords
kerosene
base material
oil
temperature
naphtha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012257816A
Other languages
Japanese (ja)
Other versions
JP6118081B2 (en
Inventor
Masahiko Sawa
正彦 澤
Tadashi Iizuka
正 飯塚
Tsutomu Uchiyama
勉 内山
Tomoaki Hirano
智章 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012257816A priority Critical patent/JP6118081B2/en
Publication of JP2014105246A publication Critical patent/JP2014105246A/en
Application granted granted Critical
Publication of JP6118081B2 publication Critical patent/JP6118081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a kerosene base material having reduced specific odor due to olefin or dienes, and capable of exhibiting good oxidation stability and low temperature fluidity when made as a kerosene composition, and to provide a kerosene composition containing the kerosene base material and having good oxidation stability and low temperature fluidity.SOLUTION: There is provided a kerosene base material manufactured by mixing 100 pts.vol. of heavy naphtha and/or straight-run gas oil and 1 to 50 pts.vol. of pyrolysis oil having specific characteristic obtained by a heat decomposition of naphtha, and having PetroOXY obtained by a hydrogenation treatment of 6 min. or more and the mercaptan concentration of 18 mass ppm or less. There is also provided a kerosene composition having the kerosene base material of 1 vol.% or more and having the flash point of 40°C or higher, the smoke point of 21.0 or more, 90% distillation temperature of 268°C or lower and PetroOXY of 50 min. or more.

Description

本発明は灯油基材及びこれを含有する灯油組成物に関する。   The present invention relates to a kerosene base material and a kerosene composition containing the same.

ナフサの熱分解留分として、例えばエチレン製造装置から副生される熱分解留分は、オレフィンやジエン分が多く、特有の臭い、低酸化安定性の点から、燃料油として使用することが難しい。そのため、流動接触分解装置に熱分解留分を通油し接触分解処理を行うが、コークが多く生成し再生塔温度が高くなるという問題があった。オレフィンやジエンを除去する他の方法として水素添加する方法があるが、通常の方法では、水素添加される前にオレフィンやジエンが重合するため、特殊なプロセスや高価な貴金属触媒が必要になってしまいコスト高となる問題があった。   As a naphtha pyrolysis fraction, for example, a pyrolysis fraction by-produced from an ethylene production apparatus contains a large amount of olefins and dienes, and is difficult to use as a fuel oil because of its characteristic odor and low oxidation stability. . For this reason, the pyrolysis fraction is passed through the fluid catalytic cracking apparatus to perform the catalytic cracking treatment, but there is a problem that a large amount of coke is generated and the regeneration tower temperature is increased. As another method for removing olefins and dienes, there is a method of hydrogenation. However, in the usual method, since olefins and dienes are polymerized before hydrogenation, special processes and expensive noble metal catalysts are required. There was a problem of high cost.

また、Mo、Co、Ni又はWをアルミナやシリカアルミナに担持した触媒を用いて熱分解留分の水素化精製を行うと、触媒寿命が著しく短くなってしまうという問題がある。そのため、一般的には直留軽油に、触媒活性の劣化が顕著にでない程度に熱分解油を混合して水素化精製処理が施されてきた。しかし、この方法では熱分解留分の処理量が制限されると共に、触媒活性の劣化も十分には避けられない状況であった。   Further, when hydrorefining of a pyrolysis fraction is performed using a catalyst in which Mo, Co, Ni, or W is supported on alumina or silica alumina, there is a problem that the catalyst life is remarkably shortened. Therefore, in general, hydrorefining treatment has been performed by mixing pyrolyzed oil with straight-run gas oil to such an extent that the catalytic activity is not significantly deteriorated. However, in this method, the throughput of the pyrolysis fraction is limited, and deterioration of the catalyst activity cannot be avoided sufficiently.

そこで、熱分解留分と直留軽油留分を5:95〜80:20の容量比で混合し、これに5〜45容量%の接触分解油を混合して水素化する水素化精製処理方法が提案されている(例えば、特許文献1参照)。当該処理方法によれば、熱分解油の処理量を増大することができるとともに、触媒活性の劣化を抑制し、深度脱硫、あるいは高度な脱窒素処理が可能であるとされている。   Therefore, a hydrorefining treatment method in which a pyrolysis fraction and a straight-run gas oil fraction are mixed at a volume ratio of 5:95 to 80:20, and 5-45 vol% catalytic cracking oil is mixed and hydrogenated. Has been proposed (see, for example, Patent Document 1). According to this treatment method, it is said that the amount of pyrolysis oil can be increased, catalyst activity deterioration is suppressed, and deep desulfurization or advanced denitrification treatment is possible.

特開平08−048981号公報Japanese Patent Application Laid-Open No. 08-049881

しかし、上記のような方法でも、オレフィンやジエン類に起因する特有の臭いが残り、かつ、灯油組成物とした際に良好な酸化安定性と低温流動性が得られないという問題があった。   However, even with the above-described method, there is a problem that a characteristic odor due to olefins and dienes remains, and good oxidation stability and low-temperature fluidity cannot be obtained when a kerosene composition is obtained.

以上から、本発明は、オレフィンやジエン類に起因する特有の臭いが低減されており、灯油組成物とした際に良好な酸化安定性と低温流動性とを発揮させることが可能な灯油基材、及びこの灯油基材を含み、良好な酸化安定性と低温流動性とを有する灯油組成物を提供することを目的とする。   As described above, the present invention is a kerosene base material that has reduced characteristic odor due to olefins and dienes, and can exhibit good oxidation stability and low-temperature fluidity when used as a kerosene composition. An object of the present invention is to provide a kerosene composition comprising the kerosene base material and having good oxidation stability and low temperature fluidity.

上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明に想到し当該課題を解決できることを見出した。すなわち、本発明は下記の通りである。   As a result of intensive studies to solve the above problems, the present inventors have arrived at the following present invention and found that the problems can be solved. That is, the present invention is as follows.

[1] 重質ナフサ及び/又は灯油100容量部に対し、ナフサの熱分解から得られる下記(1)及び(2)の性状を有する熱分解油1〜50容量部を混合し、反応温度180〜210℃にて水素化処理して得られるPetroOXYが6分以上、メルカプタン濃度が18質量ppm以下の灯油基材。
(1)10%留出温度が40〜100℃、50%留出温度が150〜210℃、90%留出温度が240〜380℃である。
(2)密度が0.93〜0.99g/cm3である。
[2] 56℃に加熱した際に揮発して得られる成分中に、ジシクロペンタジエン及びスチレンモノマーが含有されていない[1]に記載の灯油基材。
[3] 前記水素化処理が、水素の存在下、水素化触媒を用いて行われる処理であり、その処理条件が、水素圧力2〜6MPa、液空間速度(LHSV)0.3〜1.5h-1、水素/油比250〜500Nm3/kLである[1]又は[2]に記載の灯油基材。
[1] 100 parts by volume of heavy naphtha and / or kerosene are mixed with 1 to 50 parts by volume of pyrolyzed oil having the following properties (1) and (2) obtained from the thermal decomposition of naphtha, and a reaction temperature of 180 A kerosene base material having PetroOXY obtained by hydrogenation at ˜210 ° C. for 6 minutes or more and a mercaptan concentration of 18 mass ppm or less.
(1) The 10% distillation temperature is 40 to 100 ° C, the 50% distillation temperature is 150 to 210 ° C, and the 90% distillation temperature is 240 to 380 ° C.
(2) The density is 0.93 to 0.99 g / cm 3 .
[2] The kerosene base material according to [1], wherein dicyclopentadiene and styrene monomer are not contained in a component obtained by volatilization when heated to 56 ° C.
[3] The hydrogenation treatment is performed using a hydrogenation catalyst in the presence of hydrogen, and the treatment conditions are a hydrogen pressure of 2 to 6 MPa and a liquid space velocity (LHSV) of 0.3 to 1.5 h. -1 , The kerosene base material according to [1] or [2], wherein the hydrogen / oil ratio is 250 to 500 Nm 3 / kL.

[4] 上記[1]〜[4]のいずれかに記載の灯油基材を1容量%以上含有してなり、引火点が40℃以上、煙点が21.0以上、90%留出温度が268℃以下であり、PetroOXYが50分以上である灯油組成物。 [4] The kerosene substrate according to any one of [1] to [4] is contained in an amount of 1% by volume or more, a flash point is 40 ° C. or more, a smoke point is 21.0 or more, and a 90% distillation temperature. Is a kerosene composition having a temperature of 268 ° C. or lower and PetroOXY of 50 minutes or longer.

本発明によれば、オレフィンやジエン類に起因する特有の臭いが低減されており、灯油組成物とした際に良好な酸化安定性と低温流動性とを発揮させることが可能な灯油基材、及びこの灯油基材を含み、良好な酸化安定性と低温流動性とを有する灯油組成物を提供することができる。   According to the present invention, a characteristic odor due to olefins and dienes is reduced, and a kerosene base material capable of exhibiting good oxidation stability and low-temperature fluidity when used as a kerosene composition, And a kerosene composition comprising the kerosene base material and having good oxidation stability and low temperature fluidity.

[灯油基材]
本発明の灯油基材は、重質ナフサ及び/又は灯油100容量部に対し、ナフサの熱分解から得られる所定の性状を有する熱分解油(以下、「本発明に係る熱分解油」ということがある)1〜50容量部を混合し、反応温度180〜210℃にて水素化処理して得られる。
[Kerosene base material]
The kerosene base material of the present invention is a pyrolysis oil having a predetermined property obtained from the thermal decomposition of naphtha (hereinafter referred to as “the pyrolysis oil according to the present invention”) for 100 parts by volume of heavy naphtha and / or kerosene. 1) to 50 parts by volume are mixed and obtained by hydrogenation at a reaction temperature of 180 to 210 ° C.

本発明に係る熱分解油が1容量部未満では添加効果がなく、50容量部を超えると水素化処理に用いられる反応塔で大量の水素化熱が発生し、熱暴走の危険がある。また、臭いの低減が不十分という問題がある。
本発明に係る熱分解油は、5〜40容量部であることが好ましく、10〜30容量部であることがより好ましい。
If the pyrolysis oil according to the present invention is less than 1 part by volume, there is no effect of addition, and if it exceeds 50 parts by volume, a large amount of heat of hydrogenation is generated in the reaction tower used for the hydrotreatment, and there is a risk of thermal runaway. Moreover, there exists a problem that reduction of an odor is inadequate.
The pyrolysis oil according to the present invention is preferably 5 to 40 parts by volume, and more preferably 10 to 30 parts by volume.

本発明に係る熱分解油は、所定の性状として下記(1)及び(2)の性状を有する。
(1)10%留出温度(T10)が40〜100℃、50%留出温度(T50)が150〜210℃、90%留出温度(T90)が240〜380℃である。
このような蒸留性状を有することで、好適に水素化処理することができる。
10%留出温度は好ましくは45〜95℃であり、より好ましくは50〜90℃である。50%留出温度は好ましくは160〜200℃であり、より好ましくは170〜190℃である。90%留出温度は好ましくは240〜370℃であり、より好ましくは240〜360℃である。
これらの留出温度の範囲内であれば、窒素分の含有量を低減でき、窒素分による水素化触媒への被毒を抑えることができる。なお、熱分解油の窒素分は、50質量ppm以下であることが好ましく、30質量ppm以下であることがより好ましい。また、熱分解油における各留出温度はガスクロ蒸留の留出温度である。
The pyrolysis oil according to the present invention has the following properties (1) and (2) as predetermined properties.
(1) The 10% distillation temperature (T10) is 40 to 100 ° C, the 50% distillation temperature (T50) is 150 to 210 ° C, and the 90% distillation temperature (T90) is 240 to 380 ° C.
By having such a distillation property, the hydrogenation treatment can be suitably performed.
The 10% distillation temperature is preferably 45 to 95 ° C, more preferably 50 to 90 ° C. The 50% distillation temperature is preferably 160 to 200 ° C, more preferably 170 to 190 ° C. 90% distillation temperature becomes like this. Preferably it is 240-370 degreeC, More preferably, it is 240-360 degreeC.
If it is in the range of these distillation temperature, content of nitrogen content can be reduced and poisoning to the hydrogenation catalyst by nitrogen content can be suppressed. In addition, it is preferable that the nitrogen content of pyrolysis oil is 50 mass ppm or less, and it is more preferable that it is 30 mass ppm or less. Moreover, each distillation temperature in pyrolysis oil is the distillation temperature of gas chromatography.

(2)密度が0.93〜0.99g/cm3である。密度が0.93g/cm3未満では発熱量が低下してしまい燃料使用量が増加する。また、0.99g/cm3を超えると水素化処理が困難(コーキング、触媒の活性低下)になってしてしまう。密度は0.94〜0.985g/cm3であることが好ましく、0.945〜0.98g/cm3であることがより好ましく、0.95〜0.98g/cm3であることがさらに好ましい。 (2) The density is 0.93 to 0.99 g / cm 3 . If the density is less than 0.93 g / cm 3 , the calorific value is reduced and the amount of fuel used is increased. On the other hand, if it exceeds 0.99 g / cm 3 , the hydrogenation process becomes difficult (caulking, reduced catalyst activity). Preferably the density is 0.94~0.985g / cm 3, more preferably 0.945~0.98g / cm 3, further to be 0.95~0.98g / cm 3 preferable.

本発明の灯油基材は、56℃に加熱した際に揮発して得られる成分中に、ジシクロペンタジエン及びスチレンモノマーが含有されていないことが好ましい。臭気の原因物質として、シクロペンタジエン、ジシクロペンタジエン、2,4,4-トリメチル-1-ペンテン、スチレンモノマーおよび4-ビニルシクロヘキセン等が挙げられるが、水素化処理の条件を強化してもジシクロペンタジエンおよびスチレンモノマーが最後まで残存するため、ジシクロペンタジエン及びスチレンモノマーが含有されないことが指標となり、オレフィンやジエン類に起因する特有の臭気を大幅に低減することができる。   The kerosene base material of the present invention preferably contains no dicyclopentadiene and styrene monomer in the component obtained by volatilization when heated to 56 ° C. Odor-causing substances include cyclopentadiene, dicyclopentadiene, 2,4,4-trimethyl-1-pentene, styrene monomer and 4-vinylcyclohexene. Since pentadiene and styrene monomer remain to the end, the absence of dicyclopentadiene and styrene monomer serves as an index, and the characteristic odor caused by olefins and dienes can be greatly reduced.

また、本発明の灯油基材のPetroOXYは6分以上、好ましくは50分以上であり、メルカプタン濃度は18質量ppm以下、好ましくは16ppm以下である。
PetroOXYは、酸化安定度の指標となるもので、後述の実施例に記載の方法にて測定される。PetroOXYが6分未満では、長期保存時に酸化劣化する可能性が高くなってしまう。
また、メルカプタン濃度についても後述の実施例に記載の方法にて測定される。メルカプタン濃度が18質量ppmを超えると独特の強い臭いが感じられる。
また、基材のメルカプタン濃度を下げることにより、製品(灯油)のメルカプタン濃度も低下し、製品で5ppm以下であれば独特の臭いは感じられなくなる。
Further, the PetroOXY of the kerosene base material of the present invention is 6 minutes or more, preferably 50 minutes or more, and the mercaptan concentration is 18 mass ppm or less, preferably 16 ppm or less.
PetroOXY serves as an index of oxidation stability and is measured by the method described in the examples described later. If PetroOXY is less than 6 minutes, the possibility of oxidative degradation during long-term storage increases.
Further, the mercaptan concentration is also measured by the method described in Examples described later. When the mercaptan concentration exceeds 18 mass ppm, a unique strong odor is felt.
Further, by reducing the mercaptan concentration of the base material, the mercaptan concentration of the product (kerosene) also decreases, and if the product is 5 ppm or less, a unique odor cannot be felt.

重質ナフサ及び/又は灯油に本発明に係る熱分解油を混合した後、反応温度180〜210℃にて水素化処理が施されて本発明の灯油基材が得られる。この水素化処理によって、スチレン、ジエン等の悪臭物質が水素化され、比較的臭いの少ないアルキルベンゼンやモノオレフィンに水素化される。
なお、通常の灯油水素化処理装置では反応温度が300℃以上となるため、熱分解油をブレンド通油すると210℃を超える部位でオレフィンやジエンが重合し、熱交換器、加熱炉、反応塔等において、汚れや圧力損失の増加が起こり、運転継続が困難になることがある。
水素化処理の詳細な条件(好ましい条件)は後述する。
After the pyrolysis oil according to the present invention is mixed with heavy naphtha and / or kerosene, hydrogenation is performed at a reaction temperature of 180 to 210 ° C. to obtain the kerosene base material of the present invention. By this hydrogenation treatment, malodorous substances such as styrene and dienes are hydrogenated to hydrogenate alkylbenzenes and monoolefins with relatively little odor.
In a normal kerosene hydrotreating apparatus, the reaction temperature is 300 ° C. or higher. Therefore, when the pyrolysis oil is blended, olefins and dienes are polymerized at sites exceeding 210 ° C., resulting in heat exchangers, heating furnaces, reaction towers. In such cases, dirt and pressure loss increase, and it may be difficult to continue operation.
Detailed conditions (preferred conditions) for the hydrogenation treatment will be described later.

ここで、重質ナフサとしては、引火点を考慮してエングラー蒸留での10%留出温度が120℃以上、好ましくは140℃以上、レジン分の存在を考慮して90%留出温度が240℃以下、好ましくは220℃以下のものが好適に使用される。また、重油組成物としての使用を考慮すると90%留出温度は160℃以上が好ましい。例えば、輸入ナフサから、主として炭素数5、6の留分からなるライトナフサと、主として炭素数7、8の留分からなるヘビーナフサを蒸留分離した後に得られる塔底留分である重質ナフサが挙げられる。
重質ナフサを得るナフサ原料としては、一般にフルレンジナフサと呼ばれるナフサが挙げられる。輸入ナフサには、炭素数9、10以上の重質分を含むため、ライトナフサやヘビーナフサを分離した後に得られる重質ナフサが特に好適に使用される。
Here, as the heavy naphtha, the 10% distillation temperature in the Angler distillation is 120 ° C. or higher in consideration of the flash point, preferably 140 ° C. or higher, and the 90% distillation temperature is 240 in consideration of the presence of the resin content. Those having a temperature of ℃ or less, preferably 220 ℃ or less are suitably used. In consideration of use as a heavy oil composition, the 90% distillation temperature is preferably 160 ° C. or higher. For example, light naphtha mainly composed of fractions having 5 and 6 carbon atoms and heavy naphtha which is a bottom fraction obtained by distilling and separating heavy naphtha composed mainly of fractions having 7 and 8 carbon atoms from imported naphtha. .
As a naphtha raw material for obtaining heavy naphtha, naphtha generally called full-range naphtha can be mentioned. Since imported naphtha contains heavy components having 9 or 10 carbon atoms, heavy naphtha obtained after separating light naphtha or heavy naphtha is particularly preferably used.

また、灯油としては、特に限定されず、一般的な灯油を使用することができるが、灯油についても引火点を考慮してエングラー蒸留での10%留出温度(T10)が120℃以上、好ましくは140℃以上、レジン分の存在を考慮して90%留出温度(T90)が240℃以下、好ましくは220℃以下のものが好適に使用される。例えば、直留系の灯油留分や分解系の灯油留分が適用可能である。   Kerosene is not particularly limited, and general kerosene can be used, but kerosene also has a 10% distillation temperature (T10) in the Engler distillation of 120 ° C. or higher, preferably considering the flash point. In consideration of the presence of the resin component, 140 ° C. or higher and a 90% distillation temperature (T90) of 240 ° C. or lower, preferably 220 ° C. or lower are preferably used. For example, a straight-run kerosene fraction or a cracked kerosene fraction is applicable.

重質ナフサ及び灯油の性状としては、水素化触媒への被毒を抑えるため、窒素分が20質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることがさらに好ましく、3質量ppm以下であることが最も好ましい。また、密度は0.76〜0.80g/mlであることが好ましい。   As properties of heavy naphtha and kerosene, the nitrogen content is preferably 20 mass ppm or less, more preferably 10 mass ppm or less, in order to suppress poisoning of the hydrogenation catalyst, and 5 mass ppm or less. More preferably, it is most preferably 3 ppm by mass or less. Moreover, it is preferable that a density is 0.76-0.80 g / ml.

本発明の灯油基材には、本発明の効果を阻害しない限り種々の添加剤を混合させることができる。例えば、酸化防止剤、低温性流動向上剤等が挙げられる。   Various additives can be mixed in the kerosene base of the present invention as long as the effects of the present invention are not impaired. For example, antioxidants, low-temperature flow improvers and the like can be mentioned.

以上のような本発明の灯油基材は、既述の重質ナフサ及び/又は灯油100容量部に対し、本発明に係る熱分解油1〜50容量部を混合し、反応温度180〜210℃にて水素化処理する工程を経て製造される。   The kerosene substrate of the present invention as described above is prepared by mixing 1 to 50 parts by volume of the pyrolysis oil according to the present invention with 100 parts by volume of the above-described heavy naphtha and / or kerosene, and a reaction temperature of 180 to 210 ° C. It is manufactured through a hydrogenation process at

本発明に係る熱分解油は、エチレン製造装置から副生される熱分解留分を適用することができる。既述の所定の性状を有する熱分解油は、熱分解条件と蒸留条件をコントロールすることにより得ることができる。なお、他の石油化学製造装置からの副生品を有効活用するために、本発明の効果を阻害しない範囲で、当該副生品を熱分解油の一部として使用することもできる。例えば、スチレンモノマー装置より副生されるスロップ等が挙げられる。   As the pyrolysis oil according to the present invention, a pyrolysis fraction by-produced from an ethylene production apparatus can be applied. The pyrolysis oil having the predetermined properties described above can be obtained by controlling the pyrolysis conditions and distillation conditions. In order to effectively use by-products from other petrochemical production apparatuses, the by-products can be used as part of the pyrolysis oil as long as the effects of the present invention are not impaired. For example, the slop etc. byproduced from a styrene monomer apparatus are mentioned.

重質ナフサ及び/又は灯油と本発明に係る熱分解油との混合方法としては、特に限定されず、タンクでの撹拌混合、配管でのスタティックミキサーによる混合等が挙げられる。   The mixing method of the heavy naphtha and / or kerosene and the pyrolysis oil according to the present invention is not particularly limited, and examples thereof include stirring and mixing in a tank, mixing using a static mixer in a pipe, and the like.

水素化処理は、水素の存在下、水素化触媒を用いて行う。水素化触媒としては、既存のモリブデン系水素化触媒(CoMoやNiMo)にPを含んでも良い。担体はアルミナ系のものが好適に使用される。   The hydrogenation treatment is performed using a hydrogenation catalyst in the presence of hydrogen. As a hydrogenation catalyst, P may be contained in an existing molybdenum-based hydrogenation catalyst (CoMo or NiMo). A support of an alumina type is preferably used.

水素化処理の条件として、水素圧力は2〜6MPaとすることが好ましく、3〜4MPaとすることがより好ましい。水素圧力を2〜6MPaとすることでコーキングを防止し、触媒を長寿命化することができる。
なお、水素圧力(=全圧(反応塔出口の高圧セパレータの圧力)×供給水素ガス中の水素濃度で定義される)が高いほど水素化が容易に行われるが、同時に水素化による発熱が多くなりすぎ制御が困難になる、設備費が高くなる等の不具合が起こるため、コストを考慮しても上記のような範囲とすることが好ましい。
As conditions for the hydrogenation treatment, the hydrogen pressure is preferably 2 to 6 MPa, and more preferably 3 to 4 MPa. By setting the hydrogen pressure to 2 to 6 MPa, coking can be prevented and the life of the catalyst can be extended.
The higher the hydrogen pressure (= total pressure (pressure of the high-pressure separator at the outlet of the reaction tower) x hydrogen concentration in the supplied hydrogen gas), the easier the hydrogenation, but at the same time, more heat is generated by the hydrogenation. Inconveniences such as excessive control becomes difficult and equipment costs increase, and therefore, it is preferable to set the above-mentioned range in consideration of costs.

反応温度は180〜210℃であり、190〜200℃とすることがより好ましい。反応温度を180〜210℃とすることで重合反応の進行を抑えることにより安全・安定に操業することが可能になり、かつ臭いの改善を図ることができる。臭いについては、反応温度を180℃以上とすることにより、既述のオレフィンやジエン類に起因する特有の臭いを低減でき、反応温度を210℃以下とすることにより、水素化脱硫して生成した硫黄化合物が再度反応して生成するメルカプタンに起因する臭いも低減することができる。
なお、反応器が管型反応器(反応塔)の場合の反応温度は、触媒重量平均温度で定義される温度をさす。
また、液空間速度(LHSV)は0.3〜1.5h-1とすることが好ましく、0.5〜1.0h-1とすることがより好ましく、0.75〜1.0h-1とすることがさらに好ましい。液空間速度を0.3〜1.5h-1とすることで臭気の原因物質を選択的に水素化することができる。
さらに、水素/油比は250〜500Nm3/kLとすることが好ましく、300〜500Nm3/kLとすることがより好ましい。水素/油比を250〜500Nm3/kLとすることで反応に必要な水素を供給し、触媒の劣化を抑制することができる。なお、水素/油比の油は、ポンプ送液量(kL:キロリットル)をベースとしている。
Reaction temperature is 180-210 degreeC, and it is more preferable to set it as 190-200 degreeC. By suppressing the progress of the polymerization reaction by setting the reaction temperature to 180 to 210 ° C., it becomes possible to operate safely and stably, and the odor can be improved. The odor can be reduced by setting the reaction temperature to 180 ° C. or higher, thereby reducing the specific odor caused by the olefins and dienes described above, and by hydrodesulfurization by setting the reaction temperature to 210 ° C. or lower. Odor due to mercaptans produced by reacting sulfur compounds again can be reduced.
The reaction temperature when the reactor is a tubular reactor (reaction tower) refers to a temperature defined by the catalyst weight average temperature.
Further, it is preferable that the liquid hourly space velocity (LHSV) 0.3~1.5H -1, more preferably, to 0.5~1.0H -1, and 0.75~1.0H -1 More preferably. By setting the liquid space velocity to 0.3 to 1.5 h −1 , the odor-causing substance can be selectively hydrogenated.
Furthermore, the hydrogen / oil ratio is preferably in the 250 to 500 nm 3 / kL, and more preferably in the 300 to 500 nm 3 / kL. By setting the hydrogen / oil ratio to 250 to 500 Nm 3 / kL, hydrogen necessary for the reaction can be supplied and deterioration of the catalyst can be suppressed. In addition, the oil of hydrogen / oil ratio is based on the pump liquid supply (kL: kiloliter).

[灯油組成物]
本発明の灯油組成物は、既述の本発明の灯油基材を1容量%以上含有してなり、引火点が40℃以上、煙点が21.0以上、90%留出温度が268℃以下である。
[Kerose oil composition]
The kerosene composition of the present invention contains 1% by volume or more of the above-described kerosene substrate of the present invention, has a flash point of 40 ° C. or higher, a smoke point of 21.0 or higher, and a 90% distillation temperature of 268 ° C. It is as follows.

本発明の灯油基材の含有量が1容量%未満では、添加量が少なく効果が小さい。本発明の灯油基材は1〜50容量%であることが好ましく、1〜25容量%であることがより好ましく、1〜20容量%であることがさらに好ましく、5〜20容量%であることが特に好ましい。     When the content of the kerosene base material of the present invention is less than 1% by volume, the addition amount is small and the effect is small. The kerosene base material of the present invention is preferably 1 to 50% by volume, more preferably 1 to 25% by volume, further preferably 1 to 20% by volume, and 5 to 20% by volume. Is particularly preferred.

本発明の灯油組成物のセタン指数が35未満であると、燃焼性が悪化してしまう。また、引火点が60℃未満であると、取り扱いの安全の面で好ましくない。さらに、目詰まり点が−6℃より高いと、低温でのフィルターが閉塞してしまう可能性が高くなる。また、流動点が−20℃より高いと、低温時にラインで固化してしまう可能性が高くなる。   When the cetane index of the kerosene composition of the present invention is less than 35, combustibility is deteriorated. Further, if the flash point is less than 60 ° C., it is not preferable in terms of handling safety. Furthermore, if the clogging point is higher than −6 ° C., there is a high possibility that the filter at a low temperature is clogged. Moreover, when a pour point is higher than -20 degreeC, possibility that it will solidify in a line at low temperature becomes high.

セタン指数は35以上であることが好ましく、40以上であることがより好ましい。引火点は60以上℃であることが好ましく、62以上℃であることがより好ましい。目詰まり点は−6以下℃であることが好ましく、−9℃以下であることがより好ましい。流動点−20℃以下であることが好ましく、−22.5℃以下であることがより好ましい。   The cetane index is preferably 35 or more, and more preferably 40 or more. The flash point is preferably 60 ° C. or higher, and more preferably 62 ° C. or higher. The clogging point is preferably −6 ° C. or lower, and more preferably −9 ° C. or lower. The pour point is preferably −20 ° C. or lower, more preferably −22.5 ° C. or lower.

なお、セタン指数は水素化条件、具体的には、水素圧力、水素/油比、反応温度を高く調整し、密度及び蒸留性状を制御することにより、35以上とすることができる。引火点は蒸留条件を調整することにより、60℃以上とすることができる。目詰まり点及び流動点については、熱分解油には目詰まり点を悪化させる直鎖パラフィンが少ないのでそのブレンド量を調整することにより、それぞれ−6℃以下及び−20℃以下とすることができる。   The cetane index can be set to 35 or more by adjusting the hydrogenation conditions, specifically, the hydrogen pressure, the hydrogen / oil ratio, the reaction temperature, and controlling the density and distillation properties. The flash point can be adjusted to 60 ° C. or higher by adjusting the distillation conditions. Regarding the clogging point and the pour point, the pyrolysis oil has few linear paraffins that worsen the clogging point. Therefore, by adjusting the blend amount, it can be made -6 ° C or lower and -20 ° C or lower, respectively. .

本発明の灯油組成物における本発明の灯油基材を加える灯油成分としては、JIS K 2203の1号又は2号の規定に適合する灯油を用いることが好ましい。
また、上記灯油としては常圧蒸留装置より得られる直留灯油(又は脱硫処理した灯油)、直留軽質軽油(又は脱硫処理した軽質軽油)、直留重質軽油(又は脱硫処理した重質軽油)の直留系基材を主体として用い、これに流動接触分解装置及び/又は残渣流動接触分解装置より得られる軽質サイクル油、減圧蒸留装置より得られる減圧軽油を水素化した水素化減圧軽油、水素化分解装置より得られる水素化分解軽油、直接重油脱硫装置より得られる直脱軽油等を混合し、更に残留炭素付与用の常圧残油、直脱残油、減圧残油等を混合して10%残油の残留炭素分が0.2重量%を超えるように製造されるものを適用することができる。
As the kerosene component to which the kerosene base material of the present invention is added in the kerosene composition of the present invention, it is preferable to use kerosene that complies with the provisions of JIS K 2203 No. 1 or No. 2.
Further, as the above kerosene, straight-run kerosene (or desulfurized kerosene) obtained from an atmospheric distillation apparatus, straight-run light diesel oil (or desulfurized light diesel oil), straight-run heavy diesel oil (or desulfurized heavy diesel oil) ) As a main component, a light cycle oil obtained from a fluid catalytic cracking device and / or a residue fluid catalytic cracking device, a hydrogenated vacuum gas oil obtained by hydrogenating a vacuum gas oil obtained from a vacuum distillation device, Mix hydrocracked light oil obtained from hydrocracking equipment, direct degasified light oil obtained from direct heavy oil desulfurization equipment, etc., and further mix atmospheric residual oil for directing residual carbon, direct dehydrated residual oil, vacuum residual oil, etc. In other words, it is possible to use a product manufactured so that the residual carbon content of 10% residual oil exceeds 0.2% by weight.

本発明の灯油組成物には、本発明の効果を阻害しない限り種々の添加剤を混合させることができる。例えば、セタン価向上剤、酸化防止剤、安定化剤、分散剤、流動性向上剤、金属不活性化剤、微生物殺菌剤、助燃剤、帯電防止剤、識別剤等が挙げられる。   Various additives can be mixed in the kerosene composition of the present invention as long as the effects of the present invention are not impaired. Examples thereof include cetane number improvers, antioxidants, stabilizers, dispersants, fluidity improvers, metal deactivators, microbial disinfectants, auxiliary agents, antistatic agents, discriminating agents and the like.

本実施例で使用した各基材は下記の通りである。
[基材]
(1)重質ナフサ
使用した重質ナフサの性状を下記表1に示す。
Each substrate used in this example is as follows.
[Base material]
(1) Heavy naphtha The properties of heavy naphtha used are shown in Table 1 below.

Figure 2014105246
Figure 2014105246

(2)熱分解油
使用した熱分解油の性状を下記表2に示す。

Figure 2014105246
(2) Pyrolysis oil The properties of the pyrolysis oil used are shown in Table 2 below.
Figure 2014105246

(3)灯油
使用した灯油の性状を下記表3に示す。

Figure 2014105246
(3) Kerosene Properties of the kerosene used are shown in Table 3 below.
Figure 2014105246

[測定・評価方法]
本実施例における各種の測定・評価方法は下記の通りである。
(1)密度
JIS K 2249に準拠して測定した。
[Measurement and evaluation method]
Various measurement / evaluation methods in this example are as follows.
(1) Density Measured according to JIS K 2249.

(2)蒸留性状
(i)ガスクロ蒸留性状
JIS K 2254に準拠して測定した。
(ii)エングラー蒸留性状
JIS K 2254に準拠して測定した。
(3)メルカプタン濃度及び硫黄分
メルカプタン濃度: JIS K 2276 メルカプタン硫黄分分析試験方法
硫黄分:JIS K 2541−4「放射線式励起法」(10wtppm以上の場合)
JIS K 2541−7「波長分散蛍光X線法」(10wtppm未満の場合)
(2) Distillation property (i) Gas chromatography distillation property It measured based on JISK2254.
(Ii) Engler distillation properties Measured according to JIS K 2254.
(3) Mercaptan Concentration and Sulfur Content Mercaptan Concentration: JIS K 2276 Mercaptan Sulfur Content Analysis Test Method Sulfur Content: JIS K 2541-4 “Radiation Excitation Method” (in the case of 10 wtppm or more)
JIS K 2541-7 “wavelength dispersive X-ray fluorescence method” (when less than 10wtppm)

(4)ジシクロペンタジエン及びスチレンモノマー濃度の測定
56℃に加熱した際に揮発して得られる成分中のジシクロペンタジエン濃度を、下記ののようにして測定した。また、スチレンモノマーの濃度も同様にして測定した。ここで、ジシクロペンタジエン及びスチレンモノマーを測定したガスクロのエリア%が合わせて0.1%未満の場合、上記の臭い成分なしとした。0.1以上の場合はありとした。
(4) Measurement of concentration of dicyclopentadiene and styrene monomer The concentration of dicyclopentadiene in the component obtained by volatilization when heated to 56 ° C was measured as follows. The concentration of styrene monomer was also measured in the same manner. Here, when the area% of gas chromatography measured for dicyclopentadiene and styrene monomer was less than 0.1%, it was regarded as having no odor component. There was a case of 0.1 or more.

まず、バイアルビン20mlサイズにサンプルを0.03g採取し、オーブンに入れて56℃で0.1分間加熱し、揮発した成分を採取した。その後、揮発した成分のサンプル1mlを用いて、GC−MS分析を実施した。
GCの条件:注入口 240℃
カラム DB−1(長さ30m、直径0.32mm)
オーブン温度 40℃(5min)→240℃(10min)
昇温速度は10℃/min
MSの条件:Scan Mode(m/z 29〜400)
First, 0.03 g of a sample was collected in a vial bottle size of 20 ml, placed in an oven and heated at 56 ° C. for 0.1 minute, and a volatilized component was collected. Then, GC-MS analysis was performed using 1 ml of the sample of the volatilized component.
GC condition: inlet 240 ° C
Column DB-1 (length 30m, diameter 0.32mm)
Oven temperature 40 ° C (5min) → 240 ° C (10min)
Temperature increase rate is 10 ° C / min
MS conditions: Scan Mode (m / z 29-400)

(5)官能試験
三点嗜好法に準拠して行った。独特の強い臭いがあると感じた場合を×、独特の臭いが少しある場合を△、独特の臭いがない場合を○とした。
(5) Sensory test The sensory test was performed according to the three-point preference method. When it felt that there was a peculiar strong smell, it was set as x when there was a little peculiar smell, and when there was no peculiar smell.

(6)煙点
JIS K 2537に準拠して測定した。
(7)引火点
JIS K 2265に準拠して測定した。
(6) Smoke point Measured according to JIS K2537.
(7) Flash point Measured according to JIS K 2265.

(8)酸化安定度
灯油基材及び灯油組成物の酸化安定度は、PetroOXY試験「経済産業省告知第72号(軽油中の酸化安定度の測定方法として経済産業大臣が定める方法)」により測定される誘導期間で表した。誘導期間とは、試料5mlに所定量の酸素を封入し、140℃まで上昇させて、初期圧力が10%低下するまでの時間である。
(9)臭素価
JIS K 2605に準拠して測定した。
(10)窒素分
JIS K 2609に準拠して測定した。
(8) Oxidation stability The oxidation stability of the kerosene base material and kerosene composition was measured by the PetroOXY test "Ministry of Economy, Trade and Industry Notification No. 72 (method determined by the Minister of Economy, Trade and Industry as a method for measuring oxidation stability in diesel oil)" Expressed by induction period. The induction period is the time from when a predetermined amount of oxygen is sealed in 5 ml of the sample and raised to 140 ° C. until the initial pressure is reduced by 10%.
(9) Bromine number It measured based on JISK2605.
(10) Nitrogen content Measured according to JIS K 2609.

[実施例1〜6及び比較例1]
下記表4−1、表4−2に示す条件及び下記の条件にて、各種基材を混合し水素化処理して灯油基材を作製した。
水素化処理には高圧固定床流通式の反応器を用い、触媒は、軽油深度脱硫装置で、脱硫軽油の硫黄分が10質量ppm以下となるように2年間使用したコバルトモリブデン系の市販軽油脱硫触媒(使用済触媒)を市販の灯油で洗浄後、空気中で風乾したものを60ミリリットル充填した。
原料油は純度100%の水素ガスとともに反応管の上段から導入するダウンフロー形式で流通させて反応評価を行った。
使用した使用済触媒は硫化済のものであるが、空気で酸化されているおそれがあったため、予備硫化に相当する処理を実施した。反応圧力(水素圧力)は反応器出口で調整した。水素/原料油比は水素化反応器入口の供給量で調整した。
前処理として、DMDS(ジメチルジスルフィド)を添加し硫黄濃度を2.0質量%に調整した、密度0.844g/cm3の中東系軽油をベースとする予備硫化油を水素ガスとともに流通させて、最初110℃で4時間処理後、温度360℃まで10時間で昇温し、温度360℃で4時間硫化処理を行った。その後、原料油を重質ナフサに切替え、温度360℃で4時間通油し、触媒に含まれると考えられる重質分を洗浄・除去した後、所定の温度に低下させた。
生成油は、回収時間を調整することにより、400ccから最大2L回収した。系内容器に所定量回収した生成油に窒素ガスを60NL/hで0.5時間流通し、生成油に含まれる硫化水素の除去を行った。該熱分解油及び重質ナフサ等による希釈油は、常温では変質するため、温度0℃の保冷庫で保管した。
作製した灯油基材について、各種測定・評価を行った。結果を下記表4−1及び表4−2、並びに下記表5−1及び表5−2に示す
[Examples 1 to 6 and Comparative Example 1]
Under the conditions shown in the following Table 4-1 and Table 4-2 and the following conditions, various base materials were mixed and hydrogenated to prepare a kerosene base material.
The hydrotreating uses a high-pressure fixed-bed flow reactor, and the catalyst is a cobalt oil-based commercial diesel oil desulfurization system that has been used for 2 years so that the sulfur content of the desulfurized diesel oil is 10 mass ppm or less in a diesel oil deep desulfurization unit. The catalyst (used catalyst) was washed with commercially available kerosene and then air-dried in air, and filled with 60 ml.
The raw material oil was circulated in a down flow type introduced from the upper stage of the reaction tube together with hydrogen gas having a purity of 100% to evaluate the reaction.
Although the used catalyst used was sulfided, there was a possibility that it was oxidized with air, so a treatment corresponding to presulfidation was performed. The reaction pressure (hydrogen pressure) was adjusted at the reactor outlet. The hydrogen / raw oil ratio was adjusted by the feed rate at the hydrogenation reactor inlet.
As pretreatment, DMDS (dimethyl disulfide) was added and the sulfur concentration was adjusted to 2.0% by mass. A presulfurized oil based on a Middle East gas oil with a density of 0.844 g / cm 3 was circulated together with hydrogen gas, After first treating at 110 ° C. for 4 hours, the temperature was raised to 360 ° C. over 10 hours, and sulfiding treatment was performed at 360 ° C. for 4 hours. Thereafter, the raw material oil was switched to heavy naphtha, and the oil was passed at a temperature of 360 ° C. for 4 hours. After washing and removing heavy components considered to be contained in the catalyst, the temperature was lowered to a predetermined temperature.
The produced oil was recovered up to 2 L from 400 cc by adjusting the recovery time. Nitrogen gas was passed through the produced oil collected in a predetermined amount in the system container at 60 NL / h for 0.5 hour to remove hydrogen sulfide contained in the produced oil. Since the pyrolysis oil and the diluted oil such as heavy naphtha change in quality at room temperature, they were stored in a cool box at a temperature of 0 ° C.
Various measurements and evaluations were performed on the produced kerosene base material. The results are shown in the following Table 4-1 and Table 4-2, and the following Table 5-1 and Table 5-2.

Figure 2014105246
Figure 2014105246

Figure 2014105246
Figure 2014105246

Figure 2014105246
Figure 2014105246

Figure 2014105246
Figure 2014105246

熱分解油Bを75容量%とした場合(比較例2)は、反応温度が220℃でオレフィンの重合等により、コーキングが発生した。このとき発熱反応が見られ、リアクター入口付近でコーキングが起こり、詰りが発生していた。そのため、生成油が得られず評価ができなかった。   When pyrolysis oil B was 75% by volume (Comparative Example 2), coking occurred due to olefin polymerization and the like at a reaction temperature of 220 ° C. At this time, an exothermic reaction was observed, coking occurred near the reactor inlet, and clogging occurred. For this reason, the product oil was not obtained and could not be evaluated.

[実施例8〜13及び比較例4、5]
下記表6−1及び表6−2に示すように、各種基材を混合して灯油組成物を作製した。作製した灯油組成物について各種測定・評価を行った。結果を下記表6−1及び表6−2に示す。
[Examples 8 to 13 and Comparative Examples 4 and 5]
As shown in Table 6-1 and Table 6-2 below, various base materials were mixed to prepare a kerosene composition. Various measurements and evaluations were performed on the produced kerosene composition. The results are shown in Tables 6-1 and 6-2 below.

Figure 2014105246
Figure 2014105246

Figure 2014105246
Figure 2014105246

Claims (4)

重質ナフサ及び/又は灯油100容量部に対し、ナフサの熱分解から得られる下記(1)及び(2)の性状を有する熱分解油1〜50容量部を混合し、反応温度180〜210℃にて水素化処理して得られるPetroOXY(酸化安定度)が6分以上、メルカプタン濃度が18質量ppm以下の灯油基材。
(1)10%留出温度が40〜100℃、50%留出温度が150〜210℃、90%留出温度が240〜380℃である。
(2)密度が0.93〜0.99g/cm3である。
1 to 50 parts by volume of pyrolysis oil having the following properties (1) and (2) obtained from pyrolysis of naphtha is mixed with 100 parts by volume of heavy naphtha and / or kerosene, and the reaction temperature is 180 to 210 ° C. A kerosene base material having a PetroOXY (oxidation stability) of 6 minutes or more and a mercaptan concentration of 18 mass ppm or less obtained by hydrotreating at a temperature of 5%.
(1) The 10% distillation temperature is 40 to 100 ° C, the 50% distillation temperature is 150 to 210 ° C, and the 90% distillation temperature is 240 to 380 ° C.
(2) The density is 0.93 to 0.99 g / cm 3 .
56℃に加熱した際に揮発して得られる成分中に、ジシクロペンタジエン及びスチレンモノマーが含有されていない請求項1に記載の灯油基材。   The kerosene base material according to claim 1, wherein dicyclopentadiene and a styrene monomer are not contained in a component obtained by volatilization when heated to 56 ° C. 前記水素化処理が、水素の存在下、水素化触媒を用いて行われる処理であり、その処理条件が、水素圧力2〜6MPa、反応温度180〜230℃、液空間速度(LHSV)0.3〜1.5h-1、水素/油比250〜500Nm3/kLである請求項1又は2に記載の灯油基材。 The hydrogenation treatment is a treatment performed using a hydrogenation catalyst in the presence of hydrogen. The treatment conditions are a hydrogen pressure of 2 to 6 MPa, a reaction temperature of 180 to 230 ° C., and a liquid space velocity (LHSV) of 0.3. The kerosene base material according to claim 1 , which has a hydrogen / oil ratio of 250 to 500 Nm 3 / kL. 請求項1〜3のいずれか1項に記載の灯油基材を1容量%以上含有してなり、引火点が40℃以上、煙点が21.0以上、90%留出温度が268℃以下であり、PetroOXY(酸化安定度)が50分以上である灯油組成物。   The kerosene base material according to any one of claims 1 to 3 is contained at 1% by volume or more, a flash point is 40 ° C or higher, a smoke point is 21.0 or higher, and a 90% distillation temperature is 268 ° C or lower. A kerosene composition having PetroOXY (oxidation stability) of 50 minutes or more.
JP2012257816A 2012-11-26 2012-11-26 Kerosene base and kerosene composition Active JP6118081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257816A JP6118081B2 (en) 2012-11-26 2012-11-26 Kerosene base and kerosene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257816A JP6118081B2 (en) 2012-11-26 2012-11-26 Kerosene base and kerosene composition

Publications (2)

Publication Number Publication Date
JP2014105246A true JP2014105246A (en) 2014-06-09
JP6118081B2 JP6118081B2 (en) 2017-04-19

Family

ID=51027031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257816A Active JP6118081B2 (en) 2012-11-26 2012-11-26 Kerosene base and kerosene composition

Country Status (1)

Country Link
JP (1) JP6118081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230048566A (en) * 2020-12-30 2023-04-11 네스테 오와이제이 How to Dispose of Liquefied Waste-Polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688493A (en) * 1979-12-21 1981-07-17 Nippon Oil Co Ltd Catalytic hydrorefining of thermal cracking gasoline
JP2006199783A (en) * 2005-01-19 2006-08-03 Japan Energy Corp Fuel composition
US20120108866A1 (en) * 2009-06-11 2012-05-03 Dane Clark Grenoble process for the selective hydrogenation and hydrodesulferization of a pyrolysis gasoline feedstock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688493A (en) * 1979-12-21 1981-07-17 Nippon Oil Co Ltd Catalytic hydrorefining of thermal cracking gasoline
JP2006199783A (en) * 2005-01-19 2006-08-03 Japan Energy Corp Fuel composition
US20120108866A1 (en) * 2009-06-11 2012-05-03 Dane Clark Grenoble process for the selective hydrogenation and hydrodesulferization of a pyrolysis gasoline feedstock

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230048566A (en) * 2020-12-30 2023-04-11 네스테 오와이제이 How to Dispose of Liquefied Waste-Polymer
KR102605860B1 (en) * 2020-12-30 2023-11-24 네스테 오와이제이 How to Dispose of Liquefied Waste-Polymers
US11952544B2 (en) 2020-12-30 2024-04-09 Neste Oyj Method for processing liquefied waste polymers

Also Published As

Publication number Publication date
JP6118081B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP4808212B2 (en) Method for producing low sulfur diesel fuel
JP6573698B2 (en) Method for starting hydrotreating apparatus or hydroconversion apparatus
US8741129B2 (en) Use of low boiling point aromatic solvent in hydroprocessing heavy hydrocarbons
EP2452999A1 (en) Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
US20190078027A1 (en) Hydroprocessing of high density cracked fractions
US20170137721A1 (en) High viscosity base stock compositions
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
KR101695502B1 (en) Process for producing low-sulfur gas-oil base, and low-sulfur gas oil
CA3049804A1 (en) Desulfurization of a naphtha boiling range feed
JP6118081B2 (en) Kerosene base and kerosene composition
JPWO2009013971A1 (en) Hydrorefining method of hydrocarbon oil
JP6118055B2 (en) Fuel oil base and heavy oil composition
JP5961423B2 (en) Method for hydrotreating highly aromatic hydrocarbon oil
JP6283561B2 (en) Method for producing fuel oil base material
JP5501048B2 (en) Method for producing catalytic reforming feedstock
JP6258756B2 (en) Method for producing fuel oil base material
JP3955990B2 (en) Ultra-deep desulfurization method for diesel oil fraction
JP7304240B2 (en) How to treat multiple feedstocks
US20210309923A1 (en) Process for desulfurization of hydrocarbons
US20210238488A1 (en) Process for desulfurization of hydrocarbons
JP4920188B2 (en) Light oil base material, light oil, and production method thereof
US20210380889A1 (en) Deep desulphurization of low sulphur content feedstock
JP5798837B2 (en) Kerosene composition
JP6360372B2 (en) Production method of light oil base
AU2018341697A1 (en) Optimized global positioning system correction message for interoperable train control messaging transport

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150