JP2014105200A - NITRILOTRIACETAMIDE AND ITS MANUFACTURING METHOD, EXTRACTION SEPARATION METHOD OF ACTINOID AND LANTHANOID USING NITRILOTRIACETAMIDE, AND SOLVENT EXTRACTION METHOD OF Am/Cm - Google Patents

NITRILOTRIACETAMIDE AND ITS MANUFACTURING METHOD, EXTRACTION SEPARATION METHOD OF ACTINOID AND LANTHANOID USING NITRILOTRIACETAMIDE, AND SOLVENT EXTRACTION METHOD OF Am/Cm Download PDF

Info

Publication number
JP2014105200A
JP2014105200A JP2012260582A JP2012260582A JP2014105200A JP 2014105200 A JP2014105200 A JP 2014105200A JP 2012260582 A JP2012260582 A JP 2012260582A JP 2012260582 A JP2012260582 A JP 2012260582A JP 2014105200 A JP2014105200 A JP 2014105200A
Authority
JP
Japan
Prior art keywords
nitrilotriacetamide
separation
solvent extraction
actinoid
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012260582A
Other languages
Japanese (ja)
Other versions
JP6044828B2 (en
Inventor
Yuji Sasaki
祐二 佐々木
Yasuhiro Tsubata
靖宏 津幡
Akihiro Kitatsuji
章浩 北辻
Kimihiko Sano
君彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Japan Atomic Energy Agency filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2012260582A priority Critical patent/JP6044828B2/en
Publication of JP2014105200A publication Critical patent/JP2014105200A/en
Application granted granted Critical
Publication of JP6044828B2 publication Critical patent/JP6044828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation technology of lanthanoid and actinoid and a separation technology of Am and Cm, which can be used in a treatment process of high level radioactive waste liquid containing radioactive nuclides.SOLUTION: Nitrilotriacetamide represented by N(CHCONR), where R is an alkyl group having 6 to 12 carbon atoms, is used as an extraction separation agent for separating trivalent actinoid and lanthanoid, and tetraethyldiglycol amide is used as a masking agent in a solvent extraction method from high level radioactive waste liquid.

Description

本発明は、原子力分野で発生する高レベル放射性廃液から長半減期核種であるアクチノイドを抽出分離する方法に関し、特に抽出分離剤として使用できる新規なニトリロトリアセトアミドおよびその合成方法並びにアクチノイドの抽出分離方法およびAmとCmとの溶媒抽出方法に関する。   The present invention relates to a method for extracting and separating actinides, which are long half-life nuclides, from high-level radioactive liquid waste generated in the field of nuclear power, and in particular, a novel nitrilotriacetamide that can be used as an extracting and separating agent, a method for synthesizing the same, and a method for extracting and separating actinides The present invention relates to a solvent extraction method of Am and Cm.

原子力分野では、使用済み燃料溶解液中のUやPuを分離した後に発生する高レベル放射性廃液中のAmおよびCmなどのアクチノイド(以下「An」と総称することもある。)などの長半減期核種を分離し、核変換する研究が進められている。高レベル放射性廃液からの長半減期核種の分離は、ガラス固化体の発生量を削減し、地層処分による環境に与える長期的危険性を排除する上で重要である。しかし、高レベル放射性廃液中には、アクチノイドと同じ安定原子価および類似するイオン半径を有するためにアクチノイドとの相互分離が困難な大量のランタノイド(以下「Ln」と総称することもある)が共存する。放射性核種のうち、ランタノイドは地層処分、Amは核変換、Cmは中間貯蔵と処理方法が異なり、有効に処分するためには相互分離が必要である。   In the nuclear field, a long half-life of actinides (hereinafter sometimes referred to as “An”) such as Am and Cm in high-level radioactive liquid waste generated after separation of U and Pu in spent fuel solution Research is ongoing to isolate and transmutate nuclides. Separation of long-lived nuclides from high-level radioactive liquid waste is important in reducing the amount of vitrified material generated and eliminating the long-term danger to the environment due to geological disposal. However, a large amount of lanthanoids (hereinafter sometimes referred to as “Ln”) coexist in the high-level radioactive liquid waste because they have the same stable valence and a similar ionic radius as actinoids and are difficult to separate from actinides. To do. Among radionuclides, lanthanoids are geological disposal, Am is nuclear transmutation, Cm is different in intermediate storage and treatment method, and separation is necessary for effective disposal.

ランタノイドとアクチノイドとの分離には、ジエチレンテトラミン-N,N,N’,N”,N”-五酢酸(DTPA)などの錯形成剤を用いて相互分離する方法(非特許文献1)、ビス(2,4,4-トリメチルペンチル)ジチオホスフィン酸(Cyanex301)を用いて相互分離する方法(非特許文献2)、N,N,N’,N”-テトラキス(2-メチルピリジル)エチレンジアミン(TPEN)を用いて相互分離する方法(非特許文献3)、6,6’-ビス(5,5,8,8-テトラメチル-5,6,7,8-テトラヒドロ−ベンゾ[1,2,4]トリアジン-3-イル)−[2,2’]ビピリジン(CyMe4-BTBP)を用いて相互分離する方法(非特許文献4)、N,N’-ジメチル-N,N’-ジフェニレンピリジン-2,6-ジカルボキシアミド(DMDPhPDA)を用いて相互分離する方法(非特許文献5)が研究されている。DTPAは水に溶解しにくく(溶解量は50mM程度)、金属塩を使用するpH緩衝剤が必要になるため、二次廃棄物を発生させ、高レベル放射性廃液の処理には適切ではない。Cyanex301は硫黄原子を含むため化学的安定性に欠けて分解しやすく、TPEN、CyMe4-BTBP、DMDPhPDAは高レベル放射性廃液の処理に用いるn−ドデカンに溶解しにくく、高レベル廃液の再処理や核種分離で求められるプロセス条件で利用しにくい。また、Cyanex301、TPEN、CyMe4-BTBP、DMDPhPDAは複雑な構造を有し、合成が容易ではない。 Separation of lanthanoids and actinoids using a complexing agent such as diethylenetetramine-N, N, N ', N ", N" -pentaacetic acid (DTPA) (Non-Patent Document 1), bis (2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) method for mutual separation (Non-Patent Document 2), N, N, N ′, N ″ -tetrakis (2-methylpyridyl) ethylenediamine (TPEN ), 6,6′-bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo [1,2,4] ] Triazin-3-yl)-[2,2 ′] bipyridine (CyMe 4 -BTBP) (Non-Patent Document 4), N, N′-dimethyl-N, N′-diphenylenepyridine -2,6-Dicarboxamide (DMDPhPDA) has been studied for mutual separation (Non-patent Document 5) DTPA is difficult to dissolve in water (dissolution amount is about 50 mM) Because it requires a pH buffer to be used, it generates secondary waste and is not suitable for the treatment of high-level radioactive liquid waste.Cyanex 301 contains sulfur atoms, so it lacks chemical stability and is easy to decompose. CyMe 4 -BTBP and DMDPhPDA are difficult to dissolve in n-dodecane used for the treatment of high-level radioactive liquid waste, and are difficult to use under the process conditions required for reprocessing high-level liquid waste and nuclide separation. 4- BTBP and DMDPhPDA have a complex structure and are not easily synthesized.

ランタノイドから分離されたアクチノイドには、AmとCmが含まれる。AmとCmも最終処分方法が異なるため、分離することが望ましい。しかし、AmとCmとの分離はさらに困難である。AmとCmの分離には、低い分離比の条件で多段分離が可能なクロマト分離法(非特許文献6)や、電気化学酸化によりAm(III)をAm(VI)に変えて溶媒抽出する方法(非特許文献7)が研究されている。多段分離によるクロマト分離は処理が煩雑であり、Am(III)をAm(VI)に変えるためには酸化剤が必要となり、二次廃棄物を発生させるため、高レベル放射性廃液の処理には適切ではない。   Actinides isolated from lanthanoids include Am and Cm. Since Am and Cm also have different final disposal methods, it is desirable to separate them. However, separation of Am and Cm is even more difficult. For separation of Am and Cm, a chromatographic separation method (Non-Patent Document 6) capable of multi-stage separation under conditions of a low separation ratio, or a solvent extraction method by changing Am (III) to Am (VI) by electrochemical oxidation (Non-Patent Document 7) has been studied. Chromatographic separation by multi-stage separation is complicated, and an oxidizing agent is required to change Am (III) to Am (VI), and secondary waste is generated. Therefore, it is suitable for processing high-level radioactive liquid waste. is not.

本発明者らは、高レベル放射性廃液からのアクチニドとランタノイドとの溶媒抽出分離に使用できる抽出剤としてN,N,N’,N’-テトラアルキル-3,6-ジオキサオクタン-1,8-ジアミドを提案した(特許文献3)。   The inventors have identified N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8 as extractants that can be used for solvent extraction separation of actinides and lanthanoids from high-level radioactive liquid waste. -Diamide was proposed (Patent Document 3).

特開2006−153790号公報JP 2006-153790 A 特開2011−169888号公報JP 2011-169888 A 特開2009−124516号公報JP 2009-124516 A

A. Apichaibukol, Y. Sasaki and Y. Morita, Solv. Extr. Ion Exch. 22, 997-1011 (2004)A. Apichaibukol, Y. Sasaki and Y. Morita, Solv. Extr. Ion Exch. 22, 997-1011 (2004) Y. Zhu, J. Chen, and R.Jiao, Solv. Extra, Ion Exch. 14, 61 (1996)Y. Zhu, J. Chen, and R. Jiao, Solv. Extra, Ion Exch. 14, 61 (1996) M. Watanabe, R. Mirvaliev, S. Tachimori, K. Takeshita, Y. Nakano, K. Morikawa, T. Chikazawa, and R. Mori, Chem. Lett. 31, 1230 (2002)M. Watanabe, R. Mirvaliev, S. Tachimori, K. Takeshita, Y. Nakano, K. Morikawa, T. Chikazawa, and R. Mori, Chem. Lett. 31, 1230 (2002) A. Geist, C. Hill, G. Modolo, M.R.St.J. Foreman, M. Weigl, K. Gompper, M.J.Hudson, and C. Madic, Solv. Extr. Ion Exch. 24, 463(2006)A. Geist, C. Hill, G. Modolo, M.R.St.J. Foreman, M. Weigl, K. Gompper, M.J.Hudson, and C. Madic, Solv. Extr. Ion Exch. 24, 463 (2006) A. Shimada, T. Yaita, H. Narita, S. Tachimori, T. Kimura, K. Okuno, Y. Nakano, Solvent Extr. Res. Dev. Jpn. 11, 1-10 (2004)A. Shimada, T. Yaita, H. Narita, S. Tachimori, T. Kimura, K. Okuno, Y. Nakano, Solvent Extr. Res. Dev. Jpn. 11, 1-10 (2004) H. Kurosaki and S. B. Clark, Radiochim. Acta99, 65-69 (2011)H. Kurosaki and S. B. Clark, Radiochim. Acta99, 65-69 (2011) L. Donnet, J. M. Adnet, N. Faure, P. Bros, Ph. Brossard, F. Josso, Internet address: https://www.oecd-nea.org/pt/docs/iem/mol98/session2/SIIpaper6.pdfL. Donnet, JM Adnet, N. Faure, P. Bros, Ph. Brossard, F. Josso, Internet address: https://www.oecd-nea.org/pt/docs/iem/mol98/session2/SIIpaper6. pdf Y. Sasaki and G.R. Choppin, Anal. Sci., 12, 225-230 (1996)Y. Sasaki and G.R.Choppin, Anal.Sci., 12, 225-230 (1996) Y. Sasaki, H. Suzuki, Y. Sugo, T. Kimura, G.R. Choppin, Chem. Lett. 35,256-257 (2011)Y. Sasaki, H. Suzuki, Y. Sugo, T. Kimura, G.R.Choppin, Chem. Lett. 35, 256-257 (2011)

本発明は、放射性核種を含む高レベル放射性廃液の処理プロセスに使用できるランタノイドとアクチノイドとの分離技術、AmとCmとの分離技術を提供することを目的とする。
具体的には下記課題を解決する必要がある。
(1)放射性核種を含む高レベル放射性廃液の処理プロセスに使用するため、二次廃棄物の発生を抑制することが必要である。
(2)放射性核種を含む高レベル放射性廃液は硝酸溶液であり、抽出溶媒はn−ドデカンであるため、抽出分離剤は硝酸(水相)およびn−ドデカン(有機相)に十分な可溶性を有することが必要である。
(3)溶媒抽出分離するためには、抽出分離対象元素同士の分配比が1前後、分離比が4以上を達成することが必要である。ここで、分配比とは[有機相中の金属イオン濃度]/[水相中の金属イオン濃度]であり、分離比とは対象元素同士の分配比の比、すなわち([有機相中のAm(III)濃度]/[水相中のAm(III)濃度])/([有機相中のCm(III)濃度]/[水相中のCm(III)濃度])である。分離比が4以上とは、5回の多段抽出を施すことにより99.9%の分離を達成できることを意味する。
(4)放射性核種を含む高レベル放射性廃液を処理するため、被曝を最低限とする簡便な分離技術であることが必要である。
(5)使用する薬剤は高い化学的安定性を有する必要がある。
An object of the present invention is to provide a separation technique between a lanthanoid and an actinoid and a separation technique between Am and Cm that can be used in a treatment process of a high-level radioactive liquid waste containing a radionuclide.
Specifically, the following issues need to be solved.
(1) Since it is used for the processing process of the high level radioactive liquid waste containing a radionuclide, it is necessary to suppress generation | occurrence | production of a secondary waste.
(2) Since the high-level radioactive liquid waste containing the radionuclide is a nitric acid solution and the extraction solvent is n-dodecane, the extraction separation agent has sufficient solubility in nitric acid (aqueous phase) and n-dodecane (organic phase). It is necessary.
(3) In order to perform solvent extraction and separation, it is necessary to achieve a distribution ratio between the elements to be extracted and separated of around 1 and a separation ratio of 4 or more. Here, the distribution ratio is [the concentration of metal ions in the organic phase] / [the concentration of metal ions in the aqueous phase], and the separation ratio is the ratio of the distribution ratio between the target elements, that is, ([Am in the organic phase] (III) concentration] / [Am (III) concentration in the aqueous phase]) / ([Cm (III) concentration in the organic phase] / [Cm (III) concentration in the aqueous phase]). A separation ratio of 4 or more means that 99.9% separation can be achieved by performing multistage extraction five times.
(4) In order to process high-level radioactive liquid waste containing radionuclides, it is necessary to be a simple separation technique that minimizes exposure.
(5) The drug to be used needs to have high chemical stability.

本発明者らは、鋭意研究した結果、新規なニトリロトリアセトアミドが、放射性核種を含む高レベル放射性廃液中のランタノイドとアクチノイドの抽出分離に適切な抽出分離剤であることを知見し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the novel nitrilotriacetamide is an extraction / separation agent suitable for the extraction / separation of lanthanoids and actinides in high-level radioactive liquid waste containing radionuclides, and completed the present invention. It came to do.

本発明によれば、放射性核種を含む高レベル放射性廃液の処理プロセスに使用できるランタノイドとアクチノイドとの溶媒抽出分離技術、およびAmとCmとの溶媒抽出分離技術並びに当該溶媒抽出分離に使用できる新規化合物およびその合成方法が提供される。   INDUSTRIAL APPLICABILITY According to the present invention, a solvent extraction / separation technique of lanthanoids and actinoids that can be used in a treatment process of high-level radioactive liquid waste containing radionuclides, a solvent extraction / separation technique of Am and Cm, and a novel compound that can be used for the solvent extraction / separation And methods of synthesis thereof.

すなわち、本発明によれば、下記一般式:   That is, according to the present invention, the following general formula:

Figure 2014105200
Figure 2014105200

(式中、Rは炭素数6〜12のアルキル基である)で表されるニトリロトリアセトアミド(以下「NTAアミド」と略すこともある)が提供される。
上記式中、アルキル基は、ヘキシル基、オクチル基、デシル基、ドデシル基、エチルヘキシル基から選択されることが好ましい。
(Wherein R is an alkyl group having 6 to 12 carbon atoms) represented by nitrilotriacetamide (hereinafter sometimes abbreviated as “NTA amide”).
In the above formula, the alkyl group is preferably selected from a hexyl group, an octyl group, a decyl group, a dodecyl group, and an ethylhexyl group.

本発明のニトリロトリアセトアミドは、疎水性が高いためn−ドデカンに良好に溶解し、空気中で安定である。また、ランタノイド、アクチノイドなどの元素と有機相で強い親和性を有する。   Since the nitrilotriacetamide of the present invention is highly hydrophobic, it dissolves well in n-dodecane and is stable in air. In addition, it has a strong affinity in the organic phase with elements such as lanthanoids and actinoids.

上記ニトリロトリアセトアミドは、ニトリロ三酢酸と二級アミン化合物とを、縮合剤と、を反応させることを含む方法により合成される。得られた生成物を水、炭酸水素ナトリウムで洗浄し、シリカゲルカラムに繰り返し通して単離精製する。好適には、二級アミン化合物とトリエチルアミンを加えた溶媒(好適にはジメチルホルムアミドと塩化メチレン)に、ニトリロ三酢酸を添加して、氷冷し、次いで、縮合剤(好適には水溶性カルボジイミドの塩酸化物)と1−ヒドロキシベンゾトリアゾールとを添加して、室温にて反応させて、ニトリロトリアセトアミドを得ることができる。   The nitrilotriacetamide is synthesized by a method including reacting nitrilotriacetic acid and a secondary amine compound with a condensing agent. The obtained product is washed with water and sodium hydrogen carbonate, and it is isolated and purified by repeatedly passing it through a silica gel column. Preferably, nitrilotriacetic acid is added to a solvent in which a secondary amine compound and triethylamine are added (preferably dimethylformamide and methylene chloride), ice-cooled, and then a condensing agent (preferably water-soluble carbodiimide) is added. Salt oxide) and 1-hydroxybenzotriazole can be added and reacted at room temperature to obtain nitrilotriacetamide.

NTAアミドのアルキル基は、二級アミン化合物により変えることができる。二級アミン化合物は、ジヘキシルアミン、ジ−n−オクチルアミン、ジデシルアミン、ジドデシルアミン、エチルヘキシルアミンから選択されることが好ましい。例えば、NTAアミド−オクチルはジ−n−オクチルアミンを用いるが、NTAアミド−デシルはジデシルアミンを用い、NTAアミド−エチルヘキシルはジエチルヘキシルアミンを用いて、製造することができる。   The alkyl group of NTA amide can be changed by a secondary amine compound. The secondary amine compound is preferably selected from dihexylamine, di-n-octylamine, didecylamine, didodecylamine and ethylhexylamine. For example, NTA amide-octyl uses di-n-octylamine, while NTA amide-decyl uses didecylamine, and NTA amide-ethylhexyl uses diethylhexylamine.

縮合剤としては、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、ジイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド、ジシクロヘキシルカルボジイミド、ジトリルカルボジイミド、1−t−ブチル−3−エチルカルボジイミド、1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミド及びこれらの塩が好ましく、特に水溶性カルボジイミドの塩酸化物、具体的には、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩を好適に用いることができる。   Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, diisopropylcarbodiimide, di-t-butylcarbodiimide, dicyclohexylcarbodiimide, ditolylcarbodiimide, 1-t-butyl-3-ethylcarbodiimide, 1- Cyclohexyl-3- (2-morpholinoethyl) carbodiimide and salts thereof are preferred, and particularly preferred is a water-soluble carbodiimide hydrochloride, specifically 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride. Can be used.

二級アミン化合物及び縮合剤の使用量は、ニトリロ三酢酸100質量部に対して、100〜120質量部とすることが好ましい。上記使用量を超えると、反応液内に未反応残分が多く生じるようになり、精製が困難になり、経済性の点からも不都合である。一方、上記使用量よりも少ないと、NTAアミドの回収率が低下する。クロマトグラフィーでの分離精製を考慮すれば、回収量は1度の合成につき10g程度が望ましい。   It is preferable that the usage-amount of a secondary amine compound and a condensing agent shall be 100-120 mass parts with respect to 100 mass parts of nitrilotriacetic acid. If the amount exceeds the above amount, a large amount of unreacted residue is generated in the reaction solution, which makes purification difficult and disadvantageous in terms of economy. On the other hand, if the amount is less than the above amount used, the recovery rate of NTA amide decreases. Considering separation and purification by chromatography, the recovered amount is preferably about 10 g per synthesis.

本発明のニトリロトリアセトアミドの合成方法における反応は以下の通りである。   The reaction in the synthesis method of nitrilotriacetamide of the present invention is as follows.

Figure 2014105200
Figure 2014105200

本発明によれば、上記ニトリロトリアセトアミドを3価のアクチノイドとランタノイドとを分離する抽出分離剤として使用する、放射性核種を含む液体からのアクチノイドの溶媒抽出分離方法が提供される。抽出分離剤として本発明のニトリロトリアセトアミドを用いる点を除いて、通常の溶媒抽出分離方法の手順を用いることができる。   According to the present invention, there is provided a method for solvent extraction and separation of actinides from a liquid containing a radionuclide, using the nitrilotriacetamide as an extraction / separation agent for separating trivalent actinoids and lanthanoids. Except for using the nitrilotriacetamide of the present invention as an extraction / separation agent, the usual procedure for solvent extraction / separation can be used.

具体的には、放射性核種を含む液体に、硝酸と、上記ニトリロトリアセトアミドのn−ドデカン溶液を添加し、アクチノイドを有機相(ニトリロトリアセトアミドのn−ドデカン溶液)に抽出する。アクチノイドの有機相への抽出は、放射性核種を含む硝酸溶液に、ニトリロトリアセトアミドのn−ドデカン溶液を添加した後、室温ないし25℃にて10〜20分振とうした後、遠心分離により有機相と水相とに分離させることで行うことができる。   Specifically, nitric acid and an n-dodecane solution of nitrilotriacetamide are added to a liquid containing a radionuclide, and the actinoid is extracted into an organic phase (an n-dodecane solution of nitrilotriacetamide). Extraction of actinoids into the organic phase is carried out by adding an n-dodecane solution of nitrilotriacetamide to a nitric acid solution containing a radionuclide, shaking at room temperature to 25 ° C. for 10 to 20 minutes, and then separating the organic phase from the organic phase by centrifugation. It can be carried out by separating into an aqueous phase.

ニトリロトリアセトアミドのn−ドデカン溶液(有機相)と放射性核種を含む硝酸溶液(水相)との容積比が0.01:1〜1:0.01の範囲内となるように、ニトリロトリアセトアミドのn−ドデカン溶液を添加することが好ましい。また、ニトリロトリアセトアミドの使用量は、n−ドデカン溶液中の濃度がモル濃度で0.1〜0.5Mとなるように調整することが、溶液の調製やアクチノイドを分離回収する点で好ましい。しかし、高レベル放射性廃液中のアクチノイド濃度が高い場合には、0.5M以上の濃度で使用することができる。なお、硝酸の濃度は、1〜6Mであることが好ましい。   N of nitrilotriacetamide so that the volume ratio of n-dodecane solution of nitrilotriacetamide (organic phase) and nitric acid solution containing radionuclide (aqueous phase) is in the range of 0.01: 1 to 1: 0.01. It is preferred to add a dodecane solution. Further, the amount of nitrilotriacetamide used is preferably adjusted so that the concentration in the n-dodecane solution is 0.1 to 0.5 M in terms of molar concentration, from the viewpoint of preparing the solution and separating and recovering the actinides. However, when the actinide concentration in the high level radioactive liquid waste is high, it can be used at a concentration of 0.5M or more. In addition, it is preferable that the density | concentration of nitric acid is 1-6M.

また、本発明によれば、上記ニトリロトリアセトアミドを3価のアクチノイドとランタノイドとを分離する抽出分離剤として使用し、テトラエチルジグリコールアミド(TEDGA)をマスキング剤として使用する放射性核種を含む液体からのAmとCmの溶媒抽出分離方法が提供される。   Further, according to the present invention, Am from a liquid containing a radionuclide using the above nitrilotriacetamide as an extraction / separation agent for separating a trivalent actinoid and a lanthanoid and using tetraethyldiglycolamide (TEDGA) as a masking agent. And Cm solvent extraction separation methods are provided.

具体的には、放射性核種を含む液体に、硝酸と、上記ニトリロトリアセトアミドのn−ドデカン溶液と、を添加し、アクチノイドを有機相に抽出した後、テトラエチルジグリコールアミド(TEDGA)を添加して、Amを有機相に残し、Cmを水相に抽出する、放射性核種を含む液体からのAmとCmとの溶媒抽出分離方法が提供される。アクチノイドを有機相に抽出させる条件は上述の通りである。逆抽出に使用するテトラエチルジグリコールアミドは、硝酸溶液に良好に溶解し、強いマスキング効果を発揮するため、pH緩衝剤を利用する必要がなく、高レベル放射性廃液からのAm、Pu、Cmの分離に用いることができる(特許文献1および2)。TEDGAの使用量は、溶液の濃度がモル濃度で5mM以上となるように調整することが望ましい。逆抽出に使用するTEDGAは0.2M以上の希硝酸に溶解させて用いることが望ましい。   Specifically, to a liquid containing a radionuclide, nitric acid and the n-dodecane solution of nitrilotriacetamide are added, the actinoid is extracted into an organic phase, tetraethyldiglycolamide (TEDGA) is added, Provided is a method for solvent extraction separation of Am and Cm from a liquid containing radionuclides, leaving Am in the organic phase and extracting Cm into the aqueous phase. The conditions for extracting the actinide into the organic phase are as described above. Tetraethyldiglycolamide used for back extraction dissolves well in nitric acid solution and exerts a strong masking effect, so there is no need to use a pH buffer and separation of Am, Pu and Cm from high-level radioactive liquid waste (Patent Documents 1 and 2). The amount of TEDGA used is desirably adjusted so that the concentration of the solution is 5 mM or more in terms of molarity. TEDGA used for back extraction is desirably dissolved in 0.2 M or more dilute nitric acid.

本発明のニトリロトリアセトアミドは、化学的に安定で、硝酸およびn−ドデカンに十分な可溶性を有し、アクチノイドとの親和性が高く、高レベル放射性廃液からアクチノイドを抽出分離する抽出分離剤として用いることができる。   The nitrilotriacetamide of the present invention is chemically stable, has sufficient solubility in nitric acid and n-dodecane, has high affinity with actinides, and is used as an extraction / separation agent for extracting and separating actinides from high-level radioactive liquid waste Can do.

本発明のニトリロトリアセトアミドの合成方法は、氷点下の緩やかな反応条件で行うことができ、簡便である。
本発明の高レベル放射性廃液からのアクチノイドの溶媒抽出分離方法は、二次廃棄物の発生がなく、操作も簡便である。
The method for synthesizing nitrilotriacetamide according to the present invention can be carried out under mild reaction conditions below freezing and is simple.
The method for solvent extraction and separation of actinides from high-level radioactive liquid waste according to the present invention does not generate secondary waste and is easy to operate.

本発明の高レベル放射性廃液からのAmとCmの溶媒抽出分離方法は、二次廃棄物の発生がなく、操作も簡便である。   The method for extracting and separating Am and Cm from the high-level radioactive liquid waste according to the present invention does not generate secondary waste and is easy to operate.

図1は、合成例1で得られた生成物のH-NMRスペクトルである。FIG. 1 is a 1 H-NMR spectrum of the product obtained in Synthesis Example 1. 図2は、合成例2で得られた生成物のH-NMRスペクトルである。FIG. 2 is a 1 H-NMR spectrum of the product obtained in Synthesis Example 2. 図3は、実施例1の結果を示すグラフであり、NTAアミド濃度とAmとCmとの分配比との関係を示す。FIG. 3 is a graph showing the results of Example 1, showing the relationship between the NTA amide concentration and the distribution ratio between Am and Cm. 図4は、実施例1の結果を示すグラフであり、NTAアミド−C6濃度とランタノイドの分配比との関係を示す。FIG. 4 is a graph showing the results of Example 1, showing the relationship between the NTA amide-C6 concentration and the lanthanoid distribution ratio. 図5は、実施例1の結果を示すグラフであり、NTAアミド−C8濃度とランタノイドの分配比との関係を示す。FIG. 5 is a graph showing the results of Example 1, showing the relationship between the NTA amide-C8 concentration and the lanthanoid distribution ratio. 図6は、実施例2の結果を示すグラフであり、0.2M濃度のNTAアミドを用いる場合のTEDGA濃度とAm/Cmの分配比との関係を示す。FIG. 6 is a graph showing the results of Example 2, showing the relationship between the TEDGA concentration and the Am / Cm distribution ratio when a 0.2 M concentration of NTA amide is used. 図7は、実施例2の結果を示すグラフであり、0.5M濃度のNTAアミドを用いる場合のTEDGA濃度とAm/Cmの分配比との関係を示す。FIG. 7 is a graph showing the results of Example 2, showing the relationship between the TEDGA concentration and the Am / Cm distribution ratio when a 0.5 M concentration of NTA amide is used.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[合成例1]
ジヘキシルアミン(23.7g,128mmol相当)とトリエチルアミン(13g,128mmol相当)をジメチルホルムアミド(100ml)と塩化メチレン(50ml)中に加えた。その後、ニトリロ三酢酸(7g,36.6mmol相当)を加えて反応容器を氷冷した。水溶性カルボジイミドの塩酸化物を24.6g(128mmol相当),1−ヒドロキシベンゾトリアゾール(HOBt.H2O,17.3g,128mmol相当)を反応容器に加えた。室温(21−23℃)で1昼夜撹拌し、NTAアミドを合成した。NaHCO,NaClで反応溶液を洗浄し、その後、シリカゲルカラムクロマトグラフィーで分離精製を行った。回収量は約8.3gで収率は60%以上であった。精製後のNTAアミドのH−NMRチャートを図1に記す。それぞれの水素のNMRスペクトルはNTAアミド構造中に記した同じ番号のHに相当する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[Synthesis Example 1]
Dihexylamine (23.7 g, corresponding to 128 mmol) and triethylamine (13 g, corresponding to 128 mmol) were added to dimethylformamide (100 ml) and methylene chloride (50 ml). Thereafter, nitrilotriacetic acid (7 g, corresponding to 36.6 mmol) was added, and the reaction vessel was ice-cooled. 24.6 g (corresponding to 128 mmol) of a water-soluble carbodiimide salt oxide and 1-hydroxybenzotriazole (HOBt.H 2 O, 17.3 g, corresponding to 128 mmol) were added to the reaction vessel. The mixture was stirred at room temperature (21-23 ° C.) for 1 day to synthesize NTA amide. The reaction solution was washed with NaHCO 3 and NaCl, and then separated and purified by silica gel column chromatography. The recovered amount was about 8.3 g and the yield was 60% or more. The 1 H-NMR chart of NTA amide after purification is shown in FIG. The NMR spectrum of each hydrogen corresponds to the same number of H noted in the NTA amide structure.

[合成例2]
ジオクチルアミン(30.9g,128mmol相当)とトリエチルアミン(13g,128mmol相当)をジメチルホルムアミド(100ml)と塩化メチレン(50ml)中に加えた。その後、ニトリロ三酢酸(7g,36.6mmol相当)を加えて反応容器を氷冷した。水溶性カルボジイミドの塩酸化物を24.6g(128mmol相当),1−ヒドロキシベンゾトリアゾール(HOBt.H2O,17.3g,128mmol相当)を反応容器に加えた。室温(21−23℃)で1昼夜撹拌し、NTAアミドを合成した。精製はNaHCO,NaClで反応溶液を洗浄し、その後、シリカゲルカラムクロマトグラフィーで分離精製を行った。収率は60%以上であった。精製後のNTAアミドのH−NMRチャートを図2に記す。それぞれの水素のNMRスペクトルはNTAアミド構造中に記した同じ番号のHに相当する。
[Synthesis Example 2]
Dioctylamine (30.9 g, corresponding to 128 mmol) and triethylamine (13 g, corresponding to 128 mmol) were added to dimethylformamide (100 ml) and methylene chloride (50 ml). Thereafter, nitrilotriacetic acid (7 g, corresponding to 36.6 mmol) was added, and the reaction vessel was ice-cooled. 24.6 g (corresponding to 128 mmol) of a water-soluble carbodiimide salt oxide and 1-hydroxybenzotriazole (HOBt.H 2 O, 17.3 g, corresponding to 128 mmol) were added to the reaction vessel. The mixture was stirred at room temperature (21-23 ° C.) for 1 day to synthesize NTA amide. For purification, the reaction solution was washed with NaHCO 3 and NaCl, and then separated and purified by silica gel column chromatography. The yield was 60% or more. A 1 H-NMR chart of NTA amide after purification is shown in FIG. The NMR spectrum of each hydrogen corresponds to the same number of H noted in the NTA amide structure.

[合成例3]
無水ジグリコール酸(5.8g、50mmol相当)を100mlの酢酸エチルに添加し、さらにジエチルアミン(4.4g,60mmol相当)を加えて室温で1時間、撹拌した。次に、ジシクロヘキシルカルボジイミド(12.4g,60mmol相当)とジエチルアミン(4.4g,60mmol相当)を加えて1週間、室温で撹拌した。反応溶液(TEDGA/酢酸エチル)を水、1M塩酸、1M水酸化ナトリウム溶液それぞれ50mlで2回ずつ洗浄し、更にシリカゲルカラムクロマトグラフィーで2回精製を行った。収率は50%程度であった。TEDGAの合成反応は以下の通りである。
[Synthesis Example 3]
Diglycolic anhydride (5.8 g, equivalent to 50 mmol) was added to 100 ml of ethyl acetate, diethylamine (4.4 g, equivalent to 60 mmol) was further added, and the mixture was stirred at room temperature for 1 hour. Next, dicyclohexylcarbodiimide (12.4 g, equivalent to 60 mmol) and diethylamine (4.4 g, equivalent to 60 mmol) were added and stirred at room temperature for 1 week. The reaction solution (TEDGA / ethyl acetate) was washed twice with 50 ml each of water, 1M hydrochloric acid and 1M sodium hydroxide solution, and further purified twice by silica gel column chromatography. The yield was about 50%. The synthesis reaction of TEDGA is as follows.

Figure 2014105200
Figure 2014105200

[実施例1]
合成例1及び2で調製したNTAアミド−ヘキシル(C6)及びNTAアミド−オクチル(C8)のn−ドデカン溶液をそれぞれ有機相に、0.2Mの硝酸水溶液を水相に用いて、ランタノイド及びアクチノイド(Am、Cm)の溶媒抽出実験を行った。有機相のNTAアミド濃度は0.05〜0.5Mの範囲で変化させて、NTAアミド濃度に対する分配比の依存性を検討した。
[Example 1]
Using the n-dodecane solution of NTA amide-hexyl (C6) and NTA amide-octyl (C8) prepared in Synthesis Examples 1 and 2 for the organic phase and 0.2M nitric acid aqueous solution for the aqueous phase, respectively, lanthanoids and actinoids (Am, Cm) solvent extraction experiment was conducted. The NTA amide concentration in the organic phase was varied in the range of 0.05 to 0.5 M, and the dependence of the partition ratio on the NTA amide concentration was examined.

金属イオン(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb)を含む硝酸水溶液と、NTAアミド−ヘキシル(C6)及びNTAアミド−オクチル(C8)のn−ドデカン溶液を等量(容積比)で混合し、25℃±0.1℃で10〜20分、機械的に振とうした後、遠心分離によって相分離させた。水相及び有機相の両者から0.50cmのサンプル溶液を取り出して、水相及び有機相のβ線及びα線を液体シンチレーションカウンター(Tri−Carb 1600 TR、Packard Instrument Company製)で測定し、各金属の分配比を測定した。抽出サンプルから調製したサンプル溶液中の非放射性金属イオンをICP−AES(SPS 3100、Seiko Instruments Inc製)又はICP−MS(SPQ 9000、Seiko−EG&G製)により計測した。 Equivalent (volume) nitric acid aqueous solution containing metal ions (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) and n-dodecane solution of NTA amide-hexyl (C6) and NTA amide-octyl (C8) Ratio), mechanically shaken at 25 ° C. ± 0.1 ° C. for 10 to 20 minutes, and then subjected to phase separation by centrifugation. A sample solution of 0.50 cm 3 was taken out from both the aqueous phase and the organic phase, and β-rays and α-rays of the aqueous phase and the organic phase were measured with a liquid scintillation counter (Tri-Carb 1600 TR, manufactured by Packard Instrument Company). The distribution ratio of each metal was measured. Non-radioactive metal ions in the sample solution prepared from the extracted sample were measured by ICP-AES (SPS 3100, manufactured by Seiko Instruments Inc) or ICP-MS (SPQ 9000, manufactured by Seiko-EG & G).

アクチノイド(Am及びCm)の抽出挙動を調べた結果を図3に、ランタノイドの抽出挙動を調べた結果を図4及び図5に示す。図中のNTAアミド濃度Mはmol/dmを意味し、分配比Dは水相中金属濃度に対する有機相中金属濃度の比率([metal]org/[metal]aq)を意味する。 The results of examining the extraction behavior of actinoids (Am and Cm) are shown in FIG. 3, and the results of examining the extraction behavior of lanthanoids are shown in FIGS. The NTA amide concentration M in the figure means mol / dm 3 , and the distribution ratio D means the ratio of the metal concentration in the organic phase to the metal concentration in the aqueous phase ([metal] org / [metal] aq ).

いずれの分配比もNTAアミド濃度増加と共に増加することがわかる。加えて、NTAアミド濃度が0.1Mの場合に、アクチノイド(An)であるAm及びAm分配比は1を越え、一方ランタノイド(Ln)の分配比は1以下である。よって、本発明のNTAアミドによって、An/Ln相互分離が可能であるといえる。なお、NTAアミドに結合するアルキル基に関して、ヘキシル基とオクチル基との間で大きな違いは見られなかった。   It can be seen that both partition ratios increase with increasing NTA amide concentration. In addition, when the NTA amide concentration is 0.1 M, the distribution ratio of Am, which is an actinoid (An), and Am exceeds 1, while the distribution ratio of lanthanoid (Ln) is 1 or less. Therefore, it can be said that An / Ln mutual separation is possible by the NTA amide of the present invention. Note that there was no significant difference between the hexyl group and the octyl group regarding the alkyl group bonded to the NTA amide.

[実施例2]
合成例2で調製したNTAアミド−オクチル(C8)のn−ドデカン溶液を有機相に、1〜20mMのTEDGAを添加した0.2M硝酸水溶液を水相に用いて、AmとCmの溶媒抽出実験を行い、分配比を求めた。NTAアミド濃度0.2Mを用いた場合の結果を図6に、NTAアミド濃度0.5Mを用いた場合の結果を図7に示す。
[Example 2]
Solvent extraction experiments of Am and Cm using the n-dodecane solution of NTA amide-octyl (C8) prepared in Synthesis Example 2 as the organic phase and the 0.2M aqueous nitric acid solution with 1-20 mM TEDGA added as the aqueous phase. To determine the distribution ratio. The results when NTA amide concentration 0.2M is used are shown in FIG. 6, and the results when NTA amide concentration 0.5M is used are shown in FIG.

TEDGA濃度が高くなるほど分配比Dが減少し、TEDGAはAm及びCmのマスキング剤として作用することがわかる。また、NTAアミド濃度が0.2Mの場合には5mMのTEDGAとの組み合わせ、NTAアミド濃度が0.5Mの場合には5mM及び10mMのTEDGA双方との組み合わせで、Amの分配比が1以上で且つCmの分配比が1以下となり、AmとCmとの相互分離が可能であるといえる。   As the TEDGA concentration increases, the distribution ratio D decreases, indicating that TEDGA acts as a masking agent for Am and Cm. In addition, when NTA amide concentration is 0.2M, it is combined with 5mM TEDGA, and when NTA amide concentration is 0.5M, it is combined with both 5mM and 10mM TEDGA. In addition, the distribution ratio of Cm becomes 1 or less, and it can be said that Am and Cm can be separated from each other.

[実施例3]
実施例1と同様にして、0.2M硝酸(水相)と0.2MのNTAアミド-C8(有機相)を用いた場合のランタノイド(Ln)とアクチノイド(An)との分配比D並びにAm及びCmに対する分離比SFを求めた。結果を表1に示す。
[Example 3]
Similar to Example 1, distribution ratio D and Am of lanthanoid (Ln) and actinoid (An) when 0.2 M nitric acid (aqueous phase) and 0.2 M NTA amide-C8 (organic phase) were used. And the separation ratio SF to Cm was determined. The results are shown in Table 1.

Figure 2014105200
Figure 2014105200

Ln(La、Nd、Sm、Eu、Gd)の分配比Dはいずれも約1又は1以下であり、An(Am、Cm)の分配比Dはいずれも20以上であり、LnのAm及びCmに対する分離比CFはいずれも19以上である。よって、本発明のNTAアミドを用いてアクチノイドとランタノイドとの相互分離が可能であるといえる。   The distribution ratio D of Ln (La, Nd, Sm, Eu, Gd) is about 1 or 1 or less, the distribution ratio D of An (Am, Cm) is 20 or more, and Am and Cm of Ln The separation ratio CF for each is 19 or more. Therefore, it can be said that actinides and lanthanoids can be separated from each other using the NTA amide of the present invention.

次いで、実施例2と同様にして、0.2M硝酸(水相)と0.5MのNTAアミド-C8(有機相)による溶媒抽出の後TEDGAによる逆抽出を行った場合のAmとCmとの分配比並びにCmに対するAmの分離比を求めた。結果を表2に示す。   Then, in the same manner as in Example 2, Am and Cm in the case of back extraction with TEDGA after solvent extraction with 0.2 M nitric acid (aqueous phase) and 0.5 M NTA amide-C8 (organic phase) The distribution ratio and the separation ratio of Am to Cm were determined. The results are shown in Table 2.

Figure 2014105200
Figure 2014105200

TEDGAを添加しない場合には、AmとCmとの分配比が共に61以上であり、分離比SFが2未満と相互分離ができなかった。またTEDGA濃度が20mMと高濃度になってもAmとCmとの分配比が共に0.3未満であり、分離比SFが4未満と相互分離が難しいことがわかる。TEDGA濃度が2〜10mMの範囲で、Amの分配比D(Am)が1以上、Cmの分配比D(Cm)が1未満、分離比SFが4以上と、相互分離が可能であることがわかる。   When TEDGA was not added, the distribution ratio between Am and Cm was 61 or more, and the separation ratio SF was less than 2, and mutual separation was not possible. It can also be seen that even when the TEDGA concentration is as high as 20 mM, the distribution ratio of Am and Cm is both less than 0.3 and the separation ratio SF is less than 4, making mutual separation difficult. When the TEDGA concentration is in the range of 2 to 10 mM, the Am distribution ratio D (Am) is 1 or more, the Cm distribution ratio D (Cm) is less than 1, and the separation ratio SF is 4 or more. Recognize.

本発明の溶媒抽出分離技術によれば、相互分離が困難な放射性核種を含む高レベル放射性廃液中に含まれるアクチノイド(An)とランタノイド(Ln)およびAmとCmとを相互分離することができる。本発明により、Amを分離して核変換により処分することが容易になり、Cmだけをガラス固化体として中間貯蔵することができるため、長期的な毒性や発熱量を下げることができ、高レベル放射性廃液処理のプロセス設計が容易になり、経済性を向上させることができる。   According to the solvent extraction and separation technique of the present invention, actinides (An) and lanthanoids (Ln) and Am and Cm contained in high-level radioactive liquid waste containing radionuclides that are difficult to separate can be separated from each other. The present invention makes it easy to separate Am and dispose of it by transmutation, and since only Cm can be stored in the middle as a vitrified material, long-term toxicity and calorific value can be reduced, and high level The process design of the radioactive liquid waste treatment becomes easy, and the economic efficiency can be improved.

Claims (10)

下記一般式:
Figure 2014105200
(式中、Rは炭素数6〜12のアルキル基である)で表されるニトリロトリアセトアミド。
The following general formula:
Figure 2014105200
(In the formula, R is an alkyl group having 6 to 12 carbon atoms).
アルキル基は、ヘキシル基、オクチル基、デシル基、ドデシル基、エチルヘキシル基から選択される、請求項1に記載のニトリロトリアセトアミド。   The nitrilotriacetamide according to claim 1, wherein the alkyl group is selected from a hexyl group, an octyl group, a decyl group, a dodecyl group, and an ethylhexyl group. ニトリロ三酢酸と二級アミン化合物とを混合して氷冷し、次いで縮合剤と1−ヒドロキシベンゾトリアゾールとを添加して、室温にて反応させることを含む、請求項1又は2に記載のニトリロトリアセトアミドの合成方法。   The nitrilotriacete according to claim 1 or 2, which comprises mixing nitrilotriacetic acid and a secondary amine compound, cooling with ice, then adding a condensing agent and 1-hydroxybenzotriazole and reacting at room temperature. A method for synthesizing acetamide. 前記二級アミン化合物は、ジヘキシルアミン、ジ−n−オクチルアミン、ジデシルアミン、ジドデシルアミン、エチルヘキシルアミンから選択される、請求項3に記載の合成方法。   The synthesis method according to claim 3, wherein the secondary amine compound is selected from dihexylamine, di-n-octylamine, didecylamine, didodecylamine, and ethylhexylamine. 前記縮合剤は、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、ジイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド、ジシクロヘキシルカルボジイミド、ジトリルカルボジイミド、1−t−ブチル−3−エチルカルボジイミド、1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミド及びこれらの塩から選択される、請求項3又は4に記載の合成方法。   The condensing agent is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, diisopropylcarbodiimide, di-t-butylcarbodiimide, dicyclohexylcarbodiimide, ditolylcarbodiimide, 1-t-butyl-3-ethylcarbodiimide, 1- The synthesis method according to claim 3 or 4, which is selected from cyclohexyl-3- (2-morpholinoethyl) carbodiimide and salts thereof. 請求項1または2に記載のニトリロトリアセトアミドを3価のアクチノイドとランタノイドとを分離する抽出分離剤として使用する、放射性核種を含む液体からのアクチノイドの溶媒抽出分離方法。   A method for extracting and separating an actinide from a liquid containing a radionuclide using the nitrilotriacetamide according to claim 1 or 2 as an extraction / separation agent for separating a trivalent actinoid and a lanthanoid. 放射性核種を含む液体に、請求項1または2に記載のニトリロトリアセトアミドのn−ドデカン溶液と、硝酸水溶液とを添加し、アクチノイドを有機相に抽出する、請求項6に記載の溶媒抽出分離方法。   The solvent extraction separation method of Claim 6 which adds the n-dodecane solution of nitrilotriacetamide of Claim 1 or 2 and nitric acid aqueous solution to the liquid containing a radionuclide, and extracts an actinoid to an organic phase. 請求項1または2に記載のニトリロトリアセトアミドを3価のアクチノイドとランタノイドとを分離する抽出分離剤として使用し、テトラエチルジグリコールアミド(TEDGA)をマスキング剤として使用する放射性核種を含む液体からのAmとCmの溶媒抽出分離方法。   The nitrilotriacetamide according to claim 1 or 2 is used as an extraction / separation agent for separating trivalent actinoids and lanthanoids, and tetraethyldiglycolamide (TEDGA) is used as a masking agent. Cm solvent extraction separation method. 放射性核種を含む液体に、硝酸と、請求項1または2に記載のニトリロトリアセトアミドのn−ドデカン溶液と、を添加し、アクチノイドを有機相に抽出した後、テトラエチルジグリコールアミドを添加して、Amを有機相に残し、Cmを水相に抽出する、放射性核種を含む液体からのAmとCmとの溶媒抽出分離方法。   To a liquid containing a radionuclide, nitric acid and an n-dodecane solution of nitrilotriacetamide according to claim 1 or 2 are added, the actinoid is extracted into an organic phase, tetraethyldiglycolamide is then added, and Am Is a solvent extraction separation method of Am and Cm from a liquid containing a radionuclide, in which Cm is extracted into an aqueous phase and Cm is extracted into an aqueous phase. 前記テトラエチルジグリコールアミドの濃度は5〜10mMである、請求項8又は9に記載の溶媒抽出分離方法。   The solvent extraction separation method according to claim 8 or 9, wherein the concentration of tetraethyldiglycolamide is 5 to 10 mM.
JP2012260582A 2012-11-29 2012-11-29 Nitrilotriacetamide, synthesis method thereof, extraction separation method of actinide and lanthanide using nitrilotriacetamide, and Am / Cm solvent extraction method Expired - Fee Related JP6044828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260582A JP6044828B2 (en) 2012-11-29 2012-11-29 Nitrilotriacetamide, synthesis method thereof, extraction separation method of actinide and lanthanide using nitrilotriacetamide, and Am / Cm solvent extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260582A JP6044828B2 (en) 2012-11-29 2012-11-29 Nitrilotriacetamide, synthesis method thereof, extraction separation method of actinide and lanthanide using nitrilotriacetamide, and Am / Cm solvent extraction method

Publications (2)

Publication Number Publication Date
JP2014105200A true JP2014105200A (en) 2014-06-09
JP6044828B2 JP6044828B2 (en) 2016-12-14

Family

ID=51026993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260582A Expired - Fee Related JP6044828B2 (en) 2012-11-29 2012-11-29 Nitrilotriacetamide, synthesis method thereof, extraction separation method of actinide and lanthanide using nitrilotriacetamide, and Am / Cm solvent extraction method

Country Status (1)

Country Link
JP (1) JP6044828B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186108A (en) * 2015-03-27 2016-10-27 国立研究開発法人日本原子力研究開発機構 Scandium and/or lanthanoid extraction method
JP2017095407A (en) * 2015-11-25 2017-06-01 国立研究開発法人日本原子力研究開発機構 Nitriloacetate diacetamide compound, extractant, and extraction method
JP2019019400A (en) * 2017-07-21 2019-02-07 国立研究開発法人日本原子力研究開発機構 Rare earth element and/or actinoid adsorbent, rare earth element and/or actinoid recovery method using the same, and scandium or actinoid separation method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799981A (en) * 1968-06-28 1974-02-12 Hooker Chemical Corp Process for the preparation of nitrilotriacetamides
JPS6236347A (en) * 1985-07-31 1987-02-17 コミサリヤ・ア・レネルジ・アトミク Extracting agent for collecting actinide and/or lanthanide
JP2006153790A (en) * 2004-12-01 2006-06-15 Japan Atomic Energy Agency Method for carrying out batch back extraction of actinoid ion of 3 or 4 valency in separation process solvent into high-concentration nitric acid solution by n, n, n', n'-tetraethyl glycol amide
JP2011047665A (en) * 2009-08-25 2011-03-10 Japan Atomic Energy Agency Solid extractant for radioactive element
JP2011169888A (en) * 2010-01-20 2011-09-01 Japan Atomic Energy Agency METHOD OF MUTUAL SEPARATION BETWEEN Am, Cm AND Sm, Eu, Gd WITH CONCOMITANT USE OF N, N, N', N'-TETRAALKYL-3,6-DIOXAOCTANE-1,8-DIAMIDE (DOODA) AND TADGA (N,N,N',N'-TETRAALKYL-DIGLYCOL AMIDE)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799981A (en) * 1968-06-28 1974-02-12 Hooker Chemical Corp Process for the preparation of nitrilotriacetamides
JPS6236347A (en) * 1985-07-31 1987-02-17 コミサリヤ・ア・レネルジ・アトミク Extracting agent for collecting actinide and/or lanthanide
JP2006153790A (en) * 2004-12-01 2006-06-15 Japan Atomic Energy Agency Method for carrying out batch back extraction of actinoid ion of 3 or 4 valency in separation process solvent into high-concentration nitric acid solution by n, n, n', n'-tetraethyl glycol amide
JP2011047665A (en) * 2009-08-25 2011-03-10 Japan Atomic Energy Agency Solid extractant for radioactive element
JP2011169888A (en) * 2010-01-20 2011-09-01 Japan Atomic Energy Agency METHOD OF MUTUAL SEPARATION BETWEEN Am, Cm AND Sm, Eu, Gd WITH CONCOMITANT USE OF N, N, N', N'-TETRAALKYL-3,6-DIOXAOCTANE-1,8-DIAMIDE (DOODA) AND TADGA (N,N,N',N'-TETRAALKYL-DIGLYCOL AMIDE)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016013763; IQBAL, M. et al.: New Journal of Chemistry Vol.35(11), 2011, pp.2591-2600 *
JPN6016013764; SASAKI, Y. et al.: Procedia Chemistry Vol.7, 2012, pp.380-386 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186108A (en) * 2015-03-27 2016-10-27 国立研究開発法人日本原子力研究開発機構 Scandium and/or lanthanoid extraction method
JP2017095407A (en) * 2015-11-25 2017-06-01 国立研究開発法人日本原子力研究開発機構 Nitriloacetate diacetamide compound, extractant, and extraction method
JP2019019400A (en) * 2017-07-21 2019-02-07 国立研究開発法人日本原子力研究開発機構 Rare earth element and/or actinoid adsorbent, rare earth element and/or actinoid recovery method using the same, and scandium or actinoid separation method using the same
JP7066091B2 (en) 2017-07-21 2022-05-13 国立研究開発法人日本原子力研究開発機構 Rare earth element and / or actinide adsorbent, method for recovering rare earth element and / or actinide using it, and method for separating scandium or actinide using it.

Also Published As

Publication number Publication date
JP6044828B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5035788B2 (en) Rare earth metal extractant and extraction method
Werner et al. Supramolecular ligands for the extraction of lanthanide and actinide ions
Atanassova et al. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes
Guo et al. Highly selective extraction and separation of rare earths (III) using bifunctional ionic liquid extractant
AU2013233618B2 (en) Scandium extraction method
US20190287691A1 (en) Separation of metal ions by liquid-liquid extraction
JP6044828B2 (en) Nitrilotriacetamide, synthesis method thereof, extraction separation method of actinide and lanthanide using nitrilotriacetamide, and Am / Cm solvent extraction method
AU2011203140B2 (en) Synthesis of rare earth metal extractant
Yang et al. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides
EP2902512A1 (en) Method for collecting scandium
JP5526434B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide (DOODA) and TADGA (N, N, N ′, N′-tetraalkyl-diglycolamide) Mutual separation of Am, Cm and Sm, Eu, Gd used together
JP2010101641A (en) Method for extracting and separating solvent of metals using methyliminobisdialkyl acetamide is used as extractant
JP2014152382A (en) Method for extraction separation of rare metal using nitriloacetamide
JP5354586B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide
EP1923473B1 (en) Bis-diglycolamides (BISDGA) as new extractants for lanthanides [Ln(III)] and actinides [An(III)] from aqueous high-level wastes
JP2009114129A (en) N,n,n',n'-tetraoctyl-3-methyliminodiglycol amide compound and complexing extractant of specific metal comprising the compound
Felmy et al. The impact of mixed solvents on the complexation thermodynamics of Eu (III) by simple carboxylate and amino carboxylate ligands
WO2022082324A1 (en) Solid-liquid extraction process for recovering ions of interest from solid materials
JP2012137373A (en) Minor actinoid recovering agent
Li et al. Design and synthesis of a novel soft-hard donor ligand for solvent extraction of Th (IV) from nitric acid media
JP2009040751A (en) Extractant, extracting separation method, n,n,n',n'-tetrakis(2-methylpyridyl)ethylenediamine derivative and method for producing the same
Felmy Eu (III) Solvation and Complexation in Mixed Solvent Systems
JP4395589B2 (en) Method for selectively separating and recovering uranium (VI) present in aqueous solution with branched N, N-dialkylmonoamide
US10036082B2 (en) Zirconium extractant and method for extracting zirconium
Wang et al. Efficient separation of thorium from rare earths with a hydrogen-bonded oligoaramide extractant in highly acidic media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6044828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees