JP2014104475A - Method for evaluating strength of aluminum die cast component, and aluminum die cast component - Google Patents

Method for evaluating strength of aluminum die cast component, and aluminum die cast component Download PDF

Info

Publication number
JP2014104475A
JP2014104475A JP2012257838A JP2012257838A JP2014104475A JP 2014104475 A JP2014104475 A JP 2014104475A JP 2012257838 A JP2012257838 A JP 2012257838A JP 2012257838 A JP2012257838 A JP 2012257838A JP 2014104475 A JP2014104475 A JP 2014104475A
Authority
JP
Japan
Prior art keywords
aluminum die
casting
strength
cast part
defect rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012257838A
Other languages
Japanese (ja)
Inventor
Munetaka Mitsumura
宗隆 三ツ邑
Shigeru Okita
滋 沖田
Hiroyuki Uchida
啓之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012257838A priority Critical patent/JP2014104475A/en
Publication of JP2014104475A publication Critical patent/JP2014104475A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum die cast component strength evaluation method that can properly evaluate the strength of an actual aluminum die cast component.SOLUTION: An aluminum die cast component strength evaluation method includes the steps of: performing ultrasonic flaw detection of a predetermined range of internal defects in a key lock part 5 being a high stress part of a column housing (aluminum die cast component) 1 in an electric power steering device, the high stress part that is found by a stress analysis beforehand; finding a defect rate obtained by dividing the total area of the predetermined range of internal defects by the total flaw detection area; finding a casting variable consisting of a product value of a molten metal temperature, an injection speed and a filling rate in the casting of the column housing 1; finding a casting variable specified value in which the defect rate specified value becomes lower than the defect rate set beforehand from the relationship between the defect rate and the casting variable; and evaluating that the column housing 1 has a predetermined strength when the casting variable in the casting is higher than the casting variable specified value.

Description

本発明は、アルミダイカスト部品の強度評価方法及びアルミダイカスト部品に関するものであり、例えば車両の電動パワーステアリング装置に用いられる部品などに好適なものである。   The present invention relates to a method for evaluating the strength of an aluminum die-cast part and an aluminum die-cast part, and is suitable for, for example, a part used in an electric power steering device for a vehicle.

例えば車両の電動パワーステアリング装置に用いられるコラムハウジングなどはアルミダイカスト部品からなる。このようなアルミダイカスト部品の強度評価方法としては、例えば下記特許文献1や特許文献2に記載されるものがある。このうち、特許文献1では、例えばアルミダイカスト部品に超音波を照射してアルミダイカスト部品からの音波情報に基づいてアルミダイカスト部品の鋳巣と破断チル層を検出して第1の内部欠陥3次元分布データを取得し、同じアルミダイカスト部品をX線CT測定してアルミダイカスト部品の複数の断面画像からアルミダイカスト部品の鋳巣を検出して第2の内部欠陥3次元分布データを取得し、第1の内部欠陥3次元分布データと第2の内部欠陥3次元分布データを比較してアルミダイカスト部品の破断チル層の3次元分布データを取得する。また、特許文献2では、内部に複合部材を有するアルミダイカスト部品に対して超音波探傷を行い、表面から複合部材までの距離、複合部材に対するアルミニウム溶湯の含浸状態、割れの状態などを測定し、良否の判別を行う。   For example, a column housing used for an electric power steering device of a vehicle is made of an aluminum die cast part. As a method for evaluating the strength of such an aluminum die-cast part, for example, there are methods described in Patent Document 1 and Patent Document 2 below. Among them, in Patent Document 1, for example, an aluminum die cast part is irradiated with ultrasonic waves, and a cast hole and a fractured chill layer of the aluminum die cast part are detected on the basis of sound wave information from the aluminum die cast part. The distribution data is acquired, X-ray CT measurement is performed on the same aluminum die-cast part, the cast hole of the aluminum die-cast part is detected from a plurality of cross-sectional images of the aluminum die-cast part, the second internal defect three-dimensional distribution data is acquired, The three-dimensional distribution data of one internal defect and the second three-dimensional distribution data of the second internal defect are compared to obtain the three-dimensional distribution data of the fractured chill layer of the aluminum die cast part. Further, in Patent Document 2, ultrasonic flaw detection is performed on an aluminum die-cast part having a composite member therein, and the distance from the surface to the composite member, the state of impregnation of the molten aluminum with respect to the composite member, the state of cracking, etc. are measured. A pass / fail judgment is made.

特開2005−91288号公報JP 2005-91288 A 特開2004−144489号公報Japanese Patent Laid-Open No. 2004-144489

しかしながら、前記特許文献2に記載されるアルミダイカスト部品の強度評価方法は、あくまでも内部に複合部材を有するアルミダイカスト部品に対する、含浸度合や割れの測定を行うものであり、複合部材を有さないアルミダイカスト部品の強度を評価するものではない。これに対し、前記特許文献1に記載されるアルミダイカスト部品の強度評価方法は、複合部材のないアルミダイカスト部品の評価を可能とするが、例えば大きなアルミダイカスト部品や複雑なアルミダイカスト部品の全ての部分について検査を行うのは実質的に困難である。実際のアルミダイカスト部品は、鋳巣などの内部欠陥を回避することができず、この内部欠陥を起点として破壊することがある。また、アルミダイカスト部品は、多くの場合、複雑な形状をしており、例えば超音波探傷によって内部欠陥を探傷することが難しく、また、どの部分で強度を評価すべきなのか、明らかとなっていない。   However, the method for evaluating the strength of an aluminum die-cast part described in Patent Document 2 merely measures the degree of impregnation and cracking of an aluminum die-cast part having a composite member therein, and does not have a composite member. It does not evaluate the strength of die-cast parts. On the other hand, the strength evaluation method for aluminum die-cast parts described in Patent Document 1 enables evaluation of aluminum die-cast parts without composite members. For example, all of aluminum die-cast parts and complex aluminum die-cast parts can be evaluated. It is practically difficult to inspect the part. An actual aluminum die-cast part cannot avoid an internal defect such as a cast hole, and sometimes breaks starting from the internal defect. In addition, aluminum die-cast parts often have a complicated shape, and it is difficult to detect internal defects by, for example, ultrasonic flaw detection, and it is clear which part should be evaluated for strength. Absent.

本発明は、上記のような問題点に着目してなされたものであり、実際のアルミダイカスト部品の強度を適正に評価することができ、所定の強度のアルミダイカスト部品を得ることが可能なアルミダイカスト部品強度評価方法及びアルミダイカスト部品を提供することを目的とするものである。   The present invention has been made by paying attention to the above-described problems, and it is possible to appropriately evaluate the strength of an actual aluminum die-cast part and to obtain an aluminum die-cast part having a predetermined strength. An object of the present invention is to provide a die cast part strength evaluation method and an aluminum die cast part.

上記課題を解決するために、本発明のアルミダイカスト部品強度評価方法は、アルミダイカスト部品の強度を評価する方法であって、前記アルミダイカスト部品を予め応力解析して求めた高応力部に対し、当該高応力部の所定範囲の内部欠陥を超音波探傷し、当該所定範囲の内部欠陥の合計面積を全探傷面積で除して欠陥率を求めると共に、前記アルミダイカスト部品の鋳造時の溶湯温度と射出速度と充填率との積値からなる鋳造変数を求め、前記欠陥率と前記鋳造変数との関係から前記欠陥率が予め設定した欠陥率規定値以下となる鋳造変数規定値を求め、鋳造時の前記鋳造変数が前記鋳造変数規定値以上であるときにアルミダイカスト部品が所定の強度を有すると評価することを特徴とするものである。   In order to solve the above problems, the aluminum die cast part strength evaluation method of the present invention is a method for evaluating the strength of an aluminum die cast part, and for the high stress part obtained by performing stress analysis on the aluminum die cast part in advance, Ultrasonic inspection of a predetermined range of internal defects in the high-stress part, and dividing the total area of the internal defects of the predetermined range by the total inspection area to obtain the defect rate, and the molten metal temperature at the time of casting the aluminum die-cast part and A casting variable consisting of a product value of an injection speed and a filling rate is obtained, and a casting variable prescribed value is obtained from the relationship between the defect rate and the casting variable so that the defect rate is equal to or less than a preset defect rate prescribed value. When the casting variable is equal to or greater than the casting variable prescribed value, it is evaluated that the aluminum die cast part has a predetermined strength.

なお、アルミダイカスト部品の鋳造時の溶湯温度は、例えば保持炉のアルミニウム溶湯温度を示し、溶湯温度が高いとスリーブ部に触れている溶湯部分が凝固しにくいため、破断チル軽減に繋がり、通常は650℃以上が好ましい。鋳造変数を求める際には、鋳造時の溶湯温度から、管理下限値を減じた値を計算に使用する。また、アルミダイカスト部品の鋳造時の射出速度は、例えばスリーブから溶湯をプランジャーで押し出す際の高速射出速度を示し、射出速度が高いと溶湯が冷える前にキャビティ内に射出されるため、溶湯中の圧力伝達がよくなり、巣を低減させる効果がある。また、射出速度が速いと、ゲートで破断チルが粉砕され、粗大な破断チルの軽減に繋がり、通常は1.5m/s以上が好ましい。また、充填率は、溶湯注湯量/スリーブ体積を示し、充填率が高いと温度が冷えにくいことから破断チルができにくく、破断チル軽減に繋がり、通常は20〜50%とする。   Note that the molten metal temperature at the time of casting of the aluminum die-cast part indicates the molten aluminum temperature of the holding furnace, for example, and if the molten metal temperature is high, the molten metal part touching the sleeve portion is difficult to solidify, which leads to reduction of fracture chill. 650 degreeC or more is preferable. When obtaining the casting variables, a value obtained by subtracting the control lower limit value from the molten metal temperature during casting is used in the calculation. In addition, the injection speed at the time of casting aluminum die-cast parts indicates, for example, a high-speed injection speed when the molten metal is pushed out from the sleeve with a plunger. If the injection speed is high, the molten metal is injected into the cavity before it cools down. The pressure transmission is improved and the nest is reduced. Moreover, when the injection speed is high, the broken chill is pulverized at the gate, leading to reduction of the coarse broken chill, and usually 1.5 m / s or more is preferable. Further, the filling rate indicates the amount of molten metal poured / sleeve volume. If the filling rate is high, the temperature is difficult to cool, so that it is difficult to produce a rupture chill, which leads to reduction of the rupture chill, and is usually 20 to 50%.

また、前記高応力部の所定範囲は、当該高応力部の最大応力の50%以上の応力の範囲であることを特徴とするものである。
また、本発明委のアルミダイカスト部品は、前記アルミダイカスト部品強度評価方法で強度が評価されたアルミダイカスト部品であって、前記欠陥率が0.5%以下であることを特徴とするものである。
また、前記アルミダイカスト部品が、車両の電動パワーステアリング装置に用いられるコラムハウジングであり、前記高応力部が前記コラムハウジングのキーロック部であることを特徴とするものである。
Further, the predetermined range of the high stress portion is a stress range of 50% or more of the maximum stress of the high stress portion.
The aluminum die cast part of the present invention committee is an aluminum die cast part whose strength is evaluated by the aluminum die cast part strength evaluation method, wherein the defect rate is 0.5% or less. .
Further, the aluminum die-cast part is a column housing used for an electric power steering device of a vehicle, and the high stress portion is a key lock portion of the column housing.

而して、本発明のアルミダイカスト部品強度評価方法によれば、予め応力解析で求めたアルミダイカスト部品の高応力部に対し、当該高応力部の所定範囲の内部欠陥を超音波探傷し、当該所定範囲の内部欠陥の合計面積を全探傷面積で除した欠陥率を求めると共に、アルミダイカスト部品の鋳造時の溶湯温度と射出速度と充填率との積値からなる鋳造変数を求め、欠陥率と鋳造変数との関係から欠陥率が予め設定した欠陥率規定値以下となる鋳造変数規定値を求め、鋳造時の鋳造変数が鋳造変数規定値以上であるときに当該アルミダイカスト部品が所定の強度を有すると評価することとしたため、実際のアルミダイカスト部品の強度を適正に評価することができる。   Thus, according to the aluminum die-cast part strength evaluation method of the present invention, for the high-stress part of the aluminum die-cast part obtained in advance by stress analysis, ultrasonic inspection is performed for an internal defect in a predetermined range of the high-stress part. A defect rate obtained by dividing the total area of internal defects in a predetermined range by the total flaw detection area, and a casting variable consisting of a product value of a molten metal temperature, an injection speed, and a filling rate at the time of casting of an aluminum die cast part are obtained. A casting variable prescribed value is obtained from the relationship with the casting variable so that the defect rate is less than or equal to a preset defect rate prescribed value.When the casting variable at the time of casting is equal to or greater than the prescribed casting variable value, the aluminum die cast part has a predetermined strength. Since it has been evaluated that it has, it is possible to appropriately evaluate the strength of the actual aluminum die cast part.

また、高応力部の所定範囲を、当該高応力部の最大応力の50%以上の応力の範囲としたことにより、アルミダイカスト部品の強度をより一層適正に評価することができる。
また、本発明のアルミダイカスト部品によれば、本発明のアルミダイカスト部品強度評価方法で強度評価し、高応力部の所定範囲の内部欠陥の合計面積を全探傷面積で除した欠陥率を0.5%以下としたことにより、所定の強度のアルミダイカスト部品を得ることができる。
Moreover, the strength of the aluminum die cast part can be more appropriately evaluated by setting the predetermined range of the high stress part to be a stress range of 50% or more of the maximum stress of the high stress part.
Further, according to the aluminum die cast part of the present invention, the strength rate is evaluated by the aluminum die cast part strength evaluation method of the present invention, and the defect rate obtained by dividing the total area of internal defects within a predetermined range of the high stress portion by the total flaw detection area is 0. By setting it to 5% or less, an aluminum die cast part having a predetermined strength can be obtained.

本発明のアルミダイカスト部品強度評価方法の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the aluminum die-casting component strength evaluation method of this invention. 図1のアルミダイカスト部品強度評価方法における内部欠陥探傷の説明図である。It is explanatory drawing of the internal defect flaw detection in the aluminum die-casting component strength evaluation method of FIG. アルミダイカスト部品の高応力部の説明図である。It is explanatory drawing of the high stress part of an aluminum die-casting part. アルミダイカスト部品の高応力部の内部欠陥探傷範囲の説明図である。It is explanatory drawing of the internal defect flaw detection range of the high stress part of an aluminum die-casting part. 図2の内部欠陥探傷で得られる画像の説明図である。It is explanatory drawing of the image obtained by the internal defect flaw detection of FIG. 図2の内部欠陥探傷で得た探傷画像である。It is a flaw detection image obtained by the internal defect flaw detection of FIG. 図7の探傷画像を二値化した画像である。It is the image which binarized the flaw detection image of FIG. 図7の二値化探傷画像から画像解析により内部欠陥面積を抽出した画像である。It is the image which extracted the internal defect area by image analysis from the binarized flaw detection image of FIG. 実施例と比較例の欠陥率と捻り試験の破断時捻り回数との関係を示すグラフである。It is a graph which shows the relationship between the defect rate of an Example and a comparative example, and the frequency | count of the twist at the time of a twist test. 図4の探傷範囲における内部欠陥の欠陥率と鋳造変数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the defect rate of the internal defect in the flaw detection range of FIG. 4, and a casting variable.

次に、本発明のアルミダイカスト部品強度評価方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態のアルミダイカスト部品強度評価方法で用いられる6軸可動超音波探傷装置の説明図であり、図1aは装置の全体図、図1bは被探傷物とターンテーブルの詳細図、図1cは内部欠陥探傷の説明図である。図中の符号1は、本実施形態で強度を評価する対象となるアルミダイカスト部品であり、例えば電動パワーステアリング装置のコラムハウジングである。
Next, an embodiment of an aluminum die cast component strength evaluation method of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a six-axis movable ultrasonic flaw detector used in the aluminum die cast component strength evaluation method of the present embodiment, FIG. 1a is an overall view of the device, and FIG. 1b is a detailed view of an inspection object and a turntable. FIG. 1c is an explanatory diagram of internal defect flaw detection. Reference numeral 1 in the drawing is an aluminum die-cast part whose strength is to be evaluated in this embodiment, for example, a column housing of an electric power steering apparatus.

本実施形態では、ターンテーブル2の上にアルミダイカスト部品(コラムハウジング)1を搭載し、ターンテーブル2を回転させながら探触子(プローブ)3を上方から下方に移動し、アルミダイカスト部品(コラムハウジング)1の内側を螺旋状に探傷する。本実施形態のアルミダイカスト部品(コラムハウジング)1は、円筒部を有するので、この円筒部の後述する高応力部を超音波探傷装置で探傷し、内部欠陥を検出する。   In this embodiment, an aluminum die-cast part (column housing) 1 is mounted on the turntable 2, and the probe (probe) 3 is moved downward from above while rotating the turntable 2. Inspection of the inside of the housing 1 in a spiral manner. Since the aluminum die-cast part (column housing) 1 of this embodiment has a cylindrical portion, a high stress portion (to be described later) of the cylindrical portion is flawed by an ultrasonic flaw detector to detect internal defects.

探傷にあたっては、図2aに示すように、アルミダイカスト部品(コラムハウジング)1の表面エコーと底面エコーの間に評価ゲートを設定した。評価ゲートは、超音波照射方向又は反射方向の探傷範囲を意味する。超音波探傷では、探触子3から発振された超音波はアルミダイカスト部品(コラムハウジング)1の表面と底面で反射して戻ってくる。その反射波が夫々表面エコー、底面エコーとなる。図2bに示すように、アルミダイカスト部品(コラムハウジング)1の探傷範囲内部に内部欠陥4が存在する場合、表面エコーと底面エコーの間、即ち評価ゲートの範囲に欠陥エコーが表れる。表面エコーの時刻と底面エコーの時刻は予め分かっているので、二つの時刻の間に存在するエコーが欠陥エコーとなる。そして、その欠陥エコーの最も大きなものをアルミダイカスト部品(コラムハウジング)1の内部に図示化する手法を用いた。なお、本実施形態のアルミダイカスト部品1であるコラムハウジングの円筒部の内径はφ38mmであり、後述するように探傷範囲を当該円筒部の軸線方向12mmの範囲とした。また、アルミダイカスト部品(コラムハウジング)1の円筒部の内周面を旋削加工した方が内周面表面で超音波が乱反射しにくくなるため欠陥エコーを検出しやすい。   In the flaw detection, as shown in FIG. 2a, an evaluation gate was set between the surface echo and the bottom surface echo of the aluminum die cast part (column housing) 1. The evaluation gate means a flaw detection range in the ultrasonic irradiation direction or the reflection direction. In ultrasonic flaw detection, ultrasonic waves oscillated from the probe 3 are reflected by the surface and bottom surface of the aluminum die-cast part (column housing) 1 and returned. The reflected waves become the surface echo and the bottom echo, respectively. As shown in FIG. 2b, when the internal defect 4 exists in the flaw detection range of the aluminum die cast part (column housing) 1, a defect echo appears between the surface echo and the bottom echo, that is, in the evaluation gate range. Since the time of the surface echo and the time of the bottom echo are known in advance, an echo existing between the two times becomes a defect echo. Then, a method of illustrating the largest defect echo inside the aluminum die cast part (column housing) 1 was used. In addition, the internal diameter of the cylindrical part of the column housing which is the aluminum die-casting part 1 of this embodiment is 38 mm, and the flaw detection range was set to a range of 12 mm in the axial direction of the cylindrical part as described later. In addition, when the inner peripheral surface of the cylindrical portion of the aluminum die cast part (column housing) 1 is turned, it becomes easier to detect defect echoes because ultrasonic waves are less likely to be irregularly reflected on the inner peripheral surface.

探傷に先立ち、本実施形態のアルミダイカスト部品1であるコラムハウジングのキーロック部にキーを挿入して捻り方向の負荷をかける捻り試験と同様の負荷条件で応力解析を行った結果、図3に示すAの部分、即ちキーロック部が最も応力の高い部分であることが分かった。また、従来の捻り試験でもコラムハウジングのキーロック部で破壊が発生している。即ち、この高応力部(キーロック部)では、例えば内部欠陥を起点とする破壊が生じやすいことから、高応力部の内部欠陥を探傷することとした。   Prior to flaw detection, stress analysis was performed under the same load conditions as in the torsion test in which a key was inserted into the key lock portion of the column housing, which is the aluminum die cast part 1 of this embodiment, and a load in the torsion direction was applied. The portion A shown, that is, the key lock portion was found to be the portion with the highest stress. Further, even in the conventional torsion test, breakage occurs at the key lock portion of the column housing. That is, in this high-stress part (key lock part), for example, the internal defect of the high-stress part is flaw-detected because breakage is likely to occur starting from the internal defect.

図4には、本実施形態のアルミダイカスト部品(コラムハウジング)1の高応力部(キーロック部)の探傷範囲を示す。本実施形態では、前述した最も応力の高い部分を含めて、コラムハウジングの円筒部の軸線方向に12mmの範囲を内部探傷する。この内部探傷範囲は、最大応力の50%以上の応力範囲である。この高応力部(キーロック部)Aを含む内部探傷範囲でアルミダイカスト部品(コラムハウジング)1の内部を超音波探傷し、図5に示すように、当該アルミダイカスト部品(コラムハウジング)1をスリットの部分から切り割って内部を展開した図の上に内部欠陥を図示化する。   FIG. 4 shows the flaw detection range of the high stress portion (key lock portion) of the aluminum die cast component (column housing) 1 of the present embodiment. In the present embodiment, internal flaw detection is performed in a range of 12 mm in the axial direction of the cylindrical portion of the column housing, including the portion with the highest stress described above. This internal flaw detection range is a stress range of 50% or more of the maximum stress. Ultrasonic flaw detection is performed inside the aluminum die cast part (column housing) 1 within the internal flaw detection range including this high stress part (key lock part) A, and the aluminum die cast part (column housing) 1 is slit as shown in FIG. An internal defect is illustrated on a diagram in which the inside is developed by cutting from the portion.

図6は、前述したアルミダイカスト部品(コラムハウジング)1の探傷範囲の超音波探傷による探傷画像である。探傷範囲は、前述したように、高さ方向に12mm、円筒部の内周全周であるから、画像の横軸は119mm(内径φ38mmの内周)、縦軸は12mmである。この探傷画像に対し、50%エコー強度を閾値とし、それ以上とそれ以下で二値化して色分けしたのが図7である。図中の薄い灰色部分が、エコー強度50%以上の内部欠陥である。50%エコー強度とは、欠陥面積0.2mm2のマスターテストピースが、後述の画像解析でも同じ面積となるように合わせた際のエコー強度である。更に、図7に示すエコー強度50%以上の内部欠陥の夫々の面積を画像解析したのが図8である。なお、画素数にして20pixel以下(面積0.2mm2以下)は強度的に問題ないと判断し、内部欠陥の評価対象から排除した。 FIG. 6 is a flaw detection image obtained by ultrasonic flaw detection in the flaw detection range of the aluminum die cast part (column housing) 1 described above. As described above, since the flaw detection range is 12 mm in the height direction and the entire inner circumference of the cylindrical portion, the horizontal axis of the image is 119 mm (inner circumference of inner diameter φ38 mm), and the vertical axis is 12 mm. FIG. 7 shows the flaw detection image, which is binarized by 50% echo intensity as a threshold value and binarized above and below. The light gray portion in the figure is an internal defect having an echo intensity of 50% or more. The 50% echo intensity is an echo intensity when a master test piece having a defect area of 0.2 mm 2 is adjusted so as to have the same area in image analysis described later. Further, FIG. 8 shows an image analysis of the area of each internal defect having an echo intensity of 50% or more shown in FIG. A pixel number of 20 pixels or less (area 0.2 mm 2 or less) was judged to be satisfactory in terms of strength, and was excluded from the evaluation target of internal defects.

下記表1は、このようにして解析された全ての内部欠陥の面積である。これらの内部欠陥の合計面積は4.99mm2、全探傷面積は1400mm2である。本実施形態では、内部欠陥の合計面積を全探傷面積で除し、その値を欠陥率と定義し、その欠陥率の大きさで内部欠陥状態及びアルミダイカスト部品の強度を評価した。この例では、欠陥率は4.99/1400×100=0.36%となる。 Table 1 below shows the area of all internal defects analyzed in this way. The total area of these internal defects 4.99mm 2, the total flaw area is 1400 mm 2. In the present embodiment, the total area of internal defects is divided by the total flaw detection area, the value is defined as the defect rate, and the internal defect state and the strength of the aluminum die cast part are evaluated based on the size of the defect rate. In this example, the defect rate is 4.99 / 1400 × 100 = 0.36%.

Figure 2014104475
Figure 2014104475

このようにして7個のアルミダイカスト部品(コラムハウジング)1について、同様に超音波探傷によって高応力部(キーロック部)の内部欠陥を検出し、検出された内部欠陥の面積を画像解析によって求め、それら内部欠陥の合計面積を全探傷面積で除して欠陥率を求めた。更に、それらのアルミダイカスト部品(コラムハウジング)1に対して捻り試験を行い、破壊に至るまでの捻り回数を検出した。この捻り試験は、道路運送車両法 道路運送車両の保安基準11条の2 細目告示別添第1節の7 別添7 四輪自動車等の施錠装置の技術基準 に付記されている。その別紙2 トルク制限装置を備えたかじ取り装置に作用する施錠装置の試験手順を元に行った。但し、本実施形態では、安全係数をみて、トルクの値を規定の100Nmの二倍の200Nmとし、サイクルを繰り返して破壊するまでの捻り回数を求めた。下記表2に、高応力部(キーロック部)5内の内部欠陥の欠陥率と捻り試験の破壊時の捻り回数の関係を示す。また、表2の結果をグラフに表したのが図9である。図9から明らかなように、欠陥率0.5%を超えると、捻り試験の破壊時の捻り回数が大幅に低下することが分かった。即ち、欠陥率が0.5%以下であれば、アルミダイカスト部品(コラムハウジング)1は所定の強度を有すると評価できる。   In this way, for the seven aluminum die-cast parts (column housing) 1, internal defects in the high stress part (key lock part) are similarly detected by ultrasonic flaw detection, and the area of the detected internal defect is obtained by image analysis. The defect rate was determined by dividing the total area of these internal defects by the total flaw detection area. Further, a twist test was performed on these aluminum die-cast parts (column housing) 1 to detect the number of twists until breakage. This torsion test is added to the technical standards for locking devices such as four-wheeled vehicles in the Road Transport Vehicle Law, Road Transport Vehicle Safety Standards, Article 11, 2nd Detail Notification, Appendix 1, Section 7 Attachment 7. Attachment 2 The test was performed based on the test procedure of the locking device that acts on the steering device provided with the torque limiting device. However, in the present embodiment, the number of twists until the destruction was repeated by repeating the cycle was determined by looking at the safety factor and setting the torque value to 200 Nm, which is twice the prescribed 100 Nm. Table 2 below shows the relationship between the defect rate of internal defects in the high stress part (key lock part) 5 and the number of twists at the time of the torsion test destruction. FIG. 9 is a graph showing the results of Table 2. As is clear from FIG. 9, it was found that when the defect rate exceeds 0.5%, the number of twists at the time of destruction in the twist test is greatly reduced. That is, if the defect rate is 0.5% or less, it can be evaluated that the aluminum die cast part (column housing) 1 has a predetermined strength.

Figure 2014104475
Figure 2014104475

一方、アルミダイカスト部品(コラムハウジング)1の鋳造時、内部欠陥の原因となり得る鋳造条件としては、鋳造時の溶湯温度、溶湯の射出速度、型内への充填率が挙げられる。前述のように、アルミダイカスト部品の鋳造時の溶湯温度は、例えば保持炉のアルミニウム溶湯温度を示し、溶湯温度が高いとスリーブ部に触れている溶湯部分が凝固しにくいため、破断チル軽減に繋がり、通常は650℃以上が好ましい。また、本実施形態では、鋳造変数に対する影響度を高めるために、例えば実績管理下限値640℃を溶湯温度から減じて用いた。また、アルミダイカスト部品の鋳造時の射出速度は、例えばスリーブから溶湯をプランジャーで押し出す際の高速射出速度を示し、射出速度が高いと溶湯が冷える前に射出されるため、溶湯中の圧力伝達がよくなり、巣を低減させる効果がある。また、射出速度が速いと、ゲートで破断チルが粉砕され、粗大な破断チルの軽減に繋がるため、ゲート速度は20〜60m/s、ゲート厚は2.5mm以下が好ましい。また、充填率は、溶湯注湯量/スリーブ体積を示し、充填率が高いと温度が冷えにくいことから破断チルができにくく、溶湯中の圧力伝達がよくなり、巣を低減させる効果がある。また、射出速度が速いと、ゲートで破断チルが粉砕され、粗大な破断チルの破断チル溶湯中の圧力伝達がよくなり、巣を低減させる効果がある。また、充填率は、通常は20〜50%が好ましい。本実施形態では、これら溶湯温度、射出速度、充填率の積値を鋳造変数とし、その鋳造変数と前述の内部欠陥の欠陥率との関係を調べた。   On the other hand, the casting conditions that may cause internal defects during casting of the aluminum die cast part (column housing) 1 include the melt temperature during casting, the injection speed of the melt, and the filling rate into the mold. As described above, the molten metal temperature at the time of casting of the aluminum die-cast part indicates, for example, the molten aluminum temperature of the holding furnace, and if the molten metal temperature is high, the molten metal portion that is in contact with the sleeve portion is difficult to solidify, which leads to reduction of fracture chill. Usually, 650 ° C. or higher is preferable. Moreover, in this embodiment, in order to raise the influence degree with respect to a casting variable, the actual performance management lower limit 640 degreeC was reduced and used from the molten metal temperature, for example. In addition, the injection speed at the time of casting of aluminum die-cast parts indicates the high speed injection speed when extruding the molten metal from the sleeve with a plunger, for example. If the injection speed is high, the molten metal is injected before it cools down. Is effective, and has the effect of reducing the nest. Further, if the injection speed is high, the breaking chill is pulverized by the gate, leading to reduction of the coarse breaking chill. Therefore, the gate speed is preferably 20 to 60 m / s and the gate thickness is preferably 2.5 mm or less. In addition, the filling rate indicates the amount of molten metal poured / sleeve volume. If the filling rate is high, the temperature is difficult to cool down, so that it is difficult to break chill, pressure transmission in the molten metal is improved, and the nest is reduced. Further, when the injection speed is high, the fracture chill is crushed at the gate, and the pressure transmission in the molten fracture chill of the coarse fracture chill is improved, and the nest is reduced. The filling rate is usually preferably 20 to 50%. In this embodiment, the product value of the molten metal temperature, the injection speed, and the filling rate is used as a casting variable, and the relationship between the casting variable and the defect rate of the above-described internal defects is examined.

そこで、鋳造変数が4、6、10、20となる鋳造条件でアルミダイカスト部品(コラムハウジング)1を、夫々10本ずつ鋳造し、それらについて前述と同様に超音波探傷を行い、算出した欠陥率と鋳造変数との関係を調べた。表3には、夫々の鋳造変数での欠陥率の平均+3σの値と平均−3σの値を表した。図10は、表3の結果をグラフ化したものである。σは標準偏差である。前述のように欠陥率が0.5%以下であるとアルミダイカスト部品(コラムハウジング)1は所定の強度を有すると判断できる。欠陥率が0.5%となる鋳造変数は10であるから、本実施形態では鋳造変数が10以上の鋳造条件で鋳造したアルミダイカスト部品(コラムハウジング)1は、所定の強度を有すると判断できる。   Therefore, ten aluminum die cast parts (column housings) 1 are cast under casting conditions where the casting variables are 4, 6, 10, and 20, respectively, and ultrasonic flaw detection is performed on them in the same manner as described above, and the calculated defect rate. And the relationship between casting variables. Table 3 shows the average value of + 3σ and the average value of −3σ of the defect rate in each casting variable. FIG. 10 is a graph of the results in Table 3. σ is a standard deviation. As described above, when the defect rate is 0.5% or less, it can be determined that the aluminum die cast part (column housing) 1 has a predetermined strength. Since the casting variable with a defect rate of 0.5% is 10, in this embodiment, it can be determined that the aluminum die cast part (column housing) 1 cast under casting conditions with a casting variable of 10 or more has a predetermined strength. .

Figure 2014104475
Figure 2014104475

このように、本実施形態のアルミダイカスト部品強度評価方法では、予め応力解析で求めたコラムハウジング(アルミダイカスト部品)1の高応力部に対し、当該高応力部の所定範囲の内部欠陥を超音波探傷し、当該所定範囲の内部欠陥の合計面積を全探傷面積で除した欠陥率を求めると共に、コラムハウジング(アルミダイカスト部品)1の鋳造時の溶湯温度と射出速度と充填率との積値からなる鋳造変数を求め、欠陥率と鋳造変数との関係から欠陥率が予め設定した欠陥率規定値以下となる鋳造変数規定値を求め、鋳造時の鋳造変数が鋳造変数規定値以上であるときに当該コラムハウジング(アルミダイカスト部品)1が所定の強度を有すると評価することとしたため、実際のコラムハウジング(アルミダイカスト部品)1の強度を適正に評価することができる。   As described above, in the aluminum die cast component strength evaluation method of the present embodiment, an internal defect in a predetermined range of the high stress portion is ultrasonically detected with respect to the high stress portion of the column housing (aluminum die cast component) 1 obtained in advance by stress analysis. The defect rate is determined by dividing the total area of internal defects within the predetermined range by the total flaw detection area, and from the product value of the molten metal temperature, injection speed, and filling rate at the time of casting the column housing (aluminum die cast part) 1 When the casting variable is equal to or greater than the predetermined value of the casting variable when the casting variable is equal to or greater than the predetermined value of the casting variable. Since the column housing (aluminum die-cast part) 1 is evaluated as having a predetermined strength, the actual strength of the column housing (aluminum die-cast part) 1 is appropriate. It can be evaluated.

また、高応力部の所定範囲を、当該高応力部の最大応力の50%以上の応力の範囲としたことにより、コラムハウジング(アルミダイカスト部品)1の強度をより一層適正に評価することができる。
また、本実施形態のアルミダイカスト部品によれば、前記の強度評価方法で強度評価し、高応力部の所定範囲の内部欠陥の合計面積を全探傷面積で除した欠陥率を0.5%以下としたことにより、所定の強度のコラムハウジング(アルミダイカスト部品)1を得ることができる。
Further, the strength of the column housing (aluminum die-cast part) 1 can be more appropriately evaluated by setting the predetermined range of the high stress portion to be a stress range of 50% or more of the maximum stress of the high stress portion. .
Further, according to the aluminum die cast part of the present embodiment, the strength rate is evaluated by the above-described strength evaluation method, and the defect rate obtained by dividing the total area of internal defects within a predetermined range of the high stress portion by the total flaw detection area is 0.5% or less. As a result, a column housing (aluminum die-cast part) 1 having a predetermined strength can be obtained.

1はアルミダイカスト部品(コラムハウジング)
2はターンテーブル
3は探触子
4は内部欠陥
Aは高応力部(キーロック部)
1 is aluminum die-casting part (column housing)
2 is a turntable 3 is a probe 4 is an internal defect A is a high stress part (key lock part)

Claims (4)

アルミダイカスト部品の強度を評価する方法であって、前記アルミダイカスト部品を予め応力解析して求めた高応力部に対し、当該高応力部の所定範囲の内部欠陥を超音波探傷し、当該所定範囲の内部欠陥の合計面積を全探傷面積で除して欠陥率を求めると共に、前記アルミダイカスト部品の鋳造時の溶湯温度と射出速度と充填率との積値からなる鋳造変数を求め、前記欠陥率と前記鋳造変数との関係から前記欠陥率が予め設定した欠陥率規定値以下となる鋳造変数規定値を求め、鋳造時の前記鋳造変数が前記鋳造変数規定値以上であるときにアルミダイカスト部品が所定の強度を有すると評価することを特徴とするアルミダイカスト部品強度評価方法。   A method for evaluating the strength of an aluminum die-cast part, wherein a high-stress part obtained by performing stress analysis on the aluminum die-cast part in advance is subjected to ultrasonic inspection for an internal defect in a predetermined range of the high-stress part. The total area of internal defects is divided by the total flaw detection area to obtain a defect rate, and a casting variable consisting of a product value of a molten metal temperature, an injection speed, and a filling rate at the time of casting of the aluminum die cast part is obtained, and the defect rate And determining the casting variable prescribed value at which the defect rate is equal to or less than a preset defect rate prescribed value from the relationship between the casting variable and the casting variable when the casting variable is equal to or greater than the prescribed casting variable value. A method for evaluating the strength of an aluminum die-cast part, wherein the strength is evaluated to have a predetermined strength. 前記高応力部の所定範囲は、当該高応力部の最大応力の50%以上の応力の範囲であることを特徴とする請求項1に記載のアルミダイカスト部品強度評価方法。   The aluminum die cast component strength evaluation method according to claim 1, wherein the predetermined range of the high stress portion is a stress range of 50% or more of the maximum stress of the high stress portion. 前記請求項1又は2のアルミダイカスト部品強度評価方法で強度が評価されたアルミダイカスト部品であって、前記欠陥率が0.5%以下であることを特徴とするアルミダイカスト部品。   An aluminum die-cast part whose strength has been evaluated by the aluminum die-cast part strength evaluation method according to claim 1 or 2, wherein the defect rate is 0.5% or less. 前記アルミダイカスト部品が、車両の電動パワーステアリング装置に用いられるコラムハウジングであり、前記高応力部が前記コラムハウジングのキーロック部であることを特徴とする請求項3に記載のアルミダイカスト部品。   The aluminum die-cast part according to claim 3, wherein the aluminum die-cast part is a column housing used for an electric power steering device of a vehicle, and the high stress part is a key lock part of the column housing.
JP2012257838A 2012-11-26 2012-11-26 Method for evaluating strength of aluminum die cast component, and aluminum die cast component Pending JP2014104475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257838A JP2014104475A (en) 2012-11-26 2012-11-26 Method for evaluating strength of aluminum die cast component, and aluminum die cast component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257838A JP2014104475A (en) 2012-11-26 2012-11-26 Method for evaluating strength of aluminum die cast component, and aluminum die cast component

Publications (1)

Publication Number Publication Date
JP2014104475A true JP2014104475A (en) 2014-06-09

Family

ID=51026406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257838A Pending JP2014104475A (en) 2012-11-26 2012-11-26 Method for evaluating strength of aluminum die cast component, and aluminum die cast component

Country Status (1)

Country Link
JP (1) JP2014104475A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896278A (en) * 1988-07-11 1990-01-23 Northrop Corporation Automated defect recognition system
JPH03193256A (en) * 1990-10-23 1991-08-23 Ube Ind Ltd Method for discriminating nondefective/defective in quality of formed product in injection forming apparatus
JP2000355722A (en) * 1999-06-17 2000-12-26 Nippon Light Metal Co Ltd Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JP2004144489A (en) * 2002-10-21 2004-05-20 Ryobi Ltd Method of judging quality of casting having composite member inside
JP2005091288A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Discrimination method for casting defect
JP2007111728A (en) * 2005-10-19 2007-05-10 Ryobi Ltd Method for inspecting die-cast article
JP2010131607A (en) * 2008-12-02 2010-06-17 Toyota Central R&D Labs Inc Method for analyzing cavity in metal casting and cavity analysis program therefor
JP2011206788A (en) * 2010-03-29 2011-10-20 Ube Machinery Corporation Ltd Casting condition determination method and determination device
JP2012194172A (en) * 2011-02-28 2012-10-11 Nsk Ltd Method for evaluating strength of aluminum die casting component and aluminum die casting component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896278A (en) * 1988-07-11 1990-01-23 Northrop Corporation Automated defect recognition system
JPH03193256A (en) * 1990-10-23 1991-08-23 Ube Ind Ltd Method for discriminating nondefective/defective in quality of formed product in injection forming apparatus
JP2000355722A (en) * 1999-06-17 2000-12-26 Nippon Light Metal Co Ltd Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JP2004144489A (en) * 2002-10-21 2004-05-20 Ryobi Ltd Method of judging quality of casting having composite member inside
JP2005091288A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Discrimination method for casting defect
JP2007111728A (en) * 2005-10-19 2007-05-10 Ryobi Ltd Method for inspecting die-cast article
JP2010131607A (en) * 2008-12-02 2010-06-17 Toyota Central R&D Labs Inc Method for analyzing cavity in metal casting and cavity analysis program therefor
JP2011206788A (en) * 2010-03-29 2011-10-20 Ube Machinery Corporation Ltd Casting condition determination method and determination device
JP2012194172A (en) * 2011-02-28 2012-10-11 Nsk Ltd Method for evaluating strength of aluminum die casting component and aluminum die casting component

Similar Documents

Publication Publication Date Title
WO2013128500A1 (en) Die-cast product rigidity evaluation method and die-cast product
Wang et al. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera
US9696142B2 (en) Method and apparatus for determining residual stresses of a component
US20160054231A1 (en) Method for the quality assessment of a component produced by means of an additive manufacturing method
JP4588414B2 (en) Internal defect inspection method and apparatus
JP5357891B2 (en) Bonding quality control method
Kuwazuru et al. X-ray CT inspection for porosities and its effect on fatigue of die cast aluminium alloy
Brunke et al. A new Concept for High-Speed atline and inlineCT for up to 100% Mass Production Process Control
US11761910B2 (en) Surface or interface defect detection
JP2014104475A (en) Method for evaluating strength of aluminum die cast component, and aluminum die cast component
US20100263450A1 (en) System and method for producing and testing metal parts
WO2012117468A1 (en) Method for evaluating strength of aluminum die-cast part, aluminum die-cast part, and method for detecting defect of aluminum die-cast part
JP2012194172A (en) Method for evaluating strength of aluminum die casting component and aluminum die casting component
JP2006200954A (en) Mold cavity detection method and mold cavity detector
JP5849601B2 (en) Defect detection method for aluminum die cast parts
US9383343B2 (en) Strength evaluating method for aluminum die cast part, aluminum die cast part, and defect detecting method for the same
Szalva et al. Fatigue testing and non‐destructive characterization of AlSi9Cu3 (Fe) die cast specimens by computer tomography
JP2013083560A (en) Die-cast aluminum component strength evaluating method and die-cast aluminum components
JP2015158379A (en) Strength evaluation method of aluminum die cast component, and aluminum die cast component
JP2005077324A (en) Apparatus and method for assisting inspection of defect within cast
Brunke et al. A New Concept for Highspeed Flatline and Inlinect for up to 100% Mass Production Process Control Allowing both, 3D Metrology and Failure Analysis
Herzer et al. Detection of Defects in Solidified Layers within Laser-based Powder Bed Fusion using Active Thermography
CN108107110B (en) Method for manufacturing quantitative deep cracks on metal hollow shaft
DE102015219134B4 (en) Apparatus and method for detecting a defect in a press plate
JP2000214142A (en) Method for evaluating cleanliness of metal material by ultrasonic flaw detection

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328