JP2014103767A - Switching device - Google Patents

Switching device Download PDF

Info

Publication number
JP2014103767A
JP2014103767A JP2012254147A JP2012254147A JP2014103767A JP 2014103767 A JP2014103767 A JP 2014103767A JP 2012254147 A JP2012254147 A JP 2012254147A JP 2012254147 A JP2012254147 A JP 2012254147A JP 2014103767 A JP2014103767 A JP 2014103767A
Authority
JP
Japan
Prior art keywords
current
resistor
detection resistor
temperature detection
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012254147A
Other languages
Japanese (ja)
Inventor
Toshio Yabuki
俊生 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012254147A priority Critical patent/JP2014103767A/en
Publication of JP2014103767A publication Critical patent/JP2014103767A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an influence of a voltage drop of a resistor for current detection upon temperature dependency of a resistor for temperature detection.SOLUTION: The switching device comprises: an inverter INV; power lines L1, L2; a resistor R4 for current detection inserted into the power line L2; a resistor Rth for temperature detection; and a constant current source 3A. One end of the resistor Rth for temperature detection is connected with the power line L2 between the resistor R4 for current detection and the inverter INV. One end of the constant current source 3A is connected with the other end of the resistor Rth for temperature detection, and a DC potential Vcc is supplied to the other end of the constant current source 3A. A potential V2 is obtained at the other end of the resistor Rth for temperature detection.

Description

この発明は、半導体スイッチング回路の温度を測定する技術に関する。   The present invention relates to a technique for measuring the temperature of a semiconductor switching circuit.

スイッチングを行って直流電圧を他の電圧に変換する半導体スイッチング回路として、インバータや、チョッパが知られている。インバータは直流電圧を交流電圧に変換し、チョッパは直流電圧を昇圧/降圧して他の直流電圧に変換する。チョッパは力率改善回路として採用されることもある。   Inverters and choppers are known as semiconductor switching circuits that perform switching to convert a DC voltage into another voltage. The inverter converts a DC voltage into an AC voltage, and the chopper boosts / decreases the DC voltage and converts it to another DC voltage. The chopper may be employed as a power factor correction circuit.

インバータであれ、チョッパであれ、半導体スイッチング回路のスイッチングを制御するため、あるいは過電流を検知するため、半導体スイッチング回路に流れる電流(以下「スイッチング電流」と仮称する)を検知する要求がある。   Whether it is an inverter or a chopper, there is a need to detect a current flowing through the semiconductor switching circuit (hereinafter referred to as “switching current”) in order to control switching of the semiconductor switching circuit or to detect an overcurrent.

スイッチング電流を検出するための構成としては、これを簡易に実現すべく、抵抗(以下「電流検知用抵抗」)が採用される。電流検知用抵抗は、半導体スイッチング回路に入力する直流電圧を供給するための一対の電源線の一方上に設けられる。電流検知用抵抗における電流降下からスイッチング電流を検知するための構成を簡易にするため、電流検知用抵抗は上記電源線のうち、低電位側の電源線上に設けられることが多い。   As a configuration for detecting the switching current, a resistor (hereinafter referred to as “current detection resistor”) is employed in order to easily realize this. The current detection resistor is provided on one of a pair of power supply lines for supplying a DC voltage input to the semiconductor switching circuit. In order to simplify the configuration for detecting the switching current from the current drop in the current detection resistor, the current detection resistor is often provided on the low-potential-side power line among the power lines.

他方、半導体スイッチング回路の過熱による破壊を防ぐため、半導体スイッチング回路の温度を検知する要求もある。当該温度を検知する構成としては、これを簡易に実現すべく、抵抗(以下「温度検知用抵抗」)が採用される。温度検知用抵抗は、通常の抵抗であっても(その抵抗値が温度依存性を有するので)かまわないが、より感度が高いサーミスタ(あるいはポジスタ)が採用されることも多い。   On the other hand, there is also a demand for detecting the temperature of the semiconductor switching circuit in order to prevent the semiconductor switching circuit from being destroyed by overheating. As a configuration for detecting the temperature, a resistor (hereinafter referred to as a “temperature detection resistor”) is employed in order to easily realize this. The temperature detection resistor may be a normal resistor (because its resistance value has temperature dependence), but a thermistor (or posistor) with higher sensitivity is often employed.

温度検知用抵抗は、半導体スイッチング回路の温度を検知するため、半導体スイッチング回路の近くに設けることが要求される。そして温度検知用抵抗における温度変化は、温度検知用抵抗の抵抗値の温度変化として検出できるので、温度検知用抵抗に電流を供給し、当該温度検知用抵抗における電圧降下を検知する。このような電流の供給や電圧降下の測定を行う回路を簡易に構成するため、温度検知用抵抗は低電位側の電源線と、所定の電位点との間に設けられることが多い。   The temperature detection resistor is required to be provided near the semiconductor switching circuit in order to detect the temperature of the semiconductor switching circuit. Since a temperature change in the temperature detection resistor can be detected as a temperature change in the resistance value of the temperature detection resistor, a current is supplied to the temperature detection resistor to detect a voltage drop in the temperature detection resistor. In order to easily configure a circuit for supplying such a current and measuring a voltage drop, the temperature detection resistor is often provided between a low-potential power line and a predetermined potential point.

このように、低電位側の電源線上に電流検知用抵抗が設けられ、低電位側の電源線に一端が接続された温度検知用抵抗が設けられる技術が、特許文献1に開示されている。   As described above, Patent Document 1 discloses a technique in which a current detection resistor is provided on a low-potential side power line, and a temperature detection resistor having one end connected to the low-potential side power line.

特許第4639950号公報Japanese Patent No. 4639950

上記特許文献1でも示されるように、温度検知用抵抗は半導体スイッチング回路の温度を検知するために、半導体スイッチング回路に近く設けられることが望ましい。よって温度検知用抵抗の一端は、電流検知用抵抗と半導体スイッチング回路との間で低電位側電源線に接続されることが望まれる。   As shown in Patent Document 1 described above, it is desirable that the temperature detection resistor is provided close to the semiconductor switching circuit in order to detect the temperature of the semiconductor switching circuit. Therefore, it is desirable that one end of the temperature detection resistor is connected to the low potential side power supply line between the current detection resistor and the semiconductor switching circuit.

しかしながらこのような接続態様では、スイッチング電流が温度検知における誤差要因となりやすい。スイッチング電流の変化が電流検知用抵抗の電圧降下を変化させ、当該変化は温度検知用抵抗の一端の電位を変化させるからである。   However, in such a connection mode, the switching current tends to be an error factor in temperature detection. This is because the change of the switching current changes the voltage drop of the current detection resistor, and the change changes the potential of one end of the temperature detection resistor.

例えば、特許文献1の図4では、電流検知用抵抗における電圧降下を電圧Vshで、電流検知用抵抗と温度検知用抵抗との直列接続における電圧降下を電圧V1で、電流検知用抵抗と温度検知用抵抗と分圧抵抗との直列接続に印加される電圧を電圧VDDで、それぞれ示している。よって検出される電圧V1は、温度検知用抵抗の抵抗値R51、分圧抵抗の抵抗値R53を導入して、下式(1)で求められる。   For example, in FIG. 4 of Patent Document 1, the voltage drop in the current detection resistor is the voltage Vsh, the voltage drop in the series connection of the current detection resistor and the temperature detection resistor is the voltage V1, and the current detection resistor and the temperature detection. A voltage applied to the series connection of the resistor for use and the voltage dividing resistor is indicated by a voltage VDD. Thus, the detected voltage V1 is obtained by the following equation (1) by introducing the resistance value R51 of the temperature detection resistor and the resistance value R53 of the voltage dividing resistor.

Figure 2014103767
Figure 2014103767

右辺第1項は温度検知用抵抗の抵抗値R51の変動のみならず、電流検知用抵抗の電圧降下Vshの変動にも依存する。他方、第2項は、通常は電圧VDDが一定電圧に維持され、分圧抵抗の抵抗値R51の温度依存性が小さいので、温度検知用抵抗の抵抗値R51の変動のみに依存すると見ることができる。即ち、電圧V1についてのS/N比の観点で見れば、第1項及び第2項はそれぞれ雑音及び信号に対応することになる。   The first term on the right side depends not only on the variation of the resistance value R51 of the temperature detection resistor but also on the variation of the voltage drop Vsh of the current detection resistor. On the other hand, since the voltage VDD is normally maintained at a constant voltage and the temperature dependency of the resistance value R51 of the voltage dividing resistor is small, it can be seen that the second term depends only on the fluctuation of the resistance value R51 of the temperature detection resistor. it can. That is, from the viewpoint of the S / N ratio for the voltage V1, the first and second terms correspond to noise and signal, respectively.

そこで、右辺第1項の右辺第2項に対する割合を小さくすることが望まれる。これは例えばR53<<R51に設定することが望ましい。しかしながら、そうすると抵抗値R51の変動に対する右辺第2項の変動が小さくなる。これは電圧V1の温度検知に対する感度が低下することになって望ましくない。   Therefore, it is desirable to reduce the ratio of the first term on the right side to the second term on the right side. For example, it is desirable to set R53 << R51. However, the change in the second term on the right side with respect to the change in the resistance value R51 is reduced. This is undesirable because it reduces the sensitivity to temperature detection of voltage V1.

かかる感度の低下は特に、電圧V1をA/D変換してデジタル処理を行う場合、デジタル処理における量子化誤差直線性の影響が大きくなり、温度検知の精度悪化を招来する点で望ましくない。   Such a decrease in sensitivity is not particularly desirable in the case where digital processing is performed by A / D converting the voltage V1 in that the influence of quantization error linearity in the digital processing increases and temperature detection accuracy deteriorates.

この発明は上記の観点から、温度検知用抵抗の温度依存性に対する、電流検知用抵抗の電圧降下の影響を低減することを目的とする。   From the above viewpoint, an object of the present invention is to reduce the influence of the voltage drop of the current detection resistor on the temperature dependence of the temperature detection resistor.

この発明にかかるスイッチング装置の第1の態様は、スイッチングを行って直流電圧を他の電圧に変換する半導体スイッチング回路(INV、CH)と、前記半導体スイッチング回路へ前記直流電圧を供給する高電位側電源線(L1)及び低電位側電源線(L2)と、前記低電位側電源線に挿入される電流検知用抵抗(R4)と、前記電流検知用抵抗と前記半導体スイッチング回路との間で前記低電位側電源線に接続される一端と、他端とを有する温度検知用抵抗(Rth)と、少なくとも前記半導体スイッチング回路及び前記温度検知用抵抗を載置する基板(2)と、前記温度検知用抵抗(Rth)の前記他端に定電流(I)を供給する定電流源(3)とを備える。   A first aspect of the switching device according to the present invention includes a semiconductor switching circuit (INV, CH) that performs switching to convert a DC voltage into another voltage, and a high potential side that supplies the DC voltage to the semiconductor switching circuit. The power supply line (L1), the low potential side power supply line (L2), the current detection resistor (R4) inserted into the low potential side power supply line, and the current detection resistor and the semiconductor switching circuit between A temperature detection resistor (Rth) having one end connected to the low potential side power supply line and the other end, a substrate (2) on which at least the semiconductor switching circuit and the temperature detection resistor are mounted, and the temperature detection A constant current source (3) for supplying a constant current (I) to the other end of the resistor (Rth).

この発明にかかるスイッチング装置の第2の態様は、その第1の態様であって、前記定電流源(3A,3B)は、前記低電位側電源線が与える第1電位(GND)よりも電位が高い直流の第2電位(Vcc)を供給する第2電位供給点に接続される一端と、前記定電流(I)を出力する他端と、電流設定用抵抗(R1,R2)とを有する。前記定電流は前記第2電位供給点から得られる電流に基づいて得られる。前記定電流の値は、前記電流設定用抵抗の抵抗値の逆数で設定される。   A second aspect of the switching device according to the present invention is the first aspect, in which the constant current sources (3A, 3B) have a potential higher than a first potential (GND) provided by the low potential side power supply line. Has one end connected to a second potential supply point for supplying a high DC second potential (Vcc), the other end for outputting the constant current (I), and current setting resistors (R1, R2). . The constant current is obtained based on a current obtained from the second potential supply point. The value of the constant current is set by the reciprocal of the resistance value of the current setting resistor.

この発明にかかるスイッチング装置の第3の態様は、その第2の態様であって、前記温度検知用抵抗(Rth)の抵抗値が有する温度係数と、前記電流設定用抵抗(R1,R2)の抵抗値が有する温度係数とは、相互に符号が異なり、前記電流設定用抵抗も前記基板(2)に載置される。   A third aspect of the switching device according to the present invention is the second aspect, in which the temperature coefficient of the resistance value of the temperature detection resistor (Rth) and the current setting resistors (R1, R2) The temperature coefficient of the resistance value has a different sign from each other, and the current setting resistor is also placed on the substrate (2).

この発明にかかるスイッチング装置の第4の態様は、その第3の態様であって、前記温度検知用抵抗(Rth)の抵抗値は正の温度係数を有し、前記電流設定用抵抗(R1,R2)の抵抗値は負の温度係数を有する。   A fourth aspect of the switching device according to the present invention is the third aspect thereof, wherein a resistance value of the temperature detection resistor (Rth) has a positive temperature coefficient, and the current setting resistor (R1, R1) has a positive temperature coefficient. The resistance value of R2) has a negative temperature coefficient.

この発明にかかるスイッチング装置の第5の態様は、その第2乃至第4の態様のいずれかであって、前記電流設定用抵抗(R1)は、前記第2電位供給点に接続される一端と、他端とを有する。そして前記定電流源(3A)は、オペアンプ(32)と、電流増幅素子(31)とを更に有する。   A fifth aspect of the switching device according to the present invention is any one of the second to fourth aspects, wherein the current setting resistor (R1) has one end connected to the second potential supply point. And the other end. The constant current source (3A) further includes an operational amplifier (32) and a current amplification element (31).

前記オペアンプは、前記第2電位供給点に接続される一端と、他端とを有し、定電圧(Vd)を支える定電圧素子(33)と、前記定電圧素子の前記他端と前記電流設定用抵抗の前記他端とに接続される一対の入力端と、出力端とを含む。   The operational amplifier has one end connected to the second potential supply point and the other end, a constant voltage element (33) supporting a constant voltage (Vd), the other end of the constant voltage element, and the current A pair of input ends connected to the other end of the setting resistor and an output end are included.

前記電流増幅素子は、前記オペアンプの出力端に接続された制御電極、前記電流設定用抵抗の前記他端に接続された電流入力電極、及び、前記温度検知用抵抗(Rth)の前記他端に接続された電流出力電極を含む。   The current amplification element includes a control electrode connected to the output terminal of the operational amplifier, a current input electrode connected to the other end of the current setting resistor, and the other end of the temperature detection resistor (Rth). Includes connected current output electrodes.

この発明にかかるスイッチング装置の第6の態様は、第2乃至第4の態様のいずれかであって、前記定電流源(3B)は、入力端、出力端、制御端を含む三端子レギュレータ(34)を更に有する。   A sixth aspect of the switching device according to the present invention is any one of the second to fourth aspects, wherein the constant current source (3B) includes a three-terminal regulator including an input end, an output end, and a control end ( 34).

前記三端子レギュレータの前記入力端は前記第2電位供給点に接続される。前記三端子レギュレータの前記出力端は前記電流設定用抵抗(R2)の一端に接続される。前記三端子レギュレータの前記制御端は前記電流設定用抵抗の他端及び前記温度検知用抵抗(Rth)の前記他端に接続される。   The input terminal of the three-terminal regulator is connected to the second potential supply point. The output terminal of the three-terminal regulator is connected to one end of the current setting resistor (R2). The control terminal of the three-terminal regulator is connected to the other end of the current setting resistor and the other end of the temperature detection resistor (Rth).

この発明にかかるスイッチング装置の第1の態様によれば、温度検知用抵抗の他端の電位から温度検知用抵抗の抵抗値の変動が、引いては半導体スイッチング回路の温度の変動が推定される。しかもこの推定は、電流検知用抵抗での電圧降下の影響を受けにくい。   According to the first aspect of the switching device of the present invention, the fluctuation of the resistance value of the temperature detection resistor is estimated from the potential of the other end of the temperature detection resistor, and the temperature fluctuation of the semiconductor switching circuit is estimated. . Moreover, this estimation is not easily affected by the voltage drop at the current detection resistor.

この発明にかかるスイッチング装置の第2の態様によれば、電流設定用抵抗の抵抗値によって定電流の値を制御できる。   According to the second aspect of the switching device of the present invention, the value of the constant current can be controlled by the resistance value of the current setting resistor.

この発明にかかるスイッチング装置の第3の態様によれば、電流設定用抵抗を半導体スイッチ回路と同じ基板に載せるので、温度検知用抵抗の他端の電位の、温度変化に対する依存性が高まる。よって温度検出の感度が高まる。   According to the third aspect of the switching device of the present invention, since the current setting resistor is mounted on the same substrate as the semiconductor switch circuit, the dependence of the potential at the other end of the temperature detection resistor on the temperature change is increased. Therefore, the sensitivity of temperature detection increases.

この発明にかかるスイッチング装置の第4の態様によれば、半導体スイッチング回路は動作によって温度が上昇するが、温度の許容範囲には上限がある。よって推定される半導体スイッチング回路の温度は高温側で精度を高める必要がある。温度検知用抵抗の抵抗値が正の温度係数を有することにより、高温になるほどその抵抗値は増大し、電流設定用抵抗の抵抗値が負の温度係数を有することにより、高温になるほど定電流は増大する。よって温度検知用抵抗の他端の電位は、電流検知用抵抗での電圧降下の影響を、より受けにくくなる。   According to the fourth aspect of the switching device of the present invention, the temperature of the semiconductor switching circuit rises by operation, but there is an upper limit in the allowable range of temperature. Therefore, the estimated temperature of the semiconductor switching circuit needs to be improved on the high temperature side. The resistance value of the temperature detection resistor has a positive temperature coefficient, so that the resistance value increases as the temperature increases, and the resistance value of the current setting resistor has a negative temperature coefficient, so that the constant current increases as the temperature increases. Increase. Therefore, the potential at the other end of the temperature detection resistor is less susceptible to the voltage drop at the current detection resistor.

この発明にかかるスイッチング装置の第5の態様によれば、オペアンプの一対の入力端の間の仮想短絡により、定電圧素子が支える定電圧を電流設定用抵抗の抵抗値で除した電流が定電流として得られる。   According to the fifth aspect of the switching device of the present invention, the current obtained by dividing the constant voltage supported by the constant voltage element by the resistance value of the current setting resistor due to the virtual short circuit between the pair of input terminals of the operational amplifier is a constant current. As obtained.

この発明にかかるスイッチング装置の第6の態様によれば、少ない部品点数で定電流源を構成することができる。   According to the sixth aspect of the switching device of the present invention, the constant current source can be configured with a small number of parts.

第1の実施の形態にかかるスイッチング装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the switching apparatus concerning 1st Embodiment. 第1の実施の形態にかかるスイッチング装置の構成を示す平面図である。It is a top view which shows the structure of the switching apparatus concerning 1st Embodiment. 第2の実施の形態にかかるスイッチング装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the switching apparatus concerning 2nd Embodiment. 第2の実施の形態にかかるスイッチング装置の構成を示す平面図である。It is a top view which shows the structure of the switching apparatus concerning 2nd Embodiment. 第3の実施の形態にかかるスイッチング装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the switching apparatus concerning 3rd Embodiment. 第3の実施の形態にかかるスイッチング装置の構成を示す平面図である。It is a top view which shows the structure of the switching apparatus concerning 3rd Embodiment. 第4の実施の形態にかかるスイッチング装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the switching apparatus concerning 4th Embodiment. 第4の実施の形態にかかるスイッチング装置の構成を示す平面図である。It is a top view which shows the structure of the switching apparatus concerning 4th Embodiment.

第1の実施の形態.
図1は第1の実施の形態にかかるスイッチング装置の構成を示す回路図である。半導体スイッチング回路たるインバータINVは、スイッチング素子Q1〜Q6を有している。電源線L1,L2間の直流電圧Vdcは、電流検知用抵抗R4とインバータINVとの直列接続に印加される。インバータINVに供給された直流電圧は、スイッチング素子Q1〜Q6のスイッチングによって三相交流電圧Vu,Vv,Vwへ変換される。
First embodiment.
FIG. 1 is a circuit diagram showing the configuration of the switching device according to the first embodiment. The inverter INV as a semiconductor switching circuit has switching elements Q1 to Q6. The DC voltage Vdc between the power supply lines L1 and L2 is applied to the series connection of the current detection resistor R4 and the inverter INV. The DC voltage supplied to the inverter INV is converted into three-phase AC voltages Vu, Vv, Vw by switching of the switching elements Q1 to Q6.

低電位側の電源線L2には電流検知用抵抗R4が挿入される。電流検知用抵抗R4の、インバータINVと反対側の端は接地される。接地GNDの電位は0である。   A current detection resistor R4 is inserted into the power line L2 on the low potential side. The end of the current detection resistor R4 opposite to the inverter INV is grounded. The potential of the ground GND is zero.

温度検知用抵抗Rthの一端は、電流検知用抵抗R4とインバータINVとの間で、電源線L2に接続される。温度検知用抵抗Rthの他端には定電流源3Aから定電流Iが供給される。   One end of the temperature detection resistor Rth is connected to the power supply line L2 between the current detection resistor R4 and the inverter INV. A constant current I is supplied from the constant current source 3A to the other end of the temperature detection resistor Rth.

基板2は、少なくともインバータINV及び温度検知用抵抗Rthを載置する。   The substrate 2 mounts at least the inverter INV and the temperature detection resistor Rth.

電流検知用抵抗R4にはインバータINVに流れる電流によって電圧降下V4が発生し、これにより温度検知用抵抗Rthの一端の電位は値V4を採る。温度検知用抵抗Rthには定電流Iが供給されるので、温度検知用抵抗Rthの抵抗値にも記号Rthを用いると、温度検知用抵抗Rthでの電圧降下は積I・Rthとして求められる。よって温度検知用抵抗Rthの他端での電位V2は次式(2)で求められる。   A voltage drop V4 occurs in the current detection resistor R4 due to the current flowing through the inverter INV, and the potential at one end of the temperature detection resistor Rth takes the value V4. Since the constant current I is supplied to the temperature detection resistor Rth, if the symbol Rth is also used as the resistance value of the temperature detection resistor Rth, the voltage drop at the temperature detection resistor Rth is obtained as the product I · Rth. Therefore, the potential V2 at the other end of the temperature detection resistor Rth is obtained by the following equation (2).

Figure 2014103767
Figure 2014103767

ここで第1項は温度検知用抵抗Rthでの電圧降下であり、定電流Iの寄与の他、インバータINVに流れる電流の寄与もある。よって電位V2についてのS/N比の観点で見れば、第1項及び第2項はそれぞれ雑音及び信号に対応することになる。   Here, the first term is a voltage drop at the temperature detection resistor Rth, and in addition to the contribution of the constant current I, there is also the contribution of the current flowing through the inverter INV. Therefore, from the viewpoint of the S / N ratio with respect to the potential V2, the first term and the second term correspond to noise and a signal, respectively.

右辺第2項である積I・Rthを大きくするように定電流I、抵抗値R51を選択しても、それらは第1項を大きくすることはない。インバータINVに流れる電流は通常、定電流Iよりも非常に大きく、定電流Iを大きくしても電圧降下V4に対する定電流Iの寄与は非常に小さいからである。   Even if the constant current I and the resistance value R51 are selected so as to increase the product I · Rth, which is the second term on the right side, they do not increase the first term. This is because the current flowing through the inverter INV is usually much larger than the constant current I, and even if the constant current I is increased, the contribution of the constant current I to the voltage drop V4 is very small.

このように、定電流源3Aを用いることにより、積I・Rthを電圧降下V4よりも大きくして電位V2についてのS/N比を大きく設定することが可能となる。   Thus, by using the constant current source 3A, the product I · Rth can be made larger than the voltage drop V4, and the S / N ratio for the potential V2 can be set large.

以上のようにして、温度検知用抵抗Rthの他端の電位V2から温度検知用抵抗Rthの抵抗値Rthの変動が、引いてはインバータINVの温度変動が推定される。しかもこの推定は、電流検知用抵抗R4での電圧降下の変動を受けにくい。   As described above, the fluctuation of the resistance value Rth of the temperature detection resistor Rth from the potential V2 at the other end of the temperature detection resistor Rth, and the temperature fluctuation of the inverter INV are estimated. Moreover, this estimation is less susceptible to fluctuations in the voltage drop at the current detection resistor R4.

特に、抵抗値Rthの変動に対する積I・Rthの変動を大きくするためには、定電流Iを大きくとることが望ましい。つまり電位V2の温度検知に対する感度は、定電流Iによって制御できる。換言すれば、本実施の形態によれば、定電流Iを制御することによってS/N比と感度の両方を向上させる制御が可能となる。   In particular, it is desirable to increase the constant current I in order to increase the variation of the product I · Rth with respect to the variation of the resistance value Rth. That is, the sensitivity to temperature detection of the potential V2 can be controlled by the constant current I. In other words, according to the present embodiment, it is possible to control to improve both the S / N ratio and the sensitivity by controlling the constant current I.

もちろん、上述のように、インバータINVに流れる電流に対して無視できる大きさに定電流Iを設定することが望ましいが、それよりも更に小さい値以下に制限することが望ましい。これは電位V2をA/D変換する観点からの要望である。   Of course, as described above, it is desirable to set the constant current I to a negligible magnitude with respect to the current flowing through the inverter INV, but it is desirable to limit it to a value smaller than that. This is a request from the viewpoint of A / D conversion of the potential V2.

例えば定電流源3Aには、直流電位Vccが供給される電位供給点(これにも記号Vccを採用する)が接続される。直流電位Vccは、電源線L2が与える電位(ここでは接地GNDの電位0)よりも電位が高い。このように定電流源3Aを駆動するために用いられる直流電位Vccは、電位V2を信号処理する処理装置を駆動するための電位としても用いられる。よって電位V2の変動範囲の幅は、0〜Vccの範囲に収まることが望ましい。   For example, the constant current source 3A is connected to a potential supply point to which the DC potential Vcc is supplied (also using the symbol Vcc). The DC potential Vcc is higher than the potential provided by the power supply line L2 (here, the potential 0 of the ground GND). The DC potential Vcc used for driving the constant current source 3A in this way is also used as a potential for driving a processing device that performs signal processing on the potential V2. Therefore, the width of the fluctuation range of the potential V2 is preferably within the range of 0 to Vcc.

即ち、検知したい温度検知の範囲に対応する抵抗値R51を、値R51a乃至抵抗値R51bで表すと、式(2)の右辺第2項に鑑みて、下式(3)が成立することが望ましい。   That is, when the resistance value R51 corresponding to the temperature detection range to be detected is represented by the values R51a to R51b, it is desirable that the following expression (3) is satisfied in view of the second term on the right side of the expression (2). .

Figure 2014103767
Figure 2014103767

定電流源3Aは、電位供給点Vccに接続される一端と、定電流Iを出力する他端とを有する。当該他端は、温度検知用抵抗Rthの他端に接続され、定電流Iは電位供給点Vccから得られる電流に基づいて得られる。   The constant current source 3A has one end connected to the potential supply point Vcc and the other end that outputs the constant current I. The other end is connected to the other end of the temperature detection resistor Rth, and the constant current I is obtained based on the current obtained from the potential supply point Vcc.

定電流源3Aは更に、電流設定用抵抗R1も有している。定電流の値Iは、電流設定用抵抗R1の抵抗値の逆数で設定される。定電流源3Aが電流設定用抵抗R1を有することは、その抵抗値によって定電流Iの値を制御できる観点で望ましい。   The constant current source 3A further includes a current setting resistor R1. The constant current value I is set by the reciprocal of the resistance value of the current setting resistor R1. It is desirable that the constant current source 3A has the current setting resistor R1 from the viewpoint that the value of the constant current I can be controlled by the resistance value.

より具体的には、定電流源3Aは更に、トランジスタ31と、オペアンプ32と、定電圧素子33とを有する。   More specifically, the constant current source 3 </ b> A further includes a transistor 31, an operational amplifier 32, and a constant voltage element 33.

オペアンプ32は正側入力端と負側入力端と、出力端とを有する。定電圧素子33は例えばツェナーダイオードであり、その一端は電位供給点Vccに接続される。その他端はオペアンプ32の正側入力端に接続され、ここに直流電位Vccから定電圧Vdだけ低い電位を与える。   The operational amplifier 32 has a positive input terminal, a negative input terminal, and an output terminal. The constant voltage element 33 is a Zener diode, for example, and one end thereof is connected to the potential supply point Vcc. The other end is connected to the positive input end of the operational amplifier 32, and a potential lower than the DC potential Vcc by a constant voltage Vd is applied thereto.

電流設定用抵抗R1の一端は電位供給点Vccに接続され、他端はオペアンプ32の負側入力端に接続される。   One end of the current setting resistor R1 is connected to the potential supply point Vcc, and the other end is connected to the negative side input terminal of the operational amplifier 32.

トランジスタ31は電流増幅素子であり、電流入力電極たるエミッタと、電流出力電極たるコレクタと、制御電極たるベースとを含む。ベースはオペアンプ32の出力端に接続され、エミッタは電流設定用抵抗R1の他端に(従ってオペアンプ32の負側入力端に)接続される。コレクタは温度検知用抵抗Rthの他端に接続され、定電流Iを出力する。   The transistor 31 is a current amplifying element, and includes an emitter as a current input electrode, a collector as a current output electrode, and a base as a control electrode. The base is connected to the output terminal of the operational amplifier 32, and the emitter is connected to the other end of the current setting resistor R1 (and thus to the negative input terminal of the operational amplifier 32). The collector is connected to the other end of the temperature detection resistor Rth and outputs a constant current I.

なお、定電圧素子33に電流を流させて定電圧Vdを維持させるため、定電圧素子33の他端は抵抗R3を介して接地されている。   Note that the other end of the constant voltage element 33 is grounded via a resistor R3 in order to cause the current to flow through the constant voltage element 33 to maintain the constant voltage Vd.

このような定電流源3Aでは、オペアンプ32の一対の入力端の間の仮想短絡により、定電圧素子33が支える定電圧Vdを電流設定用抵抗R1の抵抗値で除した電流が定電流Iとして得られる。   In such a constant current source 3A, a constant current I is obtained by dividing the constant voltage Vd supported by the constant voltage element 33 by the resistance value of the current setting resistor R1 due to a virtual short circuit between the pair of input terminals of the operational amplifier 32. can get.

なお、電流設定用抵抗R1の抵抗値が有する温度係数が、温度検知用抵抗Rthの抵抗値が有する温度係数と互いに符号が異なり、かつ電流設定用抵抗R1も基板2に載置されることが望ましい。電位V2の、温度変化に対する依存性が高まり、引いては温度検出の感度が高まるからである。   The temperature coefficient of the resistance value of the current setting resistor R1 is different from the sign of the temperature coefficient of the resistance value of the temperature detection resistor Rth, and the current setting resistor R1 is also placed on the substrate 2. desirable. This is because the dependence of the potential V2 on the temperature change is increased, and the sensitivity of temperature detection is increased.

特に、電流設定用抵抗R1の抵抗値が有する温度係数が負であり、温度検知用抵抗Rthの抵抗値が有する温度係数が正であることが望ましい。理由は以下の通りである。   In particular, it is desirable that the temperature coefficient of the resistance value of the current setting resistor R1 is negative and the temperature coefficient of the resistance value of the temperature detection resistor Rth is positive. The reason is as follows.

一般に、半導体スイッチング回路(ここではインバータINV)は動作によって温度が上昇する。そしてその温度の許容範囲には上限がある。よって推定される半導体スイッチング回路の温度は高温側で精度を高める必要がある。温度検知用抵抗Rthの抵抗値が正の温度係数を有することにより、高温になるほどその抵抗値は増大し、電流設定用抵抗R1の抵抗値が負の温度係数を有することにより、高温になるほど定電流Iは増大する。これにより、電位V2は、電流検知用抵抗R4での電圧降下V4の影響を、より受けにくくなる。   In general, the temperature of a semiconductor switching circuit (in this case, the inverter INV) rises due to operation. And there is an upper limit in the allowable range of the temperature. Therefore, the estimated temperature of the semiconductor switching circuit needs to be improved on the high temperature side. When the resistance value of the temperature detection resistor Rth has a positive temperature coefficient, the resistance value increases as the temperature increases, and when the resistance value of the current setting resistor R1 has a negative temperature coefficient, the resistance value increases as the temperature increases. The current I increases. Thereby, the potential V2 becomes less susceptible to the influence of the voltage drop V4 at the current detection resistor R4.

図2はこの実施の形態にかかるスイッチング装置の構成を示す平面図である。インバータINVの温度測定の精度を高めるためには、インバータINVと温度検知用抵抗Rthとは同じ基板2に搭載されることが望ましい。但し、図2では電流設定用抵抗R1、電流検知用抵抗R4も同じ基板2に搭載されている場合が例示されている。   FIG. 2 is a plan view showing the configuration of the switching device according to this embodiment. In order to increase the temperature measurement accuracy of the inverter INV, it is desirable that the inverter INV and the temperature detection resistor Rth are mounted on the same substrate 2. However, FIG. 2 illustrates the case where the current setting resistor R1 and the current detection resistor R4 are also mounted on the same substrate 2.

このようにインバータINVと温度検知用抵抗Rthとは同じ基板2に搭載され、導体パターン21で接続される。導体パターン21は例えば銅を主成分とする金属で形成されるので、熱伝導も良好であり、温度検知用抵抗Rthの抵抗値はインバータINVの温度を良好に反映する。   Thus, the inverter INV and the temperature detection resistor Rth are mounted on the same substrate 2 and connected by the conductor pattern 21. Since the conductor pattern 21 is made of, for example, a metal whose main component is copper, the heat conduction is also good, and the resistance value of the temperature detection resistor Rth reflects the temperature of the inverter INV well.

なお、導体パターン22は定電流Iを温度検知用抵抗Rthに流す。   The conductor pattern 22 causes a constant current I to flow through the temperature detection resistor Rth.

第2の実施の形態.
図3は第2の実施の形態にかかるスイッチング装置の構成を示す回路図である。半導体スイッチング回路たるチョッパCHは、スイッチング素子Q0とダイオードDを有している。直流電圧Vdcは電源線L1に挿入されたコイル4と、チョッパCHと、電流検知用抵抗R4との直列接続に印加される。電源線L2には電流検知用抵抗R4が挿入され、電流検知用抵抗R4の、チョッパCHと反対側の端は接地される。
Second embodiment.
FIG. 3 is a circuit diagram showing a configuration of a switching device according to the second embodiment. The chopper CH, which is a semiconductor switching circuit, has a switching element Q0 and a diode D. The DC voltage Vdc is applied to a series connection of the coil 4 inserted in the power supply line L1, the chopper CH, and the current detection resistor R4. A current detection resistor R4 is inserted into the power supply line L2, and the end of the current detection resistor R4 opposite to the chopper CH is grounded.

温度検知用抵抗Rthの一端は、電流検知用抵抗R4とチョッパCHとの間で、電源線L2に接続される。定電流源3Aと温度検知用抵抗Rthとの接続関係は、第1の実施の形態と同様である。   One end of the temperature detection resistor Rth is connected to the power supply line L2 between the current detection resistor R4 and the chopper CH. The connection relationship between the constant current source 3A and the temperature detection resistor Rth is the same as in the first embodiment.

チョッパCHはコイル4と共に昇圧チョッパを構成し、外部に接続されるコンデンサCに直流電圧V0を引加する。つまりチョッパCHはコイル4と協働して直流電圧の変換を行うと把握することができる。   The chopper CH forms a step-up chopper together with the coil 4 and applies a DC voltage V0 to the capacitor C connected to the outside. That is, it can be understood that the chopper CH cooperates with the coil 4 to convert the DC voltage.

この場合にも電流検知用抵抗R4にはチョッパCHに流れる電流によって電圧降下V4が発生する。よって定電流源3Aを採用することにより、第1の実施の形態と同様の効果を得ることができる。   Also in this case, a voltage drop V4 occurs in the current detection resistor R4 due to the current flowing through the chopper CH. Therefore, by adopting the constant current source 3A, the same effect as that of the first embodiment can be obtained.

図4はこの実施の形態にかかるスイッチング装置の構成を示す平面図である。チョッパCHの温度測定の精度を高めるためには、チョッパCHと温度検知用抵抗Rthとは同じ基板2に搭載されることが望ましい。但し、図4では電流設定用抵抗R1、電流検知用抵抗R4も同じ基板2に搭載されている場合が例示されている。   FIG. 4 is a plan view showing the configuration of the switching device according to this embodiment. In order to increase the temperature measurement accuracy of the chopper CH, it is desirable that the chopper CH and the temperature detection resistor Rth are mounted on the same substrate 2. However, FIG. 4 illustrates the case where the current setting resistor R1 and the current detection resistor R4 are also mounted on the same substrate 2.

コイル4及びコンデンサCは電流設定用抵抗R1、電流検知用抵抗R4、温度検知用抵抗Rthと比較して形状が大きいため、基板2に搭載しない場合もある。   Since the coil 4 and the capacitor C are larger in shape than the current setting resistor R1, the current detection resistor R4, and the temperature detection resistor Rth, they may not be mounted on the substrate 2.

チョッパCHも、第1の実施の形態で示されたインバータINVと同様に、温度検知用抵抗Rthとは同じ基板2に搭載され、導体パターン21で接続される。よって温度検知用抵抗Rthの抵抗値はチョッパCHの温度を良好に反映する。   Similarly to the inverter INV shown in the first embodiment, the chopper CH is mounted on the same substrate 2 as the temperature detection resistor Rth and is connected by the conductor pattern 21. Therefore, the resistance value of the temperature detection resistor Rth favorably reflects the temperature of the chopper CH.

第3の実施の形態.
図5は第3の実施の形態にかかるスイッチング装置の構成を示す回路図である。本実施の形態にかかるスイッチング装置の構成は、第1の実施の形態にかかるスイッチング装置の構成における定電流源3Aを、定電流源3Bに置換して得られる。即ち、温度検知用抵抗Rthの他端には定電流源3Bから定電流Iが供給される。
Third embodiment.
FIG. 5 is a circuit diagram showing a configuration of a switching device according to the third embodiment. The configuration of the switching device according to the present embodiment is obtained by replacing the constant current source 3A in the configuration of the switching device according to the first embodiment with a constant current source 3B. That is, the constant current I is supplied from the constant current source 3B to the other end of the temperature detection resistor Rth.

例えば定電流源3Bは、電位供給点Vccに接続される一端と、定電流Iを出力する他端とを有する。当該他端は、温度検知用抵抗Rthの他端に接続され、定電流Iは電位供給点Vccから得られる電流に基づいて得られる。   For example, the constant current source 3B has one end connected to the potential supply point Vcc and the other end that outputs the constant current I. The other end is connected to the other end of the temperature detection resistor Rth, and the constant current I is obtained based on the current obtained from the potential supply point Vcc.

定電流源3Bは更に、電流設定用抵抗R2も有している。定電流の値Iは、電流設定用抵抗R2の抵抗値の逆数で設定される。定電流源3Bが電流設定用抵抗R2を有することは、その抵抗値によって定電流Iの値を制御できる観点で望ましい。   The constant current source 3B further has a current setting resistor R2. The constant current value I is set by the reciprocal of the resistance value of the current setting resistor R2. It is desirable that the constant current source 3B has the current setting resistor R2 from the viewpoint that the value of the constant current I can be controlled by the resistance value.

より具体的には、定電流源3Bは更に、三端子レギュレータ34を有している。三端子レギュレータ34は入力端(図中で「I」と付記された端子)、出力端(図中で「O」と付記された端子)、及び制御端(図中で「G」と付記された端子)を含む。   More specifically, the constant current source 3B further includes a three-terminal regulator 34. The three-terminal regulator 34 has an input terminal (terminal labeled “I” in the drawing), an output terminal (terminal labeled “O” in the drawing), and a control terminal (labeled “G” in the drawing). Terminal).

この入力端は電位供給点Vccに接続され、出力端は電流設定用抵抗R2の一端に接続され、制御端は電流設定用抵抗R2の他端及び温度検知用抵抗Rthの他端に接続される。このような定電流源3Bでは、三端子レギュレータ34の出力端と制御端との間の電圧が定電圧Vgに維持される。また制御端に流れる電流は非常に小さく無視できる。よって定電圧Vgを電流設定用抵抗R2の抵抗値で除した電流が定電流Iとして得られる。   The input end is connected to the potential supply point Vcc, the output end is connected to one end of the current setting resistor R2, and the control end is connected to the other end of the current setting resistor R2 and the other end of the temperature detection resistor Rth. . In such a constant current source 3B, the voltage between the output terminal and the control terminal of the three-terminal regulator 34 is maintained at the constant voltage Vg. The current flowing through the control end is very small and can be ignored. Therefore, a current obtained by dividing the constant voltage Vg by the resistance value of the current setting resistor R2 is obtained as the constant current I.

このような構成においても温度検知用抵抗Rthの他端の電位V2を検出することにより、第1の実施の形態と同様の効果が得られることは明白である。しかも、定電流源3Aよりも少ない部品点数で定電流源3Bを構成することができる。   Even in such a configuration, it is obvious that the same effect as in the first embodiment can be obtained by detecting the potential V2 at the other end of the temperature detection resistor Rth. Moreover, the constant current source 3B can be configured with fewer parts than the constant current source 3A.

また、第1の実施の形態と同様に定電流Iを設定することができ、例えば式(3)を満足する値に設定することにより、電位V2の変動範囲の幅を0〜Vccの範囲に収めることができる。   In addition, the constant current I can be set as in the first embodiment. For example, by setting the constant current I to a value that satisfies Equation (3), the width of the fluctuation range of the potential V2 is set to a range of 0 to Vcc. Can fit.

また、第1の実施の形態で述べたように、電流設定用抵抗R2の抵抗値が有する温度係数が、温度検知用抵抗Rthの抵抗値が有する温度係数と互いに符号が異なり、かつ電流設定用抵抗R2も基板2に載置されることが望ましい。特に電流設定用抵抗R2の抵抗値が有する温度係数が負であり、温度検知用抵抗Rthの抵抗値が有する温度係数が正であることが望ましい。   Further, as described in the first embodiment, the temperature coefficient of the resistance value of the current setting resistor R2 is different from the sign of the temperature coefficient of the resistance value of the temperature detection resistor Rth, and is for current setting. It is desirable that the resistor R2 is also placed on the substrate 2. In particular, it is desirable that the temperature coefficient of the resistance value of the current setting resistor R2 is negative and the temperature coefficient of the resistance value of the temperature detection resistor Rth is positive.

図6はこの実施の形態にかかるスイッチング装置の構成を示す平面図である。インバータINVの温度測定の精度を高めるためには、インバータINVと温度検知用抵抗Rthとは同じ基板2に搭載されることが望ましい。但し、図6では電流設定用抵抗R2、電流検知用抵抗R4、三端子レギュレータ34も同じ基板2に搭載されている場合が例示されている。   FIG. 6 is a plan view showing the configuration of the switching device according to this embodiment. In order to increase the temperature measurement accuracy of the inverter INV, it is desirable that the inverter INV and the temperature detection resistor Rth are mounted on the same substrate 2. However, FIG. 6 illustrates the case where the current setting resistor R2, the current detection resistor R4, and the three-terminal regulator 34 are also mounted on the same substrate 2.

このようにインバータINVと温度検知用抵抗Rthとは同じ基板2に搭載され、導体パターン21で接続される。導体パターン21は例えば銅を主成分とする金属で形成されるので、熱伝導も良好であり、温度検知用抵抗Rthの抵抗値はインバータINVの温度を良好に反映する。   Thus, the inverter INV and the temperature detection resistor Rth are mounted on the same substrate 2 and connected by the conductor pattern 21. Since the conductor pattern 21 is made of, for example, a metal whose main component is copper, the heat conduction is also good, and the resistance value of the temperature detection resistor Rth reflects the temperature of the inverter INV well.

第4の実施の形態.
図7は第4の実施の形態にかかるスイッチング装置の構成を示す回路図である。本実施の形態にかかるスイッチング装置の構成は、第2の実施の形態にかかるスイッチング装置の構成における定電流源3Aを、第3の実施の形態で説明された定電流源3Bに置換して得られる。
Fourth embodiment.
FIG. 7 is a circuit diagram showing a configuration of a switching device according to the fourth embodiment. The configuration of the switching device according to the present embodiment is obtained by replacing the constant current source 3A in the configuration of the switching device according to the second embodiment with the constant current source 3B described in the third embodiment. It is done.

定電流源3Bは第3の実施の形態で説明されており、それ以外の構成(チョッパCH、スイッチング素子Q0、ダイオードD、コイル4、コンデンサC)は第2の実施の形態で説明されているので、ここでは詳細な説明は省略する。   The constant current source 3B is described in the third embodiment, and other configurations (chopper CH, switching element Q0, diode D, coil 4, capacitor C) are described in the second embodiment. Therefore, detailed description is omitted here.

図8はこの実施の形態にかかるスイッチング装置の構成を示す平面図である。チョッパCHの温度測定の精度を高めるためには、チョッパCHと温度検知用抵抗Rthとは同じ基板2に搭載されることが望ましい。但し、図8では電流設定用抵抗R2、電流検知用抵抗R4、三端子レギュレータ34も同じ基板2に搭載されている場合が例示されている。   FIG. 8 is a plan view showing the configuration of the switching device according to this embodiment. In order to increase the temperature measurement accuracy of the chopper CH, it is desirable that the chopper CH and the temperature detection resistor Rth are mounted on the same substrate 2. However, FIG. 8 illustrates the case where the current setting resistor R2, the current detection resistor R4, and the three-terminal regulator 34 are also mounted on the same substrate 2.

2 基板
3A,3B 定電流源
L1,L2 電源線
R1 電流設定用抵抗
R4 電流検知用抵抗
Rth 温度検知用抵抗
2 Substrate 3A, 3B Constant current source L1, L2 Power line R1 Current setting resistor R4 Current detection resistor Rth Temperature detection resistor

Claims (6)

スイッチングを行って直流電圧を他の電圧に変換する半導体スイッチング回路(INV、CH)と、
前記半導体スイッチング回路へ前記直流電圧を供給する高電位側電源線(L1)及び低電位側電源線(L2)と、
前記低電位側電源線に挿入される電流検知用抵抗(R4)と、
前記電流検知用抵抗と前記半導体スイッチング回路との間で前記低電位側電源線に接続される一端と、他端とを有する温度検知用抵抗(Rth)と、
少なくとも前記半導体スイッチング回路及び前記温度検知用抵抗を載置する基板(2)と、
前記温度検知用抵抗(Rth)の前記他端に定電流(I)を供給する定電流源(3)と
を備える、スイッチング装置。
A semiconductor switching circuit (INV, CH) that performs switching to convert a DC voltage into another voltage;
A high potential side power supply line (L1) and a low potential side power supply line (L2) for supplying the DC voltage to the semiconductor switching circuit;
A current detection resistor (R4) inserted into the low potential side power supply line;
A temperature detection resistor (Rth) having one end connected to the low-potential side power line between the current detection resistor and the semiconductor switching circuit, and the other end;
A substrate (2) on which at least the semiconductor switching circuit and the temperature detection resistor are placed;
A switching device comprising: a constant current source (3) for supplying a constant current (I) to the other end of the temperature detection resistor (Rth).
前記定電流源(3A,3B)は、
前記低電位側電源線が与える第1電位(GND)よりも電位が高い直流の第2電位(Vcc)を供給する第2電位供給点に接続される一端と、
前記定電流(I)を出力する他端と、
前記定電流の値を、その抵抗値の逆数で設定する電流設定用抵抗(R1,R2)と
を有し、
前記定電流は前記第2電位供給点から得られる電流に基づいて得られる、請求項1記載のスイッチング装置。
The constant current source (3A, 3B)
One end connected to a second potential supply point for supplying a second DC potential (Vcc) having a higher potential than the first potential (GND) provided by the low potential power line;
The other end that outputs the constant current (I);
Current setting resistors (R1, R2) for setting the constant current value by the reciprocal of its resistance value;
The switching device according to claim 1, wherein the constant current is obtained based on a current obtained from the second potential supply point.
前記温度検知用抵抗(Rth)の抵抗値が有する温度係数と、前記電流設定用抵抗(R1,R2)の抵抗値が有する温度係数とは、相互に符号が異なり、
前記電流設定用抵抗も前記基板(2)に載置される、請求項2記載のスイッチング装置。
The temperature coefficient of the resistance value of the temperature detection resistor (Rth) and the temperature coefficient of the resistance value of the current setting resistor (R1, R2) have different signs.
The switching device according to claim 2, wherein the current setting resistor is also placed on the substrate.
前記温度検知用抵抗(Rth)の抵抗値は正の温度係数を有し、前記電流設定用抵抗(R1,R2)の抵抗値は負の温度係数を有する、請求項3記載のスイッチング装置。   The switching device according to claim 3, wherein a resistance value of the temperature detection resistor (Rth) has a positive temperature coefficient, and a resistance value of the current setting resistors (R1, R2) has a negative temperature coefficient. 前記電流設定用抵抗(R1)は、前記第2電位供給点に接続される一端と、他端とを有し、
前記定電流源(3A)は、
前記第2電位供給点に接続される一端と、他端とを有し、定電圧(Vd)を支える定電圧素子(33)と、
前記定電圧素子の前記他端と前記電流設定用抵抗の前記他端とに接続される一対の入力端と、出力端とを含むオペアンプ(32)と、
前記オペアンプの出力端に接続された制御電極、前記電流設定用抵抗の前記他端に接続された電流入力電極、及び、前記温度検知用抵抗(Rth)の前記他端に接続された電流出力電極を含む電流増幅素子(31)と
を更に有する、請求項2乃至請求項4のいずれか一つに記載のスイッチング装置。
The current setting resistor (R1) has one end connected to the second potential supply point and the other end,
The constant current source (3A)
A constant voltage element (33) having one end connected to the second potential supply point and the other end and supporting a constant voltage (Vd);
An operational amplifier (32) including a pair of input terminals connected to the other end of the constant voltage element and the other end of the current setting resistor, and an output terminal;
A control electrode connected to the output terminal of the operational amplifier, a current input electrode connected to the other end of the current setting resistor, and a current output electrode connected to the other end of the temperature detection resistor (Rth) 5. The switching device according to claim 2, further comprising a current amplifying element (31) including:
前記定電流源(3B)は、
前記第2電位供給点に接続される入力端、前記電流設定用抵抗(R1)の一端に接続される出力端、及び、前記電流設定用抵抗(R2)の他端及び前記温度検知用抵抗(Rth)の前記他端に接続された制御端を含む三端子レギュレータ(34)
を更に有する、請求項2乃至請求項4のいずれか一つに記載のスイッチング装置。
The constant current source (3B)
An input terminal connected to the second potential supply point, an output terminal connected to one end of the current setting resistor (R1), the other end of the current setting resistor (R2), and the temperature detection resistor ( Three-terminal regulator (34) including a control end connected to the other end of Rth)
The switching device according to any one of claims 2 to 4, further comprising:
JP2012254147A 2012-11-20 2012-11-20 Switching device Pending JP2014103767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254147A JP2014103767A (en) 2012-11-20 2012-11-20 Switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254147A JP2014103767A (en) 2012-11-20 2012-11-20 Switching device

Publications (1)

Publication Number Publication Date
JP2014103767A true JP2014103767A (en) 2014-06-05

Family

ID=51025829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254147A Pending JP2014103767A (en) 2012-11-20 2012-11-20 Switching device

Country Status (1)

Country Link
JP (1) JP2014103767A (en)

Similar Documents

Publication Publication Date Title
JP6396730B2 (en) Semiconductor device
JP5266084B2 (en) Overcurrent protection circuit
JP5930252B2 (en) Pseudo resistance circuit and charge detection circuit
US20180006018A1 (en) Power converter and semiconductor device
JP5576250B2 (en) Voltage measuring device
JP6785705B2 (en) Overcurrent protection circuit and voltage regulator
US9887689B2 (en) Pseudo resistance circuit and charge detection circuit
JP2010193033A (en) Overcurrent protection circuit
CN109586566B (en) In-vehicle determination circuit and in-vehicle power supply device
JP2007263667A (en) Stress measuring apparatus
JP6658269B2 (en) Overcurrent detection circuit
JP5310219B2 (en) Physical quantity detection device
JP2013239153A (en) Circuit of outputting temperature compensation power voltage from variable power and method thereof
JP2014103767A (en) Switching device
JP7391720B2 (en) Semiconductor integrated circuit devices and current detection circuits
JP2007218664A (en) Electrical current detector
JP5666694B2 (en) Load current detection circuit
JP6024210B2 (en) Switching device
JP2014155267A (en) Switch driving device
JP5981723B2 (en) Power supply
US8519770B2 (en) Circuit arrangement and input assembly
JP2018096888A (en) Voltage detector, temperature detector equipped therewith, voltage detection method, and temperature detection method provided therewith
US20150171808A1 (en) Small signal amplifier circuit
JPH10293040A (en) Detection device
JP2014103768A (en) Arithmetic unit and switching device