JP2014103588A - Image reading illuminating device and image reader using the same - Google Patents

Image reading illuminating device and image reader using the same Download PDF

Info

Publication number
JP2014103588A
JP2014103588A JP2012255275A JP2012255275A JP2014103588A JP 2014103588 A JP2014103588 A JP 2014103588A JP 2012255275 A JP2012255275 A JP 2012255275A JP 2012255275 A JP2012255275 A JP 2012255275A JP 2014103588 A JP2014103588 A JP 2014103588A
Authority
JP
Japan
Prior art keywords
light
total reflection
image reading
image
document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012255275A
Other languages
Japanese (ja)
Other versions
JP6128811B2 (en
JP2014103588A5 (en
Inventor
Takayuki Sugiyama
孝幸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012255275A priority Critical patent/JP6128811B2/en
Publication of JP2014103588A publication Critical patent/JP2014103588A/en
Publication of JP2014103588A5 publication Critical patent/JP2014103588A5/en
Application granted granted Critical
Publication of JP6128811B2 publication Critical patent/JP6128811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Systems Of Projection Type Copiers (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Image Input (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image reading illuminating device which can secure an illuminating region (short side direction (sub-scanning direction) of a long region) where a light volume is stable so that a reading position may vary and to provide an image reader using the image reading illuminating device.SOLUTION: An image reading illuminating device comprises: a light guide body including an incident face, a total reflection side face, a reflection face which deflects a part of light which is totally reflected to make it advance to a first direction, and an emission face which emits light advancing to the first direction and emits a part of light made incident from the incident face and a part of the light which is totally reflected to a second direction; and a reflection member which reflects the light emitted in the second direction toward a document face in a symmetrical manner to the first direction. The emission face of the light guide body includes positive refractive power in a cross section which includes a short side direction of the long region and is orthogonal to a document placing face. The refractive power in a position where a light flux center which is totally reflected via the total reflection side face is emitted toward the second direction is made weaker than that in a position where the light flux center which does not pass through the total reflection side face is emitted toward the second direction.

Description

本発明は、画像読取用照明装置及びそれを用いた画像読取装置に関し、原稿面を照明して線順次方式で画像読取を行うイメージスキャナー、複写機、ファクシミリなどに好適なものである。   The present invention relates to an image reading illumination device and an image reading device using the same, and is suitable for an image scanner, a copying machine, a facsimile, or the like that illuminates a document surface and reads an image in a line sequential manner.

昨今、画像読取装置において、小型化(特に薄型化)、低コスト化、高速化のニーズが高まっている。それを受けて、画像読取用の受光センサーの小型化が進み、受光センサーに画像を結像させる結像光学系においては、縮小結像倍率がさらに小さくなってきている。これに伴って、センサー面での照度が不足するため、従来と同じ画質を達成するためには、より明るい画像読取用照明装置が求められている。   In recent years, there is a growing need for downsizing (particularly thinning), cost reduction, and speedup in image reading apparatuses. In response to this, the downsizing of the light receiving sensor for image reading has progressed, and the reduced imaging magnification is further reduced in the imaging optical system that forms an image on the light receiving sensor. Accordingly, since the illuminance on the sensor surface is insufficient, there is a demand for a brighter image reading illumination device in order to achieve the same image quality as before.

このような状況に鑑みて、昨今の技術開発による発光素子としてのLED(Light Emitting Diode)の発光効率の向上に伴い、LEDを用いた線状照明装置とする技術が数多く発明されている。   In view of such a situation, with the improvement of luminous efficiency of LED (Light Emitting Diode) as a light emitting element by recent technological development, many techniques for making a linear illumination device using LED have been invented.

また、従来より画像読取用照明装置の問題として、原稿面に切り貼りなどによって段差が付いた原稿画像を載置し、これを読取対象として読み取る場合、段差部分での影が発生してしまい、原稿画像の読取性能が劣ってしまうという問題がある。この問題に対して、LEDを用いた線状照明を使用し、少ない部品点数で、読取光軸に対して両側から照射することで段差部の影を防止することができる画像読取用照明装置が提案されている(特許文献1)。   Further, as a problem of the conventional image reading illumination device, when a document image with a step is placed on the surface of the document by cutting and pasting, and this is read as a reading target, a shadow is generated at the step portion, and the document There is a problem that the image reading performance is poor. In order to solve this problem, there is provided an image reading illumination device capable of preventing the shadow of the stepped portion by irradiating the reading optical axis from both sides with a small number of parts using linear illumination using LEDs. It has been proposed (Patent Document 1).

特開2011−71608号公報JP 2011-71608 A

しかし、近年の画像読取りは、高画質化のニーズが新たに高まっている。これを実現するためには、画像読取用の原稿載置面における長尺領域の長辺方向を主走査方向、短辺方向を副走査方向とするとき、主走査方向に配列した光源の副走査方向における集光効率が良く、原稿載置面で十分な光量が必要となる。特に、高画質で読取る場合には、通常、被写体深度が深い縮小光学系を用いた読取方法が採用されるが、この場合、読取光路に配置されるミラーや結像光学系の取り付け位置や角度の微妙なずれによって、読取位置が大きくばらつくことがある。   However, in recent image reading, the need for higher image quality is newly increasing. In order to realize this, when the long side direction of the long region on the document placement surface for image reading is the main scanning direction and the short side direction is the sub scanning direction, the sub scanning of the light sources arranged in the main scanning direction is performed. The light collection efficiency in the direction is good, and a sufficient amount of light is required on the document placement surface. In particular, when reading with high image quality, a reading method using a reduction optical system with a deep subject depth is usually employed. In this case, the mounting position and angle of a mirror and an imaging optical system arranged in the reading optical path are used. The reading position may vary greatly due to the slight deviation.

このため、読取位置がばらついても良いように光量が安定した副走査方向の照明領域が望まれる。しかしながら、特許文献1では、第1の方向(直接照明用)、第2の方向(反射板を介した照明用)に照明光を出射する出射面として、共通の曲率半径で作られた円弧をつなげた面を採用している。このため、反射板を介した光路の方が長く、第1の方向、第2の方向に出射した照明光による副走査方向の照度分布プロファイルに差が生じてしまう。そのため、特許文献1では、読取位置がばらついても良いように光量が安定した副走査方向の照明領域を確保することができなかった。   For this reason, an illumination area in the sub-scanning direction in which the light quantity is stable is desired so that the reading position may vary. However, in Patent Document 1, an arc formed with a common radius of curvature is used as an exit surface that emits illumination light in a first direction (for direct illumination) and in a second direction (for illumination via a reflector). The connected surface is used. For this reason, the optical path through the reflecting plate is longer, and a difference occurs in the illuminance distribution profile in the sub-scanning direction due to the illumination light emitted in the first direction and the second direction. Therefore, in Patent Document 1, it is not possible to secure an illumination area in the sub-scanning direction in which the light amount is stable so that the reading position may vary.

本発明の目的は、読取位置がばらついても良いように光量が安定した照明領域(長尺領域の短辺方向(副走査方向))を確保することができる画像読取用照明装置及びそれを用いた画像読取装置提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an image reading illumination device capable of ensuring an illumination area (the short side direction (sub-scanning direction) of a long area) with a stable light quantity so that the reading position may vary. It is to provide an image reading apparatus.

上記目的を達成するために、本発明に係る画像読取用照明装置は、発光素子を画像読取用の原稿載置面における長尺領域の長辺方向と同方向に配列した光源ユニットと、前記光源ユニットからの光を入射する入射面と、前記入射面から入射された光の一部を全反射する全反射側面と、前記全反射側面によって全反射した光の一部を偏向させ第1の方向に向かわせる反射面と、前記反射面で反射され原稿面に向けて前記第1の方向へ向かう光を出射させると共に、前記入射面から入射された光の一部及び前記全反射側面によって全反射された光の一部を第2の方向へ出射させる出射面と、を備える導光体と、前記導光体の前記出射面から前記第2の方向へ出射した光を前記第1の方向と対称的に前記原稿面に向けて反射する反射部材と、を有する画像読取用照明装置であって、前記導光体の前記出射面が、前記長尺領域の短辺方向を含み原稿載置面に直交する断面において正の屈折力を備え、前記全反射側面を介して全反射した光束中心が前記第2の方向へ向けて出射する位置での屈折力を、前記全反射側面を介さない光束中心が前記第2の方向へ向けて出射する位置での屈折力より弱くしたことを特徴とする。   In order to achieve the above object, an image reading illumination device according to the present invention includes a light source unit in which light emitting elements are arranged in the same direction as a long side of a long region on an image reading original placement surface, and the light source. An incident surface on which light from the unit is incident; a total reflection side surface that totally reflects a part of light incident from the incident surface; and a first direction in which a part of the light totally reflected by the total reflection side surface is deflected A reflection surface directed to the light source, and light that is reflected by the reflection surface and directed toward the first direction toward the document surface, and is totally reflected by a part of the light incident from the incident surface and the total reflection side surface A light guide that emits part of the emitted light in the second direction, and light emitted in the second direction from the emission surface of the light guide in the first direction. A reflecting member that reflects symmetrically toward the document surface An illumination device for image reading, wherein the light exit surface of the light guide has a positive refractive power in a cross section including a short side direction of the long region and perpendicular to a document placement surface, and the total reflection side surface Refracting power at the position where the center of the light beam totally reflected through the second light exits in the second direction, and refractive power at the position where the light beam center without passing through the total reflection side surface exits in the second direction. It is characterized by being weaker.

また、上記画像読取用照明装置を用いた画像読取装置も本発明の他の一側面を構成する。   An image reading apparatus using the image reading illumination apparatus also constitutes another aspect of the present invention.

本発明によれば、読取位置がばらついても良いように光量が安定した照明領域(長尺領域の短辺方向(副走査方向))を確保することができる画像読取用照明装置及びそれを用いた画像読取装置提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the illuminating device for image reading which can ensure the illumination area | region (The short side direction (sub scanning direction) of a elongate area | region) where the light quantity was stabilized so that a reading position may vary, and it uses it. Image reading apparatus can be provided.

(a)は本発明の第1の実施形態に係る画像読取用照明装置の副走査断面図、(b)は反射板へ向けて第2の方向へ出射する原稿載置面から最も遠い光束中心が通過する導光体光束通過図、(c)は反射板へ向けて第2の方向へ出射する原稿載置面から最も近い光束中心が通過する導光体光束通過図である。(A) is a sub-scan sectional view of the image reading illumination device according to the first embodiment of the present invention, and (b) is the center of the light beam farthest from the document placing surface that emits in the second direction toward the reflector. FIG. 6C is a light guide beam passage diagram through which the center of the light beam closest to the document placement surface exiting in the second direction toward the reflecting plate passes. 本発明の実施形態に係る画像読取用照明装置を搭載した画像読取装置の概略構成図である。1 is a schematic configuration diagram of an image reading apparatus equipped with an image reading illumination device according to an embodiment of the present invention. 第1の実施形態に係る画像読取用照明装置の導光体断面図である。It is a light guide sectional view of the lighting device for image reading concerning a 1st embodiment. 第1の実施形態に係る画像読取用照明装置の導光体斜視図である。It is a light guide perspective view of the lighting device for image reading concerning a 1st embodiment. 第1の実施形態に係る画像読取用照明装置の副走査方向の照度分布プロファイルを示す図である。It is a figure which shows the illuminance distribution profile of the subscanning direction of the illuminating device for image reading which concerns on 1st Embodiment. 第2の実施形態に係る画像読取用照明装置の副走査断面図である。It is a sub-scanning sectional view of an image reading illumination device according to a second embodiment. 第3の実施形態に係る画像読取用照明装置の副走査断面図である。It is a sub-scanning sectional view of an image reading illumination device according to a third embodiment.

以下、本発明の好ましい実施形態を図面を用いて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

《第1の実施形態》
(画像読取装置)
図2は、本発明の実施形態に係る画像読取用照明装置を搭載した画像読取装置の概略構成図である。一体型走査光学系ユニット(以下「キャリッジ」とも称す)107は、原稿台ガラス(原稿台)102上に載置された原稿101を照明する画像読取用照明装置103を有する。更に、画像読取用照明装置103により照明された原稿102の画像を読取る読取手段(ラインセンサーもしくはイメージセンサー)105を有する。
<< First Embodiment >>
(Image reading device)
FIG. 2 is a schematic configuration diagram of an image reading apparatus equipped with the image reading illumination device according to the embodiment of the present invention. An integrated scanning optical system unit (hereinafter also referred to as “carriage”) 107 includes an image reading illumination device 103 that illuminates a document 101 placed on a document table glass (document table) 102. Further, a reading unit (line sensor or image sensor) 105 for reading an image of the original 102 illuminated by the image reading illumination device 103 is provided.

一体型走査光学系ユニット107は、更に原稿101からの光束を読取手段105に導く複数の折返しミラー104a〜104d、原稿101の画像を読取手段105面上に縮小結像させる結像レンズである縮小結像光学系106を有する。   The integrated scanning optical system unit 107 further includes a plurality of folding mirrors 104 a to 104 d that guide the light beam from the document 101 to the reading unit 105, and a reduction lens that forms an image of the document 101 on the surface of the reading unit 105. An imaging optical system 106 is included.

このように構成された一体型走査光学系ユニット107は、駆動手段としての駆動モータ(副走査モータ)108により図2に示す矢印A方向(副走査方向)に走査される。なお、一体型走査光学系ユニット107を構成する各要素は、その各要素の相対位置関係を変えずに原稿を走査するものである。   The integrated scanning optical system unit 107 configured in this way is scanned in the direction of arrow A (sub-scanning direction) shown in FIG. 2 by a driving motor (sub-scanning motor) 108 as a driving means. Each element constituting the integrated scanning optical system unit 107 scans a document without changing the relative positional relationship between the elements.

図2において、複数の折返しミラーとして、第1折返しミラー104a、第2折返しミラー104b、第3折返しミラー104c、そして第4折返しミラー104dが設けられる。各ミラーは、原稿101からの光束が第1折返しミラー104aから第2折返しミラー104bへ、第2折返しミラー104bから第3折返しミラー104cへ、第3折返しミラー104cから第4折返しミラー104dへ入射するよう夫々配置される。そして、第4折返しミラー104dへ入射した光束は結像光学系106に入射し、原稿101の画像が読取手段105の面上へ結像される。   In FIG. 2, a first folding mirror 104a, a second folding mirror 104b, a third folding mirror 104c, and a fourth folding mirror 104d are provided as a plurality of folding mirrors. In each mirror, the light flux from the original 101 is incident from the first folding mirror 104a to the second folding mirror 104b, from the second folding mirror 104b to the third folding mirror 104c, and from the third folding mirror 104c to the fourth folding mirror 104d. So that each is arranged. Then, the light beam incident on the fourth folding mirror 104 d enters the imaging optical system 106, and an image of the original 101 is formed on the surface of the reading unit 105.

このような構成において、読取手段105で読取られた原稿101の画像情報は電気信号として特定の画像処理部(不図示)に送られ、特定の信号処理を施された後に出力されるようになっている。なお、画像読取装置は、本装置を駆動するための電源部(不図示)を併せ持っている。   In such a configuration, the image information of the document 101 read by the reading unit 105 is sent as an electrical signal to a specific image processing unit (not shown), and is output after being subjected to specific signal processing. ing. The image reading apparatus also has a power supply unit (not shown) for driving the apparatus.

(画像読取用照明装置)
以下、本実施形態に係る画像読取用照明装置について、詳細に説明する。図1(a)は、本実施形態に係る画像読取用照明装置103(以下、照明装置103と略す)の副走査断面図である。照明装置103は、発光素子である白色のLED103aを主走査方向(画像読取用の原稿載置面における長尺領域の長辺方向)に複数並べたLED列を備える。照明装置103は、更に、基板103cと、導光体103bと、読取光軸に対し、導光体と略対称の位置に配置されている反射部材103dを備える。
(Image reading illumination device)
Hereinafter, the image reading illumination device according to the present embodiment will be described in detail. FIG. 1A is a sub-scan sectional view of an image reading illumination device 103 (hereinafter abbreviated as illumination device 103) according to the present embodiment. The illuminating device 103 includes an LED array in which a plurality of white LEDs 103a that are light emitting elements are arranged in the main scanning direction (the long side direction of the long region on the document placement surface for image reading). The illuminating device 103 further includes a substrate 103c, a light guide 103b, and a reflecting member 103d disposed at a position substantially symmetrical to the light guide with respect to the reading optical axis.

そして、複数のLED103aを一列に配列して形成したLED列を基板103c上の主走査方向に配置して、光源ユニット103eが構成される。また、導光体103bはプラスチックなどの光学合成樹脂製部材で構成され、反射部材103dは高反射アルミ部材で構成される。   A light source unit 103e is configured by arranging LED rows formed by arranging a plurality of LEDs 103a in a row in the main scanning direction on the substrate 103c. The light guide 103b is made of an optical synthetic resin member such as plastic, and the reflecting member 103d is made of a highly reflective aluminum member.

(導光体)
以下、照明装置103を構成する導光体103bについて、図3および図1で詳細に説明する。主走査方向に配列される光源の配列方向と直交する断面(副走査断面)内において、光源ユニット103eからの光束を、先ず入射面1より入射させる。そして、全反射側面2の間を導光させた後、全反射側面2の端部領域3を通過した光束の一部を、反射面4にて原稿面101がある第1の方向へ導光させる(図1(a))。
(Light guide)
Hereinafter, the light guide body 103b constituting the illumination device 103 will be described in detail with reference to FIGS. In a cross section (sub-scanning cross section) orthogonal to the arrangement direction of the light sources arranged in the main scanning direction, the light beam from the light source unit 103 e is first incident from the incident surface 1. Then, after light is guided between the total reflection side surfaces 2, a part of the light flux that has passed through the end region 3 of the total reflection side surface 2 is guided to the first direction in which the document surface 101 exists on the reflection surface 4. (FIG. 1A).

また、全反射側面2の端部領域3を通過した光束の一部で反射面4に向かわない光束を、読取光軸の反対側に配置されている反射部材103dがある第2の方向へ導光させる(図1(b)、図1(c))。このようにして、夫々導光された光束は、出射面5から第1の方向、第2の方向へ出射される。なお、反射部材103dは、後述するように、導光体103bの出射面5から第2の方向へ出射した光を第1の方向と対称的に原稿面に向けて反射するように設けられている。   Further, a part of the light beam that has passed through the end region 3 of the total reflection side surface 2 and does not face the reflection surface 4 is guided in the second direction in which the reflection member 103d disposed on the opposite side of the reading optical axis is present. It is made to emit light (FIG. 1 (b), FIG. 1 (c)). In this way, the light beams guided respectively are emitted from the emission surface 5 in the first direction and the second direction. As will be described later, the reflecting member 103d is provided so as to reflect the light emitted from the emission surface 5 of the light guide 103b in the second direction toward the document surface symmetrically with the first direction. Yes.

全反射側面2は、光源の配列方向と直交する断面(副走査断面)内で、入射面1から原稿面101に近い方向へ向かう光束を全反射させる全反射側面2aと、原稿面101から遠い方向へ向かう光束を全反射させる全反射側面2bと、を備える。導光体103bの入射面1から入射された光束の一部は、全反射側面2a、2bで複数回全反射される。   The total reflection side surface 2 includes a total reflection side surface 2a that totally reflects a light beam traveling in a direction close to the document surface 101 from the incident surface 1 within a cross section (sub-scanning cross section) orthogonal to the arrangement direction of the light sources, and is far from the document surface 101. And a total reflection side surface 2b that totally reflects the light flux directed in the direction. A part of the light beam incident from the incident surface 1 of the light guide 103b is totally reflected a plurality of times on the total reflection side surfaces 2a and 2b.

この全反射状態は、以下のようにほぼ置き換えられる。即ち、全反射側面2a、2bによって、入射面の高さWに関しては、全反射側面2a、2bの夫々の外側に複数個の鏡像光源が形成され、この鏡像光源からの光束が、各々の入射角で、全反射側面2の端部方向へ導光される。ここで、全反射の回数が増す毎に、より遠方の光源からの光が導光されることとなる。   This total reflection state is almost replaced as follows. That is, with respect to the height W of the incident surface by the total reflection side surfaces 2a and 2b, a plurality of mirror image light sources are formed on the outer sides of the total reflection side surfaces 2a and 2b. At the corner, the light is guided toward the end of the total reflection side surface 2. Here, each time the number of total reflections increases, light from a farther light source is guided.

このようにして、絞り位置と同様に光束が集光される位置が、全反射側面2の端部領域3として形成される。全反射側面2の端部領域3では、光源ユニット103eからの直接光(全反射側面2を介さない光)及び全反射光(全反射側面2を介し、全反射し集められた光)が、重なるように通過する。図3で、全反射側面2の端部領域3から所定距離離れた位置には、反射面4、及び出射面5が配置される。   In this way, the position where the light beam is condensed is formed as the end region 3 of the total reflection side surface 2 in the same manner as the stop position. In the end region 3 of the total reflection side surface 2, direct light (light that does not pass through the total reflection side surface 2) and total reflection light (light that is totally reflected and collected through the total reflection side surface 2) from the light source unit 103e, Pass through to overlap. In FIG. 3, the reflection surface 4 and the emission surface 5 are arranged at a position away from the end region 3 of the total reflection side surface 2 by a predetermined distance.

反射面4は、全反射側面2によって全反射した光の一部を偏向させ第1の方向に向かわせる(図1(a))。出射面5は、反射面4で反射され原稿面に向けて第1の方向へ向かう光を出射させると共に、入射面1から入射された光の一部及び全反射側面2によって全反射された光の一部を第2の方向へ出射させる(図1(b)、図1(c))。   The reflection surface 4 deflects a part of the light totally reflected by the total reflection side surface 2 and directs it in the first direction (FIG. 1A). The exit surface 5 emits light that is reflected by the reflecting surface 4 and travels in the first direction toward the document surface, and is also partially reflected by the entrance surface 1 and totally reflected by the total reflection side surface 2. Is emitted in the second direction (FIG. 1 (b), FIG. 1 (c)).

(導光体出射面の副走査方向における屈折力)
導光体103bの出射面5は、長尺領域の短辺方向を含み原稿載置面に直交する断面(副走査断面)において、外側に凸形状(正の屈折力を有する形状)に形成された非円弧形状の屈折力を備える。凸形状にすることで、集光効率を上げながら光束を必要範囲に収束させることが可能となるため、薄型化が可能となる。
(Refractive power in the sub-scanning direction of the light guide surface)
The light exit surface 5 of the light guide 103b is formed in a convex shape (a shape having a positive refractive power) on the outside in a cross section (sub-scanning cross section) that includes the short side direction of the long region and is orthogonal to the document placement surface. It has a non-arc-shaped refractive power. By forming the convex shape, the light flux can be converged to a necessary range while increasing the light collection efficiency, and thus the thickness can be reduced.

ここで、長尺領域の短辺方向を含み原稿載置面に直交する断面において、全反射側面を介して全反射した光束中心が第1の方向へ向けて出射する位置(図1(a))での屈折力をφ0とする。また、全反射側面を介さない光束中心(第2の方向へ出射する原稿載置面から最も遠い光束中心)が第2の方向へ向けて出射する位置(図1(b))での屈折力をφ1とする。また、全反射側面を介して全反射した光束中心(第2の方向へ出射する原稿載置面から最も近い光束中心)が第2の方向へ向けて出射する位置(図1(c))での屈折力をφ2とする。   Here, in the cross section including the short side direction of the long region and orthogonal to the document placement surface, the position at which the center of the light beam totally reflected through the total reflection side surface is emitted toward the first direction (FIG. 1A). ) Is Φ0. Further, the refractive power at the position (FIG. 1 (b)) where the light beam center (the light beam center farthest from the document placing surface that emits in the second direction) that does not pass through the total reflection side surface exits in the second direction. Is φ1. Further, at the position where the center of the light beam totally reflected through the total reflection side surface (the light beam center closest to the document placing surface that emits in the second direction) exits in the second direction (FIG. 1C). Let refracting power be φ2.

本実施形態では、後述する理由により、導光体103bの出射面5の屈折力が以下の式を満足するように、導光体103bの出射面5を非円弧形状とした。   In the present embodiment, for reasons that will be described later, the light exit surface 5 of the light guide 103b has a non-arc shape so that the refractive power of the light exit surface 5 of the light guide 103b satisfies the following expression.

φ1>φ2>φ0
このように非円弧とすることで、第1及び第2の方向へ出射する光束を原稿面での適正な照射位置にコントロールすることができる。
φ1>φ2> φ0
Thus, by setting it as a non-circular arc, the light beam radiate | emitted to the 1st and 2nd direction can be controlled to the appropriate irradiation position on a document surface.

(導光体出射面の主走査方向における屈折力)
図4に示すように、本実施形態においては、主走査方向の原稿面での角度特性を改善するために、即ち、主走査方向での照度ムラを改善するために、導光体103bの出射面5を主走査方向に屈折力を持たせるように構成している。具体的には、主走査方向に曲率を持たせたトーリック面領域を複数個所設けている。これにより、主走査方向に曲率を持たせた領域では、光束が、一旦収束したのちに、発散し、原稿101を照明することで、主走査方向の照度ムラを改善することができる。
(Refractive power in the main scanning direction of the light guide surface)
As shown in FIG. 4, in this embodiment, in order to improve the angle characteristics on the document surface in the main scanning direction, that is, to improve the illuminance unevenness in the main scanning direction, the light output from the light guide 103b. The surface 5 is configured to have refractive power in the main scanning direction. Specifically, a plurality of toric surface regions having a curvature in the main scanning direction are provided. As a result, in a region having a curvature in the main scanning direction, the light flux once converges and then diverges to illuminate the original 101, thereby improving illuminance unevenness in the main scanning direction.

(光量が安定した副走査方向の照明領域の確保)
光量が安定した副走査方向の照明領域の確保するためには、第1の方向と第2の方向から照射される光束によって構成される照度分布プロファイルが夫々、読取光軸おいて対称な形であると確保しやすい。このため、第1及び第2の方向の光束の照射位置をコントロールし、照度分布を構成しなければいけないが、特に第2の方向に向かう光束は、原稿面までの距離が遠く、また反射部材を介すために、第1の方向のプロファイルと略対称に構成することが難しい。
(Securing the illumination area in the sub-scanning direction with stable light intensity)
In order to secure an illumination area in the sub-scanning direction in which the amount of light is stable, the illuminance distribution profiles formed by the light beams irradiated from the first direction and the second direction are respectively symmetrical with respect to the reading optical axis. It is easy to secure if there is. For this reason, it is necessary to control the irradiation position of the light beams in the first and second directions to form the illuminance distribution. In particular, the light beam traveling in the second direction has a long distance to the document surface and is also a reflecting member. For this reason, it is difficult to configure the profile substantially symmetrically with the profile in the first direction.

このため、出射面5を非円弧形状にすることにより、第2の方向へ導光された光束の一部を出射する際に、レンズの球面収差を補正する効果と同様の効果を得て、光束の方向をコントロールすることが可能となる(図1(b)(c))。このことにより、照度分布プロファイルがそれぞれ、読取光軸おいて略対称な形となり、光量が安定した副走査方向の照明領域の確保することが可能となる。   For this reason, by making the emission surface 5 a non-arc shape, when emitting a part of the light beam guided in the second direction, an effect similar to the effect of correcting the spherical aberration of the lens is obtained, It becomes possible to control the direction of the light beam (FIGS. 1B and 1C). As a result, the illuminance distribution profile has a substantially symmetrical shape on the reading optical axis, and it is possible to secure an illumination area in the sub-scanning direction in which the light quantity is stable.

また、出射面5の非円弧形状は、主走査方向と直交する断面内(副走査断面内)において、非球面形状となっている。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、kを離心率、B、C、D、Eを各々非球面係数としたとき、以下の式で表すことができる。導光体103bは、プラスチックなどの光学合成樹脂製部材のため、一般的なプラスチック非球面レンズと同様な方法での加工が可能となる。   Further, the aspherical shape of the emission surface 5 is an aspherical shape in a cross section (sub-scanning cross section) orthogonal to the main scanning direction. The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the eccentricity, and B, C, D, and E are not The spherical coefficient can be expressed by the following formula. Since the light guide 103b is an optical synthetic resin member such as plastic, it can be processed in the same manner as a general plastic aspheric lens.

更に、その非球面形状は、一階微分が連続となるような形状、つまり、接線の傾きが連続的に変化する形状で構成されている。不連続な形状の場合、その領域に入射した光束は、急激に光束の向き変化させる領域となりコントロールが非常に困難である。また、このような光束は、原稿面に到達する有効な光束としてなりづらいため、導光体効率としても劣化する。   Furthermore, the aspherical shape is configured to have a shape in which the first-order differentiation is continuous, that is, a shape in which the tangent slope continuously changes. In the case of a discontinuous shape, the light beam incident on the region becomes a region where the direction of the light beam is suddenly changed, and it is very difficult to control. In addition, since such a light beam is difficult to be an effective light beam that reaches the document surface, the light guide efficiency also deteriorates.

本実施形態においては、主走査方向と直交する断面内において、以下のように出射面5の形状を特定した。即ち、全反射側面を介して全反射した光束中心が第2の方向へ向けて出射する位置での屈折力φ2(図1(c))を、全反射側面を介さない光束中心が出射する位置での屈折力φ1(図1(b))より弱くした。また、全反射側面を介して全反射した光束中心が第1の方向へ向けて出射する位置での屈折力φ0(図1(a))を、全反射側面を介して全反射した光束中心が第2の方向へ向けて出射する位置での屈折力φ2(図1(c))より弱くした。   In the present embodiment, the shape of the emission surface 5 is specified as follows in the cross section orthogonal to the main scanning direction. That is, the refractive power φ2 (FIG. 1C) at the position where the center of the light beam totally reflected through the total reflection side surface exits in the second direction is the position where the light beam center without the total reflection side surface exits. It was made weaker than the refractive power φ1 (FIG. 1B). Further, the refractive power φ0 (FIG. 1A) at the position where the center of the light beam totally reflected through the total reflection side surface exits in the first direction is changed to the center of the light beam totally reflected through the total reflection side surface. It was made weaker than the refractive power φ2 (FIG. 1C) at the position where the light is emitted in the second direction.

ここで、φ1は第2の方向に向かう原稿面から最も遠い光束中心が通過する位置での出射面5の屈折力に相当し、φ2は第2の方向に向かう原稿面から最も近い光束中心が通過する位置での出射面5の屈折力に相当する。   Here, φ1 corresponds to the refractive power of the exit surface 5 at the position where the light beam center farthest from the document surface in the second direction passes, and φ2 is the light beam center closest to the document surface in the second direction. This corresponds to the refractive power of the exit surface 5 at the passing position.

このようにした理由は、以下に示す通りである。即ち、全反射側面を介して全反射した光束中心が第2の方向へ向けて出射する場合(図1(c))は、より遠方の光源から出た光の像が出射面の後方で出射面により近い位置にできる。一方、全反射側面を介さない光束中心が出射する場合(図1(b))は、より近方の光源から出た光の像が出射面の後方で出射面からより遠い位置にできる。この位置のずれが大きいため、本実施形態では、ずれを小さくするように屈折力φ2を屈折力φ1より弱くしている(φ1>φ2)。   The reason for this is as follows. That is, when the center of the light beam totally reflected through the total reflection side surface is emitted in the second direction (FIG. 1C), an image of light emitted from a farther light source is emitted behind the emission surface. Can be closer to the surface. On the other hand, when the center of the light beam that does not pass through the total reflection side surface is emitted (FIG. 1B), the image of the light emitted from the nearer light source can be positioned farther from the emission surface behind the emission surface. Since this positional deviation is large, in this embodiment, the refractive power φ2 is made weaker than the refractive power φ1 so as to reduce the deviation (φ1> φ2).

また、出射面5より原稿面に至る第1の方向への光路長は、反射部材103dを介して出射面5より原稿面に至る第2の方向への光路長に比べて短い。このことから、照明域を無駄なく有効に照明するように、屈折力φ0を屈折力φ2より弱くしている(φ2>φ0)。   Further, the optical path length in the first direction from the exit surface 5 to the document surface is shorter than the optical path length in the second direction from the exit surface 5 to the document surface via the reflecting member 103d. Therefore, the refractive power φ0 is made weaker than the refractive power φ2 (φ2> φ0) so that the illumination area can be effectively illuminated without waste.

更に本件発明者は、鋭意種々のシミュレーションを行った結果、以下の条件式(1)を満足することがより好ましいことを認識した。
1.0<φ1/φ2<5.5 ・・・(1)
本実施形態において、主走査方向と直交する断面内において、屈折力φ1、屈折力φ2に関し、2つの別々の曲率半径の円弧を想定し、接線の傾きが連続的に変化できるように2つの円弧を接続した非円弧形状とする(図4)。具体的には、図1(b)(c)の第2の方向の夫々の通過位置(破線○で囲まれた部分6、7)での出射面の夫々の曲率半径は、R6=2.5mm、R7=5mmとされ、φ1=0.196、φ2=0.098となる。即ち、φ1/φ2=2.0で条件式(1)を達成している。
Furthermore, the present inventor has recognized that it is more preferable to satisfy the following conditional expression (1) as a result of diligent simulation.
1.0 <φ1 / φ2 <5.5 (1)
In the present embodiment, in the cross section orthogonal to the main scanning direction, regarding the refractive power φ1 and the refractive power φ2, two arcs of different radii of curvature are assumed and the two arcs can be changed continuously. Are connected to each other (FIG. 4). Specifically, the respective curvature radii of the exit surfaces at the respective passing positions in the second direction in FIGS. 1B and 1C (portions 6 and 7 surrounded by the broken line ◯) are R6 = 2. 5 mm, R7 = 5 mm, and φ1 = 0.196 and φ2 = 0.098. That is, conditional expression (1) is achieved with φ1 / φ2 = 2.0.

条件式(1)は、導光体103bから第2の方向へ出射する光束が通過する位置の出射面5の屈折力(パワー)を規定する式であり、(1)の条件の条件値を満たすことにより、出射面5での球面収差補正の効果を有効に利用することが可能となる。これにより、図5に示すように、第1の方向と第2の方向の照度分布プロファイルを略対称にすることができる。(1)の条件の条件値から外れると、光束に対する球面収差補正の効果が強すぎる、また弱すぎることにより、原稿面での照度分布プロファイルを略対称にすることができず、副走査方向の照明領域の確保が困難となる。   Conditional expression (1) is an expression that defines the refractive power (power) of the emission surface 5 at the position where the light beam emitted from the light guide 103b in the second direction passes, and the condition value of the condition of (1) is By satisfying this, it is possible to effectively use the effect of spherical aberration correction on the exit surface 5. Thereby, as shown in FIG. 5, the illuminance distribution profiles in the first direction and the second direction can be made substantially symmetrical. If the value deviates from the condition value of condition (1), the effect of spherical aberration correction on the light flux is too strong and too weak, so that the illuminance distribution profile on the document surface cannot be made substantially symmetrical, and the sub-scanning direction It is difficult to secure an illumination area.

(導光体の接続面)
図3で、全反射側面2aの端部位置3aは、出射面5と接続する接続面8との境界位置であり、全反射側面2bの端部位置3bは、反射面4と接続する接続面9との境界位置である。本実施形態では、全反射側面2の端部位置3a、3bから連続した曲線で外側に向かって広がるように接続されている。
(Connection surface of light guide)
In FIG. 3, the end position 3 a of the total reflection side surface 2 a is a boundary position between the emission surface 5 and the connection surface 8, and the end position 3 b of the total reflection side surface 2 b is the connection surface connected to the reflection surface 4. 9 is a boundary position. In this embodiment, it connects so that it may spread toward the outer side by the continuous curve from edge part position 3a, 3b of the total reflection side surface 2. As shown in FIG.

これにより、全反射側面2の端部領域3で、ある程度規制されて集められた光束が、その領域を抜けた後に、導光体によって光を遮ることなく、反射面4、及び出射面5に到達し、効率的に導光されることが可能となる。また、連続的に接続されることで、光学合成樹脂部材で、導光体を成形する場合に、成形が容易となる。   As a result, the light flux collected by being regulated to some extent in the end region 3 of the total reflection side surface 2 passes through the region, and then is blocked on the reflection surface 4 and the emission surface 5 without blocking light by the light guide. And can be guided efficiently. Moreover, when it connects continuously, when forming a light guide with an optical synthetic resin member, shaping | molding becomes easy.

更に、反射面4から、出射面5につなげる接続面10も、外側に向かって広がるように接続されている。こちらも同様に、出射面5へ向かう第2の方向の光束が、導光体によって光を遮ることなく、出射面5に到達し、効率的に導光されることが可能となる。   Further, the connection surface 10 connected from the reflection surface 4 to the emission surface 5 is also connected so as to spread outward. Similarly, the light beam in the second direction toward the exit surface 5 reaches the exit surface 5 without being blocked by the light guide, and can be efficiently guided.

(導光体の具体的構成)
図3に示すように、発光素子である白色のLED103aの高さをW、導光体103bの入射面1の高さをW、入射面の光入射軸方向に入射面1から全反射側面2の端部3までの距離をL1とする。また、入射面の光入射軸方向に全反射側面2の端部3から反射面4までの距離をL2とする。このとき、条件式(2)、(3)を満足するように構成している。
(Specific structure of light guide)
As shown in FIG. 3, the height of the white LED 103a which is a light emitting element is W L , the height of the incident surface 1 of the light guide 103b is W, and the total reflection side surface from the incident surface 1 in the light incident axis direction of the incident surface. The distance to the end 3 of 2 is L1. Further, the distance from the end 3 of the total reflection side surface 2 to the reflection surface 4 in the light incident axis direction of the incident surface is L2. At this time, it is configured to satisfy the conditional expressions (2) and (3).

<W ・・・(2)
0<W/(L1+L2)<0.15 ・・・(3)
本実施形態においては、具体的にはW=0.7mm、W=1.0mm、L1=16.0mm、L2=3.0mmで、W/(L+L2)=0.05であり、条件式(2)、(3)を達成している。
W L <W (2)
0 <W / (L1 + L2) <0.15 (3)
In this embodiment, specifically, W L = 0.7 mm, W = 1.0 mm, L1 = 16.0 mm, L2 = 3.0 mm, W / (L + L2) = 0.05, and the conditional expression (2) and (3) have been achieved.

条件式(2)は、発光素子である白色のLED103aの導光体に対する実装精度影響を規定する式である。条件式(2)を満たさない場合には、LED103aの実装精度を厳しくしないと、入射面1から漏れる光が多くなり、導光体103bへの光取り込み効率が劣化する。   Conditional expression (2) is an expression that defines the effect of mounting accuracy on the light guide of the white LED 103a that is a light emitting element. When the conditional expression (2) is not satisfied, if the mounting accuracy of the LED 103a is not strict, the amount of light leaking from the incident surface 1 increases, and the light capturing efficiency into the light guide 103b deteriorates.

条件式(3)は、導光体103bの反射面4、第2の方向に向かう光のうち、全反射側面2において全反射して集められる光の光量と全反射せずに集められる光の光量の比率を規定する式である。(3)の条件式を満たす範囲で、導光体103bの全反射側面2において全反射して集められる光と、全反射せずに集められる光が決まっている場合には、全反射により色々な角度の光を取り込める。   Conditional expression (3) is the amount of light collected by total reflection on the total reflection side surface 2 of the light directed to the reflection surface 4 of the light guide 103b and the second direction, and the light collected without total reflection. It is a formula that prescribes the ratio of the amount of light. When light that is collected by total reflection at the total reflection side surface 2 of the light guide body 103b and light that is collected without total reflection are determined within a range that satisfies the conditional expression (3), various kinds of light are collected due to total reflection. Capable of capturing light at any angle.

そのため、その後の反射面4、及び第1の方向、第2の方向へ導光され、出射した光束が、原稿101を照射する際に、主走査方向と直交する断面内において、色々な角度から照射することが可能となる。これによって、光沢原稿などの原稿を読み取る際にも、精度良く画像を読み取ることができる。   For this reason, the subsequent reflecting surface 4 and the emitted light beam guided and emitted in the first direction and the second direction are irradiated from various angles within a cross section orthogonal to the main scanning direction when the original 101 is irradiated. Irradiation is possible. As a result, an image can be read with high accuracy even when reading a manuscript such as a glossy manuscript.

しかし、(3)の条件の条件値から外れると、全反射側面2によって全反射される光よりも全反射を介さない発光素子103aからの直接光が、全反射側面2の端部領域3に到達する光が多くなる。そのために、原稿を照射する光のうち、ある特定の角度の照射光が多くなり、光沢原稿などの原稿を読み取る際に、精度良く画像を読み取ることが難しくなる。   However, if the condition value of the condition (3) is deviated, the direct light from the light emitting element 103a that does not undergo total reflection rather than the light that is totally reflected by the total reflection side surface 2 enters the end region 3 of the total reflection side surface 2. More light reaches. For this reason, of the light that irradiates the document, the amount of light irradiated at a specific angle increases, and it becomes difficult to read an image with high accuracy when reading a document such as a glossy document.

更に、図3に示すように、副走査断面内で、導光体103bの原稿面101に近い全反射側面2aと光入射軸と成す角をθ、原稿面101から遠い全反射側面2bと光入射軸と成す角をθ、としたとき、条件式(4)も満足するように構成している。 Further, as shown in FIG. 3, in the sub-scan section, the angle between the total reflection side surface 2a near the document surface 101 of the light guide 103b and the light incident axis is θ 1 , and the total reflection side surface 2b far from the document surface 101 When the angle formed with the light incident axis is θ 2 , conditional expression (4) is also satisfied.

0<((L1tanθ)+(L1tanθ))/(L1+L2)<0.13 ・・・(4)
本実施形態においては、具体的には、θ=4.1°、θ=0°で、((L1tanθ)+(L1tanθ))/(L1+L2)=0.03であり、条件式(4)を達成している。
0 <((L1 tan θ 1 ) + (L 1 tan θ 2 )) / (L 1 + L 2) <0.13 (4)
Specifically, in this embodiment, θ 1 = 4.1 °, θ 2 = 0 °, ((L1 tan θ 1 ) + (L1 tan θ 2 )) / (L1 + L2) = 0.03, and the conditional expression (4) has been achieved.

条件式(4)は、条件式(3)と同様に、導光体103bの反射面4、第2の方向へ向かう光束のうち、全反射側面2において全反射して集められる光の光量と全反射せずに集められる光の光量の比率を規定する式である。条件式(3)と異なる点は、入射面1の高さWによる規定ではなく、全反射側面12が広がる角度による規定であり、効果は同様である。   Conditional expression (4) is similar to conditional expression (3) in that the amount of light collected and reflected by the total reflection side surface 2 out of the light flux toward the reflecting surface 4 and the second direction of the light guide 103b. It is an equation that defines the ratio of the amount of light collected without being totally reflected. The difference from conditional expression (3) is not the definition based on the height W of the incident surface 1 but the definition based on the angle at which the total reflection side surface 12 spreads, and the effect is the same.

(4)の条件式を満たす範囲で、導光体の全反射側面2において全反射して集められる光と、全反射せずに集められる光が決まっている場合には、全反射により色々な角度の光を取り込める。そのため、その後の反射面4、及び第1の方向、第2方向へ導光され、出射した光束が、原稿101を照射する際に、主走査方向と直交する断面内において、色々な角度から照射することが可能となる。   In the range satisfying the conditional expression (4), when the light that is collected by total reflection at the total reflection side surface 2 of the light guide and the light that is collected without being totally reflected are determined, there are various kinds of light depending on the total reflection. Capture the light of the angle. For this reason, the subsequent reflecting surface 4 and the emitted light beam guided in the first direction and the second direction are irradiated from various angles within the cross section orthogonal to the main scanning direction when irradiating the document 101. It becomes possible to do.

これによって、光沢原稿などの原稿を読み取る際にも、精度良く画像を読み取ることができるが、(4)の条件の条件値から外れると、精度良く画像を読み取ることが難しくなる。   As a result, an image can be read with high accuracy when reading a manuscript such as a glossy original, but if it deviates from the condition value of the condition (4), it becomes difficult to read the image with high accuracy.

また、図3に示すように、主走査方向と直交する断面内において、導光体103bの反射面4から第1の方向へ向かった光束が出射する出射面までの距離をL3とする。そして、入射面の光入射軸方向に全反射側面2の端部3から第2の方向へ向かった光束が出射する出射面までの距離をL4とする。このとき、条件式(5)、(6)、(7)を満たすように構成している。   Further, as shown in FIG. 3, in the cross section orthogonal to the main scanning direction, the distance from the reflecting surface 4 of the light guide 103b to the emitting surface from which the light beam traveling in the first direction is emitted is L3. The distance from the end 3 of the total reflection side surface 2 in the light incident axis direction of the incident surface to the exit surface from which the light beam traveling in the second direction exits is L4. At this time, it is configured to satisfy the conditional expressions (5), (6), and (7).

0.15<L2/L1<0.8 ・・・(5)
0.5<L3/L2<1.5 ・・・(6)
1.2<L4/L2<2.5 ・・・(7)
本実施形態においては、具体的には、L3=3.4mm、L4=6.3mmで、L2/L1=0.19、L3/L2=1.13、L4/L2=2.1であり、条件式(5)、(6)、(7)を達成している。
0.15 <L2 / L1 <0.8 (5)
0.5 <L3 / L2 <1.5 (6)
1.2 <L4 / L2 <2.5 (7)
In the present embodiment, specifically, L3 = 3.4 mm, L4 = 6.3 mm, L2 / L1 = 0.19, L3 / L2 = 1.13, L4 / L2 = 2.1, Conditional expressions (5), (6), and (7) are achieved.

以下、条件式(5)、(6)、(7)について説明する。条件式(5)は、入射面の光入射軸方向に導光体103bの入射面1から全反射側面2の端部3までの距離と、入射面の光入射軸方向に導光体103bの全反射側面2の端部3から反射面4までの距離の比率を規定している。この条件式(5)の範囲を満たすことで、反射面4を効果的に使用することができる。   Hereinafter, conditional expressions (5), (6), and (7) will be described. Conditional expression (5) indicates that the distance from the incident surface 1 of the light guide body 103b to the end 3 of the total reflection side surface 2 in the light incident axis direction of the incident surface and the light guide body 103b in the light incident axis direction of the incident surface. The ratio of the distance from the end 3 of the total reflection side surface 2 to the reflection surface 4 is defined. By satisfying the range of this conditional expression (5), the reflecting surface 4 can be used effectively.

条件式(5)の下限値を超えてしまうと、導光体103bの全反射側面2の端部3から反射面4までの距離が近づきすぎてしまう。そのため、全反射側面2の端部領域3を通過した光束が、あまり分離されていない状態のまま反射面4に到達してしまうために、夫々の光に対し、反射面4を効果的に使用することができない。また、条件式(5)の上限値を超えてしまうと、全反射側面2の端部領域3を通過した光束を有効に使用するために、反射面4が大型化してしまう。   If the lower limit value of conditional expression (5) is exceeded, the distance from the end 3 of the total reflection side surface 2 of the light guide 103b to the reflection surface 4 becomes too close. For this reason, since the light beam that has passed through the end region 3 of the total reflection side surface 2 reaches the reflection surface 4 in a state where it is not so separated, the reflection surface 4 is effectively used for each light. Can not do it. If the upper limit of conditional expression (5) is exceeded, the reflecting surface 4 will be enlarged in order to effectively use the light beam that has passed through the end region 3 of the total reflection side surface 2.

条件式(6)は、入射面の光入射軸方向に導光体103bの全反射側面2の端部3から反射面4までの距離と、反射面4から第1の方向へ向かった光束が出射する出射面までの距離の比率を規定している。この条件式の範囲を満たすことで、出射面5を効率的に使用することができる。   Conditional expression (6) is that the distance from the end 3 of the total reflection side surface 2 of the light guide 103b to the reflection surface 4 in the light incident axis direction of the incident surface, and the light flux from the reflection surface 4 toward the first direction. The ratio of the distance to the outgoing surface is defined. By satisfying the range of this conditional expression, the emission surface 5 can be used efficiently.

条件式(6)の下限値を超えてしまうと、導光体103bの反射面4から出射面5までの距離が近づきすぎてしまうために、反射面4を通過した光束が、あまり分離されていない状態のまま出射面5に到達してしまう。そのために、夫々の光に対し、出射面5を効果的に使用することができない。また、条件式(4)の上限値を超えてしまうと、反射面4で反射された全ての光束を有効に使用するために、反射面4が大型化してしまう。   If the lower limit value of conditional expression (6) is exceeded, the distance from the reflecting surface 4 to the emitting surface 5 of the light guide 103b becomes too close, so that the light flux that has passed through the reflecting surface 4 is not so separated. It will arrive at the emission surface 5 in a state where it is not present. Therefore, the exit surface 5 cannot be used effectively for each light. If the upper limit value of conditional expression (4) is exceeded, the reflecting surface 4 becomes large in order to effectively use all the light beams reflected by the reflecting surface 4.

条件式(7)は、入射面の光入射軸方向に導光体103bの全反射側面2の端部3から反射面4までの距離と、入射面の光入射軸方向に導光体103bの全反射側面2の端部3から第2の方向へ向かった光束が出射する出射面までの距離の比率を規定している。この条件式の範囲を満たすことで、第2の方向へ向かった光束の出射面を効率的に使用することができる。   Conditional expression (7) satisfies the distance from the end 3 of the total reflection side surface 2 of the light guide body 103b to the reflection surface 4 in the light incident axis direction of the incident surface and the light guide body 103b in the light incident axis direction of the incident surface. The ratio of the distance from the end portion 3 of the total reflection side surface 2 to the exit surface from which the light beam traveling in the second direction exits is defined. By satisfying the range of this conditional expression, the light exit surface of the light beam directed in the second direction can be used efficiently.

条件式(7)の下限値を超えてしまうと、導光体103bの反射面14から第2の方向へ向かった光束が出射する出射面までの距離が近づきすぎてしまう。そのため、反射面4に入射する光束と第2の方向へ向かった光束が出射する出射面に入射する光束があまり分離できていない状態で入射する。このために、夫々の光に対し、反射面4及び第2の方向へ向かった光束が出射する出射面を効果的に使用することができない。また、条件式(7)の上限値を超えてしまうと、第2の方向へ向かった光束が出射する出射面に入射された全ての光束を有効に使用するために、出射面5が大型化してしまう。   If the lower limit value of conditional expression (7) is exceeded, the distance from the reflecting surface 14 of the light guide 103b to the exit surface from which the light beam traveling in the second direction exits becomes too close. For this reason, the light beam incident on the reflecting surface 4 and the light beam incident on the exit surface from which the light beam traveling in the second direction is emitted are incident in a state where they are not so separated. For this reason, it is not possible to effectively use the reflection surface 4 and the emission surface from which the light beam directed in the second direction is emitted for each light. If the upper limit of conditional expression (7) is exceeded, the exit surface 5 becomes larger in order to effectively use all the light beams incident on the exit surface from which the light beam directed in the second direction exits. End up.

(反射部材)
図2に示すように、導光体103bの第2の方向から出射された光束は、読取光軸において略対称の位置に配置された反射部材103dへ入射される。入射された光は、この反射部材103dによって、反射され原稿101へ照射される。本実施形態1では、直線形状となっているが、主走査方向と直交する断面内において、折り曲げやパワーを有する曲面形状となっても良い。
(Reflective member)
As shown in FIG. 2, the light beam emitted from the second direction of the light guide 103b is incident on the reflecting member 103d disposed at a substantially symmetrical position on the reading optical axis. The incident light is reflected by the reflecting member 103d and is applied to the document 101. In the first embodiment, the shape is a straight line, but it may be a curved shape having a bend or power in a cross section orthogonal to the main scanning direction.

《第2の実施形態》
図6に、本発明の第2の実施形態の画像読取用照明装置の副走査断面図を示す。本実施形態では、第1の実施形態と異なり、出射面5の形状を非球面形状とし、1階微分及び2階微分で連続となるような構成とし同等の効果を得ている。具体的には、放物面形状であり、近軸曲率半径R=2.57mm、離心率k=−1としている。また、φ1=0.25、φ2=0.05、φ1/φ2=5.0であり、条件式(1)を達成している。
<< Second Embodiment >>
FIG. 6 is a sub-scan sectional view of the image reading illumination device according to the second embodiment of the present invention. In the present embodiment, unlike the first embodiment, the output surface 5 has an aspherical shape and is configured to be continuous in the first and second derivatives, thereby obtaining the same effect. Specifically, it has a paraboloid shape, a paraxial radius of curvature R = 2.57 mm, and an eccentricity k = −1. Further, φ1 = 0.25, φ2 = 0.05, and φ1 / φ2 = 5.0, and the conditional expression (1) is achieved.

また、W=0.9mm、W=0.95mm、L1=16mm、L2=3.4mm、θ=3.8°、θ=0°で、W/(L+L2)=0.05、((L1tanθ)+(L1tanθ))/(L1+L2)=0.05である。これにより、条件式(2)、(3)、(4)を達成している。 W L = 0.9 mm, W = 0.95 mm, L1 = 16 mm, L2 = 3.4 mm, θ 1 = 3.8 °, θ 2 = 0 °, W / (L + L2) = 0.05, It is ((L1 tan θ 1 ) + (L 1 tan θ 2 )) / (L 1 + L 2) = 0.05. Thereby, conditional expressions (2), (3), and (4) are achieved.

更に、L3=2.75mm、L4=5.7mmで、L2/L1=0.21、L3/L2=0.81、L4/L2=1.68であり、条件式(5)、(6)、(7)も達成している。   Further, L3 = 2.75 mm, L4 = 5.7 mm, L2 / L1 = 0.21, L3 / L2 = 0.81, L4 / L2 = 1.68, and conditional expressions (5), (6) (7) has also been achieved.

《第3の実施形態》
図7に、本発明の第3の実施形態の画像読取用照明装置の副走査断面図を示す。なお、画像読取装置としては、第1の実施形態と同様であるため、説明は省略する。本実施形態では、第1の実施形態、第2の実施形態と異なり、更なる主走査方向の照度ムラ改善のために、出射面25に化学腐食(エッチング)であるシボ加工による拡散パターンも併せて構成している。このため、拡散パターンによる光量低下が発生するために、出射面25の屈折力(パワー)を最適にし、反射部材203dの配置位置を最適にすることで、第1の実施形態、第2の実施形態と同等の効果を得ている。
<< Third Embodiment >>
FIG. 7 is a sub-scan sectional view of an image reading illumination device according to the third embodiment of the present invention. Since the image reading apparatus is the same as that of the first embodiment, description thereof is omitted. In the present embodiment, unlike the first embodiment and the second embodiment, in order to further improve the illuminance unevenness in the main scanning direction, a diffusion pattern by embossing that is chemical corrosion (etching) is also added to the emission surface 25. Is configured. For this reason, in order to reduce the amount of light due to the diffusion pattern, the refractive power (power) of the emission surface 25 is optimized, and the arrangement position of the reflecting member 203d is optimized, so that the first embodiment and the second implementation. The effect equivalent to the form is obtained.

本実施形態において、具体的な構成は、第2の実施形態と同様に1階微分及び2階微分で連続となるような非球面形状であり、近軸曲率半径R=3.33mm、離心率k=−1としている。また、φ1=0.33、φ2=0.06、φ1/φ2=5.33であり、条件式(1)を達成している。   In the present embodiment, the specific configuration is an aspherical shape that is continuous in the first and second derivatives as in the second embodiment, the paraxial radius of curvature R = 3.33 mm, and the eccentricity. k = −1. Further, φ1 = 0.33, φ2 = 0.06, φ1 / φ2 = 5.33, and the conditional expression (1) is achieved.

また、W=0.7mm、W=0.75mm、L1=16mm、L2=3mm、θ=4.5°、θ=0°で、W/(L+L2)=0.04、((L1tanθ)+(L1tanθ))/(L1+L2)=0.07である。これにより、条件式(2)、(3)、(4)を達成している。更に、L3=2.5mm、L4=5.8mmで、L2/L1=0.19、L3/L2=0.83、L4/L2=1.93であり、条件式(5)、(6)、(7)も達成している。 In addition, W L = 0.7 mm, W = 0.75 mm, L1 = 16 mm, L2 = 3 mm, θ 1 = 4.5 °, θ 2 = 0 °, and W / (L + L2) = 0.04, (( L1 tan [theta] 1 ) + (L1 tan [theta] 2 )) / (L1 + L2) = 0.07. Thereby, conditional expressions (2), (3), and (4) are achieved. Further, L3 = 2.5 mm, L4 = 5.8 mm, L2 / L1 = 0.19, L3 / L2 = 0.83, L4 / L2 = 1.93, and conditional expressions (5), (6) (7) has also been achieved.

(変形例1)
上述した実施形態においては、原稿面の画像を固定し、読取手段および結像光学系を原稿面に平行に変位させる画像読取装置への適用を記載したが、本発明はこれに限られない。即ち、読取手段および結像光学系を固定し、原稿面の画像を変位させる画像読取装置にも適用できる。
(Modification 1)
In the above-described embodiment, the application to the image reading apparatus in which the image on the document surface is fixed and the reading unit and the imaging optical system are displaced in parallel to the document surface is described, but the present invention is not limited to this. That is, the present invention can also be applied to an image reading apparatus that fixes the reading means and the imaging optical system and displaces the image on the original surface.

(変形例2)
なお、発光素子として、画像読取用の原稿載置面における長尺領域の長辺方向(主走査方向)と同方向に白色LEDを複数個配列させたが、キセノンランプなどの単一の線状光源を発光素子として用いることも可能である。
(Modification 2)
As the light emitting element, a plurality of white LEDs are arranged in the same direction as the long side direction (main scanning direction) of the long region on the document reading surface for image reading, but a single linear shape such as a xenon lamp is used. It is also possible to use a light source as a light emitting element.

1・・入射面、4・・反射面、5・・出射面、103a・・白色のLED(発光素子)、103b・・導光体、103d・・反射部材 1 .. Incident surface, 4 .. Reflective surface, 5 .. Outgoing surface, 103 a ..White LED (light emitting element), 103 b .. Light guide, 103 d .. Reflective member

Claims (15)

発光素子を画像読取用の原稿載置面における長尺領域の長辺方向と同方向に配列した光源ユニットと、
前記光源ユニットからの光を入射する入射面と、
前記入射面から入射された光の一部を全反射する全反射側面と、
前記全反射側面によって全反射した光の一部を偏向させ第1の方向に向かわせる反射面と、
前記反射面で反射され原稿面に向けて前記第1の方向へ向かう光を出射させると共に、前記入射面から入射された光の一部及び前記全反射側面によって全反射された光の一部を第2の方向へ出射させる出射面と、
を備える導光体と、
前記導光体の前記出射面から前記第2の方向へ出射した光を前記第1の方向と対称的に前記原稿面に向けて反射する反射部材と、
を有する画像読取用照明装置であって、
前記導光体の前記出射面が、前記長尺領域の短辺方向を含み原稿載置面に直交する断面において正の屈折力を備え、前記全反射側面を介して全反射した光束中心が前記第2の方向へ向けて出射する位置での屈折力を、前記全反射側面を介さない光束中心が前記第2の方向へ向けて出射する位置での屈折力より弱くしたことを特徴とする画像読取用照明装置。
A light source unit in which light emitting elements are arranged in the same direction as the long side direction of the long region on the document placement surface for image reading;
An incident surface on which light from the light source unit is incident;
A total reflection side surface that totally reflects a part of the light incident from the incident surface;
A reflecting surface for deflecting a part of the light totally reflected by the total reflection side surface and directing the light in a first direction;
The light reflected from the reflecting surface and emitted toward the first direction toward the document surface is emitted, and a part of the light incident from the incident surface and a part of the light totally reflected by the total reflection side surface are emitted. An exit surface for exiting in a second direction;
A light guide comprising:
A reflecting member that reflects light emitted from the emission surface of the light guide in the second direction toward the document surface symmetrically with the first direction;
An image reading illumination device having
The exit surface of the light guide has a positive refractive power in a cross section including the short side direction of the long region and perpendicular to the document placing surface, and the center of the light beam totally reflected through the total reflection side surface is An image in which the refractive power at the position where the light is emitted toward the second direction is weaker than the refractive power at the position where the center of the light beam not passing through the total reflection side surface is emitted toward the second direction. Reading illumination device.
前記長尺領域の短辺方向を含み原稿載置面に直交する断面において、前記全反射側面を介して全反射した光束中心が前記第1の方向へ向けて出射する位置での屈折力を、前記全反射側面を介して全反射した光束中心が前記第2の方向へ向けて出射する位置での屈折力より弱くしたことを特徴とする請求項1に記載の画像読取用照明装置。   In a cross section including the short side direction of the long region and perpendicular to the document placement surface, the refractive power at the position where the center of the light beam totally reflected through the total reflection side surface exits in the first direction, 2. The illumination device for image reading according to claim 1, wherein the center of the light beam totally reflected through the total reflection side surface is weaker than a refractive power at a position where the light beam is emitted toward the second direction. 前記出射面は、非球面形状であることを特徴とする請求項1または2に記載の画像読取用照明装置。   The illumination device for image reading according to claim 1, wherein the emission surface has an aspherical shape. 前記出射面は、一階微分が連続となる非球面形状であることを特徴とする請求項1または2に記載の画像読取用照明装置。   The illumination device for image reading according to claim 1, wherein the exit surface has an aspherical shape in which first-order differentiation is continuous. 前記長尺領域の短辺方向を含み原稿載置面に直交する断面において、前記全反射側面を介さない光束中心として前記第2の方向へ出射する前記原稿載置面から最も遠い光束中心が出射する位置での前記出射面の屈折力をφ1、前記全反射側面を介して全反射した光束中心として前記第2の方向へ出射する前記原稿載置面から最も近い光束中心が通過する位置での前記出射面の屈折力をφ2とすると、
1.0<φ1/φ2<5.5
の条件を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の画像読取用照明装置。
In a cross section that includes the short side direction of the long region and is orthogonal to the document placement surface, the center of the light beam that is farthest from the document placement surface that emits in the second direction is emitted as the light flux center that does not pass through the total reflection side surface. The refractive power of the exit surface at the position where the light is reflected is φ1, and the center of the light beam that is closest to the document placement surface that exits in the second direction as the center of the light beam totally reflected through the total reflection side surface passes. When the refractive power of the exit surface is φ2,
1.0 <φ1 / φ2 <5.5
5. The image reading illumination device according to claim 1, wherein the following condition is satisfied.
前記長尺領域の短辺方向を含み原稿載置面に直交する断面において、前記発光素子の高さをW、前記導光体の前記入射面の高さをW、前記入射面から前記全反射側面の端部までの距離をL1、前記全反射側面の端部から前記反射面までの距離をL2とすると、
<W
0<W/(L1+L2)<0.15
の条件を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の画像読取用照明装置
In a cross section including the short side direction of the long region and orthogonal to the document placement surface, the height of the light emitting element is W L , the height of the incident surface of the light guide is W, and When the distance from the end of the reflection side surface is L1, and the distance from the end of the total reflection side surface to the reflection surface is L2,
W L <W
0 <W / (L1 + L2) <0.15
The image reading illumination device according to claim 1, wherein the following condition is satisfied:
前記長尺領域の短辺方向を含み原稿載置面に直交する断面において、前記導光体の原稿面に近い前記全反射側面と光入射軸と成す角をθ、原稿面から遠い前記全反射側面と前記光入射軸と成す角をθ、とすると、
0<((L1tanθ)+(L1tanθ))/(L1+L2)<0.13
の条件を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の画像読取用照明装置
In a cross section including the short side direction of the long region and orthogonal to the document placement surface, an angle formed by the total reflection side surface close to the document surface of the light guide and the light incident axis is θ 1 , and the total distance from the document surface is If the angle between the reflection side surface and the light incident axis is θ 2 ,
0 <((L1 tan θ 1 ) + (L 1 tan θ 2 )) / (L 1 + L 2) <0.13
The image reading illumination device according to claim 1, wherein the following condition is satisfied:
前記長尺領域の短辺方向を含み原稿載置面に直交する断面において、前記導光体の前記反射面から前記第1の方向へ向けて出射する前記出射面の位置までの距離をL3、前記導光体の前記入射面の光入射軸方向に前記導光体の前記全反射側面の端部から前記第2の方向へ向けて出射する前記出射面の位置までの距離をL4とすると、
0.15<L2/L1<0.8
0.5<L3/L2<1.5
1.2<L4/L2<2.5
の条件を満たすことを特徴とする請求項1乃至7のいずれか1項に記載の画像読取用照明装置。
In a cross section that includes the short side direction of the long region and is orthogonal to the document placement surface, a distance from the reflecting surface of the light guide to the position of the emitting surface that emits in the first direction is L3, When the distance from the end of the total reflection side surface of the light guide to the second direction in the light incident axis direction of the light entrance of the light guide toward the second direction is L4,
0.15 <L2 / L1 <0.8
0.5 <L3 / L2 <1.5
1.2 <L4 / L2 <2.5
The illumination device for image reading according to claim 1, wherein the following condition is satisfied.
前記導光体の前記出射面は、前記長尺領域の長辺方向で曲率を持たせたトーリック面領域を複数個所設けることを特徴とする請求項1乃至8のいずれか1項に記載の画像読取用照明装置。   9. The image according to claim 1, wherein a plurality of toric surface regions having a curvature in a long side direction of the long region are provided on the emission surface of the light guide. Reading illumination device. 前記導光体の前記全反射側面の端部から、前記導光体の前記出射面および前記反射面につながる面は、前記長尺領域の短辺方向で、前記全反射側面の端部領域を通過し、前記反射面および前記出射面に向かう光束を規制しないように、前記全反射側面の端部から連続した曲線で外側に向けて接続している面であることを特徴とする請求項1乃至9のいずれか1項に画像読取用照明装置。   The surface connected from the end of the total reflection side surface of the light guide to the emission surface and the reflection surface of the light guide is in the short side direction of the long region, and the end region of the total reflection side surface is 2. A surface connected to the outside by a continuous curve from an end portion of the total reflection side surface so as not to restrict a light beam that passes through and is directed to the reflection surface and the emission surface. 10. An illumination device for image reading according to any one of items 9 to 9. 前記導光体の前記反射面から前記出射面につながる面は、前記長尺領域の短辺方向で、前記全反射側面の端部領域を通過し、前記出射面に向かう光束を規制しないように、外側に向けて接続している面であることを特徴とする請求項1乃至10のいずれか1項に記載の画像読取用照明装置。   The surface of the light guide that is connected to the light exit surface from the reflective surface passes through the end region of the total reflection side surface in the short side direction of the long region so as not to restrict the light flux toward the light exit surface. The illumination device for image reading according to any one of claims 1 to 10, wherein the illumination device is a surface connected to the outside. 請求項1乃至11のいずれか1項に記載の画像読取用照明装置と、原稿台と、読取手段と、原稿面の画像を前記読取手段に結像させる結像光学系と、を有することを特徴とする画像読取装置。   An illumination apparatus for reading an image according to any one of claims 1 to 11, a document table, a reading unit, and an imaging optical system that forms an image on a document surface on the reading unit. A characteristic image reading apparatus. 前記結像光学系は、前記原稿面の画像を前記読取手段に縮小結像させる縮小結像光学系であることを特徴とする請求項12に記載の画像読取装置。   The image reading apparatus according to claim 12, wherein the image forming optical system is a reduced image forming optical system that forms an image on the original surface on the reading unit. 前記原稿面の画像を固定し、前記読取手段および前記結像光学系を前記原稿面に平行に変位させることを特徴とする請求項12または13に記載の画像読取装置。   14. The image reading apparatus according to claim 12, wherein an image on the original surface is fixed, and the reading unit and the imaging optical system are displaced in parallel to the original surface. 前記読取手段および前記結像光学系を固定し、前記原稿面の画像を変位させることを特徴とする請求項12または13に記載の画像読取装置。   The image reading apparatus according to claim 12, wherein the reading unit and the imaging optical system are fixed and an image on the document surface is displaced.
JP2012255275A 2012-11-21 2012-11-21 Illumination apparatus and image reading apparatus including the same Active JP6128811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255275A JP6128811B2 (en) 2012-11-21 2012-11-21 Illumination apparatus and image reading apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255275A JP6128811B2 (en) 2012-11-21 2012-11-21 Illumination apparatus and image reading apparatus including the same

Publications (3)

Publication Number Publication Date
JP2014103588A true JP2014103588A (en) 2014-06-05
JP2014103588A5 JP2014103588A5 (en) 2015-12-24
JP6128811B2 JP6128811B2 (en) 2017-05-17

Family

ID=51025708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255275A Active JP6128811B2 (en) 2012-11-21 2012-11-21 Illumination apparatus and image reading apparatus including the same

Country Status (1)

Country Link
JP (1) JP6128811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296596A (en) * 2016-07-27 2017-01-04 扬州大学 Based on the some symmetrical feature fossil threedimensional model local deformation restoration methods to neighborhood orthogonalization algorithm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199367A (en) * 1992-01-22 1993-08-06 Sharp Corp Light source device
JP2006067551A (en) * 2004-07-29 2006-03-09 Ricoh Co Ltd Original lighting system, image scanner, and image forming apparatus
JP2008177994A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Image sensor
JP2009031423A (en) * 2007-07-25 2009-02-12 Stanley Electric Co Ltd Light source device for reading original
JP2009302646A (en) * 2008-06-10 2009-12-24 Nippon Sheet Glass Co Ltd Rod-shaped light guide and image reading device
JP2010219600A (en) * 2009-03-13 2010-09-30 Ricoh Co Ltd Illumination device, image reader and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199367A (en) * 1992-01-22 1993-08-06 Sharp Corp Light source device
JP2006067551A (en) * 2004-07-29 2006-03-09 Ricoh Co Ltd Original lighting system, image scanner, and image forming apparatus
JP2008177994A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Image sensor
JP2009031423A (en) * 2007-07-25 2009-02-12 Stanley Electric Co Ltd Light source device for reading original
JP2009302646A (en) * 2008-06-10 2009-12-24 Nippon Sheet Glass Co Ltd Rod-shaped light guide and image reading device
JP2010219600A (en) * 2009-03-13 2010-09-30 Ricoh Co Ltd Illumination device, image reader and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296596A (en) * 2016-07-27 2017-01-04 扬州大学 Based on the some symmetrical feature fossil threedimensional model local deformation restoration methods to neighborhood orthogonalization algorithm
CN106296596B (en) * 2016-07-27 2019-05-21 扬州大学 Based on point to the symmetrical feature fossil threedimensional model local deformation restoration methods of neighborhood orthogonalization algorithm

Also Published As

Publication number Publication date
JP6128811B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
KR101392519B1 (en) Light source apparatus
JP5100278B2 (en) Light guiding optical system, document illumination device using the same, and image reading device using the same
US8830542B2 (en) Illumination apparatus and image reading apparatus
US8167475B2 (en) Linear lighting apparatus and image reader using the same
JP5995459B2 (en) Light guide, illumination device, and image reading device
JP5836723B2 (en) Light guide, illumination device, and image reading device
JP2008216409A (en) Light guide body, and two-branch linear light source device
KR101130153B1 (en) Linear light source having light guide with tapered saw tooth structures apparatus
JP2010277070A (en) Illuminator, and spectral apparatus and image reading apparatus using the same
JP5915639B2 (en) Light guide, light guide device and image reading device
US9277082B2 (en) Image reading apparatus
US9348083B2 (en) Light guiding unit, and light illuminating device and image reading apparatus using the same
US20160212294A1 (en) Light guide, illuminating device, and image reading apparatus
JP6129602B2 (en) Document reading light source device
US9838560B2 (en) Light guide, illuminating device and image reading apparatus
JP6128811B2 (en) Illumination apparatus and image reading apparatus including the same
JP2013051108A (en) Light guide body, light source device and image reading device
US9591166B2 (en) Light guide, illuminating device and image reading apparatus
JP2014103588A5 (en) Illumination apparatus and image reading apparatus including the same
JP2016213668A (en) Light guide, illumination apparatus, and image reading apparatus
JP2015076819A (en) Lighting apparatus and image reading device using the same
JP2015119325A (en) Light guide body, illumination device, and image reader
JP2013165411A (en) Image reader
JP2016100695A (en) Illumination device and image reading device including the same
JP2015119355A (en) Light guide body, illumination device, and image reader

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

R151 Written notification of patent or utility model registration

Ref document number: 6128811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03