JP2014103082A - Power storage element and manufacturing method thereof - Google Patents

Power storage element and manufacturing method thereof Download PDF

Info

Publication number
JP2014103082A
JP2014103082A JP2012256426A JP2012256426A JP2014103082A JP 2014103082 A JP2014103082 A JP 2014103082A JP 2012256426 A JP2012256426 A JP 2012256426A JP 2012256426 A JP2012256426 A JP 2012256426A JP 2014103082 A JP2014103082 A JP 2014103082A
Authority
JP
Japan
Prior art keywords
long
electrode plate
strip
separator
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256426A
Other languages
Japanese (ja)
Other versions
JP5971095B2 (en
Inventor
Kazuki Hirata
和希 平田
Yosuke Suzuki
洋介 鈴木
Takahiko Yamamoto
貴彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012256426A priority Critical patent/JP5971095B2/en
Publication of JP2014103082A publication Critical patent/JP2014103082A/en
Application granted granted Critical
Publication of JP5971095B2 publication Critical patent/JP5971095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage element such as a secondary battery and a manufacturing method thereof, in which chips of an electrodes do not easily enter with a simple configuration.SOLUTION: In a power storage element 100, an integral long body 41 in which a long separator 30 sandwiches a long electrode plate 1 having a negative electrode active material layer 12 on both sides of a copper foil 10 is bent zigzag, and a plurality of strip-shaped electrode plates 2 having positive electrode active material layers 22 on both side thereof are held alternately between the integral long body 41 that is bent zigzag. The long electrode plate 1 has a small cut portion so as to cause hardly produce chips resulting in enabling self-discharge of the power storage element to be suppressed and a number of strip-shaped electrode plates 2 to be easily produced. Therefore, deterioration in self-discharge property caused by mixture with chips can be prevented with simple configuration and easy production.

Description

本発明は、一次電池および二次電池ならびに各種キャパシタなどを含む蓄電素子およびその製造方法に関する。   The present invention relates to a storage element including a primary battery, a secondary battery, various capacitors, and the like, and a method for manufacturing the same.

特許文献1には、多数の短冊状正極と二枚の長尺セパレータとの一体物を有し、この一体物が短冊状正極の間の部分で交互に折られ、その間に多数の短冊状負極が挟持されて、両セパレータが葛折り状になった積層型二次電池が開示されている。この一体物は、二枚の長尺セパレータの間に多数の短冊状正極が挟まれ、各正極のうち両セパレータから一方に突出した正極端子部を除く三辺で、両セパレータが互いに溶着されて形成されている。これらの短冊状負極は、それぞれ正極端子部とは背向する方向に前記一体物から突出した負極端子部をもつ。   Patent Document 1 has an integrated body of a large number of strip-shaped positive electrodes and two long separators, and the integrated body is alternately folded at a portion between the strip-shaped positive electrodes, and a large number of strip-shaped negative electrodes in between. Has been disclosed, and a laminated secondary battery in which both separators are in a fold-like shape is disclosed. In this integrated body, a large number of strip-shaped positive electrodes are sandwiched between two long separators, and both separators are welded to each other on three sides excluding the positive terminal portion protruding from one of the two positive electrodes. Is formed. Each of these strip-shaped negative electrodes has a negative electrode terminal portion that protrudes from the integrated body in a direction opposite to the positive electrode terminal portion.

特許文献2には、一枚の帯状をした正負一方の長尺電極板と、この長尺電極板をその両面から挟み込む二枚の長尺セパレータと、両長尺セパレータをさらにその外側の両側から挟み込む二枚の正負他方の櫛形電極板とをもつ電池の積層体(積層型電池)が開示されている。二枚の櫛形電極板は比較的複雑な櫛形形状をしており、一枚の長尺電極板と二枚のセパレータおよび櫛形電極板とが互いに適正な位置に重ねられ長尺の積層一体部材とされた後、この一体物が葛折りにされて電池の積層体が構成される。   In Patent Document 2, one strip-like positive and negative long electrode plate, two long separators sandwiching the long electrode plate from both sides thereof, and both long separators from both outer sides are also disclosed. A battery stack (stacked battery) having two positive and negative comb-shaped electrode plates sandwiched therebetween is disclosed. The two comb-shaped electrode plates have a relatively complicated comb-shaped shape, and one long electrode plate, two separators and a comb-shaped electrode plate are stacked at appropriate positions, After that, the integrated body is folded to form a battery stack.

特開2009−117291号公報JP 2009-117291 A 特開2011−258434号公報JP 2011-258434 A

しかしながら、前述の背景技術のうち特許文献1の電池では、電池電極のうち正負両極ともに多数の短冊状電極であり、その基材となる導電板(アルミニウムや銅の金属箔)とその両面に形成された正負の電極活物質層が切断される個所が相当に多い。   However, in the battery of Patent Document 1 among the above-described background art, both positive and negative electrodes of the battery electrode are a large number of strip electrodes, and are formed on a conductive plate (aluminum or copper metal foil) serving as a base material and both surfaces thereof. There are many places where the positive and negative electrode active material layers are cut.

それゆえ、電池一個に含まれる正負の短冊状電極板を切り出した切り口の数が多いだけではなく、切り口の総延長も相当に長いものとなり、両電極を切り出す切断工程に伴って生じる金属箔や活物質層の切り屑も多数が発生しやすくなる。このような電極の切り屑が電池に混入すると、局部的な短絡による発熱や電池性能の低下を招きかねないうえ、自己放電が大きくなり電池の不良率が増大するので、不都合である。   Therefore, not only is the number of cutouts cut out of the positive and negative strip electrode plates included in one battery, but the total length of the cutout is also considerably long, and the metal foil generated along with the cutting process of cutting out both electrodes and Many chips of the active material layer are likely to be generated. If such electrode chips are mixed into the battery, it may cause heat generation due to a local short circuit and a decrease in battery performance, and it is disadvantageous because self-discharge increases and the defective rate of the battery increases.

特許文献2の電池においては、正負一方(実施例では負極)の長尺電極板と二枚の長尺セパレータについては切断部がごく限定されており、こちらについては切り屑の発生がほとんどないとして差し支えない。それゆえ特許文献2の構成では、前述の特許文献1の構成と比べ、切り屑の発生はおおむね半減するという効果が見込める。   In the battery of Patent Document 2, the cutting part is extremely limited for the long electrode plate of the positive and negative (negative electrode in the embodiment) and the two long separators, and there is almost no generation of chips. There is no problem. Therefore, in the configuration of Patent Document 2, it can be expected that the generation of chips is almost halved compared to the configuration of Patent Document 1 described above.

そこで本発明は、簡素な構成で電極の切り屑が混入しにくい蓄電素子およびその製造方法を提供することを解決すべき課題とする。   Therefore, an object of the present invention is to provide a power storage element that has a simple configuration and in which electrode chips are not easily mixed, and a method for manufacturing the same.

上記課題を解決するための本願発明の構成とその構成がもたらす作用効果とについて、本項では簡潔に説明する。   In this section, the configuration of the present invention for solving the above-described problems and the effects brought about by the configuration will be briefly described.

[物の発明]
本発明の蓄電素子(100,200)は、一次電池または二次電池である電池(100)とキャパシタ(100,200)とのいずれかである。大きく分けて二種のキャパシタ(100,200)のうち一方(100)には、電解コンデンサが該当する。蓄電素子(100,200)は、一方の電極板(1,1A,201)と、他方の電極板(2,202)と、これらの両電極板の間に挿置されたセパレータ(3:30〜36,203)とが交互に積層された積層体である。
[Invention of goods]
The storage element (100, 200) of the present invention is either a battery (100) which is a primary battery or a secondary battery, or a capacitor (100, 200). An electrolytic capacitor corresponds to one (100) of the two types of capacitors (100, 200). The storage element (100, 200) includes one electrode plate (1, 1A, 201), the other electrode plate (2, 202), and a separator (3:30 to 36) inserted between these two electrode plates. , 203) are alternately stacked.

前記一方の電極板(1,1A,201)は、両面で前記セパレータ(3,203)と密着しており、長手方向に所定間隔で交互に折り畳まれて葛折り状に積層された長尺の可撓性材料からなる電極板(長尺電極板と呼ぶ)(1,1A,201)である。前記他方の電極板(2,202)は、両面で前記セパレータ(3,203)に密着しており、複数の互いに独立した短冊形状の電極板(短冊状電極板と呼ぶ)(2,202)である。ここで、前記長尺電極板(1,1A,201)は、前記葛折りの折り目方向に沿った両方向のうち一方へ突出した端子部(一方端子部と呼ぶ)(11)をもつ。一方、各前記短冊状電極板(2,202)は、上記両方向のうち他方へ突出した端子部(他方端子部と呼ぶ)(21)をもつ。   The one electrode plate (1, 1A, 201) is in intimate contact with the separator (3, 203) on both sides, and is a long strip that is alternately folded at predetermined intervals in the longitudinal direction and stacked in a twisted manner. It is an electrode plate (referred to as a long electrode plate) (1, 1A, 201) made of a flexible material. The other electrode plate (2, 202) is in close contact with the separator (3, 203) on both sides, and a plurality of independent strip-shaped electrode plates (referred to as strip-shaped electrode plates) (2, 202). It is. Here, the long electrode plate (1, 1A, 201) has a terminal portion (referred to as one terminal portion) (11) protruding in one of both directions along the fold direction of the fold. On the other hand, each of the strip-shaped electrode plates (2, 202) has a terminal portion (referred to as the other terminal portion) (21) protruding to the other of the two directions.

本発明の蓄電素子(100,200)では、特許文献2に開示された発明とは別の解決手段でありながら、特許文献1の電池に比べて電極の切り屑が混入しにくいという効果がある。なぜならば、一方の電極板(1,1A,201)は、長手方向に所定間隔で交互に折り畳まれて葛折り状に積層された長尺の可撓性材料からなる電極板(1,1A,201)であるから、切断加工が少なく切り屑の発生がほぼ半減しているからである。また、特許文献2の電池積層体に比べても、他方の電極板を複雑な形状に切断する必要がないので、他方の電極板を作る加工が容易であり加工設備も単純で済むという効果が見込める。   The power storage device (100, 200) of the present invention is a solution different from the invention disclosed in Patent Document 2, but has an effect that electrode chips are less likely to be mixed as compared to the battery of Patent Document 1. . This is because one electrode plate (1, 1A, 201) is alternately folded at a predetermined interval in the longitudinal direction, and is made of a long flexible material (1, 1A, 201), the amount of cutting is small and the generation of chips is almost halved. In addition, even when compared with the battery stack of Patent Document 2, it is not necessary to cut the other electrode plate into a complicated shape, so that the process of making the other electrode plate is easy and the processing equipment can be simplified. I can expect.

なお、前記セパレータ(3,203)は、絶縁膜からなり、前記長尺電極板(1,1A,201)の両面に接して折り畳まれた長尺のセパレータ(長尺セパレータと呼ぶ)(30〜32,203)としてもよい。ここで、前記セパレータ(3,203)は、前記一方端子部(11)の突出方向と背向する前記他方で折り返されて前記長尺電極板(1,1A,201)の一部を両面から包み込んでいる一枚の前記長尺セパレータ(二つ折り型セパレータと呼ぶ)(30,203)としてもよい。あるいは、前記一方端子部(11)を残して前記長尺電極板(1,1A,201)のこれら両面を挟んでいる二枚の前記長尺セパレータ(サンドイッチ型セパレータと呼ぶ)(31,32)としてもよい。   The separator (3, 203) is made of an insulating film and is a long separator (referred to as a long separator) folded in contact with both surfaces of the long electrode plate (1, 1A, 201) (30 to 30). 32, 203). Here, the separator (3, 203) is folded back on the other side facing away from the protruding direction of the one terminal portion (11), and a part of the long electrode plate (1, 1A, 201) is removed from both sides. It is good also as one sheet of the above-mentioned long separators (referred to as a two-fold type separator) (30, 203). Alternatively, the two long separators (referred to as sandwich separators) (31, 32) that sandwich the both sides of the long electrode plate (1, 1A, 201) while leaving the one terminal portion (11) (31, 32) It is good.

いずれであっても、長尺セパレータ(30〜32,203)であれば、セパレータ自体の切断加工も少なくて済むから、加工が容易であるうえにセパレータの切り屑も発生しにくくて好都合である。   In any case, the long separator (30 to 32, 203) is advantageous in that it requires less cutting of the separator itself, and is easy to process and less likely to generate separator chips. .

なお、セパレータ(3,203)を構成する絶縁膜は、一種または複数種のセラミック粒子が内部に含まれたものや表面に塗られたものであってもよい。   The insulating film constituting the separator (3, 203) may be one containing one or more kinds of ceramic particles inside or coated on the surface.

[その製造方法の発明]
本発明の蓄電素子(100,200)の製造方法は、準備工程(P11)と一体化工程(P21,P22)と積層工程(P31)とを有する。
[Invention of its production method]
The manufacturing method of the electrical storage element (100, 200) of this invention has a preparatory process (P11), an integration process (P21, P22), and a lamination process (P31).

準備工程(P11)は、一枚の長尺電極板(1,1A,201)と複数の短冊状電極板(2,202)と所定数の長尺セパレータ(30〜32,203)とを用意する工程である。ここで、長尺電極板(1,1A,201)は、一方向に所定の幅を持ちこの幅の方向(幅方向と呼ぶ)に対して直交する長手方向に長尺で可撓性材料からなる一方の電極板である。一方、短冊状電極板(2,202)は、互いに独立した複数の短冊状の電極板からなる他方の電極板である。また、長尺セパレータ(30〜32,203)は、前記一方向に所定の幅を持ちこの幅に対して長手方向に長尺で絶縁膜からなる所定の寸法形状に整えられた長尺のセパレータである。   In the preparation step (P11), one long electrode plate (1, 1A, 201), a plurality of strip electrode plates (2, 202), and a predetermined number of long separators (30 to 32, 203) are prepared. It is a process to do. Here, the long electrode plate (1, 1A, 201) has a predetermined width in one direction and is long in the longitudinal direction perpendicular to the width direction (referred to as the width direction), and is made of a flexible material. It is one electrode plate which becomes. On the other hand, the strip-shaped electrode plate (2, 202) is the other electrode plate composed of a plurality of strip-shaped electrode plates independent of each other. Further, the long separator (30 to 32, 203) has a predetermined width in the one direction and is long in the longitudinal direction with respect to this width and is adjusted to a predetermined size and shape made of an insulating film. It is.

一体化工程(P21,P22)は、前記長尺電極板(1,1A,201)の前記両面を覆う前記長尺セパレータ(30〜32,203)と前記長尺電極板(1,1A,201)とが一体化された一体長尺物(41〜43,204)を作製する工程である。この際、前記長尺電極板(1,1A,201)のうち前記幅方向の一方に突出する一方端子部(11)を残して、前記長尺セパレータ(30〜32,203)が前記長尺電極板(1,1A,201)の両面に密着させられる。   In the integration step (P21, P22), the long separator (30-32, 203) covering the both surfaces of the long electrode plate (1, 1A, 201) and the long electrode plate (1, 1A, 201). ) And an integrated long object (41-43, 204). At this time, the long separators (30 to 32, 203) are left in the long electrode plate (1, 1A, 201), leaving one terminal portion (11) protruding in one of the width directions. It is made to contact | adhere to both surfaces of an electrode plate (1, 1A, 201).

積層工程(P31)は、前記一体長尺物(41〜43,204)を前記長手方向に所定幅で交互に折り重ねて葛折り状の電極積層体である蓄電素子(100,200)を形成する工程である。この際、各前記短冊状電極板(2,202)のうち前記幅方向の他方に突出する他方端子部(21)を残して、各前記短冊状電極板(2,202)が前記一体長尺物(41〜43,204)の両面に対し交互に一枚ずつ折り込まれていく。   In the stacking step (P31), the integrated long objects (41 to 43, 204) are alternately folded with a predetermined width in the longitudinal direction to form a storage element (100, 200) that is a twisted electrode stack. It is a process to do. At this time, each of the strip-shaped electrode plates (2, 202) is left with the other terminal portion (21) projecting to the other in the width direction, and each of the strip-shaped electrode plates (2, 202) is integrated with the long length. The sheets (41 to 43, 204) are alternately folded one by one.

このような蓄電素子(100,200)の製造方法によれば、長尺電極板(1,1A,201)の製造過程で切断加工が少ないので、特許文献1の電池を製造する方法に比べて電極板の切り屑の発生はおおむね半減するものと考えられる。その結果、特許文献2の電池積層体を製造する方法とは異なる製造方法でありながら、本製造方法によれば、電池を含む蓄電素子(100,200)の製造にあたり、より不具合の少ない製品を製造することができるようになるという効果がある。また、特許文献2の電池積層体を製造する方法と比べると、他方の電極板(2,2A,202)を複雑な形状に切断する必要がないので、他方の電極板(2,2A,202)を作る加工が容易であり加工設備も単純で済むという効果が見込める。   According to the manufacturing method of such an electrical storage element (100, 200), since there is little cutting process in the manufacturing process of a long electrode plate (1, 1A, 201), compared with the method of manufacturing the battery of patent document 1. It is considered that the generation of chip on the electrode plate is almost halved. As a result, although this manufacturing method is different from the method of manufacturing the battery laminate of Patent Document 2, according to this manufacturing method, a product with fewer defects can be produced in manufacturing the storage element (100, 200) including the battery. There is an effect that it can be manufactured. Moreover, compared with the method for manufacturing the battery laminate of Patent Document 2, it is not necessary to cut the other electrode plate (2, 2A, 202) into a complicated shape, and therefore the other electrode plate (2, 2A, 202). ) Can be easily processed and the processing equipment can be simplified.

なお、前記一体化工程(P21,P22)は、二つ折り一体化工程(P21)とサンドイッチ一体化工程(P22)とのうちいずれであっても良い。ここで、二つ折り一体化工程(P21)は、前記セパレータ(30)が一枚であって、このセパレータ(30)を前記長手方向に沿って前記幅の中央線に沿って二つ折りとし、前記長尺電極板(1,1A,201)のうち一方端子部(11)を残して前記長尺電極板(1)の両面を包み込んで覆う工程である。一方、サンドイッチ一体化工程(P22)は、前記セパレータ(31,32)が二枚であって、前記長尺電極板(1,1A,201)のうち前記一方端子部(11)を残してこれらのセパレータ(31,32)で前記長尺電極板(1,1A,201)を両面から挟み込んで覆う工程である。   Note that the integration step (P21, P22) may be either a bi-fold integration step (P21) or a sandwich integration step (P22). Here, in the two-fold integration step (P21), the separator (30) is a single sheet, and the separator (30) is folded in two along the center line of the width along the longitudinal direction. This is a step of wrapping and covering both sides of the long electrode plate (1) while leaving one terminal portion (11) of the long electrode plate (1, 1A, 201). On the other hand, in the sandwich integration step (P22), the separators (31, 32) are two, and the long electrode plates (1, 1A, 201) are left with the one terminal portion (11). The long electrode plates (1, 1A, 201) are sandwiched and covered with both separators (31, 32).

いずれであっても、長尺セパレータ(30〜32)であれば、セパレータ自体の切断加工も少なくて済むから、加工が容易であるうえにセパレータの切り屑も発生しにくくて好都合である。   In any case, the long separator (30 to 32) is convenient because it requires less cutting of the separator itself, and is easy to process and less likely to generate separator chips.

実施例1の蓄電素子としての電池の積層構成を模式的に示す断面図Sectional drawing which shows typically the laminated structure of the battery as an electrical storage element of Example 1. FIG. 実施例1としての電池製造方法うち二つ折り一体化工程を示す組図 (a)長尺電極板の構成を示す斜視図 (b)長尺セパレータを二つ折りにして長尺電極板を挟む過程の斜視図 (c)長尺電極板が長尺セパレータに挟まれた一体長尺物の斜視図FIG. 4 is a diagram illustrating a battery folding method according to the first embodiment. FIG. 4A is a perspective view illustrating a configuration of a long electrode plate. FIG. 5B is a process of folding a long separator in half and sandwiching the long electrode plate. Perspective view (c) Perspective view of an integral long object in which a long electrode plate is sandwiched between long separators 実施例1の電池製造方法のうち積層工程を概念的に示す斜視図The perspective view which shows notionally a lamination process among the battery manufacturing methods of Example 1. FIG. 実施例1の電池製造方法の全工程を概略で示す工程流れ図Process flow diagram schematically showing all steps of the battery manufacturing method of Example 1 実施例2の電池製造方法のうちサンドイッチ一体化工程を示す組図 (a)長尺電極板の構成を示す斜視図 (b)長尺セパレータを二つ折りにして長尺電極板を挟む過程の斜視図 (c)長尺電極板が長尺セパレータに挟まれた一体長尺物の斜視図(B) A perspective view of a process in which a long separator is folded in half and a long electrode plate is sandwiched between the long electrode plates. Fig. (C) Perspective view of an integral long object with a long electrode plate sandwiched between long separators 実施例3の電池製造方法のうち長尺電極板折り工程を示す組図 (a)二つ折り構造の長尺電極板の初期構成を示す斜視図 (b)初期構成から長尺電極板を二つ折りにする過程の斜視図 (c)二つ折り構造の長尺電極板の構成を示す斜視図 (d)長尺セパレータを二つ折りにして長尺電極板を挟む過程の斜視図 (e)長尺電極板と長尺セパレータとが二つ折りの一体長尺物の斜視図FIG. 4 is a set of diagrams showing a step of folding a long electrode plate in the battery manufacturing method of Example 3. (a) A perspective view showing an initial configuration of a long electrode plate having a bi-fold structure. (B) Folding the long electrode plate in half from the initial configuration. (C) Perspective view showing the configuration of a long electrode plate having a double-fold structure (d) Perspective view of the process of folding the long separator in half and sandwiching the long electrode plate (e) Long electrode Perspective view of an integrated long object with a plate and long separator folded in half 実施例3の電池製造方法のうち短冊状電極板折り工程を示す組図 (a)二つ折り構造の各短冊状電極板の初期構成を示す斜視図 (b)初期構成から各短冊状電極板を二つ折りにする過程の斜視図 (c)二つ折り構造の各短冊状電極板の構成を示す斜視図(B) A perspective view showing an initial configuration of each strip-shaped electrode plate having a double-fold structure. (B) Each strip-shaped electrode plate from the initial configuration. (C) Perspective view showing the configuration of each strip-shaped electrode plate having a double-fold structure 実施例4の電池製造方法のうち主に短冊一体化工程を示す組図 (a)準備工程で用意された長尺電極板の構成を示す斜視図 (b)短冊一体化工程で各部材を貼り合わせる過程を示す斜視図 (c)短冊一体化工程で製作された短冊状一体物の構成を示す斜視図Assembly drawing mainly showing strip integration step in battery manufacturing method of Example 4 (a) Perspective view showing configuration of long electrode plate prepared in preparation step (b) Pasting each member in strip integration step (C) The perspective view which shows the structure of the strip-shaped integrated object manufactured at the strip integration process 実施例4の電池製造方法のうち積層工程を概念的に示す斜視図The perspective view which shows notionally a lamination process among the battery manufacturing methods of Example 4. FIG. 実施例4の変形態様1での短冊一体化工程を示す斜視図The perspective view which shows the strip integration process in the deformation | transformation aspect 1 of Example 4. FIG. 実施例4の変形態様2での短冊一体化工程を示す斜視図The perspective view which shows the strip integration process in the deformation | transformation aspect 2 of Example 4. FIG. 実施例5としてのキャパシタの構成を概念的に示す断面図Sectional drawing which shows notionally the structure of the capacitor as Example 5

本発明の「蓄電素子およびその製造方法」がもつ実施形態については、当業者に本発明を実施できるだけの理解が得られるよう以下の記載で明確かつ十分に説明する。なお、本発明の出願時点では、以下の実施例ないしその変形態様のうちいずれかに最良の実施形態が開示されているものと、発明者は考えている。   Embodiments of the “electric storage element and the method for manufacturing the same” of the present invention will be described clearly and sufficiently in the following description so that those skilled in the art can understand the present invention to implement the present invention. At the time of filing of the present invention, the inventor considers that the best embodiment is disclosed in any of the following examples or modifications thereof.

(蓄電素子としての電池の構成)
本発明の実施例1としての蓄電素子は、図1に断面で示すような積層構造を持ったリチウムイオン二次電池(LIB,以下単に「電池」と略す)100である。電池100は、一方の電極板たる負極電極板1と、他方の電極板たる正極電極板2と、両電極板1,2の間に挿置されたセパレータ30とが、交互に積層されて構成された電極積層体である。
(Configuration of battery as power storage element)
The power storage device as Example 1 of the present invention is a lithium ion secondary battery (LIB, hereinafter simply referred to as “battery”) 100 having a laminated structure as shown in cross section in FIG. The battery 100 is configured by alternately laminating a negative electrode plate 1 as one electrode plate, a positive electrode plate 2 as the other electrode plate, and a separator 30 inserted between both electrode plates 1 and 2. Electrode laminate.

負極電極板1は、両面でセパレータ3と密着しており、長手方向に所定間隔で交互に折り畳まれて葛折り状に積層された長尺の可撓性材料からなる電極板(長尺電極板1と呼ぶ)である。負極の長尺電極板1は、銅箔10の両面に形成された負極活物質層12をもち、葛折りの折り目(図1中のF部分)の延伸方向に沿った両方向のうち一方へ突出した一方端子部たる負極端子部11をもつ。すなわち負極端子部11は、図1の紙面に対して鉛直方向のうち一方へ突出している。   The negative electrode plate 1 is in close contact with the separator 3 on both sides, and is an electrode plate (long electrode plate) made of a long flexible material that is alternately folded at a predetermined interval in the longitudinal direction and stacked in a folded shape. 1). The long electrode plate 1 of the negative electrode has negative electrode active material layers 12 formed on both surfaces of the copper foil 10, and protrudes in one of the two directions along the extending direction of the crease fold (F portion in FIG. 1). The negative terminal portion 11 which is the one terminal portion. That is, the negative terminal portion 11 protrudes in one of the vertical directions with respect to the paper surface of FIG.

なお、図2(a)に示すように、負極端子部11は銅箔10だけであり、そのいずれの面にも負極活物質層12は形成されていない。   In addition, as shown to Fig.2 (a), the negative electrode terminal part 11 is only the copper foil 10, and the negative electrode active material layer 12 is not formed in any surface.

セパレータ30は、長尺の絶縁膜からなり、その厚さ方向に電荷の移動が可能な電池用セパレータである。この絶縁膜には、一種または複数種のセラミック粒子を内部に含むものを本実施例では採用している。その他の実施形態として、一種または複数種のセラミック粒子が表面に塗られた絶縁膜を採用したり、セラミック粒子と有機成分で構成された絶縁層を絶縁膜として採用したりしても良い。再び図1に示すように、セパレータ30は、負極の長尺電極板1の両面に接して折り畳まれている。   The separator 30 is a battery separator made of a long insulating film and capable of moving charges in the thickness direction. In this embodiment, the insulating film includes one or more kinds of ceramic particles. As other embodiments, an insulating film in which one or more kinds of ceramic particles are coated on the surface may be adopted, or an insulating layer composed of ceramic particles and an organic component may be adopted as the insulating film. As shown in FIG. 1 again, the separator 30 is folded in contact with both surfaces of the negative electrode plate 1.

図2(b)〜(c)に示すように、セパレータ30は、負極端子部11の突出方向と背向する他方側の縁で折り返されている一枚の二つ折り型セパレータである。そして、セパレータ30は、負極の長尺電極板1の銅箔10のうち、負極活物質層12の形成されている部分を両面から包み込んでいる。すなわち、図2(c)に示すように、負極の長尺電極板1とその両面を包む二つ折り型セパレータ30とは一体化して一体長尺物41を形成している。   As shown in FIGS. 2B to 2C, the separator 30 is a single two-fold type separator that is folded back at the edge on the other side facing away from the protruding direction of the negative electrode terminal portion 11. And the separator 30 has wrapped the part in which the negative electrode active material layer 12 was formed among the copper foil 10 of the elongate electrode plate 1 of a negative electrode from both surfaces. That is, as shown in FIG. 2 (c), the long electrode plate 1 of the negative electrode and the bi-fold separator 30 that wraps both sides thereof are integrated to form an integral long object 41.

正極電極板2は、再び図1に示すように、両面でセパレータ3に密着しており、多数の互いに独立した短冊形状の電極板(短冊状電極板2と呼ぶ)である。正極の各短冊状電極板2は、図3に示すように、アルミニウム箔20の両面に形成された正極活物質層22をもち、上記両方向のうち他方(図1の紙面に対し鉛直方向の他方)へ突出した他方端子部たる正極端子部21をもつ。正極端子部21はアルミニウム箔20からなり、そのいずれの面にも正極活物質層22は形成されていない。   As shown in FIG. 1 again, the positive electrode plate 2 is in close contact with the separator 3 on both sides, and is a large number of independent strip-shaped electrode plates (referred to as strip-shaped electrode plates 2). As shown in FIG. 3, each strip-shaped electrode plate 2 of the positive electrode has a positive electrode active material layer 22 formed on both surfaces of the aluminum foil 20, and the other of the two directions (the other in the direction perpendicular to the paper surface of FIG. 1). ) Has a positive terminal portion 21 which is the other terminal portion projecting to). The positive electrode terminal portion 21 is made of an aluminum foil 20, and the positive electrode active material layer 22 is not formed on any surface thereof.

そして、図3に示すように、正極たる長尺電極板1と二つ折り型セパレータ30とからなる一体長尺物41に対し、その両面から多数の負極たる短冊状電極板2が交互に積層されて、再び図1に示す構成の電極積層体たる電池100が構成されている。一枚の一体長尺物41と多数の短冊状電極板2との積層に際し、一体長尺物41は葛折りに折り畳まれ、その間に短冊状電極板2が両側から挿置されて一体長尺物41に挟持された構造を電池100はもっている。   Then, as shown in FIG. 3, a strip-shaped electrode plate 2 which is a large number of negative electrodes is alternately laminated on both sides of an integrated long object 41 composed of a long electrode plate 1 which is a positive electrode and a bi-fold separator 30. Thus, the battery 100 as the electrode laminate having the configuration shown in FIG. 1 is formed again. When laminating the single long sheet 41 and a large number of strip-shaped electrode plates 2, the long one-piece 41 is folded in a fold, and the strip-shaped electrode plate 2 is inserted from both sides between the long sheets. The battery 100 has a structure sandwiched between the objects 41.

図1の下部左方に示すように、一体長尺物41の長手方向の端面40では、長尺電極板1の端部よりも二つ折り型セパレータ30の端部が突出しており、負極たる長尺電極板1と正極たる短冊状電極板2との接触を防いでいる。一体長尺物41の長手方向の端面(図略)でも同様である。なお、突出した二つ折り型セパレータ30の端部同士を接合して正極1と負極2との接触防止をより完全にしても良い。   As shown in the lower left part of FIG. 1, the end portion 40 of the bi-fold separator 30 protrudes from the end portion of the long electrode plate 1 on the end face 40 in the longitudinal direction of the integrated long object 41, and the length of the negative electrode is long. Contact between the electrode plate 1 and the strip-shaped electrode plate 2 serving as the positive electrode is prevented. The same applies to the end face (not shown) in the longitudinal direction of the integrated long object 41. Note that the end portions of the projecting fold-type separator 30 may be joined to prevent contact between the positive electrode 1 and the negative electrode 2 more completely.

以上の構成を持つ電池100は、以下のような蓄電素子の製造方法によって製造することができる。   The battery 100 having the above configuration can be manufactured by the following method for manufacturing a power storage element.

(その製造方法)
本発明の蓄電素子の製造方法は、電池100を製造する方法であって、図4に示すように、準備工程P11と一体化工程P21と積層工程P31とを有する。
(Manufacturing method)
The method for manufacturing a storage element of the present invention is a method for manufacturing a battery 100, and includes a preparation step P11, an integration step P21, and a stacking step P31, as shown in FIG.

先ず、準備工程P11は、一枚の負極たる長尺電極板1と、所定枚数の正極たる短冊状電極板2と、一枚の二つ折り型の長尺セパレータ30とを、それぞれ用意する工程である。図4の上半部には、長尺電極板1と各短冊状電極板2とをそれぞれ用意する二系統の工程が画かれており、セパレータ30を用意する工程の作図は略されている。   First, the preparation step P11 is a step of preparing a long electrode plate 1 as a negative electrode, a strip-shaped electrode plate 2 as a predetermined number of positive electrodes, and a single long folding separator 30. is there. In the upper half of FIG. 4, two systems for preparing the long electrode plate 1 and each strip-shaped electrode plate 2 are depicted, and the drawing of the process for preparing the separator 30 is omitted.

長尺電極板1は、再び図2(a)に示すように、一方向に所定の幅を持ちこの幅の方向(幅方向と呼ぶ)に対して直交する長手方向に長尺で可撓性材料からなる負極電極板であり、その構成は前項で説明した通りである。短冊状電極板2は、再び図3に示すように、互いに独立した所定枚数の短冊状の電極板からなる正極電極板であり、その構成は前項で説明した通りである。長尺セパレータ30は、前記一方向に所定の幅を持ち、この幅に対して長手方向に長尺で可撓性材料からなる所定の寸法形状に整えられた絶縁膜または1種または複数種のセラミック粒子を含むまたは塗工された絶縁膜の電池用セパレータである。   As shown in FIG. 2A, the long electrode plate 1 has a predetermined width in one direction and is long and flexible in a longitudinal direction perpendicular to the width direction (referred to as a width direction). A negative electrode plate made of a material, the configuration of which is as described in the previous section. As shown in FIG. 3 again, the strip-shaped electrode plate 2 is a positive electrode plate composed of a predetermined number of strip-shaped electrode plates independent from each other, and the configuration thereof is as described in the previous section. The long separator 30 has a predetermined width in the one direction, and an insulating film or one or more types of insulating films arranged in a predetermined dimension and shape made of a flexible material that is long in the longitudinal direction with respect to this width. An insulating film battery separator containing or coated with ceramic particles.

長尺電極板1、各短冊状電極板2および長尺セパレータ30の寸法は、図1、図2(a)〜(c)および図3に示すとおり、長尺電極板1の負極活物質層12と各短冊状電極板2の正極活物質層22とは、長尺セパレータ30を介してのみ対向する。そして、長尺電極板1と各短冊状電極板2とは、互いに直接は接触しないようになっている。   The dimensions of the long electrode plate 1, each strip-shaped electrode plate 2 and the long separator 30 are the negative electrode active material layers of the long electrode plate 1 as shown in FIGS. 12 and the positive electrode active material layer 22 of each strip-shaped electrode plate 2 face each other only through the long separator 30. The long electrode plate 1 and each strip-shaped electrode plate 2 are not in direct contact with each other.

次に、一体化工程P21は、図2(b)〜(c)に示すように、長尺電極板1のうち負極端子部11を残して長尺セパレータ30を長尺電極板1の両面に密着させ、長尺電極板1の両面を覆う長尺セパレータ30と長尺電極板1とが一体化された一体長尺物41を作製する工程である。本工程では、長尺セパレータ30を前記長手方向に沿って前記幅の中央線に沿って二つ折りとし、長尺電極板1のうち負極端子部11を残して長尺電極板1の両面を包み込んで覆う。それゆえ、本実施例の製造方法のうち一体化工程P21をもって二つ折り一体化工程P21と呼ぶことにする。   Next, as shown in FIGS. 2 (b) to 2 (c), the integration step P <b> 21 leaves the negative electrode terminal portion 11 in the long electrode plate 1 and the long separator 30 on both surfaces of the long electrode plate 1. This is a process for producing an integrated long object 41 in which the long separator 30 and the long electrode plate 1 that are in close contact and cover both surfaces of the long electrode plate 1 are integrated. In this step, the long separator 30 is folded in half along the longitudinal direction along the center line of the width, and the negative electrode portion 11 of the long electrode plate 1 is left and the both sides of the long electrode plate 1 are wrapped. Cover with. Therefore, in the manufacturing method of the present embodiment, the integration step P21 is referred to as a two-fold integration step P21.

最後に、積層工程P31は、各短冊状電極板2のうち前記幅方向の他方に突出する正極端子部21を残して各短冊状電極板2を一体長尺物41の両面に一枚ずつ交互に折り込みながら、一体長尺物41を長手方向に所定幅で交互に折り重ねる工程である。積層工程P31が完了すると、前項で説明したように、図1に示す断面を持つ葛折り状の電極積層体である電池100を形成される。   Finally, in the stacking step P31, the strip electrode plates 2 are alternately disposed on both sides of the integrated long object 41, leaving the positive electrode terminal portion 21 protruding to the other of the strip electrode plates 2 in the width direction. In this process, the integrated long object 41 is alternately folded at a predetermined width in the longitudinal direction. When the stacking step P31 is completed, as described in the previous section, the battery 100 which is a folded electrode stack having the cross section shown in FIG. 1 is formed.

(作用効果)
本実施例の電池100およびその製造方法は、以上のように構成されているので、特許文献2に開示された発明とは別の解決手段でありながら、特許文献1の電池に比べて電極の切り屑が混入しにくいという効果がある。なぜならば、負極たる長尺電極板1は、長手方向に所定間隔で交互に折り畳まれて葛折り状に積層された長尺の可撓性材料からなる一枚部材であるから、特許文献1の電池に比べて製造過程で特に切断加工が少なく、切り屑の発生がほぼ半減しているからである。
(Function and effect)
Since the battery 100 and the manufacturing method thereof according to the present embodiment are configured as described above, the electrode 100 is different from the battery disclosed in Patent Document 2 as compared with the battery disclosed in Patent Document 2. There is an effect that chips are difficult to mix. This is because the long electrode plate 1 as a negative electrode is a single member made of a long flexible material that is alternately folded at a predetermined interval in the longitudinal direction and laminated in a fold-like manner. This is because the cutting process is particularly small in the manufacturing process compared to the battery, and the generation of chips is almost halved.

また、特許文献2の電池積層体に比べても、櫛形という複雑な形状に電極板を切断する必要がない分だけ電極板を作る加工が容易であるから、加工設備も単純で済むという効果が見込める。   Compared to the battery laminate of Patent Document 2, the processing of making the electrode plate is easy because it is not necessary to cut the electrode plate into a complicated shape such as a comb shape. I can expect.

さらに、二つ折り式の長尺セパレータ30であれば、セパレータ自体の切断加工も少なくて済むから、加工が容易であるうえにセパレータ加工時の切り屑も発生しにくい。そのうえ、長尺電極板1と長尺セパレータ30とで一体長尺物41を構成してから葛折りに短冊状電極板2を折り込む積層工程P31を行うから、積層工程P31での工数が少なくて済み、好都合である。   Furthermore, since the half-folded long separator 30 requires less cutting of the separator itself, it is easy to process and hardly generates chips during separator processing. In addition, since the long electrode plate 1 and the long separator 30 constitute the integrated long object 41 and then the laminating step P31 for folding the strip-shaped electrode plate 2 in a fold is performed, the number of steps in the laminating step P31 is small. Convenient and convenient.

(変形態様1)
本実施例の変形態様1として、長尺電極板1と各短冊状電極板2との正極負極を逆転させた実施形態も実施可能である。
(Modification 1)
As a modified example 1 of the present embodiment, an embodiment in which the positive and negative electrodes of the long electrode plate 1 and each strip-shaped electrode plate 2 are reversed can be implemented.

現況の技術では、リチウムイオン二次電池では実施例1のような正極負極の方が合理的であるが、将来的には両電極板1,2やセパレータ30を構成する材料が進歩し、その物理特性なども変わっていくことであろう。そのような場合には、本変形態様のように正極負極を実施例1とは逆転させた構成の方が合理的になる可能性もある。   In the current technology, in the lithium ion secondary battery, the positive electrode and the negative electrode as in Example 1 are more rational, but in the future, the materials constituting both the electrode plates 1 and 2 and the separator 30 will advance, The physical characteristics will also change. In such a case, there is a possibility that the configuration in which the positive electrode and the negative electrode are reversed from those of Example 1 as in this modified embodiment may be rational.

なお、本変形態様のように正極負極を逆転させた実施形態は、以下の各実施例としての電池とその変形態様とについても同様に成り立つ。   In addition, the embodiment in which the positive electrode and the negative electrode are reversed as in this modified embodiment is similarly applied to the batteries as the following examples and the modified embodiments thereof.

(変形態様2)
本実施例の変形態様2として、上記実施例1と図面上の表記(図1参照)はほぼ同様となる構成を持ったキャパシタ、例えばLIC(リチウムイオン・キャパシタ)の実施が可能である。LICでは、正極がアルミニウム箔20の両側の表面に活性炭層22をもつ多数の短冊状電極板2であり、負極は銅箔10の両側の表面に活性炭層12をもつ長尺電極板1である。本構成のキャパシタでも、実施例1と同様の作用効果が得られ、切り屑の混入による不良率の増大などの不都合が低減される。
(Modification 2)
As a modified embodiment 2 of the present embodiment, a capacitor having a configuration that is substantially the same as that of the first embodiment (see FIG. 1) can be implemented, for example, a LIC (lithium ion capacitor). In the LIC, the positive electrode is a number of strip-shaped electrode plates 2 having activated carbon layers 22 on both surfaces of the aluminum foil 20, and the negative electrode is the long electrode plate 1 having activated carbon layers 12 on both surfaces of the copper foil 10. . Even with the capacitor of this configuration, the same effects as those of the first embodiment can be obtained, and inconveniences such as an increase in the defect rate due to mixing of chips are reduced.

なお、以下の実施例2〜実施例4とそれらの各種変形態様でも、本変形態様とほぼ同様に変更を施してLICなどのキャパシタとする変形態様の実施が可能である。   In addition, in the following Examples 2 to 4 and various modifications thereof, it is possible to implement modifications in which a capacitor such as a LIC is made by changing in substantially the same manner as this modification.

(電池の構成)
本発明の蓄電素子の実施例2として電池(全体図はない)は、実施例1とはセパレータの構成が異なり、図5(b)に示すように、長尺で二枚のセパレータ31,32を用いている。すなわち図5(c)に示すように、セパレータ31,32は、負極端子部11を残して長尺電極板1を両面からサンドイッチ状に挟んでいる二枚のフィルム状セパレータであり、長尺電極板1とセパレータ31,32とで一体長尺物42を構成する。
(Battery configuration)
A battery (not shown in the whole figure) as Example 2 of the electricity storage device of the present invention has a separator configuration different from Example 1, and as shown in FIG. Is used. That is, as shown in FIG. 5 (c), the separators 31 and 32 are two film-like separators sandwiching the long electrode plate 1 from both sides, leaving the negative terminal portion 11, and are long electrodes. The plate 1 and the separators 31 and 32 constitute an integral long object 42.

本実施例の電池の構成は、以上の点で実施例1と異なっているだけで、断面図は実施例1の図1と同様となる。それゆえ、その構造だけではなく、外観や性能も実施例1の電池100とおおむね同様である。   The configuration of the battery of this example is different from that of Example 1 in the above points, and the cross-sectional view is the same as that of FIG. Therefore, not only the structure but also the appearance and performance are almost the same as the battery 100 of the first embodiment.

(その製造方法)
本実施例の電池の製造方法は、準備工程と一体化工程とが実施例1と若干異なっているだけであり、その加工工程の全体図は前述の図4をもって兼用させることができる。
(Manufacturing method)
The battery manufacturing method of this example is different from Example 1 only in the preparation process and the integration process, and the overall view of the processing process can be combined with FIG. 4 described above.

先ず、準備工程P11では、図5(b)に示すように、二枚に別れたセパレータ31,32を用意する点だけが実施例1と異なっている。   First, in the preparation process P11, as shown in FIG. 5B, only the separators 31 and 32 separated into two sheets are prepared, which is different from the first embodiment.

次に、一体化工程では、実施例1での二つ折り一体化工程P21とは異なる工程を採用している。すなわち本実施例では、図5(b)〜(c)に示すように、長尺電極板1のうち負極端子部11を残して二枚の長尺セパレータ31,32で長尺電極板1が両面から挟み込まれて覆われるサンドイッチ一体化工程P22を採用している。その結果、再び図5(c)に示すように、長尺電極板1とセパレータ31,32とからなる一体長尺物42が形成される。   Next, in the integration process, a process different from the two-fold integration process P21 in the first embodiment is adopted. That is, in this embodiment, as shown in FIGS. 5B to 5C, the long electrode plate 1 is formed by the two long separators 31 and 32 except for the negative electrode terminal portion 11 in the long electrode plate 1. The sandwich integration process P22 is adopted, which is sandwiched and covered from both sides. As a result, as shown in FIG. 5C again, an integrally long object 42 composed of the long electrode plate 1 and the separators 31 and 32 is formed.

最後の積層工程は、実施例1の二つ折り型セパレータ30をもつ一体長尺物41に代えてサンドイッチ型の長尺セパレータ31,32をもつ一体長尺物42を折り畳むという点以外は、実施例1の積層工程P31と同様である。   The last stacking step is the same as in the first embodiment except that the integrated long object 42 having the sandwich-type long separators 31 and 32 is folded instead of the integrated long object 41 having the two-fold separator 30 of the first embodiment. This is the same as the first stacking step P31.

(作用効果)
本実施例の電池およびその製造方法では、前述のようにサンドイッチ型の長尺セパレータ31,32をもつ一体長尺物42を構成要素とし、それに伴い二つ折り一体化工程P21に代えてサンドイッチ一体化工程P22が製造過程で採用されている。この点以外は、前述のように実施例1とほとんど変わりがないので、本実施例でも実施例1とほぼ同様の作用効果が得られる。
(Function and effect)
In the battery of this embodiment and the manufacturing method thereof, as described above, the integrated long object 42 having the sandwich-type long separators 31 and 32 is used as a component, and accordingly, the sandwich integration is performed instead of the two-fold integration step P21. Step P22 is employed in the manufacturing process. Except for this point, as described above, there is almost no difference from the first embodiment, so that the present embodiment can obtain substantially the same operational effects as the first embodiment.

(変形態様1)
実施例1の変形態様1と同様に、本実施例にも正極負極を逆転させた変形態様の実施が可能であり、その将来的な可能性も実施例1の変形態様1と同様である。
(Modification 1)
Similar to the modified embodiment 1 of the first embodiment, the present embodiment can be implemented with a modified embodiment in which the positive and negative electrodes are reversed, and the future possibility is the same as the modified embodiment 1 of the first embodiment.

(電池の構成)
本実施例の電池(全体図は省略)では、負極の長尺電極板1Aと正極の各短冊状電極板2Aとの構成とが、実施例1と異なっている。
(Battery configuration)
In the battery of this example (the whole figure is omitted), the configuration of the negative long electrode plate 1A and the positive electrode strips 2A is different from that of the first example.

すなわち図6(a)〜(c)に示すように、長尺電極板1Aの導電性箔状材料として、実施例1の銅箔10に比べ幅が約二倍で厚さが約半分の銅箔10Aを用いる。そして、銅箔10Aの片面のうち幅の中央部分を含む所定部分に前記活物質層12が形成されており、幅の中央にあたる中心線で銅箔10Aが二つ折りにされて、両面に前記活物質層12をもつ二つ折り構造の長尺電極板1Aが採用されている。   That is, as shown in FIGS. 6A to 6C, as the conductive foil-like material of the long electrode plate 1A, copper having a width approximately twice that of the copper foil 10 of Example 1 and a thickness of approximately half is used. A foil 10A is used. Then, the active material layer 12 is formed on a predetermined portion including the central portion of the width of one side of the copper foil 10A, and the copper foil 10A is folded in half at the center line corresponding to the center of the width, and the active material layer 12 is formed on both sides. A two-fold long electrode plate 1A having a material layer 12 is employed.

そして図6(d)〜(e)に示すように、二つ折りした長尺電極板1Aの負極活物質層12を覆い尽くすよう実施例1と同様に二つ折りのセパレータ30が被されて、一体長尺物43が形成される。   Then, as shown in FIGS. 6D to 6E, a bi-folded separator 30 is covered as in Example 1 so as to cover the negative electrode active material layer 12 of the long electrode plate 1A folded in half. A long object 43 is formed.

一方、図7(a)〜(c)に示すように、各短冊状電極板2Aの導電性箔状材料23Aとしては、実施例1のアルミニウム箔20に比べ約二倍で厚さが約半分のアルミニウム箔20Aを用いる。そして、アルミニウム箔20Aの片面のうち所定部分に正極活物質層22が形成された後、アルミニウム箔20は正極活物質層22ごと二つ折りにされて、両面に正極活物質層22をもつ二つ折り構造の電極板2Aが形成される。   On the other hand, as shown in FIGS. 7A to 7C, the conductive foil-like material 23A of each strip-shaped electrode plate 2A is about twice as thick as the aluminum foil 20 of Example 1 and about half the thickness. The aluminum foil 20A is used. Then, after the positive electrode active material layer 22 is formed on a predetermined part of one side of the aluminum foil 20A, the aluminum foil 20 is folded in half together with the positive electrode active material layer 22, and is folded in half with the positive electrode active material layer 22 on both sides. An electrode plate 2A having a structure is formed.

それゆえ、本実施例の電池の断面を示すならば、実施例1の断面構成を示す図1に少しの改訂を加えるだけで良い。すなわち、負極の長尺電極板1と正極の各短冊状電極板2とに代えて、それらの厚さの中間部に二つ折りで接合されたことを示す外形線が入った負極の長尺電極板1Aと正極の各短冊状電極板2Aとが図1に描き込まれていればよい。そうすれば、本実施例の電池構成の要部を概念的に示す断面図となる。   Therefore, if the cross section of the battery of this embodiment is shown, only a few revisions may be made to FIG. That is, instead of the long electrode plate 1 of the negative electrode and the respective strip-shaped electrode plates 2 of the positive electrode, the long electrode of the negative electrode having an outline line indicating that it is joined in half at the middle of the thickness. It suffices that the plate 1A and each of the strip-like electrode plates 2A of the positive electrode are drawn in FIG. If it does so, it will become sectional drawing which shows notionally the principal part of the battery structure of a present Example.

(その製造方法)
本実施例の電池製造方法は、前述の電池構成から分かるように、準備工程P11の一部が実施例1とは異なっている。
(Manufacturing method)
As can be seen from the battery configuration described above, the battery manufacturing method of this example is different from Example 1 in part of the preparation step P11.

すなわち、準備工程P11は、再び図4に括弧付きの符号P111,P112で示すように、長尺電極板折り工程P111と短冊状電極板折り工程P112とを含む。   That is, the preparation process P11 includes a long electrode plate folding process P111 and a strip-shaped electrode plate folding process P112 as indicated by reference numerals P111 and P112 in parentheses in FIG. 4 again.

長尺電極板折り工程P111では、長尺電極板1Aの銅箔10Aの片面のうち幅方向の中央部を含む一部に、負極活物質層12が所定幅で形成される。そして、負極活物質層12が形成された片面が外側になるよう銅箔10Aが二つ折りにされ、両面に負極活物質層12をもつ長尺電極板1Aが形成される。   In the long electrode plate folding step P111, the negative electrode active material layer 12 is formed with a predetermined width on a part of the one surface of the copper foil 10A of the long electrode plate 1A including the central portion in the width direction. Then, the copper foil 10A is folded in half so that one side on which the negative electrode active material layer 12 is formed is on the outside, and a long electrode plate 1A having the negative electrode active material layer 12 on both sides is formed.

一方、短冊状電極板折り工程P112では、各短冊状電極板2Aのアルミニウム箔20Aの片面のうち中央部を含む片面に正極活物質層22が所定幅で形成される。そして、正極活物質層22が形成された片面が外側になるようにアルミニウム箔20Aが二つ折りにされ、両面に正極活物質層22をもつ各短冊状電極板2Aが形成される。   On the other hand, in the strip-shaped electrode plate folding step P112, the positive electrode active material layer 22 is formed with a predetermined width on one surface including the central portion of one surface of the aluminum foil 20A of each strip-shaped electrode plate 2A. Then, the aluminum foil 20A is folded in half so that one surface on which the positive electrode active material layer 22 is formed is on the outside, and each strip-shaped electrode plate 2A having the positive electrode active material layer 22 on both surfaces is formed.

その他の工程については、実施例1と同様である。   Other processes are the same as those in the first embodiment.

(作用効果)
本実施例では、二つ折り以前の状態で負極の長尺電極板1Aと正極の各短冊状電極板2Aとの片面にだけ、それぞれの活物質12,22が形成されるので、活物質の形成が容易である。また、長尺電極板1Aの銅箔10Aの厚さが実施例1に比べて半減しているので、長尺電極板1と長尺セパレータ30とからなる一体長尺物43を葛折り状に折り畳む際により容易になる可能性がある。この傾向は、銅箔10Aの厚さが大きな電池を製造する場合に利点となり得る。
(Function and effect)
In this embodiment, since the active materials 12 and 22 are formed only on one side of the long electrode plate 1A of the negative electrode and each of the strip-like electrode plates 2A of the positive electrode before being folded in half, the active material is formed. Is easy. Further, since the thickness of the copper foil 10A of the long electrode plate 1A is halved compared to the first embodiment, the integrated long object 43 composed of the long electrode plate 1 and the long separator 30 is formed in a fold-like shape. May be easier when folding. This tendency can be an advantage when manufacturing a battery having a large copper foil 10A.

その他の点については、準備工程P11に長尺電極板折り工程P111と短冊状電極板折り工程P112とが含まれること以外は実施例1と同様であり、作用効果においても実施例1とほぼ同様の作用効果が得られる。   The other points are the same as those in the first embodiment except that the preparation step P11 includes the long electrode plate folding step P111 and the strip-shaped electrode plate folding step P112. The following effects can be obtained.

(変形態様1)
本実施例において、長尺電極板1Aおよび各短冊状電極板2Aのうち一方だけが採用されており、他方には実施例1と同様の長尺電極板1および各短冊状電極板2が採用された変形態様も実施可能である。本変形態様においても、本実施例とほぼ同様に実施例1に準ずる作用効果が得られる。
(Modification 1)
In the present embodiment, only one of the long electrode plate 1A and each strip-shaped electrode plate 2A is employed, and the other is the same long electrode plate 1 and each strip-shaped electrode plate 2 as in the first embodiment. The modified embodiment can also be implemented. Also in this modified embodiment, the same effect as in the first embodiment can be obtained in substantially the same manner as in the present embodiment.

(変形態様2)
本実施例の変形態様2として、実施例2と同様に、セパレータ3は二枚の長尺セパレータ31,32であって、前述のように二つ折りで形成された長尺電極板1Aをサンドイッチ状に挟み込む構成の電池を実施することも可能である。本変形態様においても、本実施例とほぼ同様に実施例1に準ずる作用効果が得られる。
(Modification 2)
As a modification 2 of the present embodiment, the separator 3 is two long separators 31 and 32 as in the second embodiment, and the long electrode plate 1A formed by folding in half as described above is sandwiched. It is also possible to implement a battery that is sandwiched between the two. Also in this modified embodiment, the same effect as in the first embodiment can be obtained in substantially the same manner as in the present embodiment.

(電池の構成)
本実施例の電池が持つ構成上の特徴は、以上の各実施例とは異なってセパレータ3に長尺セパレータ30を使わず、各短冊状電極板2の両面を短冊状のセパレータで包むことである。なお、長尺電極板1は、図8(a)に示すように実施例1と同じものである。
(Battery configuration)
The structural feature of the battery of this embodiment is that, unlike the above embodiments, the separator 3 is not used with the long separator 30, and both sides of each strip-shaped electrode plate 2 are wrapped with strip-shaped separators. is there. The long electrode plate 1 is the same as that of the first embodiment as shown in FIG.

すなわち図8(b)〜(c)に示すように、セパレータ3は、短冊状電極板2のそれぞれのうち長尺電極板1と重なる部分を両面から挟持する二枚の短冊状フィルムからなる短冊状セパレータ33,34である。短冊状セパレータ33,34は、各短冊状電極板2のうち正極活物質層22が形成されている部分をすっかり覆って三辺で熱溶着される。短冊状セパレータ33,34の四辺のうち残りの一辺からは、正極端子部21が突出している。   That is, as shown in FIGS. 8B to 8C, the separator 3 is a strip made of two strip-shaped films that sandwich a portion of the strip-shaped electrode plate 2 that overlaps the long electrode plate 1 from both sides. Shaped separators 33 and 34. The strip-shaped separators 33 and 34 cover the portion of the strip-shaped electrode plate 2 where the positive electrode active material layer 22 is formed, and are thermally welded on three sides. The positive terminal portion 21 protrudes from the remaining one of the four sides of the strip separators 33 and 34.

(その製造方法)
本実施例の電池製造方法は、いずれも実施例1とは異なる準備工程P13と短冊一体化工程P23と積層工程P33とを有する。
(Manufacturing method)
The battery manufacturing method of the present example includes a preparation process P13, a strip integration process P23, and a stacking process P33, which are different from those of the first embodiment.

先ず準備工程P13は、図8(a)〜(b)に示すように実施例1と同様の長尺電極板1および所定枚数の短冊状電極板2と、図8(b)に示すように実施例1とは異なる複数の短冊状セパレータ33,34とを用意する工程である。   First, in the preparation step P13, as shown in FIGS. 8A to 8B, the long electrode plate 1 and the predetermined number of strip-shaped electrode plates 2 similar to those in the first embodiment, and as shown in FIG. 8B. This is a step of preparing a plurality of strip separators 33 and 34 different from the first embodiment.

次に短冊一体化工程P23では、図8(b)〜(c)に示すように、各短冊状電極板2のうち正極端子部21を残して二枚の短冊状セパレータ33,34が各短冊状電極板2の両面に密着させされて三辺が溶着させられる。その結果、図8(c)に示すように、各短冊状電極板2の両面を覆うそれぞれの短冊状セパレータ33,34と短冊状電極板2とが一体化された短冊状一体物51が作製される。   Next, in the strip integration step P23, as shown in FIGS. 8B to 8C, the two strip-shaped separators 33 and 34 are formed in each strip-shaped electrode plate 2 while leaving the positive terminal portion 21. Three sides are welded to both surfaces of the electrode plate 2. As a result, as shown in FIG. 8 (c), a strip-shaped integrated body 51 is produced in which the strip-shaped separators 33 and 34 covering both surfaces of each strip-shaped electrode plate 2 are integrated with the strip-shaped electrode plate 2. Is done.

最後に積層工程P33では、図9に示すように、正極端子部21を残して各短冊状一体物51が長尺電極板1の両面に対して交互に一枚ずつ折り込まれる。すなわち、長尺電極板1のうち各短冊状電極板2に重ならない負極端子部11を残しながら、長尺電極板1が長手方向に所定幅で交互に折り重ねられ、各短冊状一体物51を折り込みながら葛折り状に折り畳まれる。その結果、負極端子部11と各正極端子部21とが前記幅方向に沿って互いに背向して突出した略直方体のブロック状電極積層体が形成され、本実施例の電池となる。   Finally, in the laminating process P33, as shown in FIG. 9, the strip-shaped integrated objects 51 are alternately folded one by one with respect to both surfaces of the long electrode plate 1 while leaving the positive electrode terminal portion 21. That is, the long electrode plates 1 are alternately folded with a predetermined width in the longitudinal direction while leaving the negative electrode terminal portions 11 that do not overlap the respective strip-shaped electrode plates 2 of the long electrode plates 1, and the strip-shaped integrated objects 51. It is folded in a fold shape while folding. As a result, a substantially rectangular parallelepiped block-shaped electrode laminate is formed in which the negative electrode terminal portion 11 and each positive electrode terminal portion 21 protrude from each other along the width direction, and the battery of this example is obtained.

(作用効果)
本実施例でも負極として一枚の長尺電極板1が採用されており、負極の切断加工が最小限に抑制されているので、実施例1などと同様に切り屑の発生がほぼ半減し、切り屑の混入による不具合の発生確率は低減されるという効果がある。
(Function and effect)
Even in this embodiment, a single long electrode plate 1 is employed as the negative electrode, and since the cutting of the negative electrode is suppressed to a minimum, the generation of chips is almost halved as in the first embodiment, There is an effect that the probability of occurrence of a defect due to mixing of chips is reduced.

本実施例は、セパレータ33,34が多数あるので工数が実施例1などよりも増すが、何らかの理由で長尺電極板1の両面にセパレータ3を付けた一体長尺物を形成しづらい場合に有効であろう。   In the present embodiment, since the number of separators 33 and 34 is large, the man-hour is increased as compared with Embodiment 1 or the like, but when it is difficult to form an integral long object with the separator 3 attached to both surfaces of the long electrode plate 1 for some reason. Will be effective.

(変形態様1)
図10に示すように、各短冊状電極板2のうち正極端子部21と背向する辺縁に沿って折り返す二つ折り状のフィルム状セパレータ35を採用した電池の変形態様が実施可能である。この変形態様の製造方法では、セパレータ3の部品点数が上記実施例に比べ半減するうえ、短冊一体化工程P24で二つ折りセパレータ35のうち対向する両辺だけを溶着すれば良いので、短冊一体化工程P24での工数が減るという利点もある。
(Modification 1)
As shown in FIG. 10, it is possible to implement a modification of the battery in which each of the strip-shaped electrode plates 2 employs a bi-folded film separator 35 that is folded back along the edge facing away from the positive electrode terminal portion 21. In the manufacturing method of this modification, the number of parts of the separator 3 is halved compared to the above embodiment, and only the opposite sides of the bi-fold separator 35 need to be welded in the strip integration step P24. There is also an advantage that man-hours at P24 are reduced.

(変形態様2)
図11に示すように、各短冊状電極板2のうち正極端子部21と直交する辺縁に沿って折り返す二つ折り状のフィルム状セパレータ36を採用した電池の変形態様が実施可能である。そして、図9とほぼ同様の積層工程において、セパレータ36の折り目を長尺電極板1に当接させて折り込むようにすれば、仮に溶着が不完全な部分があっても長尺電極板1と各短冊状電極板2との接触は避けられるのでより信頼性が高くなる。また、この変形態様の製造方法では、セパレータ3の部品点数が上記実施例に比べ半減するうえ、短冊一体化工程P25で二つ折りセパレータ36のうち対向する両辺だけを溶着すれば良いので、短冊一体化工程P25での工数が減るという利点もある。
(Modification 2)
As shown in FIG. 11, it is possible to implement a modification of the battery in which each of the strip-shaped electrode plates 2 employs a bi-fold film-like separator 36 that is folded back along the edge perpendicular to the positive electrode terminal portion 21. In the laminating process substantially similar to that shown in FIG. 9, if the folds of the separator 36 are brought into contact with the long electrode plate 1 and folded, the long electrode plate 1 and Since contact with each strip-shaped electrode plate 2 can be avoided, the reliability becomes higher. Further, in the manufacturing method of this modification, the number of parts of the separator 3 is halved compared to the above embodiment, and only the opposite sides of the bi-fold separator 36 need to be welded in the strip integration step P25. There is also an advantage that the number of steps in the conversion step P25 is reduced.

(変形態様3)
本実施例とその上記変形態様において、長尺電極板1および各短冊状電極板2のうち少なくとも一方を、実施例3およびその変形態様1と同様に二つ折り構造を持つもの1A、2Aとしてもよい。その場合には、本実施例の作用効果に加えて、実施例3およびその変形態様1に相当する作用効果が得られる。
(Modification 3)
In the present embodiment and the above-described modified embodiment, at least one of the long electrode plate 1 and each strip-shaped electrode plate 2 may be a two-fold structure 1A, 2A as in the third embodiment and the modified embodiment 1 Good. In that case, in addition to the operational effects of the present embodiment, the operational effects corresponding to the third embodiment and its modification 1 are obtained.

(蓄電素子としてのキャパシタの構成およびその製造方法)
本実施例の蓄電素子は、以上の各実施例とその変形態様とは異なり、キャパシタ200である。
(Configuration of capacitor as power storage element and manufacturing method thereof)
The electricity storage device of the present embodiment is a capacitor 200, unlike the above embodiments and variations thereof.

本実施例のキャパシタ200では、その断面構成を図12に示すように、長尺電極板201および各短冊状電極板202はそれぞれ導電性の電極板であり、セパレータ203は絶縁性フィルムである。そして、準備工程で長尺電極板201および各短冊状電極板202に電極活物質を付けない他は、実施例1の電池とほぼ同様の製造方法を採る。すなわち、次の一体化工程で長尺電極板201とセパレータ203とを合わせて一体長尺物204を形成し、最後の積層工程で一体長尺物204の両面に各短冊状電極板202を折り込みつつ、一体長尺物204を葛折りにしていく。その結果、電極積層体たる略直方体ブロック状のキャパシタ200が製造される。   In the capacitor 200 of this embodiment, as shown in FIG. 12, the long electrode plate 201 and each strip-shaped electrode plate 202 are conductive electrode plates, and the separator 203 is an insulating film. And the manufacturing method substantially the same as the battery of Example 1 is taken except not attaching an electrode active material to the elongate electrode plate 201 and each strip-shaped electrode plate 202 at a preparatory process. That is, in the next integration process, the long electrode plate 201 and the separator 203 are combined to form the integrated long object 204, and in the final lamination process, the strip electrode plates 202 are folded on both surfaces of the integrated long object 204. Meanwhile, the integrated long object 204 is folded. As a result, a capacitor 200 having a substantially rectangular parallelepiped block shape which is an electrode laminate is manufactured.

本実施例では、やはり長尺電極板201を採用しており、切断個所が少ないので切り屑による不具合の発生が抑制されるという効果がある。   In the present embodiment, the long electrode plate 201 is also employed, and since there are few cutting points, there is an effect that occurrence of defects due to chips is suppressed.

(変形態様1)
前述の実施例1の変形態様2と重複するが、本実施例のキャパシタの変形態様1として、図1に示す断面で構成された構造を持った電解コンデンサ100の実施が可能である。
(Modification 1)
Although overlapping with the above-described modification 2 of the first embodiment, as the capacitor modification 1 of the present embodiment, an electrolytic capacitor 100 having a structure constituted by the cross section shown in FIG. 1 can be implemented.

本変形態様では、極性のない通常のコンデンサに比べ電解コンデンサ特有の長所が発揮されるうえに、上記の本実施例と同様に一方の電極板が長尺であって切断個所が少ないから、電極板の切り屑による不具合の発生が抑制されるという効果がある。また、長尺電極板および長尺セパレータを採用しているので、電極板だけではなくセパレータについても切断工数が節減されているという効果もある。   In this modified embodiment, the advantages inherent to electrolytic capacitors are exhibited compared to ordinary capacitors having no polarity, and since one electrode plate is long and has few cutting points as in the present embodiment, the electrodes There exists an effect that generation | occurrence | production of the malfunction by the chip of a board is suppressed. Further, since the long electrode plate and the long separator are employed, there is an effect that the man-hour for cutting is reduced not only for the electrode plate but also for the separator.

(各種変形態様)
本実施例のキャパシタ200については、電池とその製造方法である実施例1に対する実施例2および実施例4とそれらの各変形態様と同様の各種変形態様とを実施することが可能であり、それぞれに相応の作用効果が得られる。
(Various deformation modes)
For the capacitor 200 of the present embodiment, it is possible to carry out various modifications similar to the second and fourth embodiments and the respective modifications of the battery and the manufacturing method of the first embodiment, respectively. The corresponding effects can be obtained.

100:蓄電素子たるリチウムイオン二次電池(単に電池と呼ぶ)
または電解コンデンサ(LIC:リチウムイオン・キャパシタ)
1,1A:長尺電極板(図示の実施例では負極) 10,10A:銅箔
11:負極端子部(一方端子部として) 12:負極活物質層/活性炭層
2,2A:短冊状電極板(図示の実施例では正極) 20,20A:アルミニウム箔
21:正極端子部(他方端子部として) 22:正極活物質層/活性炭層
3:セパレータ(絶縁膜:内部や表面にセラミック粒子を含むこともある)
30〜32:長尺セパレータ 33〜36:短冊状セパレータ
41,42,43:一体長尺物 51,52,53:短冊状一体物
200:蓄電素子としてのキャパシタ 201:長尺電極板
202:短冊状電極板 203:長尺セパレータ 204:一体長尺物
P11,P11A:準備工程 P21〜P25:一体化工程 P31,P33:積層工程
100: Lithium ion secondary battery as a storage element (simply called battery)
Or electrolytic capacitor (LIC: lithium ion capacitor)
DESCRIPTION OF SYMBOLS 1,1A: Long electrode plate (negative electrode in the example of illustration) 10, 10A: Copper foil 11: Negative electrode terminal part (as one terminal part) 12: Negative electrode active material layer / activated carbon layer 2,2A: Strip-shaped electrode plate (Positive electrode in the illustrated embodiment) 20, 20A: Aluminum foil 21: Positive electrode terminal portion (as the other terminal portion) 22: Positive electrode active material layer / activated carbon layer 3: Separator (insulating film: containing ceramic particles inside or on the surface) There is also)
30 to 32: long separator 33 to 36: strip-shaped separator 41, 42, 43: integrated long object 51, 52, 53: strip-shaped integrated object 200: capacitor as a storage element 201: long electrode plate 202: strip Electrode plate 203: long separator 204: integral long object P11, P11A: preparation process P21-P25: integration process P31, P33: lamination process

Claims (10)

一方の電極板(1,1A,201)と、他方の電極板(2,202)と、これらの両電極板の間に挿置されたセパレータ(3:30〜36,203)とが交互に積層された蓄電素子(100,200)において、
前記一方の電極板(1,1A,201)は、両面で前記セパレータ(3,203)と密着しており、長手方向に所定間隔で交互に折り畳まれて葛折り状に積層された長尺の可撓性材料からなる電極板(長尺電極板と呼ぶ)(1,1A,201)であり、
前記他方の電極板(2,202)は、両面で前記セパレータ(3,203)に密着しており、複数の互いに独立した短冊形状の電極板(短冊状電極板と呼ぶ)(2,2A,202)であり、
前記長尺電極板(1,1A,201)は、前記葛折りの折り目方向に沿った両方向のうち一方へ突出した端子部(一方端子部と呼ぶ)(11)をもち、
各前記短冊状電極板(2,2A,202)は、上記両方向のうち他方へ突出した端子部(他方端子部と呼ぶ)(21)をもつことを特徴とする、
蓄電素子(100,200)。
One electrode plate (1, 1A, 201), the other electrode plate (2, 202), and separators (3:30 to 36, 203) inserted between these two electrode plates are alternately stacked. In the storage element (100, 200)
The one electrode plate (1, 1A, 201) is in intimate contact with the separator (3, 203) on both sides, and is a long strip that is alternately folded at predetermined intervals in the longitudinal direction and stacked in a twisted manner. An electrode plate made of a flexible material (referred to as a long electrode plate) (1, 1A, 201),
The other electrode plate (2, 202) is in close contact with the separator (3, 203) on both sides, and a plurality of independent strip-shaped electrode plates (referred to as strip-shaped electrode plates) (2, 2A, 202),
The long electrode plate (1, 1A, 201) has a terminal portion (referred to as one terminal portion) (11) protruding in one of both directions along the fold direction of the fold.
Each of the strip-shaped electrode plates (2, 2A, 202) has a terminal portion (referred to as the other terminal portion) (21) protruding to the other of the two directions.
Storage element (100, 200).
前記セパレータ(3,203)は、
絶縁膜からなり、前記長尺電極板(1,1A,201)の両面に接して折り畳まれた長尺のセパレータ(長尺セパレータと呼ぶ)(30〜32,203)であって、
前記一方端子部(11)の突出方向と背向する前記他方で折り返されて前記長尺電極板(1,1A,201)の一部を両面から包み込んでいる一枚の前記長尺セパレータ(二つ折り型セパレータと呼ぶ)(30,203)と、前記一方端子部(11)を残して前記長尺電極板(1,1A,201)のこれら両面を挟んでいる二枚の前記長尺セパレータ(サンドイッチ型セパレータと呼ぶ)(31,32)とのうちいずれかである、
請求項1記載の蓄電素子(100)。
The separator (3, 203)
A long separator (called a long separator) (30-32, 203) made of an insulating film and folded in contact with both surfaces of the long electrode plate (1, 1A, 201),
One piece of the long separator (2) which is folded back on the other side opposite to the protruding direction of the one terminal portion (11) and wraps part of the long electrode plate (1, 1A, 201) from both sides. (Referred to as a fold-type separator) (30, 203), and the two long separators (30, 203) sandwiching these both sides of the long electrode plate (1, 1A, 201) leaving the one terminal portion (11) ( (Referred to as sandwich type separator) (31, 32),
The electrical storage element (100) according to claim 1.
前記セパレータ(3)は、
前記各短冊状電極板(2,2A)のうち前記長尺電極板(1,1A,201)と重なる部分を両面から包む短冊状フィルムからなる短冊状セパレータ(33〜36)であって、
各前記短冊状電極板(2,2A)を両面から挟持する二枚一組のセパレータ(33,34)と、各前記短冊状電極板(2,2A)の辺縁に沿って折り返す二つ折り状のセパレータ(35,36)とのうちいずれかである、
請求項1記載の蓄電素子(100)。
The separator (3)
A strip-shaped separator (33-36) made of a strip-shaped film that wraps from both sides the portion of the strip-shaped electrode plate (2, 2A) that overlaps the long electrode plate (1, 1A, 201),
A pair of separators (33, 34) sandwiching each strip-shaped electrode plate (2, 2A) from both sides, and a double-folded shape folded back along the edge of each strip-shaped electrode plate (2, 2A) Separators (35, 36),
The electrical storage element (100) according to claim 1.
前記蓄電素子(100)は、一次電池および二次電池(100)のうちいずれかであって、
前記長尺電極板(1,1A)は、この長尺電極板の両面に形成された活物質層(12)をもつ正負のうち一方の電極板であり、
各前記短冊状電極板(2,2A)は、この短冊状電極板(2,2A)の両面に形成された活物質層(22)をもつ正負のうち他方の電極板であり、
前記セパレータ(3)は、厚さ方向に電荷の移動が可能な電池用セパレータ(30〜36)である、
請求項1〜請求項3のうちいずれか一項に記載された蓄電素子(100)。
The storage element (100) is either a primary battery or a secondary battery (100),
The long electrode plate (1, 1A) is one of positive and negative electrode plates having an active material layer (12) formed on both surfaces of the long electrode plate,
Each of the strip-shaped electrode plates (2, 2A) is the other of the positive and negative electrode plates having an active material layer (22) formed on both surfaces of the strip-shaped electrode plate (2, 2A).
The separator (3) is a battery separator (30-36) capable of moving charges in the thickness direction.
The electrical storage element (100) as described in any one of Claims 1-3.
前記長尺電極板(1A)および各前記短冊状電極板(2A)のうち少なくとも一方は、導電性箔状材料(10A,20A)の片面のうち所定部分に前記活物質層(12,22)が形成された可撓性材料が二つ折りにされて、両面に前記活物質層(12,22)をもつ二つ折り構造の電極板(1A,2A)である、
請求項4記載の蓄電素子(100)。
At least one of the long electrode plate (1A) and each of the strip-shaped electrode plates (2A) has the active material layer (12, 22) on a predetermined portion of one side of the conductive foil-like material (10A, 20A). The electrode plate (1A, 2A) has a two-fold structure in which the flexible material formed of is folded in half and has the active material layers (12, 22) on both sides.
The electrical storage element (100) according to claim 4.
前記蓄電素子(100,200)は、キャパシタ(100,200)であって、
前記長尺電極板(10,201)および各前記短冊状電極板(20,202)は、それぞれ導電性の電極板であり、
前記セパレータ(30,203)は、絶縁膜である、
請求項1〜請求項3のうちいずれか一項に記載された蓄電素子。
The storage element (100, 200) is a capacitor (100, 200),
The long electrode plates (10, 201) and the strip electrode plates (20, 202) are respectively conductive electrode plates,
The separator (30, 203) is an insulating film.
The electrical storage element as described in any one of Claims 1-3.
一方向に所定の幅を持ちこの幅の方向(幅方向と呼ぶ)に対して直交する長手方向に長尺で可撓性材料からなる一方の電極板である長尺電極板(1,1A,201)と、互いに独立した複数の短冊状の電極板からなる他方の電極板である短冊状電極板(2,2A,202)と、前記一方向に所定の幅を持ちこの幅に対して長手方向に長尺で可撓性材料からなる所定の寸法形状に整えられた長尺セパレータ(30〜32,203)とを用意する準備工程(P11)と、
前記長尺電極板(1,1A,201)のうち前記幅方向の一方に突出する一方端子部(11)を残して前記長尺セパレータ(30〜32,203)を前記長尺電極板(1,1A,201)の両面に密着させ、前記長尺電極板(1,1A,201)の前記両面を覆う前記長尺セパレータ(30〜32,203)と前記長尺電極板(1,1A,201)とが一体化された一体長尺物(41〜43,204)を作製する一体化工程(P21,P22)と、
各前記短冊状電極板(2,2A,202)のうち前記幅方向の他方に突出する他方端子部(21)を残して各前記短冊状電極板(2,2A,202)を前記一体長尺物(41〜43,204)の両面に一枚ずつ折り込みながら、前記一体長尺物(41〜43,204)を前記長手方向に所定幅で交互に折り重ねて葛折り状の電極積層体である蓄電素子(100,200)を形成する積層工程(P31)と、
を有することを特徴とする、
蓄電素子(100,200)の製造方法。
A long electrode plate (1, 1A, 1A, which is one electrode plate having a predetermined width in one direction and long in the longitudinal direction perpendicular to the width direction (referred to as the width direction) and made of a flexible material. 201) and the strip electrode plate (2, 2A, 202) which is the other electrode plate composed of a plurality of strip electrode plates independent from each other, and has a predetermined width in the one direction and is long with respect to this width. A preparation step (P11) for preparing a long separator (30 to 32, 203) that is long in the direction and is arranged in a predetermined dimension and shape made of a flexible material;
Of the long electrode plates (1, 1A, 201), the long separators (30 to 32, 203) are connected to the long electrode plates (1) while leaving one terminal portion (11) protruding in one of the width directions. , 1A, 201) and the long separator (30-32, 203) covering the both surfaces of the long electrode plate (1, 1A, 201) and the long electrode plate (1, 1A, 201). 201) and an integrated process (P21, P22) for producing an integrated long object (41-43, 204),
The strip-shaped electrode plates (2, 2A, 202) are made to be the one-piece long, leaving the other terminal portion (21) projecting to the other in the width direction among the strip-shaped electrode plates (2, 2A, 202). The integrated long objects (41-43, 204) are alternately folded with a predetermined width in the longitudinal direction while folding one by one on both surfaces of the objects (41-43, 204). A stacking step (P31) for forming a storage element (100, 200);
It is characterized by having
Manufacturing method of electrical storage element (100, 200).
前記一体化工程(P21,P22)は、
前記セパレータ(30)が一枚であって、このセパレータ(30)を前記長手方向に沿って前記幅の中央線に沿って二つ折りとし、前記長尺電極板(1,1A,201)のうち一方端子部(11)を残して前記長尺電極板(1)の両面を包み込んで覆う二つ折り一体化工程(P21)と、
前記セパレータ(31,32)が二枚であって、前記長尺電極板(1,1A,201)のうち前記一方端子部(11)を残してこれらのセパレータ(31,32)で前記長尺電極板(1,1A,201)を両面から挟み込んで覆うサンドイッチ一体化工程(P22)と、
のうちいずれかである、
請求項7に記載された蓄電素子(100,200)の製造方法。
The integration step (P21, P22)
The separator (30) is a single sheet, and the separator (30) is folded in two along the center line of the width along the longitudinal direction, out of the long electrode plates (1, 1A, 201) On the other hand, a two-fold integration step (P21) that encloses and covers both sides of the long electrode plate (1) leaving the terminal portion (11),
The separators (31, 32) are two, and the long electrode plates (1, 1A, 201) are left with the one terminal portion (11), and the separators (31, 32) Sandwich integration step (P22) covering and covering the electrode plates (1, 1A, 201) from both sides;
One of the
The manufacturing method of the electrical storage element (100,200) described in Claim 7.
前記蓄電素子(100)は、一次電池および二次電池(100)のうちいずれかであって、
前記準備工程(P11)は、
前記長尺電極板(1A)の可撓性導電材料(10A)の片面のうち幅方向の中央部を含む一部に活物質層(12)を所定幅で形成し、この片面が外側になるようこの導電材料(10A)を二つ折りにして、両面に前記活物質層(12)をもつ前記長尺電極板(1A)を形成する長尺電極板折り工程(P111)と、
前記各短冊状電極板(2A)の可撓性導電材料(20A)の片面のうち中央部を含む片面に活物質層(22)を所定幅で形成し、この片面が外側になるようにこの導電性材料(20A)を二つ折りにして、両面に前記活物質層(22)をもつ前記短冊状電極板(2A)を形成する短冊状電極板折り工程(P112)とのうち、
少なくとも一方を含む、
請求項7〜請求項8のうち一項に記載された蓄電素子(100)の製造方法。
The storage element (100) is either a primary battery or a secondary battery (100),
The preparation step (P11)
An active material layer (12) is formed with a predetermined width on a part of one side of the flexible electrode material (10A) of the long electrode plate (1A) including the central part in the width direction, and this one side becomes the outside. A long electrode plate folding step (P111) for folding the conductive material (10A) in half and forming the long electrode plate (1A) having the active material layer (12) on both sides;
An active material layer (22) is formed with a predetermined width on one surface including the central portion of one surface of the flexible conductive material (20A) of each strip-shaped electrode plate (2A), and this one surface is on the outer side. Among the strip electrode plate folding step (P112) of folding the conductive material (20A) in two and forming the strip electrode plate (2A) having the active material layer (22) on both sides,
Including at least one,
The manufacturing method of the electrical storage element (100) described in one of Claims 7-8.
一方向に所定の幅を持ちこの幅の方向(幅方向と呼ぶ)に対して直交する長手方向に長尺で可撓性材料からなる一方の電極板である長尺電極板(1,1A,201)と、互いに独立した複数の短冊状の電極板からなる他方の電極板である短冊状電極板(2,2A,202)と、これらの短冊状電極板(2,2A,202)のそれぞれの両面を覆うことができるように所定の寸法形状をもつ複数の短冊状セパレータ(33〜36)とを用意する準備工程(P112)と、
各前記短冊状電極板(2,2A,202)のうち端子部(他方端子部と呼ぶ)(21)を残して前記短冊状セパレータ(33〜36)を前記短冊状電極板(2,2A,202)の両面に密着させ、前記短冊状電極板(2,2A,202)の前記両面を覆うそれぞれの前記短冊状セパレータ(33〜36)と前記短冊状電極板(2,2A,202)とが一体化された短冊状一体物(51〜53)を作製する短冊一体化工程(P23,P24,P25)と、
前記他方端子部(21)を残して各前記短冊状一体物(51〜53)を前記長尺電極板(1,1A,201)の両面に対して交互に一枚ずつ折り込み、前記長尺電極板(1,1A,201)のうち各前記短冊状電極板(2,2A,202)に重ならない端子部(一方端子部と呼ぶ)(11)を残しながら、前記長尺電極板(1,1A,201)を前記長手方向に所定幅で交互に折り重ね、前記一方端子部(11)と各前記他方端子部(21)とが前記幅方向に沿って互いに背向して突出した葛折り状の電極積層体である蓄電素子(100,200)を形成する積層工程(P33)と、
を有することを特徴とする、
蓄電素子(100,200)の製造方法。
A long electrode plate (1, 1A, 1A, which is one electrode plate having a predetermined width in one direction and long in the longitudinal direction perpendicular to the width direction (referred to as the width direction) and made of a flexible material. 201), a strip electrode plate (2, 2A, 202) which is the other electrode plate composed of a plurality of independent strip electrode plates, and each of these strip electrode plates (2, 2A, 202) A preparation step (P112) of preparing a plurality of strip separators (33 to 36) having a predetermined size and shape so as to cover both sides of
Of the strip electrode plates (2, 2A, 202), the strip separators (33 to 36) are replaced with the strip electrode plates (2, 2A, 202) leaving the terminal portion (referred to as the other terminal portion) (21). 202) and the strip-shaped separators (33 to 36) and the strip-shaped electrode plates (2, 2A, 202) covering the both surfaces of the strip-shaped electrode plates (2, 2A, 202). A strip integration step (P23, P24, P25) for producing a strip-shaped integrated product (51-53) integrated with
The strip-shaped integrated objects (51 to 53) are alternately folded one by one with respect to both surfaces of the long electrode plate (1, 1A, 201), leaving the other terminal portion (21), and the long electrodes While leaving a terminal portion (referred to as one terminal portion) (11) that does not overlap each strip-shaped electrode plate (2, 2A, 202) of the plate (1, 1A, 201), the long electrode plate (1, 1A, 201) 1A, 201) are alternately folded with a predetermined width in the longitudinal direction, and the one terminal portion (11) and each of the other terminal portions (21) project in the width direction so as to project backward from each other. A stacking step (P33) for forming a storage element (100, 200) which is a cylindrical electrode stack;
It is characterized by having
Manufacturing method of electrical storage element (100, 200).
JP2012256426A 2012-11-22 2012-11-22 Storage element and method for manufacturing the same Expired - Fee Related JP5971095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256426A JP5971095B2 (en) 2012-11-22 2012-11-22 Storage element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256426A JP5971095B2 (en) 2012-11-22 2012-11-22 Storage element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014103082A true JP2014103082A (en) 2014-06-05
JP5971095B2 JP5971095B2 (en) 2016-08-17

Family

ID=51025400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256426A Expired - Fee Related JP5971095B2 (en) 2012-11-22 2012-11-22 Storage element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5971095B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403897A (en) * 2016-05-19 2017-11-28 三星Sdi株式会社 Rechargeable battery and its manufacture method
WO2018186205A1 (en) * 2017-04-07 2018-10-11 株式会社村田製作所 Secondary battery and manufacturing method thereof
JP2019053819A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
JP2019053825A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
JP2019079711A (en) * 2017-10-25 2019-05-23 株式会社東芝 Battery and manufacturing method therefor
JP2019096465A (en) * 2017-11-22 2019-06-20 株式会社Gsユアサ Storage element
JP2019117699A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
JP2019121427A (en) * 2017-12-28 2019-07-22 株式会社Gsユアサ Power storage element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085719A1 (en) * 2022-10-21 2024-04-25 주식회사 엘지에너지솔루션 Electrode assembly and electrochemical device including same
WO2024085613A1 (en) * 2022-10-21 2024-04-25 주식회사 엘지에너지솔루션 Electrode assembly and electrochemical element comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624086U (en) * 1979-07-31 1981-03-04
JPH08501409A (en) * 1992-09-11 1996-02-13 バレンス テクノロジー,インコーポレイティド Electrochemical cell laminate and method for producing electrochemical cell laminate
JPH11307127A (en) * 1998-04-16 1999-11-05 Sony Corp Laminated battery electrode
JP2009117291A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Stacked secondary battery
JP2009289938A (en) * 2008-05-29 2009-12-10 Panasonic Corp Electric double-layer capacitor
JP2011258434A (en) * 2010-06-10 2011-12-22 Denso Corp Electrode laminate for battery
JP2012226910A (en) * 2011-04-18 2012-11-15 Eliiy Power Co Ltd Method and apparatus for manufacturing secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624086U (en) * 1979-07-31 1981-03-04
JPH08501409A (en) * 1992-09-11 1996-02-13 バレンス テクノロジー,インコーポレイティド Electrochemical cell laminate and method for producing electrochemical cell laminate
JPH11307127A (en) * 1998-04-16 1999-11-05 Sony Corp Laminated battery electrode
JP2009117291A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Stacked secondary battery
JP2009289938A (en) * 2008-05-29 2009-12-10 Panasonic Corp Electric double-layer capacitor
JP2011258434A (en) * 2010-06-10 2011-12-22 Denso Corp Electrode laminate for battery
JP2012226910A (en) * 2011-04-18 2012-11-15 Eliiy Power Co Ltd Method and apparatus for manufacturing secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015049150; 化学大辞典編集委員会: 化学大辞典5 第5巻, 19760910, p.860, 共立出版株式会社 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403897B (en) * 2016-05-19 2022-06-21 三星Sdi株式会社 Rechargeable battery and method of manufacturing the same
CN107403897A (en) * 2016-05-19 2017-11-28 三星Sdi株式会社 Rechargeable battery and its manufacture method
WO2018186205A1 (en) * 2017-04-07 2018-10-11 株式会社村田製作所 Secondary battery and manufacturing method thereof
JPWO2018186205A1 (en) * 2017-04-07 2019-11-07 株式会社村田製作所 Secondary battery and manufacturing method thereof
US11417912B2 (en) 2017-04-07 2022-08-16 Murata Manufacturing Co., Ltd. Secondary battery and method of manufacturing the same
JP2019053819A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
JP2019053825A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
JP2019079711A (en) * 2017-10-25 2019-05-23 株式会社東芝 Battery and manufacturing method therefor
JP7182861B2 (en) 2017-10-25 2022-12-05 株式会社東芝 Battery and its manufacturing method
JP2019096465A (en) * 2017-11-22 2019-06-20 株式会社Gsユアサ Storage element
JP2019117699A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
JP7068644B2 (en) 2017-12-26 2022-05-17 株式会社Gsユアサ Power storage element
JP2019121427A (en) * 2017-12-28 2019-07-22 株式会社Gsユアサ Power storage element
JP7303994B2 (en) 2017-12-28 2023-07-06 株式会社Gsユアサ Storage element

Also Published As

Publication number Publication date
JP5971095B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5971095B2 (en) Storage element and method for manufacturing the same
JP5943244B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP6618677B2 (en) Electrode assembly and secondary battery including the same
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5058646B2 (en) High capacity battery cell with two or more unit cells
JP6884459B2 (en) Electrode assembly and secondary battery equipped with it
JP4964350B2 (en) Electrochemical device and manufacturing method thereof
JP5825436B2 (en) ELECTRODE ASSEMBLY EXCELLENT IN ELECTRODE TAB CONNECTIVITY, BATTERY CELL CONTAINING THE SAME, DEVICE AND MANUFACTURING METHOD
JP7060504B2 (en) Cross-woven electrode assembly
JP5392368B2 (en) Power storage device
JP7162236B2 (en) battery
JP2008027891A (en) Electrode assembly with same size of electrode tab in joining part and electrochemical cell having this
JP2017069207A (en) Lithium ion secondary battery and manufacturing method for the same
JP6415959B2 (en) Electrode group, battery, and battery manufacturing method
JP7221122B2 (en) Battery cell electrode assembly manufacturing method and battery cell
JP4976174B2 (en) Sealed secondary battery
JP6808925B2 (en) Power storage element and manufacturing method of power storage element
JP2009016122A (en) Laminated secondary battery and battery pack
JP2017076478A (en) Folding type secondary battery
JP2016178028A (en) Electrode body and power storage element having the same
JP4513125B2 (en) Electrochemical device and manufacturing method thereof
JP5561798B2 (en) Multilayer secondary battery and battery pack
CN114730965B (en) Power storage device and insulating holder
JP2008186943A (en) Method of manufacturing electrical double-layer capacitor
KR20180082150A (en) Electrode Assembly Folded with Zig-Zag form

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R151 Written notification of patent or utility model registration

Ref document number: 5971095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees