JP2014102235A - Radar signal processor - Google Patents

Radar signal processor Download PDF

Info

Publication number
JP2014102235A
JP2014102235A JP2012256403A JP2012256403A JP2014102235A JP 2014102235 A JP2014102235 A JP 2014102235A JP 2012256403 A JP2012256403 A JP 2012256403A JP 2012256403 A JP2012256403 A JP 2012256403A JP 2014102235 A JP2014102235 A JP 2014102235A
Authority
JP
Japan
Prior art keywords
radar
distribution target
dielectric coefficient
polarization
acquisition means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012256403A
Other languages
Japanese (ja)
Inventor
Masahiko Takamatsu
政彦 高松
Yuya Nokiba
裕也 能木場
Noboru Kawahara
登 河原
Tsukasa Suzuki
司 鈴木
Masanori Endo
将徳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2012256403A priority Critical patent/JP2014102235A/en
Publication of JP2014102235A publication Critical patent/JP2014102235A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radar signal processor for obtaining attributes of a distribution target from reflection waves which have individually arrived from the distribution target in accordance with a plurality of transmission waves whose polarizations are different in which it is possible to accurately and stably obtain the attributes of the distribution target regardless of the configurations and physical distribution of the distribution target.SOLUTION: The radar signal processor includes: dielectric coefficient acquisition means for applying a correction ρ between reflection waves which have individually arrived from a distribution target in accordance with a plurality of p transmission waves whose polarizations are different to an already known correspondence between the correlation ρ and the configurations of the distribution target to specify the configurations of the distribution target, and for acquiring the dielectric coefficient of the distribution target to be determined on the basis of the configurations; and reflection factor calculation means for applying the dielectric coefficient acquired by the dielectric coefficient acquisition means to the whole or a part of a plurality of p radar equations established with respect to the transmission waves and reflection waves of each polarization to calculate radar reflection factors corresponding to the whole or a part of the polarizations as unknown numbers.

Description

本発明は、偏波が異なる複数の送信波に応じて分布目標から個別に到来した反射波からその分布目標の属性を求めるレーダ信号処理装置に関する。   The present invention relates to a radar signal processing apparatus that obtains an attribute of a distribution target from reflected waves that individually arrive from the distribution target according to a plurality of transmission waves having different polarizations.

近年、温暖化に伴って突発的な豪雨が頻繁に生じる可能性が高まり、このような豪雨およびその雨量の予測や推定の精度の向上が強く要求されると共に、雨滴粒のタイプや分布が的確に得られる可能性が高い偏波レーダの研究や開発が積極的に進められつつある。   In recent years, the possibility of frequent sudden downpours due to global warming has increased, and there is a strong demand for improving the accuracy of prediction and estimation of such downpours and rainfall, and the type and distribution of raindrops are accurate. Research and development of polarization radars that are highly likely to be obtained are being actively promoted.

図4は、従来の偏波レーダの構成例を示す図である。
従来の偏波レーダ20では、送受信部21のアンテナ端子に空中線系22が接続され、その送受信部21の復調出力は信号処理部23の入力に接続される。信号処理部23の出力は指示部24の入力に接続され、これらの送受信部21、信号処理部23および指示部24には、制御部25の対応する入出力ポートが接続される。空中線系22は、制御部25の配下で旋回角や仰角の設定および可変が図られ、これらの旋回角や仰角で示される方向に所定の幅の主ローブを有する開口アンテナとして構成される。
FIG. 4 is a diagram illustrating a configuration example of a conventional polarization radar.
In the conventional polarization radar 20, the antenna system 22 is connected to the antenna terminal of the transmission / reception unit 21, and the demodulated output of the transmission / reception unit 21 is connected to the input of the signal processing unit 23. An output of the signal processing unit 23 is connected to an input of the instruction unit 24, and a corresponding input / output port of the control unit 25 is connected to the transmission / reception unit 21, the signal processing unit 23, and the instruction unit 24. The antenna system 22 is configured as an aperture antenna having a main lobe with a predetermined width in the direction indicated by the turning angle and the elevation angle, under which the turning angle and the elevation angle are set and variable under the control unit 25.

このような構成の偏波レーダ装置では、各部は、制御部25の配下で以下の通りに連係することにより、所定の地域に位置する雨雲等を検出し、かつ気象情報を取得する。   In the polarization radar apparatus having such a configuration, each unit detects rain clouds and the like located in a predetermined area and acquires weather information by linking as follows under the control of the control unit 25.

送受信部21は、送信波を所定の周期で生成する。空中線系22は、制御部25の配下で反復して行われるボリュームスキャンに供され、このようなボリュームスキャンによる覆域に上記送信波を互いに直交する2つの偏波(例えば、垂直偏波および水平偏波)で並行して照射する。以下、このような2つの偏波の送信波については、それぞれ「送信波Tv」、「送信波Th」と表記する。   The transmission / reception unit 21 generates a transmission wave at a predetermined cycle. The antenna system 22 is subjected to volume scanning repeatedly performed under the control of the control unit 25, and two transmission waves (for example, vertical polarization and horizontal polarization) orthogonal to each other are transmitted to the coverage by such volume scanning. Irradiation in parallel with polarization). Hereinafter, such two polarized transmission waves are referred to as “transmission wave Tv” and “transmission wave Th”, respectively.

なお、上記ボリュームスキャンは、偏波レーダ20によって行われるスキャンの一形態であり、例えば、図5(a)〜(e)に示されるように、ボリュームスキャン、RHIスキャン、セクターRHIスキャン、セクターPPIスキャン、PPIスキャン等の何れであってもよい。   The volume scan is a form of scan performed by the polarization radar 20, and for example, as shown in FIGS. 5A to 5E, the volume scan, the RHI scan, the sector RHI scan, and the sector PPI. Any of scanning, PPI scanning, etc. may be used.

上記送信波Tv,Thが覆域に位置する雨雲等において反射することによって発生し、かつ偏波が互いに直交する反射波は、空中線系22に到来する。   The reflected waves that are generated when the transmission waves Tv and Th are reflected by rain clouds or the like located in the covered area and whose polarizations are orthogonal to each other arrive at the aerial system 22.

送受信部21は、このような反射波を偏波毎に受信して復調することにより、上記スキャンに同期した復調信号Mv,Mhを生成する。信号処理部23は、これらの復調信号Mv,Mhに、グランドクラッタの除去、MTI(Moving Target Indicator)等のレーダ信号処理を施す。制御部25は、信号処理部23と連係することにより、上記雨雲等に関する気象情報を下記の通りに取得する。   The transceiver 21 generates demodulated signals Mv and Mh synchronized with the scan by receiving and demodulating such reflected waves for each polarization. The signal processing unit 23 performs radar signal processing such as ground clutter removal and MTI (Moving Target Indicator) on these demodulated signals Mv and Mh. The control unit 25 acquires weather information related to the rain clouds and the like as follows by cooperating with the signal processing unit 23.

(1) 指示画面として表されるべき三次元空間が複数n個に区分されてなるブロック(メッシュ)b(1)〜b(n)に、上記復調信号Mv,Mhの瞬時値mv,mhをそれぞれマッピングすることにより、瞬時値の列(mv(1,1)〜mv(1,k)、mh(1,1)〜mh(1,k))、…、(mv(n,1)〜mv(n,k)、mh(n,1)〜mh(n,k))として蓄積する(図6ステップS1)。ここに、kは、個々の偏波についてブロック毎に含まれるべき瞬時値の数(≧2)を意味する。 (1) The instantaneous values mv and mh of the demodulated signals Mv and Mh are assigned to blocks (mesh) b (1) to b (n) in which a three-dimensional space to be displayed as an instruction screen is divided into a plurality of n. By mapping each, a sequence of instantaneous values (mv (1,1) to mv (1, k), mh (1,1) to mh (1, k)), ..., (mv (n, 1) to mv (n, k), mh (n, 1) to mh (n, k)) (step S1 in FIG. 6). Here, k means the number of instantaneous values (≧ 2) to be included in each block for each polarization.

(2) これらのブロックb(i)(i=1〜n)毎に、以下の処理を行う。
(2-1) 送信波Tv,Thの尖頭電力Ptv,Pthの内、該当するブロックに照射された偏波毎の電力(以下、「送信尖頭電力」という。)ptv(i),pth(i)を求める(図6ステップS2)。
(2) The following processing is performed for each of these blocks b (i) (i = 1 to n).
(2-1) Among the peak powers P tv and P th of the transmission waves Tv and Th, the power for each polarization irradiated to the corresponding block (hereinafter referred to as “transmission peak power”) p tv (i ), P th (i) is obtained (step S2 in FIG. 6).

(2-2) 上記瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の偏波毎の平均値として平均受信電力prv(i),prh(i)を求める(図6ステップS3)。 (2-2) Average received power as the average value for each polarization of the above instantaneous value sequence (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) p rv (i) and p rh (i) are obtained (step S3 in FIG. 6).

(2-3) 操作者によって設定された誘電係数d(i)を取り込んで蓄積する(図6ステップS4)。なお、このような誘電係数d(i)は、ブロックb(1)〜b(n)の何れについても、一般に、該当するブロックb(i)に位置する気象目標の複素誘電率εに対して((ε−1)/(ε+1))で与えられ、例えば、その気象目標が雨、氷、雲に該当する場合には、それぞれ「0.93」、「0.18」、「0.21ρ」(ρは、氷の密度を示す。)のような既知の好適な値として設定される。 (2-3) The dielectric coefficient d (i) set by the operator is captured and stored (step S4 in FIG. 6). Note that such a dielectric coefficient d (i) is generally equal to the complex dielectric constant ε of the weather target located in the corresponding block b (i) for any of the blocks b (1) to b (n). ((ε−1) / (ε + 1)). For example, when the weather target corresponds to rain, ice, and clouds, “0.93”, “0.18”, and “0.21ρ”, respectively. 2 ”(ρ represents the density of ice) and is set as a known preferable value.

(2-4) 偏波レーダ20の既知の諸元として、下記の値を特定する(図6ステップS5)。
(2-4-1) 送信波のパルス幅と、空中線系22と該当するブロックb(i)との間における送信波および反射波の伝搬路の長さとの比h(i)
(2-4-2) 送信波Tv,Thの波長λ
(2-4) The following values are specified as known specifications of the polarization radar 20 (step S5 in FIG. 6).
(2-4-1) Ratio h (i) between the pulse width of the transmitted wave and the length of the propagation path of the transmitted wave and reflected wave between the antenna system 22 and the corresponding block b (i)
(2-4-2) Wavelength λ of transmitted waves Tv and Th

(2-4-3) 空中線系22の利得G
(2-4-4) 空中線系22の主ローブの水平方向、垂直方向における幅θ,φ
(2-4-5) 空中線系22と該当するブロックb(i)との距離r(i)
(2-4-3) Gain G of antenna system 22
(2-4-4) Horizontal and vertical widths θ and φ of the main lobe of the antenna system 22
(2-4-5) Distance r (i) between antenna system 22 and the corresponding block b (i)

(2-5) 上述した送信尖頭電力ptv(i)、pth(i)、平均受信電力prv(i),prh(i)、誘電係数d(i)、比h(i)、波長λ、利得G、幅θ,φ、距離r(i)に対して成立するレーダ方式(a),(b)が成立する未知数として、下式(c)、(d)で示されるレーダ反射因子Zv(i),Zh(i)を求める(図6ステップS6)。
(2-5) Transmission peak power p tv (i), p th (i), average received power p rv (i), p rh (i), dielectric coefficient d (i), ratio h (i) As shown in the following equations (c) and (d), the unknowns for which the radar systems (a) and (b) are established for the wavelength λ, the gain G, the widths θ and φ, and the distance r (i) The reflection factors Zv (i) and Zh (i) are obtained (step S6 in FIG. 6).

(2-6) このようにして求められたレーダ反射因子Zv(i),Zh(i)と、単位時間当たりの降雨量である降雨強度Rとの間に成立する公知のZ−R関係を示す下式(e)、(f)が成立し、かつ該当するブロックに位置する気象目標の形態(雨、氷、雲)に対応する定数として与えられる係数B、βを求める(図6ステップS7)。
Zv(i)=B・Rβ …(e)
Zh(i)=B・Rβ …(f)
(2-6) The well-known ZR relationship established between the radar reflection factors Zv (i) and Zh (i) obtained in this way and the rainfall intensity R, which is the rainfall per unit time. The following formulas (e) and (f) shown below are established, and coefficients B and β given as constants corresponding to the form of the weather target (rain, ice, and cloud) located in the corresponding block are obtained (step S7 in FIG. 6). ).
Zv (i) = B · R β (e)
Zh (i) = B · R β (f)

(2-7) このようにして求められた係数B、βと既述のレーダ反射因子Zv(i),Zh(i)とをそれぞれ上式(e)、(f)に代入することによって、降雨強度Rを未知数として算出する(図6ステップS8)。 (2-7) By substituting the coefficients B and β and the radar reflection factors Zv (i) and Zh (i) described above into the above equations (e) and (f), respectively, The rainfall intensity R is calculated as an unknown (step S8 in FIG. 6).

(3) ブロックb(i)(i=1〜n)の全てについて求められた降雨強度Rを含む気象情報を信号処理部23に引き渡す(図6ステップS9)。
信号処理部23は、さらに、指示部24に備えられた表示装置(図示されない。)の指示画面上に上記気象情報および雨雲等の位置を既述のマッピングに整合した形式で出力する。
(3) The weather information including the rainfall intensity R obtained for all of the blocks b (i) (i = 1 to n) is delivered to the signal processing unit 23 (step S9 in FIG. 6).
The signal processing unit 23 further outputs the position of the weather information and rain clouds in a format consistent with the above-described mapping on an instruction screen of a display device (not shown) provided in the instruction unit 24.

なお、本発明に関連性がある先行技術としては、後述する特許文献1ないし特許文献9があった。
(1) 「空中線により周囲に電波を送信し気象目標からのエコーを受信する送受信手段と、当該エコーの受信電力に基づき反射因子を求め、降雨特性を示す変換定数を用いて反射因子を降雨強度又は雨雪量に変換する演算手段と、を備える気象レーダ装置において、空中線の仰角を変化させつつ送受信手段に上記送受信を行わせる可変仰角制御手段と、上記エコーの受信電力を空中線の仰角別に観測してエコー頂高度又は垂直エコー強度分布を求める可変仰角観測手段と、求められたエコー頂高度又は垂直エコー強度分布に応じ上記変換定数を設定する変換定数設定手段とを備える」ことにより、「変換に係る定数を降雨特性に応じて設定可能にし、もってより正確な降雨強度等の観測を実現する」点に特徴がある気象レーダ装置…特許文献1
In addition, there existed patent document 1 thru | or patent document 9 mentioned later as a prior art relevant to this invention.
(1) `` Transmission / reception means that transmits radio waves to the surroundings via an antenna and receives echoes from the weather target, and a reflection factor is obtained based on the received power of the echo, and the reflection factor is calculated using the conversion constant indicating the rainfall characteristics. Or a meteorological radar apparatus comprising a calculation means for converting to rain and snow, a variable elevation control means for causing the transmission / reception means to perform the transmission / reception while changing the elevation angle of the antenna, and the received power of the echo is observed for each elevation angle of the antenna By providing a variable elevation angle observation means for obtaining the echo peak height or the vertical echo intensity distribution and a conversion constant setting means for setting the conversion constant according to the obtained echo peak height or the vertical echo intensity distribution. The weather radar apparatus is characterized in that it can set the constant according to the rain characteristics, thereby realizing more accurate observation of the rainfall intensity, etc.

(2) 「空中に垂直偏波および水平偏波の電波を送出し、気象目標からの反射波を受信する送受信部と、上記送受信部から上記反射波の受信信号を取得し、平均受信電力値を観測ポイント単位で算出する平均受信電力算出部と、上記送受信部から上記反射波の受信信号を取得し、上記垂直偏波および上記水平偏波の反射波の伝播位相差の微分値を上記観測ポイント単位で算出する伝播位相差算出部と、上記平均受信電力値と上記伝播位相差の微分値に基づいて、上記観測ポイント毎の降雨強度を算出する降雨強度算出部を備え、上記降雨強度算出部は、上記伝播位相差の微分値を1単位距離分遅延させる第1の遅延処理部と、上記平均受信電力値を1単位距離分遅延させる第2の遅延処理部と、上記第1の遅延処理部によって1単位距離分遅延した伝播位相差の微分値を用いてKdp降雨強度を算出するKdp降雨強度算出部と、上記Kdp降雨強度が、観測可能Kdp降雨強度の下限値以上と判定した場合には上記Kdp降雨強度を出力するKdp降雨強度有無判定部と、上記Kdp降雨強度有無判定部からの出力値と、上記第2の遅延処理部によって1単位距離遅延された平均受信電力値を用いて、途中降雨減衰補正値を算出する受信強度補正値算出部と、上記第2の遅延処理部によって遅延処理されていない上記平均受信電力値に、上記途中降雨減衰補正値を加算する加算部と、上記加算部によって上記途中降雨減衰補正値を加算された平均受信電力値を用いてdBZ降雨強度を算出し、上記観測ポイント毎の降雨強度として出力する受信強度データ降雨強度算出部と、上記受信強度データ降雨強度算出部によって算出されたdBZ降雨強度を1単位距離分遅延させ、上記Kdp降雨強度有無判定部に供給する第3の遅延処理部を備え、上記Kdp降雨強度有無判定部は、上記Kdp降雨強度が上記観測可能Kdp降雨強度の下限値より小さい場合には、上記第3の遅延処理部から供給されたdBZ降雨強度を受信強度補正値算出部に出力する」ことにより、「降雨量に関わらず、精度の高い降雨強度算出が可能である」点に特徴がある気象レーダ装置…特許文献2 (2) “Transmitting / receiving unit that transmits vertically and horizontally polarized waves in the air and receiving the reflected wave from the weather target, and the received signal of the reflected wave from the transmitting / receiving unit. The received signal of the reflected wave is obtained from the average received power calculation unit for calculating the observation point unit and the transmission / reception unit, and the differential value of the propagation phase difference of the reflected wave of the vertical polarization and the horizontal polarization is observed. A precipitation phase calculation unit that calculates a precipitation intensity for each observation point based on a propagation phase difference calculation unit that calculates in units of points and a differential value of the average received power value and the propagation phase difference; A first delay processing unit that delays the differential value of the propagation phase difference by one unit distance, a second delay processing unit that delays the average received power value by one unit distance, and the first delay Delayed by one unit distance by the processing unit A Kdp rainfall intensity calculation unit that calculates a Kdp rainfall intensity using a differential value of the propagation phase difference, and outputs the Kdp rainfall intensity when the Kdp rainfall intensity is determined to be equal to or greater than a lower limit value of the observable Kdp rainfall intensity. Using the Kdp rainfall intensity presence / absence determining unit, the output value from the Kdp rainfall intensity presence / absence determining unit, and the average received power value delayed by one unit distance by the second delay processing unit, A reception intensity correction value calculation unit to be calculated; an addition unit that adds the halfway rain attenuation correction value to the average received power value that has not been delayed by the second delay processing unit; and the halfway rainfall by the addition unit. A reception intensity data rainfall intensity calculation unit that calculates a dBZ rainfall intensity using an average received power value to which an attenuation correction value is added and outputs the rainfall intensity for each observation point; and the reception A third delay processing unit that delays the dBZ rainfall intensity calculated by the degree data rainfall intensity calculation unit by one unit distance and supplies the delayed delay intensity determination unit to the Kdp rainfall intensity presence / absence determination unit, When the Kdp rainfall intensity is smaller than the lower limit value of the observable Kdp rainfall intensity, the dBZ rainfall intensity supplied from the third delay processing unit is output to the received intensity correction value calculating unit. Regardless of the fact, it is possible to calculate rainfall intensity with high accuracy. ”

(3) 「気象レーダで観測される反射強度情報から降水量を解析する気象レーダ情報解析装置において、前記気象レーダの覆域内における格子点気象要素の予測情報を取り込み、この予測情報から高度別の降水カテゴリー及び降水タイプ別の粒径分布を推定し、この推定結果に基づいて気象レーダのレーダ反射因子を降水量に換算する換算式を最適化し、この最適化された換算式により前記気象レーダで観測される反射強度情報に対応する降水量を求める」ことにより、「気象レーダ情報解析に際して降雨の性質に応じた精度の高い降水量を求める」点に特徴がある気象レーダ情報解析装置…特許文献3 (3) “In the meteorological radar information analyzer that analyzes precipitation from the reflection intensity information observed by the meteorological radar, the forecast information of lattice point meteorological elements in the covered area of the meteorological radar is captured, Estimate the particle size distribution by precipitation category and precipitation type, and optimize the conversion formula that converts the radar reflection factor of the weather radar into precipitation based on the estimation result. By obtaining the precipitation corresponding to the observed reflection intensity information, the weather radar information analysis device is characterized by "determining the precipitation with high accuracy according to the nature of the precipitation when analyzing the meteorological radar information" ... Patent Literature 3

(4) 「水平偏波および垂直偏波の2つの電波を空間に放射し、ターゲットで反射された電波を、2つの偏波で水平偏波受信信号および垂直偏波受信信号として受信し、前記水平偏波受信信号および前記垂直偏波受信信号に対して処理を施すことにより二重偏波計測値を取得するレーダ信号処理装置であって、前記水平偏波受信信号と前記垂直偏波受信信号との偏波間の位相差を算出する位相差算出部と、前記水平偏波受信信号および前記垂直偏波受信信号の少なくとも一方からエコー強度を算出するエコー強度算出部と、前記エコー強度から降雨強度の暫定推定値を算出する暫定推定値算出部と、前記暫定推定値を用いて、前記位相差の距離微分を計算する際の第1の距離微分区間を設定する距離微分区間設定部と、前記第1の距離微分区間を用いて前記位相差を距離で微分し、第1の位相差距離微分値を算出する距離微分算出部と、前記第1の位相差距離微分値から降雨強度推定値を算出する降雨強度推定部とを備える」ことにより、「位相誤差の影響の小さい強雨領域での距離分解能の劣化を防止する」点に特徴があるレーダ信号処理装置…特許文献4 (4) “Two radio waves of horizontal polarization and vertical polarization are radiated into space, and radio waves reflected by the target are received as horizontal polarization reception signals and vertical polarization reception signals with two polarizations. A radar signal processing apparatus for obtaining a dual polarization measurement value by performing processing on a horizontal polarization reception signal and the vertical polarization reception signal, wherein the horizontal polarization reception signal and the vertical polarization reception signal A phase difference calculation unit that calculates a phase difference between polarizations, an echo intensity calculation unit that calculates echo intensity from at least one of the horizontal polarization reception signal and the vertical polarization reception signal, and rainfall intensity from the echo intensity A provisional estimated value calculation unit that calculates a provisional estimated value, a distance differentiation section setting unit that sets a first distance derivative section when calculating a distance derivative of the phase difference using the provisional estimated value, The first distance derivative interval A differential distance calculating unit for differentiating the phase difference by distance and calculating a first phase difference distance differential value; and a rainfall intensity estimating unit for calculating a rainfall intensity estimated value from the first phase difference distance differential value; A radar signal processing apparatus characterized by "preventing degradation of distance resolution in heavy rain regions where the influence of phase error is small" ... Patent Document 4

(5) 「気象レーダで観測されたレーダ受信電力データを地上雨量計で観測された地上雨量計データに基づいてレーダ方程式に用いる降雨算出パラメータをリアルタイムに最適化する降雨算出パラメータ推定用演算装置と、最適化された降雨算出パラメータに基づくレーダ方程式により前記気象レーダで得られた受信電力データからレーダ雨量を演算し出力するレーダ雨量演算装置とを具備する」ことにより、「レーダ受信電力からレーダ雨量を算出する過程で使用する降雨算出パラメータの最適化を行なうことができ、これによってレーダ雨量の精度を向上させることのできる」点に特徴があるレーダ雨量測定装置…特許文献5 (5) A calculation device for estimating the rain calculation parameter that optimizes the rain calculation parameters used in the radar equation in real time based on the radar rain power data observed by the ground rain gauge based on the radar received power data observed by the weather radar And a radar rainfall calculation device that calculates and outputs a radar rainfall from the received power data obtained by the weather radar according to a radar equation based on an optimized rainfall calculation parameter. It is possible to optimize the rain calculation parameters used in the process of calculating the radar rainfall, thereby improving the accuracy of the radar rainfall.

(6) 「レーダ雨量計の全国合成手段と、前記レーダ雨量計のデータを用いて災害履歴の検索を行う災害履歴検索手段と、前記全国合成手段より得られた精度の高い実況のオンライン合成レーダ雨量を用いる流出予測手段と、Cバンドレーダ雨量計で観測されたデータとの比較によって得られる補正率によりXバンドレーダの観測データを補正するレーダ雨量計補正手段との全て又は何れかを選択又は組み合わせてなる」ことにより、「従来の如き境界付近でのデータの段差が生じることなく、複数レーダ雨量計が観測する日本全土の連続的なレーダ雨量を精度良く求めることができる」点に特徴がある全国合成レーダ雨量情報提供システム…特許文献6 (6) “Radar rain gauge nationwide synthesis means, disaster history search means for searching for disaster history using the radar rain gauge data, and highly accurate on-line synthetic radar obtained from the nationwide synthesis means. Select or select either all or any of runoff prediction means using rainfall and radar rainmeter correction means for correcting observation data of X-band radar with a correction rate obtained by comparison with data observed with a C-band radar rainmeter By combining, "the feature is that" the continuous radar rainfall throughout Japan observed by multiple radar rain gauges can be obtained with high accuracy without causing a data step near the boundary as in the past ". A nationwide synthetic radar rainfall information provision system ... Patent Literature 6

(7) 「水平偏波および垂直偏波の2つの電波を空間に放射し、ターゲットで反射された電波を、2つの偏波で水平偏波受信信号および垂直偏波受信信号として受信し、前記水平偏波受信信号および前記垂直偏波受信信号に対して処理を施すことにより二重偏波計測値を取得するレーダ信号処理装置であって、前記水平偏波受信信号と前記垂直偏波受信信号との偏波間の位相差を算出する位相差算出部と、前記水平偏波受信信号および前記垂直偏波受信信号の少なくとも一方からエコー強度を算出するエコー強度算出部と、前記エコー強度から降雨強度の暫定推定値を算出する暫定推定値算出部と、前記暫定推定値に対して反比例するように、前記位相差の距離微分を計算する際の第1の距離微分区間を設定する距離微分区間設定部と、前記第1の距離微分区間を用いて前記位相差を距離で微分し、第1の位相差距離微分値を算出する距離微分算出部と、前記第1の位相差距離微分値から降雨強度推定値を算出する降雨強度推定部とを備え、前記暫定推定値算出部は、気象レーダ方程式を用いて前記エコー強度から降雨の単位体積当たりのレーダ反射率に対応したレーダ反射因子を計算するとともに、定数を用いた前記レーダ反射因子と降雨強度との関係式を用いて前記レーダ反射因子を前記暫定推定値に変換し、前記距離微分区間設定部は、前記降雨強度推定値を用いて第2の距離微分区間を再設定し、前記距離微分算出部は、前記第2の距離微分区間を用いて、前記位相差の第2の位相差距離微分値を再度算出する」ことにより、「位相誤差の影響の小さい強雨領域での距離分解能の劣化を防止する」点に特徴があるレーダ信号処理装置…特許文献7 (7) “Two radio waves of horizontal polarization and vertical polarization are radiated into the space, and the radio waves reflected by the target are received as horizontal polarization reception signals and vertical polarization reception signals with two polarizations. A radar signal processing apparatus for obtaining a dual polarization measurement value by performing processing on a horizontal polarization reception signal and the vertical polarization reception signal, wherein the horizontal polarization reception signal and the vertical polarization reception signal A phase difference calculation unit that calculates a phase difference between polarizations, an echo intensity calculation unit that calculates echo intensity from at least one of the horizontal polarization reception signal and the vertical polarization reception signal, and rainfall intensity from the echo intensity A temporary estimated value calculation unit for calculating a temporary differential value of the phase difference, and a distance differential interval setting for setting the first distance differential interval when calculating the differential distance of the phase difference so as to be inversely proportional to the temporary estimated value And the first A distance differential calculation unit that calculates the first phase difference distance differential value by differentiating the phase difference by the distance using the distance differential section, and calculates the rainfall intensity estimated value from the first phase difference distance differential value. A provisional estimated value calculation unit that calculates a radar reflection factor corresponding to a radar reflectivity per unit volume of rainfall from the echo intensity using a weather radar equation and uses a constant. The radar reflection factor is converted into the provisional estimated value using a relational expression between the radar reflection factor and the rainfall intensity, and the distance differential interval setting unit uses the rainfall intensity estimated value to determine a second distance differential interval. The distance differential calculation unit resets the second phase differential distance differential value of the phase difference again using the second distance differential section, thereby obtaining a “strong insignificant phase error effect”. Distance resolution in rain The radar signal processing apparatus is characterized in deterioration of preventing "point ... Patent Document 7

(8) 「個別のレーダ雨量計によって観測された極座標メッシュ単位の雨量値を基に、レーダ雨量計の観測範囲全域を対象として均質化の処理を行う均質化補正処理機能を有するレーダ雨量計の全国合成手段を備え、該均質化補正処理機能は、個別のレーダ雨量計の設置位置と周囲の地形状況とレーダ雨量計観測仰角とに基づいて算出される各方向別の山岳遮蔽による電力損失率によりレーダ雨量計の観測雨量値を補正する遮蔽補正処理と、個別のレーダ雨量計の観測範囲内の地上雨量計地点におけるレーダ雨量と地上雨量との雨量比を距離方向に解析した距離方向観測特性に基づき補正係数を乗じて距離方向の観測特性を平坦化する距離補正処理と、個別のレーダ雨量計の定量観測範囲内における地上雨量計観測雨量値の総和と同地上雨量計地点に対応するレーダ雨量計極座標メッシュにおけるレーダ雨量計観測雨量値の総和との間の雨量比に、前記遮蔽補正処理及び距離補正処理を施したレーダ雨量をかけることによりレーダ雨量を補正する一様補正処理とから構成される」ことにより、「日本全土の連続的なレーダ雨量を高精度で求め、それを使用して有用な情報が提供できる」点に特徴がある全国合成レーダ雨量情報提供システム…特許文献8 (8) `` A radar rain gauge with a homogenization correction processing function that performs homogenization processing for the entire observation range of the radar rain gauge based on rainfall values in polar mesh units observed by individual radar rain gauges. Comprising national synthesis means, the homogenization correction processing function is a power loss rate due to mountain shielding for each direction calculated based on the installation position of individual radar rain gauges, the surrounding topographical conditions, and the radar rain gauge observation elevation angle Shielding correction processing that corrects the rainfall value of the radar rain gauge by using the radar rain gauge, and distance direction observation characteristics that analyze the rainfall ratio between the radar rainfall and the ground rainfall at the ground rain gauge point within the observation range of the individual radar rain gauge in the distance direction The distance correction process to flatten the observation characteristics in the distance direction by multiplying the correction coefficient based on the above, the sum of the ground rain gauge observation rainfall values within the quantitative observation range of the individual radar rain gauge and the ground rain gauge Uniform to correct radar rainfall by multiplying the rainfall ratio between the radar rain gauge observation rainfall values in the radar rain gauge polar mesh corresponding to the point by the radar rainfall subjected to the shielding correction processing and the distance correction processing. Comprising correction processing ”, a nationwide synthetic radar rainfall information providing system characterized by the ability to“ find continuous radar rainfall throughout Japan with high accuracy and provide useful information using it ” ... Patent Document 8

(9) 「発射した水平偏波および垂直偏波の反射波から得られる水平偏波受信信号および垂直偏波受信信号から水平偏波反射強度Zh、偏波間強度比Zdrおよび偏波間位相差Kdpをそれぞれ算出し、水平偏波反射強度Zhから雨量強度R(Zh)を、水平偏波反射強度Zhと偏波間強度比Zdrから雨量強度R(Zh,Zdr)を、偏波間位相差Kdpと偏波間強度比Zdrから雨量強度R(Kdp,Zdr)を、偏波間位相差Kdpから雨量強度R(Kdp)をそれぞれ算出し、算出した雨量強度R(Zh)、R(Zh,Zdr)、R(Kdp,Zdr)およびR(Kdp)を用いて観測範囲の雨量強度の3次元分布を求める気象レーダ装置において、水平偏波受信信号および垂直偏波受信信号に基づいて偏波間相関係数ρhvを算出する偏波間相関算出部と、当該装置が放射したレーダビームの一部または全部が遮蔽される領域を表す遮蔽マップデータを保存する遮蔽マップ保存部と、観測範囲の各高度のメッシュ毎に偏波間相関係数ρhvに基づいて降水エコーか非降水エコーを判定し、降水エコーと判定されたメッシュに対しては水平偏波反射強度Zh、偏波間強度比Zdr、偏波間位相差Kdp、偏波間相関係数ρhvおよび遮蔽マップデータに基づいてそれぞれの判定メッシュが遮蔽領域に含まれているかを判定し、遮蔽領域の判定結果に対応したメッシュの降水粒子を判定し、当該判定した降水粒子に適した雨量強度の種類を選択し、当該選択した雨量強度の種類または非降水エコーの判定結果を表す3次元の雨量強度選択データと降水粒子データを生成する降水粒子・雨量選択判定部と、3次元の雨量強度選択データに基づいて雨量強度R(Zh)、R(Zh,Zdr)、R(Kdp,Zdr)およびR(Kdp)から観測範囲の3次元の各メッシュで採用する雨量強度を選択して観測範囲の最終的な雨量強度の3次元分布を算出する雨量強度判定部とを備える」ことにより、「種々の降水粒子が混在する観測範囲全域において高い精度の雨量強度の3次元分布を求めることを可能にする」点に特徴がある気象レーダ装置…特許文献9 (9) The horizontal polarization reflection intensity Zh, the polarization intensity ratio Zdr and the polarization phase difference Kdp are calculated from the horizontal polarization reception signal and the vertical polarization reception signal obtained from the emitted horizontal polarization and vertical polarization reflection signals. The rainfall intensity R (Zh) is calculated from the horizontal polarization reflection intensity Zh, the rainfall intensity R (Zh, Zdr) is calculated from the horizontal polarization reflection intensity Zh and the inter-polarization intensity ratio Zdr, the inter-polarization phase difference Kdp and the inter-polarization. The rainfall intensity R (Kdp, Zdr) is calculated from the intensity ratio Zdr, the rainfall intensity R (Kdp) is calculated from the phase difference Kdp between the polarizations, and the calculated rainfall intensity R (Zh), R (Zh, Zdr), R (Kdp) is calculated. , Zdr) and R (Kdp) are used to calculate the inter-polarization correlation coefficient ρhv based on the horizontal polarization reception signal and the vertical polarization reception signal in the weather radar apparatus that obtains the three-dimensional distribution of the rainfall intensity in the observation range. Inter-wave correlation calculation unit, shielding map storage unit that stores shielding map data that represents the area where part or all of the radar beam emitted by the device is shielded, and inter-polarization phase relationship for each altitude mesh in the observation range A precipitation echo or a non-precipitation echo is determined based on the number ρhv. For a mesh determined as a precipitation echo, the horizontal polarization reflection intensity Zh, the polarization intensity ratio Zdr, the polarization phase difference Kdp, and the correlation coefficient between polarizations Based on ρhv and occlusion map data, it is determined whether each determination mesh is included in the occlusion area, the precipitation particles of the mesh corresponding to the occlusion area determination result are determined, and the rainfall intensity suitable for the determined precipitation particles Select the type of rain, and the precipitation particle that generates the selected rainfall intensity type or non-precipitation echo judgment result and 3D rainfall intensity selection data and precipitation particle data Three-dimensional meshes of the observation range from the rainfall intensity R (Zh), R (Zh, Zdr), R (Kdp, Zdr) and R (Kdp) based on the rainfall selection determination unit and the three-dimensional rainfall intensity selection data With a rainfall intensity determination unit that selects the rainfall intensity to be used in the calculation and calculates the three-dimensional distribution of the final rainfall intensity in the observation range. A weather radar device characterized in that it makes it possible to obtain a three-dimensional distribution of rainfall intensity.

特開平06−222135号公報Japanese Patent Laid-Open No. 06-222135 特開2006−226713号公報JP 2006-226713 A 特開2003−344556号公報JP 2003-344556 A 特開2005−017082号公報JP 2005-017082 A 特開2005−017266号公報Japanese Patent Laying-Open No. 2005-017266 特開2006−030013号公報JP 2006-030013 A 特許4097143号公報Japanese Patent No. 4097143 特許4369816号公報Japanese Patent No. 4369816 特開2009−008440号公報JP 2009-008440 A

ところで、上述した従来例では、ブロックb(1)〜b(n)のそれぞれに、雨、氷、雲等の気象目標が混在し得るにもかかわらず、誘電係数d(i)は、少なくとも複数のブロックに共通の値として、しかも、操作者の判断の下で手動で与えられていたため、レーダ反射因子Zv(i),Zh(i)の精度が必ずしも十分には高くなかった。   By the way, in the above-described conventional example, although the weather targets such as rain, ice and clouds can be mixed in each of the blocks b (1) to b (n), the dielectric coefficient d (i) is at least plural. The values of the radar reflection factors Zv (i) and Zh (i) were not necessarily sufficiently high because they were manually given as the values common to the blocks.

すなわち、従来例では、このようなレーダ反射因子Zv(i),Zh(i)だけではなく、既述の係数B、βが的確には求められないために、降雨強度Rの精度も低かった。   That is, in the conventional example, not only such radar reflection factors Zv (i) and Zh (i) but also the above-described coefficients B and β are not accurately obtained, so the accuracy of the rainfall intensity R is low. .

なお、このような精度の低下は、例えば、水平偏波の反射波について求められたレーダ反射因子Zh(i)と、水平偏波および垂直偏差の反射についてそれぞれ求められたレーダ反射因子の差ZDR(i)(=Zh(i)−Zv(i))との値の組み合わせに応じて、気象目標の形態(雨、氷、雲)が推定され、その気象目標の形態に適合した既述の係数B、βがZ−R関係に適用されることによって、緩和が可能である。 Such a decrease in accuracy is caused by, for example, the difference between the radar reflection factor Zh (i) obtained for the reflected wave of horizontal polarization and the radar reflection factor Zh obtained for the reflection of horizontal polarization and vertical deviation, respectively. According to the combination of values with DR (i) (= Zh (i) -Zv (i)), the form of the weather target (rain, ice, cloud) is estimated, and the previous description adapted to the form of the weather target Can be relaxed by applying the coefficients B and β to the ZR relationship.

しかし、このような緩和は、降雨強度Rに応じて増加する送信波や反射波の伝搬損失(減衰量)が大きいほど上記レーダ反射因子の差ZDR(i)の精度が著しく低下するために、実際には実現され難かった。 However, such mitigation is because the accuracy of the radar reflection factor difference Z DR (i) decreases remarkably as the transmission loss (attenuation) of the transmitted wave or reflected wave increases in accordance with the rainfall intensity R. Actually, it was hard to be realized.

本発明は、分布目標の形態と物理的な分布との如何にかかわらず、その分布目標の属性を精度よく安定に得ることができるレーダ信号処理装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a radar signal processing apparatus that can accurately and stably obtain the attributes of a distribution target regardless of the form of the distribution target and the physical distribution.

請求項1に記載の発明では、誘電係数取得手段は、偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の相関ρと前記分布目標の態様との既知の対応関係に、前記相関ρを適用することによって前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める。反射因子算出手段は、前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める。   According to the first aspect of the present invention, the dielectric coefficient acquisition means is a known correspondence between the correlation ρ of the reflected wave individually arriving from the distribution target in accordance with a plurality of p transmission waves having different polarizations and the mode of the distribution target. The aspect of the distribution target is specified by applying the correlation ρ to the relationship, and the dielectric coefficient of the distribution target determined by the aspect is obtained. The reflection factor calculation means applies the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or a part of a plurality of p radar equations established for the transmission wave and the reflected wave for each polarization, and the polarization Radar reflection factors corresponding to all or a part of are calculated as unknowns.

すなわち、既述の異なる複数pの偏波の反射波の相関ρを基準として、送信波を反射した分布目標の態様で定まるその分布目標の誘電係数が求められ、その誘電係数がレーダ方式に適用されることによってレーダ反射因子が得られる。   That is, based on the correlation ρ of the reflected waves of different polarized waves with different p as described above, the dielectric coefficient of the distribution target determined in the form of the distribution target reflecting the transmitted wave is obtained, and the dielectric coefficient is applied to the radar system. As a result, a radar reflection factor is obtained.

請求項2に記載の発明では、誘電係数取得手段は、偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の直線偏波抑圧比LDRと前記分布目標の態様との既知の対応関係に、前記直線偏波抑圧比LDRを適用することによって前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める。反射因子算出手段は、前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める。   In the invention according to claim 2, the dielectric coefficient acquisition means includes the linear polarization suppression ratio LDR of the reflected wave individually arriving from the distribution target according to a plurality of p transmission waves having different polarizations, and the mode of the distribution target. The mode of the distribution target is specified by applying the linear polarization suppression ratio LDR to the known correspondence relationship, and the dielectric coefficient of the distribution target determined by the mode is obtained. The reflection factor calculation means applies the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or a part of a plurality of p radar equations established for the transmission wave and the reflected wave for each polarization, and the polarization Radar reflection factors corresponding to all or a part of are calculated as unknowns.

すなわち、既述の異なる複数pの偏波の反射波の直線偏波抑圧比LDRを基準として、送信波を反射した分布目標の態様で定まるその分布目標の誘電係数が求められ、その誘電係数がレーダ方程式に適用されることによってレーダ反射因子が得られる。   In other words, the dielectric coefficient of the distribution target determined in the form of the distribution target reflecting the transmission wave is obtained with reference to the linear polarization suppression ratio LDR of the reflected waves of different p polarizations as described above, and the dielectric coefficient is Radar reflection factor is obtained by applying to radar equation.

請求項3に記載の発明では、誘電係数取得手段は、偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の相関ρおよび直線偏波抑圧比LDRの組み合わせと前記分布目標の態様との既知の対応関係に、前記組み合わせを適用することによって前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める。反射因子算出手段は、前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める。   In the invention according to claim 3, the dielectric coefficient acquisition means includes a combination of the correlation ρ of the reflected waves individually coming from the distribution target in accordance with a plurality of p transmission waves having different polarizations and the linear polarization suppression ratio LDR, and the The distribution target mode is specified by applying the combination to a known correspondence relationship with the distribution target mode, and the dielectric coefficient of the distribution target determined by the mode is obtained. The reflection factor calculation means applies the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or a part of a plurality of p radar equations established for the transmission wave and the reflected wave for each polarization, and the polarization Radar reflection factors corresponding to all or a part of are calculated as unknowns.

すなわち、既述の異なる複数pの偏波の反射波の相関ρおよび直線偏波抑圧比LDRの組み合わせを基準として、送信波を反射した分布目標の態様で定まるその分布目標の誘電係数が求められ、その誘電係数がレーダ方式に適用されることによってレーダ反射因子が得られる。   That is, the dielectric coefficient of the distribution target determined in the form of the distribution target reflecting the transmission wave is obtained on the basis of the combination of the correlation ρ of the reflected waves with different p polarizations and the linear polarization suppression ratio LDR described above. The radar reflection factor is obtained by applying the dielectric coefficient to the radar system.

請求項4に記載の発明では、請求項1ないし請求項3の何れか1項に記載のレーダ信号処理装置において、前記誘電係数取得手段は、前記反射波の伝搬位相差変化率と前記分布目標の態様との既知の対応関係に基づいて前記分布目標の態様の不確定性の緩和または排除を図る。   According to a fourth aspect of the present invention, in the radar signal processing device according to any one of the first to third aspects, the dielectric coefficient acquisition means includes a propagation phase difference change rate of the reflected wave and the distribution target. Based on a known correspondence relationship with the above-described aspect, the uncertainty of the aspect of the distribution target is reduced or eliminated.

すなわち、既述の異なる複数pの偏波の反射波の相関ρと直線偏波抑圧比LDRとの双方もしくは何れか一方と、伝搬位相差変化率とを基準として、送信波を反射した分布目標の態様で定まるその分布目標の誘電係数が求められ、その誘電係数がレーダ方式に適用されることによってレーダ反射因子が得られる。   That is, the distribution target that reflects the transmission wave on the basis of the correlation ρ of the reflected waves of the plurality of different polarizations p and the linear polarization suppression ratio LDR and the propagation phase difference change rate as described above. The dielectric coefficient of the distribution target determined in the above manner is obtained, and the radar coefficient is obtained by applying the dielectric coefficient to the radar system.

本発明によれば、レーダ反射因子が示す分布目標の属性は、人手を介することなく精度よく安定に求められる。
したがって、本発明が適用されたレーダは、レーダ信号処理の手順が大幅に変更されることなく、分布目標の形態および実態に適した属性の特定、識別および監視が安定に実現される。
According to the present invention, the attribute of the distribution target indicated by the radar reflection factor can be obtained accurately and stably without human intervention.
Therefore, the radar to which the present invention is applied can stably identify, identify, and monitor attributes suitable for the form and actual condition of the distribution target without drastically changing the radar signal processing procedure.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本実施形態において制御部が行う処理のフローチャートである。It is a flowchart of the process which a control part performs in this embodiment. レーダ信号処理の過程で得られるパラメータと気象目標の形態との対応関係を示す図である。It is a figure which shows the correspondence of the parameter obtained in the process of a radar signal process, and the form of a weather target. 従来の偏波レーダの構成例を示す図である。It is a figure which shows the structural example of the conventional polarized wave radar. 従来の偏波レーダによって行われるスキャンの形態を示す図である。It is a figure which shows the form of the scan performed by the conventional polarized wave radar. 従来の偏波レーダにおいて制御部が行う処理のフローチャートである。It is a flowchart of the process which a control part performs in the conventional polarized wave radar.

以下、図面に基づいて本発明の実施形態について詳細に説明する。
図1は、本発明の一実施形態を示す図である。
図において、図4に示すものと機能および構成が同じものについては、同じ符号を付与し、ここでは、その説明を省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the present invention.
In the figure, components having the same functions and configurations as those shown in FIG. 4 are given the same reference numerals, and descriptions thereof are omitted here.

本実施形態と図4に示す従来例との構成の相違点は、以下に列記する点にある。
(1) 偏波レーダ20に代わって偏波レーダ10が備えられる。
(2) 偏波レーダ10のハードウェアの構成は、制御部25に代えて制御部11が備えられた点を除いて上記偏波レーダ20と同じである。
図2は、本実施形態において制御部が行う処理のフローチャートである。
The difference in configuration between this embodiment and the conventional example shown in FIG. 4 is in the points listed below.
(1) A polarization radar 10 is provided in place of the polarization radar 20.
(2) The hardware configuration of the polarization radar 10 is the same as that of the polarization radar 20 except that the control unit 11 is provided instead of the control unit 25.
FIG. 2 is a flowchart of processing performed by the control unit in the present embodiment.

図において、従来例と同様にして行われる処理については、図6と同じステップ番号を付与し、ここでは、その説明を省略する。
以下、図1および図2を参照して本実施形態の動作を説明する。
In the figure, the processing performed in the same manner as in the conventional example is assigned the same step number as in FIG. 6, and the description thereof is omitted here.
The operation of this embodiment will be described below with reference to FIGS.

本実施形態では、制御部11は、後述する点を除いて、従来例における制御部25と同様に各部と連係することにより、ブロックb(i)(i=1〜n)および偏波毎に送信尖頭電力ptv(i),pth(i)および平均受信電力prv(i),prh(i)を求め(図2ステップS2,S3)、かつ偏波レーダ10の既知の諸元として以下の値を特定する(図2ステップS5)。 In the present embodiment, the control unit 11 is linked to each unit in the same manner as the control unit 25 in the conventional example, except for the points described later, so that each block b (i) (i = 1 to n) and each polarization is obtained. The transmission peak powers p tv (i) and p th (i) and the average received powers p rv (i) and p rh (i) are obtained (steps S2 and S3 in FIG. 2), and the known various characteristics of the polarization radar 10 are obtained. The following values are specified as the basis (step S5 in FIG. 2).

(1) 送信波のパルス幅と、空中線系22と該当するブロックb(i)との間における送信波および反射波の伝搬路の長さとの比h(i)
(2) 送信波Tv,Thの波長λ
(1) Ratio h (i) between the pulse width of the transmission wave and the length of the propagation path of the transmission wave and the reflected wave between the antenna system 22 and the corresponding block b (i)
(2) Wavelength λ of transmitted waves Tv and Th

(3) 空中線系22の利得G
(4) 空中線系22の主ローブの水平方向、垂直方向における幅θ,φ
(5) 空中線系22と該当するブロックb(i)との距離r(i)
(3) Gain G of antenna system 22
(4) Horizontal and vertical widths θ and φ of the main lobe of the antenna system 22
(5) Distance r (i) between antenna system 22 and the corresponding block b (i)

ところで、ブロックb(1)〜b(n)毎に位置する気象目標の形態「雨(霧雨を含む。)」、「氷晶」、「雪(乾いた雪および湿った雪を含む。)」は、一般に、「気象と大気のリモートセンシング(京都大学学術出版会)」からの抜粋である図3に点線の枠がけで示すように、上記復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の偏波間における相関ρhv(i)の絶対値(=|ρhv(i)|)に対して既知の相関性を有する。 By the way, the weather target forms “rain (including drizzle)”, “ice crystal”, and “snow (including dry snow and wet snow)” located in each of the blocks b (1) to b (n). Is generally a sequence of instantaneous values of the demodulated signals Mv and Mh (mv (mv ()) as shown by a dotted frame in FIG. 3, which is an excerpt from “Remote sensing of weather and atmosphere (Kyoto University Scientific Press)”. i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) between the polarizations ρ hv (i) absolute value (= | ρ hv (i) |) It has a known correlation.

本実施形態では、制御部11は、その主記憶または外部記憶の余剰の領域に、図3に示す相関性が予め登録されたデータベースが配置される。   In the present embodiment, the control unit 11 arranges a database in which the correlation shown in FIG. 3 is registered in advance in the surplus area of the main memory or the external memory.

本発明の特徴は、本実施形態では、制御部11がこのような相関性および以下の手順に基づいて、ブロックb(1)〜b(n)毎に、誘電係数d(i)およびレーダ反射因子Zv(i),Zh(i)を求める点にある。   The feature of the present invention is that in this embodiment, the control unit 11 performs the dielectric coefficient d (i) and the radar reflection for each of the blocks b (1) to b (n) based on such correlation and the following procedure. The point is to obtain the factors Zv (i) and Zh (i).

(1) 復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の偏波間における相関ρhv(i)の絶対値(=|ρhv(i)|)を算出する(図2ステップS11)。 (1) Correlation ρ hv () between polarizations of columns of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of demodulated signals Mv and Mh The absolute value of i) (= | ρ hv (i) |) is calculated (step S11 in FIG. 2).

(2) その絶対値に基づいて上記データベースを参照することにより、気象目標の形態を特定する(図2ステップS12)。 (2) The weather target form is specified by referring to the database based on the absolute value (step S12 in FIG. 2).

(3) 特定された気象目標の形態に適合した誘電係数d(i)を求める(図2ステップS13)。なお、このような誘電係数d(i)は、従来例と同様に、該当する気象目標が雨、氷、雲に該当する場合には、それぞれ既述の通りに「0.93」、「0.18」、「0.21ρ」(ρは、氷の密度を示す。)にそれぞれ設定される。 (3) A dielectric coefficient d (i) suitable for the identified weather target form is obtained (step S13 in FIG. 2). As in the conventional example, such a dielectric coefficient d (i) is “0.93” and “0” as described above when the corresponding weather target corresponds to rain, ice, and clouds. .18 ”and“ 0.21ρ 2 ”(ρ represents the density of ice).

制御部11は、このようにして求められた誘電係数d(i)に併せて、既述の送信尖頭電力ptv(i)、pth(i)、平均受信電力prv(i),prh(i)、比h(i)、波長λ、利得G、幅θ,φ、距離r(i)に対して成立するレーダ方式(a),(b)が成立する未知数として、レーダ反射因子Zv(i),Zh(i)を求める(図2ステップS6)。 The control unit 11 adds the transmission peak powers p tv (i) and p th (i), the average received power p rv (i), Radar reflection as an unknown for which radar systems (a) and (b) are established for p rh (i), ratio h (i), wavelength λ, gain G, width θ, φ, and distance r (i) Factors Zv (i) and Zh (i) are obtained (step S6 in FIG. 2).

さらに、制御部11は、従来例と同様の手順に基づいて係数B、βを求め(図2ステップS7)、降雨強度Rを算出する(図2ステップS8)と共に、ブロックb(i)(i=1〜n)の全てについて求められた降雨強度Rを含む気象情報を信号処理部23に引き渡す(図2ステップS9)。   Further, the control unit 11 obtains the coefficients B and β based on the same procedure as in the conventional example (step S7 in FIG. 2), calculates the rainfall intensity R (step S8 in FIG. 2), and blocks b (i) (i = 1 to n), the meteorological information including the rainfall intensity R obtained for all of them is transferred to the signal processing unit 23 (step S9 in FIG. 2).

信号処理部23は、従来例と同様に、指示部24に備えられた表示装置(図示されない。)の指示画面上に上記気象情報および雨雲等の位置を既述のマッピングに整合した形式で出力する。   Similarly to the conventional example, the signal processing unit 23 outputs the position of the weather information and rain clouds in a format consistent with the above-described mapping on an instruction screen of a display device (not shown) provided in the instruction unit 24. To do.

すなわち、誘電係数d(i)は、操作者によって与えられるのではなく、復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の偏波間における相関ρhv(i)の絶対値(=|ρhv(i)|)に対して既知の相関性が高い気象目標の形態に適した値として与えられる。 That is, the dielectric coefficient d (i) is not given by the operator, but is a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1)) of the demodulated signals Mv and Mh. ~ Mh (i, k)) is given as a value suitable for the form of a weather target having a high correlation with the absolute value (= | ρ hv (i) |) of the correlation ρ hv (i) between the polarized waves It is done.

また、このような相関ρhv(i)は、一般に、反射波(復調信号)の振幅の格差や変動が正規化により圧縮された信号空間上の処理として安定に精度よく算出可能である。 In addition, such correlation ρ hv (i) can generally be calculated stably and accurately as a process on a signal space in which amplitude differences and fluctuations of reflected waves (demodulated signals) are compressed by normalization.

したがって、本実施形態によれば、上記復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の双方もしくは何れか一方のレベルが降雨等に起因して大幅に低下した場合であっても、ブロック毎に位置する気象目標の形態の実態に整合した降雨強度R等の気象情報が精度よく安定に求められる。   Therefore, according to the present embodiment, the sequence of the instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of the demodulated signals Mv and Mh. Even when both or one of the levels is significantly reduced due to rainfall, etc., weather information such as rainfall intensity R that is consistent with the actual condition of the weather target located in each block is stable and accurate. Desired.

なお、本実施形態では、誘電係数d(i)を求めるための基準となる気象目標の形態は、復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の偏波間における相関ρhv(i)の絶対値(=|ρhv(i)|)のみに対する既知の相関性に基づいて特定されている。 In the present embodiment, the form of the weather target serving as a reference for obtaining the dielectric coefficient d (i) is a sequence of instantaneous values (mv (i, 1) to mv (i, k) of the demodulated signals Mv and Mh. , Mh (i, 1) to mh (i, k)) are specified based on the known correlation for only the absolute value (= | ρ hv (i) |) of the correlation ρ hv (i) between the polarizations. Yes.

しかし、このような相関性は、図3に併記されたパラメータを含む下記の相関性の何れかで代替されることにより、該当するブロックに位置する気象目標の形態に対する整合性が高められ、かつ多様な気象目標に対する柔軟な適合が図られてもよい。   However, such correlation is replaced with one of the following correlations including the parameters shown in FIG. 3 to improve consistency with the form of the weather target located in the corresponding block, and Flexible adaptation to various weather targets may be achieved.

(1) 復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の直線偏波抑圧比LDRhv(i)(既述の絶対値|ρhv(i)|に代わる。)に対する相関性 (1) Linear polarization suppression ratio LDR hv of a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of demodulated signals Mv and Mh Correlation for (i) ( instead of the absolute value | ρ hv (i) | described above)

(2) 復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の直線偏波抑圧比LDRhv(i)と、既述の絶対値|ρhv(i)|との双方に対する相関性 (2) Linear polarization suppression ratio LDR hv of a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of demodulated signals Mv and Mh Correlation for both (i) and absolute value | ρ hv (i) |

(3) 復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の伝搬位相差変化率KDP(i)と、既述の絶対値|ρhv(i)|との双方に対する相関性 (3) Propagation phase difference change rate K DP of a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of the demodulated signals Mv and Mh Correlation for both (i) and absolute value | ρ hv (i) |

(4) 復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の直線偏波抑圧比LDRhv(i)と、復調信号Mv,Mhの瞬時値の列(mv(i,1)〜mv(i,k)、mh(i,1)〜mh(i,k))の伝搬位相差変化率KDP(i)と、既述の絶対値|ρhv(i)|との全てに対する相関性 (4) Linear polarization suppression ratio LDR hv of a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of the demodulated signals Mv and Mh (i) and a propagation phase difference change rate of a sequence of instantaneous values (mv (i, 1) to mv (i, k), mh (i, 1) to mh (i, k)) of the demodulated signals Mv and Mh Correlation for all of K DP (i) and absolute value | ρ hv (i) |

また、本実施形態では、上記相関性の不確定性は、既述の絶対値|ρhv(i)|、直線偏波抑圧比LDRhv(i)、伝搬移相差変化率KDP(i)の全てまたは一部に季節や時間帯に応じた実績、経過、予測等が反映されることによって、緩和や回避が図られてもよい。 Further, in the present embodiment, the uncertainties of the correlation are the absolute value | ρ hv (i) |, the linear polarization suppression ratio LDR hv (i), and the propagation phase difference difference change rate K DP (i). All or a part of the information may reflect mitigation or avoidance by reflecting results, progress, predictions, etc. according to the season or time zone.

さらに、本実施形態では、気象目標の形態は、雨、氷、雲に限定されず、既述の絶対値|ρhv(i)|と、直線偏波抑圧比LDRhv(i)と、伝搬位相差変化率KDP(i)との所望の組み合わせとの相関性に基づいて特定可能であり、このようにして特定された気象目標の形態に好適な誘電係数d(i)が既知である場合には、例えば、図3の最左欄に示すように、「あられ」や「ひょう」等に拡張されてもよい。 Furthermore, in this embodiment, the form of the weather target is not limited to rain, ice, and clouds, and the absolute value | ρ hv (i) | described above, the linear polarization suppression ratio LDR hv (i), and the propagation It can be specified based on the correlation with the desired combination with the phase difference change rate K DP (i), and a dielectric coefficient d (i) suitable for the form of the weather target specified in this way is known. In such a case, for example, as shown in the leftmost column of FIG. 3, it may be expanded to “are” or “hail”.

また、本発明は、二偏波レーダに限定されず、互いに相関性が疎である複数の偏波の反射波の間における相関または偏波抑圧度に基づいて気象目標の形態が自動的に特定され、その特定された気象目標の形態に適合した誘電係数が求められることにより、レーダ反射因子を精度よく算出することが可能であるならば、3つ以上の多偏波レーダにも同様に適用可能である。   In addition, the present invention is not limited to the dual-polarization radar, and the form of the weather target is automatically specified based on the correlation or the degree of polarization suppression between the reflected waves of a plurality of polarizations that are sparsely correlated with each other. If it is possible to accurately calculate the radar reflection factor by obtaining a dielectric coefficient suitable for the form of the specified weather target, the same applies to three or more multi-polarization radars. Is possible.

さらに、本発明は、偏波レーダや気象レーダに限定されず、上記2偏波または多偏波の反射波の相関または偏波抑圧度に基づいて形態や属性が識別可能な多様な目標の検知や観測にも、同様に適用可能である。   Further, the present invention is not limited to polarization radars and weather radars, and can detect various targets whose forms and attributes can be identified based on the correlation or polarization suppression degree of the reflected waves of the above-mentioned two or multi-polarized waves. It is equally applicable to observations and observations.

また、本発明は、既述の構成に限定されず、同等の作用効果を奏するならば、多様な機能分散や負荷分散が図られた系として構成されてもよく、このような系を構成する要素の何れについても、共通のサイトや地点に設置されなくてもよく、例えば、地理的に隔たったサイトに設置されて通信路を介して連係可能に構成されてもよい。   Further, the present invention is not limited to the above-described configuration, and may be configured as a system in which various function distributions and load distributions are achieved as long as an equivalent effect is achieved. Any of the elements does not need to be installed at a common site or point. For example, the elements may be installed at sites that are geographically separated from each other and can be linked via a communication path.

さらに、本発明は、上述した実施形態に限定されず、本発明の範囲において多様な実施形態の構成が可能であり、構成要素の全てまたは一部に如何なる改良が施されてもよい。   Further, the present invention is not limited to the above-described embodiments, and various configurations can be made within the scope of the present invention, and any improvement may be applied to all or some of the components.

10,20 偏波レーダ
11,25 制御部
21 送受信部
22 空中線系
23 信号処理部
24 指示部
DESCRIPTION OF SYMBOLS 10, 20 Polarization radar 11, 25 Control part 21 Transmission / reception part 22 Antenna system 23 Signal processing part 24 Instruction part

Claims (4)

偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の相関ρと前記分布目標の態様との既知の対応関係に、前記相関ρを適用することにより前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める誘電係数取得手段と、
前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める反射因子算出手段と
を備えたことを特徴とするレーダ信号処理装置。
By applying the correlation ρ to the known correspondence between the correlation ρ of the reflected waves individually arriving from the distribution target according to a plurality of p transmission waves having different polarizations and the mode of the distribution target, the distribution target A dielectric coefficient acquisition means for specifying an aspect and obtaining a dielectric coefficient of the distribution target determined by the aspect;
Applying the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or part of a plurality of p radar equations established for the transmitted wave and reflected wave for each polarization, and to all or part of the polarization A radar signal processing device comprising: a reflection factor calculation means for obtaining a corresponding radar reflection factor as an unknown.
偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の直線偏波抑圧比LDRと前記分布目標の態様との既知の対応関係に、前記直線偏波抑圧比LDRを適用することにより前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める誘電係数取得手段と、
前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める反射因子算出手段と
を備えたことを特徴とするレーダ信号処理装置。
The linear polarization suppression ratio LDR is set to a known correspondence between the linear polarization suppression ratio LDR of the reflected wave individually arriving from the distribution target in accordance with a plurality of p transmission waves having different polarizations and the mode of the distribution target. A dielectric coefficient acquisition means for specifying the distribution target aspect by applying and determining the dielectric coefficient of the distribution target determined by the aspect;
Applying the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or part of a plurality of p radar equations established for the transmitted wave and reflected wave for each polarization, and to all or part of the polarization A radar signal processing device comprising: a reflection factor calculation means for obtaining a corresponding radar reflection factor as an unknown.
偏波が異なる複数pの送信波に応じて分布目標から個別に到来した反射波の相関ρおよび直線偏波抑圧比LDRの組み合わせと前記分布目標の態様との既知の対応関係に、前記組み合わせを適用することにより前記分布目標の態様を特定し、その態様で定まる前記分布目標の誘電係数を求める誘電係数取得手段と、
前記偏波毎の送信波および反射波に対して成立する複数pのレーダ方程式の全てまたは一部に前記誘電係数取得手段によって求められた誘電係数を適用し、前記偏波の全てまたは一部に対応したレーダ反射因子を未知数として求める反射因子算出手段と
を備えたことを特徴とするレーダ信号処理装置。
A combination of the correlation ρ of the reflected wave individually arriving from the distribution target according to a plurality of p transmission waves having different polarizations and the combination of the linear polarization suppression ratio LDR and the known target relationship with the combination target A dielectric coefficient acquisition means for specifying the distribution target aspect by applying and determining the dielectric coefficient of the distribution target determined by the aspect;
Applying the dielectric coefficient obtained by the dielectric coefficient acquisition means to all or part of a plurality of p radar equations established for the transmitted wave and reflected wave for each polarization, and to all or part of the polarization A radar signal processing device comprising: a reflection factor calculation means for obtaining a corresponding radar reflection factor as an unknown.
請求項1ないし請求項3の何れか1項に記載のレーダ信号処理装置において、
前記誘電係数取得手段は、
前記反射波の伝搬位相差変化率と前記分布目標の態様との既知の対応関係に基づいて前記分布目標の態様の不確定性の緩和または排除を図る
ことを特徴とするレーダ信号処理装置。
In the radar signal processing device according to any one of claims 1 to 3,
The dielectric coefficient acquisition means includes
A radar signal processing apparatus characterized by mitigating or eliminating uncertainty of the distribution target mode based on a known correspondence between the propagation phase difference change rate of the reflected wave and the distribution target mode.
JP2012256403A 2012-11-22 2012-11-22 Radar signal processor Pending JP2014102235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256403A JP2014102235A (en) 2012-11-22 2012-11-22 Radar signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256403A JP2014102235A (en) 2012-11-22 2012-11-22 Radar signal processor

Publications (1)

Publication Number Publication Date
JP2014102235A true JP2014102235A (en) 2014-06-05

Family

ID=51024843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256403A Pending JP2014102235A (en) 2012-11-22 2012-11-22 Radar signal processor

Country Status (1)

Country Link
JP (1) JP2014102235A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056193A1 (en) * 2015-09-29 2017-04-06 三菱電機株式会社 Dual-polarization radar device and radar signal processing method
JP2019148510A (en) * 2018-02-27 2019-09-05 国立大学法人電気通信大学 Non-contact shape and dielectric constant measurement device, non-contact shape and dielectric constant measurement method and program
JP2020034550A (en) * 2018-08-29 2020-03-05 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Determining material category based on polarization of received signals
CN111045012A (en) * 2018-10-15 2020-04-21 通用汽车环球科技运作有限责任公司 System and method for detecting precipitation using radar
CN111190149A (en) * 2020-01-13 2020-05-22 南京航空航天大学 C-band polarization meteorological radar external calibration method based on analog calibration body
JP2021092407A (en) * 2019-12-09 2021-06-17 コリア インスティテュート オフ コンストラクション テクノロジー Rainfall intensity estimation method using multiple altitude observation data of ultrashort distance dual polarization radar and estimation device
JP7493312B2 (en) 2018-08-29 2024-05-31 ハネウェル・インターナショナル・インコーポレーテッド Determining material category based on polarization of received signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222135A (en) * 1993-01-21 1994-08-12 Japan Radio Co Ltd Meterological radar
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2011002425A (en) * 2009-06-22 2011-01-06 Furuno Electric Co Ltd Radar device
JP2011081015A (en) * 2011-01-11 2011-04-21 Mitsubishi Electric Corp Weather radar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222135A (en) * 1993-01-21 1994-08-12 Japan Radio Co Ltd Meterological radar
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2011002425A (en) * 2009-06-22 2011-01-06 Furuno Electric Co Ltd Radar device
JP2011081015A (en) * 2011-01-11 2011-04-21 Mitsubishi Electric Corp Weather radar system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吉田孝 監修, 「改訂 レーダ技術」, JPN6016036136, 1 October 1996 (1996-10-01), pages 241 - 244, ISSN: 0003402555 *
深尾昌一郎、外1名, 「気象と大気のレーダーリモートセンシング」, JPN6016036137, 30 March 2005 (2005-03-30), pages 165 - 169, ISSN: 0003402556 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017056193A1 (en) * 2015-09-29 2017-10-05 三菱電機株式会社 Dual polarization radar apparatus and radar signal processing method
KR20180003596A (en) * 2015-09-29 2018-01-09 미쓰비시덴키 가부시키가이샤 Dual Polarization Radar Device and Radar Signal Processing Method
KR102041767B1 (en) * 2015-09-29 2019-11-07 미쓰비시덴키 가부시키가이샤 Dual polarized radar device and radar signal processing method
WO2017056193A1 (en) * 2015-09-29 2017-04-06 三菱電機株式会社 Dual-polarization radar device and radar signal processing method
US10795017B2 (en) 2015-09-29 2020-10-06 Mitsubishi Electric Corporation Dual polarization radar apparatus and radar signal processing method
JP7116949B2 (en) 2018-02-27 2022-08-12 国立大学法人電気通信大学 Non-contact shape/dielectric constant measuring device, non-contact shape/dielectric constant measuring method and program
JP2019148510A (en) * 2018-02-27 2019-09-05 国立大学法人電気通信大学 Non-contact shape and dielectric constant measurement device, non-contact shape and dielectric constant measurement method and program
JP2020034550A (en) * 2018-08-29 2020-03-05 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Determining material category based on polarization of received signals
JP7493312B2 (en) 2018-08-29 2024-05-31 ハネウェル・インターナショナル・インコーポレーテッド Determining material category based on polarization of received signal
CN111045012A (en) * 2018-10-15 2020-04-21 通用汽车环球科技运作有限责任公司 System and method for detecting precipitation using radar
CN111045012B (en) * 2018-10-15 2023-07-28 通用汽车环球科技运作有限责任公司 System and method for detecting precipitation using radar
JP2021092407A (en) * 2019-12-09 2021-06-17 コリア インスティテュート オフ コンストラクション テクノロジー Rainfall intensity estimation method using multiple altitude observation data of ultrashort distance dual polarization radar and estimation device
CN111190149A (en) * 2020-01-13 2020-05-22 南京航空航天大学 C-band polarization meteorological radar external calibration method based on analog calibration body

Similar Documents

Publication Publication Date Title
Anagnostou et al. The use of TRMM precipitation radar observations in determining ground radar calibration biases
Delrieu et al. Simulation of radar mountain returns using a digitized terrain model
Bringi et al. Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler
WO2016181493A1 (en) Laser radar device and wind speed observation method
JP6099318B2 (en) Water vapor observation device and weather radar
JP2014102235A (en) Radar signal processor
KR101244544B1 (en) Method for calculating quality index of sampling error for single and dual-polarization radar parameters
Kalogiros et al. Evaluation of a new polarimetric algorithm for rain-path attenuation correction of X-band radar observations against disdrometer
Bringi et al. Estimation of spatial correlation of drop size distribution parameters and rain rate using NASA’s S-band polarimetric radar and 2D video disdrometer network: Two case studies from MC3E
Koistinen et al. BALTEX weather radar-based precipitation products and their accuracies
KR20170121393A (en) Liquid water content calculating system using cloud radar and liquid water content calculation method using the same
KR101469860B1 (en) Method for gaining information about the convection precipitation in use of the weather radar
Asai et al. Validation of X-band multiparameter phased-array weather radar by comparing data from Doppler weather radar with a parabolic dish antenna
RU2308050C1 (en) Method for measurement of effective dispersion area of ground objects by radar with synthesized antenna aperture
Yoshikawa et al. Dual-directional radar observation for preliminary assessment of the Ku-band broadband radar network
Kim et al. Dual-polarization radar rainfall estimation in Korea according to raindrop shapes obtained by using a 2-D video disdrometer
Wu et al. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar
Maki et al. Developing a composite rainfall map based on observations from an X-band polarimetric radar network and conventional C-band radar
Friedrich et al. Effects of radar beam shielding on rainfall estimation for the polarimetric C-band radar
Florentino et al. Implementation of a ground based synthetic aperture radar (GB-SAR) for landslide monitoring: system description and preliminary results
JP6445145B2 (en) Precipitation intensity calculation apparatus, weather radar apparatus, precipitation intensity calculation method, and precipitation intensity calculation program
Bredemeyer et al. Comparison of principles for measuring the reflectivity values from wind turbines
JP2014202740A (en) Radar signal processing method and radar apparatus
JP7110003B2 (en) Processing device, processing method, and program
Kvasov et al. Weather radar data visualization using first-order interpolation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031