JP2014102186A - Nano material diffusion evaluation device, evaluation method, and negative pressure generator - Google Patents

Nano material diffusion evaluation device, evaluation method, and negative pressure generator Download PDF

Info

Publication number
JP2014102186A
JP2014102186A JP2012255095A JP2012255095A JP2014102186A JP 2014102186 A JP2014102186 A JP 2014102186A JP 2012255095 A JP2012255095 A JP 2012255095A JP 2012255095 A JP2012255095 A JP 2012255095A JP 2014102186 A JP2014102186 A JP 2014102186A
Authority
JP
Japan
Prior art keywords
negative pressure
lung
lungs
container
trachea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255095A
Other languages
Japanese (ja)
Inventor
Shinya Toyokuni
伸哉 豊國
Nobuaki Misawa
伸明 三澤
Hirotaka Nagai
裕崇 永井
Shan Fu Zhou
珊瑚 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2012255095A priority Critical patent/JP2014102186A/en
Publication of JP2014102186A publication Critical patent/JP2014102186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for quickly evaluating a diffusion condition of a nano material in a lung, particularly whether it reaches an alveolar region depth, and whether the nano material which has reached the alveolar region depth breaks through the lung and a thoracic cavity and leaks out to the thoracic cavity.SOLUTION: A nano material diffusion evaluation device includes a lung installation container for installing both lungs from a trachea and bronchus taken out from an animal, and a negative pressure generator for making inside of the lung installation container in negative pressure. The negative pressure generator can repeatedly make the inside of the lung installation container in negative pressure and atmospheric pressure alternately.

Description

本発明は、ナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置に関するもので、特に、天然及び合成ナノマテリアルの肺や胸膜への拡散をex vivoで評価するための装置、評価方法及び前記評価するための装置に用いられる陰圧発生装置に関する。   The present invention relates to a nanomaterial diffusion evaluation apparatus, an evaluation method, and a negative pressure generation apparatus, and more particularly, an apparatus for ex vivo evaluation of diffusion of natural and synthetic nanomaterials to the lungs and pleura, an evaluation method, and the aforementioned The present invention relates to a negative pressure generator used in an apparatus for evaluation.

近年、ナノメートル(1nm=10-9m)の領域すなわち原子や分子のスケールで物質を自在に制御する技術であるナノテクノロジー(nanotechnology)の進歩により、ナノメートルスケールで新素材を開発したり、そのようなスケールのデバイスの開発が進められている。 In recent years, with the advancement of nanotechnology, which is a technology for freely controlling materials in the nanometer (1 nm = 10 -9 m) region, that is, the atomic or molecular scale, new materials have been developed on the nanometer scale, Development of devices of such scale is underway.

ナノマテリアルは、文字どおりナノスケールの非常に小さな材料であり、同じ素材・重さ・体積の材料であれば表面積は格段に広くなることから反応性が非常に大きくなる。そのため、従来製品やその部品にナノマテリアルを使えば、小型化や高性能化など様々な点で有益であり、例えば、医薬品、化粧品、食品、食品容器包装、繊維、家庭用品・雑貨・スポーツ用品、家電・電気電子製品、塗料・インク等への応用が拡大しつつある。特に、ナノテクノロジーを代表する材料であるカーボンナノチューブ(以下、「CNT」と記載することがある。)は、炭素原子のみからなる合成の繊維状新素材であり、1991年に発見された。CNTは、軽量・高強度で、熱伝導性が高く、導体・半導体となるなど多くの優れた特性を有する。   A nanomaterial is literally a very small material on the nanoscale, and if it is a material of the same material, weight, and volume, the surface area becomes much wider, so the reactivity becomes very large. Therefore, if nanomaterials are used for conventional products and their parts, it is beneficial in various respects such as miniaturization and high performance. For example, pharmaceuticals, cosmetics, food, food container packaging, textiles, household goods, miscellaneous goods, sports goods Applications to home appliances, electrical and electronic products, paints and inks are expanding. In particular, a carbon nanotube (hereinafter sometimes referred to as “CNT”), which is a material representing nanotechnology, is a synthetic fibrous new material composed of only carbon atoms, and was discovered in 1991. CNT has many excellent characteristics such as light weight, high strength, high thermal conductivity, and a conductor / semiconductor.

一方、ナノマテリアルの利用の拡大に伴って製造又は取扱いに従事する労働者数も急速に増加するものと考えられる。ナノマテリアルについては、組成単位がごく小さくなることで、既に安全が確認されている素材であっても、従来とは異なる性状を示すことがあり、生体への影響の懸念が高まっている。   On the other hand, the number of workers engaged in manufacturing or handling is expected to increase rapidly as nanomaterials expand. As for nanomaterials, the composition unit is so small that even a material that has already been confirmed to be safe may exhibit properties different from conventional ones, and there is a growing concern about the impact on the living body.

例えば、2008年にはp53ヘテロノックアウトマウスに多層CNTを腹腔内投与すると、悪性中皮腫が発生することが報告された(非特許文献1参照)。これにより、多層CNTは既に発がん性が証明されているアスベストと同様の体内動態をとることが示唆され、CNTの安全性に関して疑義が生じた状況となった。   For example, in 2008, it was reported that malignant mesothelioma occurs when multi-wall CNT is administered intraperitoneally to p53 hetero knockout mice (see Non-Patent Document 1). As a result, it was suggested that multi-walled CNTs have the same pharmacokinetics as asbestos, which has already been proven to be carcinogenic, and there has been doubt about the safety of CNTs.

そのため、発明者らは、2011年に多層CNTにおいてその直径と剛性が発がんに極めて関連していることを報告し(非特許文献2参照)、CNTの留意すべき特性に注意を喚起している。一方で、ISO(国際標準化機構)に2005年に設立されたナノテクノロジー専門委員会(TC229)により、ナノマテリアルが健康や環境に与える影響に関する標準化を行っている。また、OECDにおいても継続的な取り組みがなされている。   For this reason, the inventors reported that the diameter and rigidity of multi-layer CNTs are extremely related to carcinogenesis in 2011 (see Non-Patent Document 2), and are calling attention to the characteristics to be noted of CNTs. . On the other hand, the Nanotechnology Special Committee (TC229) established in 2005 by the ISO (International Organization for Standardization) standardizes the effects of nanomaterials on health and the environment. The OECD is also making ongoing efforts.

しかしながら、上記のとおり、多層CNTを腹腔内投与することで悪性中皮腫が発生することが報告されているが(非特許文献1参照)、その試験方法は、多層CNTが一般的に推測される曝露とは異なる腹腔内等へ高用量で投与されていること等から、安全性評価を行うためには、動物における生体内での長期間にわたる残留性等について、さらに詳細な研究が必要であるとの問題がある。   However, as described above, it has been reported that malignant mesothelioma occurs when intraperitoneal administration of multi-walled CNT (see Non-Patent Document 1), but multi-walled CNT is generally estimated as the test method. In order to evaluate the safety, it is necessary to conduct more detailed research on the long-term persistence in vivo in animals. There is a problem with it.

また、多層CNTをラットの気管に投与し、肺への影響を報告した論文もある(非特許文献3参照)。しかしながら、前記非特許文献3に記載されている実験では、生きているラットに多層CNTを投与しており、投与後、炎症の発症確認に3〜15日、線維症の発症確認には60日程度ラットを飼育した後、組織を取り出して評価する必要があり、多層CNTの安全性の確認に非常に時間がかかるという問題がある。   In addition, there is a paper in which multi-walled CNTs are administered to the trachea of rats and the effect on the lungs is reported (see Non-Patent Document 3). However, in the experiment described in Non-Patent Document 3, multi-walled CNT is administered to a living rat, and after administration, 3 to 15 days for confirming the onset of inflammation and 60 days for confirming the onset of fibrosis. After raising the rat, it is necessary to take out the tissue and evaluate it, and there is a problem that it takes a very long time to confirm the safety of the multilayer CNT.

更に、多層CNTをラットの鼻から吸引させ、肺への影響・毒性を調べた論文も知られている(非特許文献4参照)。しかしながら、前記非特許文献4に記載されている実験では、鼻から多層CNTを吸引させてから約6か月程度ラットを飼育し、その後組織を取り出して評価する必要があり、前記非特許文献2と同様、多層CNTの安全性の確認に非常に時間がかかるという問題がある。その他、多層CNTのエアロゾルが充填されているチャンバー内にラットを90日間(6時間/日、5日/1週間、計13週間)曝露して鼻から多層CNTを吸引させ、肺への毒性を調べた論文も知られているが(非特許文献5参照)、上記文献と同様、安全性の確認に非常に時間がかかるという問題がある。   Furthermore, a paper is also known in which multi-walled CNTs are aspirated from the nose of rats and their effects on lungs and toxicity are examined (see Non-Patent Document 4). However, in the experiment described in Non-Patent Document 4, it is necessary to raise the rat for about 6 months after sucking the multilayer CNT from the nose, and then take out the tissue for evaluation. Similar to the above, there is a problem that it takes a very long time to confirm the safety of the multilayer CNT. In addition, rats were exposed for 90 days (6 hours / day, 5 days / one week, 13 weeks in total) in a chamber filled with multi-layer CNT aerosol, and the multi-wall CNTs were aspirated from the nose, causing toxicity to the lungs. The research paper is also known (see Non-Patent Document 5), but there is a problem that it takes a very long time to confirm the safety as in the above-mentioned document.

ところで、アスベストは天然のナノマテリアルであるが、60年代より曝露者において悪性中皮腫の発生が問題となっている。これまで、化学物質の未解明なリスクに関しては、トキシコロジストが主役で解析を行っていたが、その解析は、Ames test、染色体異常試験、小核試験及び通常13週までの動物試験である。ところが、アスベストによる発がんの潜伏期間は30〜40年であり、しかもAmes test陰性である。このように、繊維状ナノマテリアルに関しては、従来の毒性学的手法では対処できない部分があることが近年明らかになってきている。   By the way, although asbestos is a natural nanomaterial, the occurrence of malignant mesothelioma has been a problem in exposed people since the 1960s. So far, toxicologists have been the main actors in analyzing unexplained risks of chemical substances, but the analysis is Ames test, chromosome aberration test, micronucleus test and animal test usually up to 13 weeks . However, the incubation period of carcinogenesis due to asbestos is 30 to 40 years, and it is negative for Ames test. As described above, it has recently become clear that there are portions of fibrous nanomaterials that cannot be dealt with by conventional toxicological methods.

更に、近年の研究の結果、悪性中皮腫の発生の原因は、吸い込まれたアスベストが肺内で拡散して肺胞領域深部まで到達し、該肺胞領域深部で肺・胸膜を突き破って胸腔に漏出し、中皮細胞を悪性化させると考えられている。今後、様々なナノマテリアルの開発や、量産化技術の確立により、単層・多層CNTをはじめ多くのナノマテリアルの利用の拡大が予想されるため、従来から行われている動物実験等に加え、ヒトに対する毒性ならびに発がん性を評価する新規で簡便な評価方法の確立が望まれている。特に、ナノマテリアルの肺内での拡散状況、特に肺胞領域深部まで到達するか否か、そして、肺胞領域深部へ到達したナノマテリアルが肺・胸膜を突き破り胸腔へ漏出するか否かを迅速に評価することが安全性を確認するための指標の一つとして重要になると考えられるが、そのような、実験装置、方法等は現在のところ知られていない。   Furthermore, as a result of recent research, the cause of malignant mesothelioma is that inhaled asbestos diffuses in the lungs and reaches the deep alveolar region, and penetrates the lungs and pleura in the deep alveolar region deeply. It is thought that the mesothelial cells become malignant. In the future, due to the development of various nanomaterials and the establishment of mass production technology, the use of many nanomaterials including single-layer / multi-layer CNTs is expected to expand, so in addition to conventional animal experiments, Establishment of a new and simple evaluation method for evaluating toxicity and carcinogenicity to humans is desired. In particular, the diffusion status of nanomaterials in the lungs, especially whether they reach the deep part of the alveolar region, and whether the nanomaterial that has reached the deep part of the alveolar region penetrates the lungs / pleura and leaks into the chest cavity Although it is considered that the evaluation is important as one of the indicators for confirming safety, such experimental devices and methods are not known at present.

Atsuya Takagi et al.,“Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi−wall carbon nanotube.”, The Journal of Toxicological Sciences, 2008 Feb, Vol.33, No.1, p105−116Atsuya Takagi et al. , “Induction of mesothelioma in p53 +/− mouse by intraperitoneal application of multi-wall carbon nanotube.”, The Journal of the World. 33, no. 1, p105-116 Nagai H et al.,“Diameter and rigidity of multi−walled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis.”, Proc Natl Acad Sci USA,108: p1330−1338, 2011Nagai H et al. , "Diameter and rigidity of multi-walled carbon nanotubes are critical factors in mesogenic injuries and calcinogenes.", Proc Natl. Julie Muller et al.,“Respiratory toxicity of multi−wall carbon nanotubes”, Toxicology and Applied Pharmacology, 207,(2005), p221−231Julie Muller et al. , “Respiratoryity of multi-wall carbon nanotubes”, Toxology and Applied Pharmacology, 207, (2005), p221-231. Jurgen Pauluhn,“Subchronic 13−Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures Not Fibrillar Structures”,TOXICOLOGICAL SCIENCES,113(1), p226−242(2010)Jurgen Pauluhn, "Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures Not Fibrillar Structures", TOXICOLOGICAL SCIENCES, 113 (1), p226-242 (2010) Ma−Hock L et al.,“Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months”,Toxicol Sci. 2009 Dec,112(2),p468−81Ma-Hock L et al. , “Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months”, Toxicol Sci. 2009 Dec, 112 (2), p468-81

本発明は、上記従来の問題を解決するためになされた発明であり、鋭意研究を行ったところ、動物から取り出した気管・気管支から両肺(以下、「肺等」と記載することがある。)を気密容器内に取り付け、該容器内を陰圧→大気圧→陰圧→大気圧に繰り返すことでex vivoで肺呼吸を人工的に作り出すことができ、ナノマテリアルの肺等への拡散状況、特に肺胞領域深部まで到達するか否か、そして、肺胞領域深部へ到達したナノマテリアルが肺・胸膜を突き破り胸腔へ漏出するか否かを迅速に評価できることを新たに見出し、本発明を完成した。   The present invention has been made in order to solve the above-mentioned conventional problems, and as a result of extensive research, both lungs (hereinafter referred to as “lung etc.”) may be described from the trachea and bronchi taken from the animal. ) In an airtight container, and by repeating negative pressure → atmospheric pressure → negative pressure → atmospheric pressure in the container, lung respiration can be artificially created ex vivo, and the diffusion status of nanomaterials to the lungs, etc. In particular, it has been found that it is possible to quickly evaluate whether or not nanomaterials that reach the alveolar region deeply and whether or not the nanomaterial that has reached the alveolar region deeply penetrates the lung and pleura and leaks into the thoracic cavity. completed.

すなわち、本発明の目的は、ナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置を提供することである。   That is, an object of the present invention is to provide a nanomaterial diffusion evaluation device, an evaluation method, and a negative pressure generator.

本発明は、以下に示す、ナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置に関する。   The present invention relates to a nanomaterial diffusion evaluation apparatus, an evaluation method, and a negative pressure generation apparatus described below.

(1)動物から取り出した気管・気管支から両肺を取り付けるための肺設置容器、該肺設置容器の内部を陰圧にするための陰圧発生装置を含むナノマテリアルの拡散評価装置。
(2)前記陰圧発生装置が、前記肺設置容器内を陰圧と大気圧に交互に繰り返すことができるものであることを特徴とする上記(1)に記載の装置。
(3)前記陰圧と大気圧の交互の繰り返しが、0.1〜60回/分であること特徴とする上記(2)に記載の装置。
(4)前記肺設置容器は気密的な容器であり、一端は大気に開放し他端には気管・気管支から両肺が取り付けられる管、並びに陰圧発生装置に接続する孔を含むことを特徴とする上記(1)〜(3)の何れか一項に記載の装置。
(5)一端は大気に開放し他端は肺設置容器内に位置している管の他端に動物から取り出した気管・気管支から両肺を取り付け、前記肺設置容器内を陰圧と大気圧とに交互に繰り返すことで肺を人工的に呼吸させ、ナノマテリアルの気管・気管支から両肺への拡散状況を評価することを特徴とするナノマテリアルの拡散評価方法。
(6)前記陰圧と大気圧との繰り返しが、0.1〜60回/分であることを特徴とする上記(5)に記載の方法。
(7)前記陰圧が、0.01〜3.0kPaであることを特徴とする上記(5)又は(6)に記載の方法。
(8)気密容器内を陰圧と大気圧とに交互に繰り返すことができる陰圧発生装置。
(9)前記陰圧と大気圧との繰り返しが、0.1〜60回/分であることを特徴とする請求項8に記載の装置。
(1) A nanomaterial diffusion evaluation apparatus including a lung placement container for attaching both lungs from the trachea and bronchus taken out from an animal, and a negative pressure generator for creating a negative pressure inside the lung placement container.
(2) The device according to (1) above, wherein the negative pressure generator is capable of alternately repeating negative pressure and atmospheric pressure in the lung installation container.
(3) The apparatus according to (2) above, wherein the alternating repetition of the negative pressure and the atmospheric pressure is 0.1 to 60 times / min.
(4) The lung installation container is an airtight container, and one end is opened to the atmosphere, and the other end includes a tube to which both lungs are attached from the trachea and bronchus, and a hole connected to a negative pressure generator. The device according to any one of (1) to (3) above.
(5) One end is opened to the atmosphere, and the other end is attached to the other end of the tube located in the lung container with both lungs from the trachea and bronchus removed from the animal. A method for evaluating diffusion of nanomaterials, characterized in that the lungs are artificially breathed by repeating alternately and the diffusion state of the nanomaterials from the trachea / bronchi to both lungs is evaluated.
(6) The method according to (5) above, wherein the negative pressure and the atmospheric pressure are repeated 0.1 to 60 times / minute.
(7) The method according to (5) or (6) above, wherein the negative pressure is 0.01 to 3.0 kPa.
(8) A negative pressure generator capable of alternately repeating negative pressure and atmospheric pressure in an airtight container.
(9) The apparatus according to claim 8, wherein the repetition of the negative pressure and the atmospheric pressure is 0.1 to 60 times / minute.

本発明は、動物から取り出した気管・気管支から両肺を用いてex vivoで人工的な呼吸系を再現できるので、生きている動物を使用することなく、ナノマテリアルの気管・気管支から両肺への拡散を評価することができる。
また、肺の呼吸速度等を任意にコントロールすることができるので、ナノマテリアルの生体投与では長時間かかった評価を短時間で行うことができる。
更に、肺等を設置する容器内の溶液を定期的にサンプリングすることができるので、生体では評価することが困難であった肺を突き破り胸腔へ漏出したナノマテリアルの継時的変化を評価することができる。
Since the present invention can reproduce an artificial respiratory system ex vivo using both lungs from the trachea and bronchus taken out of the animal, the nanomaterial trachea and bronchi can be transferred from the trachea and bronchus to both lungs without using a living animal. Can be evaluated.
In addition, since the lung respiration rate and the like can be arbitrarily controlled, it is possible to perform evaluation in a short time in a biomaterial administration of the nanomaterial in a short time.
Furthermore, since the solution in the container in which the lungs are placed can be sampled periodically, it is possible to evaluate changes over time in the nanomaterial that broke through the lung and leaked into the chest cavity, which was difficult to evaluate in vivo. Can do.

図1は、本発明のナノマテリアルの拡散評価装置10、及び陰圧発生装置20の一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of a nanomaterial diffusion evaluation apparatus 10 and a negative pressure generation apparatus 20 according to the present invention. 図2は、陰圧発生装置20の上面図である。FIG. 2 is a top view of the negative pressure generator 20. 図3は、図面代用写真で、実施例1で作成した病理標本の光学顕微鏡写真である。FIG. 3 is a drawing-substituting photograph, which is an optical micrograph of the pathological specimen prepared in Example 1. 図4は、図面代用写真で、比較例1で作成した病理標本の光学顕微鏡写真である。FIG. 4 is an optical micrograph of the pathological specimen prepared in Comparative Example 1 as a drawing-substituting photograph. 図5は、図面代用写真で、実施例2で作成した病理標本の光学顕微鏡写真である。FIG. 5 is a drawing-substituting photograph, which is an optical micrograph of the pathological specimen prepared in Example 2. 図6は、図面代用写真で、比較例2で作成した病理標本の光学顕微鏡写真である。FIG. 6 is a drawing-substituting photograph and an optical micrograph of the pathological specimen prepared in Comparative Example 2.

以下に、本発明のナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置について詳しく説明する。   The nanomaterial diffusion evaluation apparatus, evaluation method, and negative pressure generator of the present invention will be described in detail below.

図1は、本発明のナノマテリアルの拡散評価装置、及び陰圧発生装置の一例を示している。本発明のナノマテリアルの拡散評価装置10は、陰圧発生装置20及び肺設置容器30を少なくとも含んでいる。   FIG. 1 shows an example of a nanomaterial diffusion evaluation device and a negative pressure generator of the present invention. The nanomaterial diffusion evaluation apparatus 10 of the present invention includes at least a negative pressure generator 20 and a lung placement container 30.

陰圧発生装置20は、後述する肺設置容器30の内部を陰圧にするためのもので、図1に示す例では、モーター21、該モーター21の駆動力により回転する回転盤22、該回転板22に設けられ回転盤22への取付位置を調整することで肺設置容器内の空気の吸引容量(肺設置容器内の圧力)を調整することができる調整ピン23、シリンジ24、前記調整ピン23が挿通する長孔を有し前記シリンジ24のプランジャに連結している可動板25、該可動板25のガイド26を含んでいる。   The negative pressure generating device 20 is for making negative pressure in the inside of a lung installation container 30 to be described later. In the example shown in FIG. 1, in the example shown in FIG. 1, the motor 21, the rotating disk 22 that rotates by the driving force of the motor 21, the rotation An adjustment pin 23, a syringe 24, and the adjustment pin that are provided on the plate 22 and can adjust the suction capacity of air in the lung-installed container (pressure in the lung-installed container) by adjusting the mounting position on the turntable 22 23 includes a movable plate 25 having a long hole through which it is inserted and connected to the plunger of the syringe 24, and a guide 26 of the movable plate 25.

肺設置容器30は、一端が大気に開放し他端には肺等を取り付けることができる管31、及び孔32を含んでいる。肺設置容器30内を陰圧にするためには、一端が前記陰圧発生装置20のシリンジ24に接続しているチューブ27等の他端を前記孔32に管等を用いて接続することで肺設置容器30と陰圧発生装置20を気密的に接続すればよい。前記管31及び孔32は肺設置容器30の本体に設けてもよいし、肺設置容器30の開口部に気密的に封をすることができる蓋に設けてもよい。また、図示はしていないが、肺設置容器30内の圧力を示す圧力ゲージを肺設置容器30に接続してもよい。   The lung installation container 30 includes a tube 31 and a hole 32, one end of which is open to the atmosphere and the other end to which a lung or the like can be attached. In order to make the inside of the lung installation container 30 into a negative pressure, the other end of the tube 27 or the like, one end of which is connected to the syringe 24 of the negative pressure generating device 20, is connected to the hole 32 using a tube or the like. What is necessary is just to connect the lung installation container 30 and the negative pressure generator 20 airtightly. The tube 31 and the hole 32 may be provided in the main body of the lung installation container 30 or may be provided in a lid that can be hermetically sealed in the opening of the lung installation container 30. Although not shown, a pressure gauge indicating the pressure in the lung installation container 30 may be connected to the lung installation container 30.

次に、上記陰圧発生装置20の動作、及び上記ナノマテリアルの拡散評価装置10を用いたナノマテリアルの拡散評価方法について説明する。   Next, the operation of the negative pressure generator 20 and a nanomaterial diffusion evaluation method using the nanomaterial diffusion evaluation apparatus 10 will be described.

先ず、図1に示すように、肺設置容器30内に肺を突き破ったナノマテリアルを回収するとともに肺等を湿潤状態に保つための溶液33を、肺設置容器30に注入する。前記溶液33は、市販されている細胞培養液、生理食塩水等を用いればよい。次に、動物から取り出した肺等の気管を、糸等を用いて管31に気密状態に取り付ける。前記管31の開口している部分を評価すべきナノマテリアルが飛散している雰囲気中に配置することでナノマテリアルが肺に取り込まれるようにしてもよいし、前記管31の開口からナノマテリアルを投与してもよいし、ナノマテリアルを予め気管に投与した後、肺等を管31に取り付けてもよい。   First, as shown in FIG. 1, a solution 33 for collecting the nanomaterial that broke through the lungs in the lung placement container 30 and keeping the lungs in a wet state is injected into the lung placement container 30. The solution 33 may be a commercially available cell culture solution, physiological saline, or the like. Next, a trachea such as a lung taken out from the animal is attached to the tube 31 in an airtight state using a thread or the like. The nanomaterial may be taken into the lungs by placing the open portion of the tube 31 in an atmosphere in which the nanomaterial to be evaluated is scattered, and the nanomaterial is removed from the opening of the tube 31. Alternatively, the nanomaterial may be administered to the trachea in advance, and then the lungs or the like may be attached to the tube 31.

肺等は、ラット、マウス、ウサギ、豚、ヤギ等、動物から取り出された肺等であれば特に制限はなく、用いる肺等の大きさに応じて、肺設置容器30の大きさ、管31の直径、溶液33の注入量、及び後述する陰圧発生装置が吸引する空気の量を適宜調整すればよい。   The lung is not particularly limited as long as it is a lung extracted from an animal such as a rat, mouse, rabbit, pig, goat or the like, and the size of the lung installation container 30 and the tube 31 depending on the size of the lung to be used. The diameter of the liquid, the injection amount of the solution 33, and the amount of air sucked by the negative pressure generator to be described later may be appropriately adjusted.

評価すべきナノマテリアルは、ナノメートルスケール(1nm〜999nm)の材料であれば特に制限はなく、例えば、カーボンブラック、シリカ、酸化チタン、酸化亜鉛、フラーレン、単層・多層CNT、デンドリマー、銀/金+無機微粒子、ナノクレイ等が挙げられる。なお、評価すべき材料としては、前記のナノマテリアルに限定されるものではなく、今後新たに開発された材料であってもよい。また、大きさもナノメートルスケールに限定をされるものではなく、本発明の肺等を用いて生体への影響が評価できるものであればナノメートルスケール以上であってもよい。   The nanomaterial to be evaluated is not particularly limited as long as it is a nanometer scale (1 nm to 999 nm) material. For example, carbon black, silica, titanium oxide, zinc oxide, fullerene, single-layer / multi-layer CNT, dendrimer, silver / Gold + inorganic fine particles, nanoclay, and the like can be given. The material to be evaluated is not limited to the nanomaterial, and may be a newly developed material in the future. Further, the size is not limited to the nanometer scale, and may be larger than the nanometer scale as long as the influence on the living body can be evaluated using the lung or the like of the present invention.

図2は、上記陰圧発生装置20の上面図で、図1と同じ番号は同じ部材を示す。モーター21が回転すると、回転盤22に取り付けられた調整ピン23は、例えば時計回り方向に回転する。可動板25に設けられている長孔28に調整ピン23が挿通していることから、前記調整ピン23の回動に伴い、可動板25は図2の左右方向への運動を繰り返すことになり、更に、可動板25の一部はシリンジ24のプランジャに接続していることから、可動板25の運動に伴いプランジャを引いたり、押したりする動作を繰り返す。そして、シリンジ24の先端と肺設置容器30は気密性のあるビニール、シリコンチューブ等で接続されていることから、その結果、肺設置容器30内の圧力を、陰圧、大気圧に交互に繰り返すことができる。肺等は、肺設置容器30内で管31に気密的に取り付けられていることから、プランジャが引かれ肺設置容器30内が陰圧になると膨らみ、プランジャが押されて大気圧に戻ると元の大きさに戻る。更に、肺等を取り付けた管31の他端は大気に開口しているので、ex vivoで動物の呼吸系を再現することができる。   FIG. 2 is a top view of the negative pressure generator 20, and the same reference numerals as those in FIG. 1 denote the same members. When the motor 21 rotates, the adjustment pin 23 attached to the turntable 22 rotates, for example, clockwise. Since the adjustment pin 23 is inserted into the long hole 28 provided in the movable plate 25, the movable plate 25 repeats the movement in the left-right direction in FIG. 2 as the adjustment pin 23 rotates. Furthermore, since part of the movable plate 25 is connected to the plunger of the syringe 24, the operation of pulling and pushing the plunger is repeated as the movable plate 25 moves. Since the tip of the syringe 24 and the lung installation container 30 are connected by airtight vinyl, silicon tube or the like, as a result, the pressure in the lung installation container 30 is alternately repeated to negative pressure and atmospheric pressure. be able to. Since the lungs and the like are airtightly attached to the tube 31 in the lung installation container 30, the plunger is pulled and the inside of the lung installation container 30 is inflated, and when the plunger is pushed and returned to the atmospheric pressure, the original pressure is obtained. Return to size. Furthermore, since the other end of the tube 31 to which the lungs or the like are attached is open to the atmosphere, the animal respiratory system can be reproduced ex vivo.

ex vivoでの呼吸系は、ヒトが通常に呼吸をする際の肺の伸縮に近い環境にすることが好ましく、肺設置容器30内の陰圧が0.4〜0.8kPaとなるように、肺設置容器30の容量等を考慮しながら吸引する空気の量を調整すればよい。なお、本発明における「陰圧」とは、圧力の絶対値ではなく、大気圧(約101.3kPa)からの差分の圧力を意味する。圧力の調整は、例えば、回転盤22の半径方向に溝を設け調整ピン23をスライド可能に係合し調整ピン23を任意の位置で螺子等を用いて固定、或いは、半径方向に複数の孔を設け調整ピン23を任意の孔に嵌合することで、可動板25の可動範囲を調整すればよい。また、調整ピン23の位置を変えるのではなく、シリンジ24の直径を変えることで、吸引する空気の量を変えてもよい。また、プランジャの押引回数は、ヒトが通常に呼吸する際の肺呼吸回数である10〜12回/分程度行うように、モーター21の回転速度を調整すればよい。   The ex vivo respiratory system is preferably an environment close to the expansion and contraction of the lungs when a human normally breathes, and the negative pressure in the lung installation container 30 is 0.4 to 0.8 kPa. What is necessary is just to adjust the quantity of the air suck | inhaled, considering the capacity | capacitance of the lung installation container 30, etc. FIG. The “negative pressure” in the present invention means not the absolute value of the pressure but the pressure difference from the atmospheric pressure (about 101.3 kPa). The pressure can be adjusted, for example, by providing a groove in the radial direction of the turntable 22 so that the adjustment pin 23 is slidably engaged and the adjustment pin 23 is fixed using a screw or the like at an arbitrary position, or a plurality of holes are provided in the radial direction. The movable range of the movable plate 25 may be adjusted by providing the adjustment pin 23 in an arbitrary hole. Further, the amount of air to be sucked may be changed by changing the diameter of the syringe 24 instead of changing the position of the adjustment pin 23. Moreover, what is necessary is just to adjust the rotational speed of the motor 21 so that the frequency | count of pushing and pulling of a plunger may be performed about 10-12 times / minute which is the number of lung respirations when a person breathes normally.

なお、上記の陰圧発生装置20は機械的に空気を吸引することで肺設置容器30内を陰圧にしているが、例えば、真空ポンプで一定量の空気を吸引し、吸引後に肺設置容器30に設けた弁等を開放することで肺設置容器30内の圧力を大気圧に戻すようにしてもよい。   Note that the negative pressure generating device 20 mechanically sucks air to make the inside of the lung installation container 30 have a negative pressure. For example, a certain amount of air is sucked by a vacuum pump, and the lung installation container is sucked after suction. The pressure in the lung installation container 30 may be returned to the atmospheric pressure by opening a valve or the like provided at 30.

また、上記の圧力、押引回数は、ヒトの通常の呼吸を再現する場合であるが、例えば、ナノマテリアルの肺胞領域深部や胸膜への拡散性のスクリーニングを短期間で行う場合や、より緩やかな条件下での拡散等を評価する場合は上記の値である必要はなく、例えば、肺設置容器30内の陰圧が0.01〜3.0kPa程度になるように調整してもよいし、プランジャの押引回数を0.1〜60回/分程度に適宜調整してもよい。   In addition, the above-mentioned pressure and the number of push-pull times are those when reproducing normal human respiration, for example, when conducting a screening of diffusivity of the nanomaterial deep into the alveolar region and the pleura in a short period of time, When evaluating diffusion under mild conditions, it is not necessary to have the above value, and for example, the negative pressure in the lung installation container 30 may be adjusted to be about 0.01 to 3.0 kPa. In addition, the number of times the plunger is pushed and pulled may be appropriately adjusted to about 0.1 to 60 times / minute.

ナノマテリアルを投与し一定時間人工的に呼吸をさせた後は、肺等を取り出し、通常の固定、包埋、薄切、塗抹、染色の手順で病理標本を作成し、顕微鏡観察を行うことでナノマテリアルの拡散の有無を評価すればよい。また、肺・胸膜を突き破って溶液33に漏出したナノマテリアルは、溶液33を遠心分離して、その沈渣にナノマテリアルが含まれているか否か、顕微鏡で観察すればよい。   After administering nanomaterial and breathing artificially for a certain period of time, the lungs etc. are taken out, pathological specimens are created by normal fixation, embedding, slicing, smearing, staining procedures, and microscopic observation is performed. What is necessary is just to evaluate the presence or absence of nanomaterial diffusion. In addition, the nanomaterial leaked into the solution 33 through the lungs and pleura may be observed with a microscope by centrifuging the solution 33 and determining whether or not the nanomaterial is contained in the sediment.

以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。   The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application.

<実施例1>
12週齢のブラウン・ノルウェー系統とフィッシャー系統の雑種第1代雄性ラットを麻酔下に開胸、開腹して、右心房よりリン酸緩衝生理的食塩水で還流したあと、気管・気管支ならび両肺を一塊として傷つけないように丁寧に取り出した。ナノマテリアルサンプルとしては、UICC(Unio Internationalis Contra Cancrum:国際対がん連合)から入手可能でラットへの腹腔内投与により中皮腫発がん性が確認されているクロシドライト(青石綿)を使用した。取り出したラットの肺の気管内にクロシドライト1mgを投与後、滅菌済みブレードエスロン縫合糸(USP3−0、秋山製作所)を用いて、気管を直ちに本発明の肺設置容器内の管に気密的に取り付けた。大きさが、7.5(幅)×7.0(奥行き)×4.5cm(高さ)の肺設置容器に約110ml(体積の約半分)のHank’s Balanced Salt Solutionを入れた。次いで、陰圧発生装置のシリンジのプランジャを約12mlのストロークで1分間に15回の割合で動かし、それに伴って肺設置容器内の圧力が大気圧〜最大2kPa程度の陰圧になることで、呼吸時の肺の動きを人工的に作り出し、5時間動作を継続した。なお、本実施例の陰圧は、ヒトの生理的な胸腔陰圧と比較した場合、約3倍である。5時間経過後、肺等を注意深く回収し、10%中性ホルマリンで固定後、パラフィン包埋し、病理標本の作成を常法で行った。ヘマトキシリン・エオジン染色ならびに鉄染色を行い、光学顕微鏡で肺等の組織のどの部位にクロシドライトが認められるのか評価を行った。また、同時に、肺設置容器内の溶液を回収し、3,500Gで10分間遠心分離を行い、その沈渣を顕微鏡で観察し、クロシドライトが肺外へ漏れ出ていないか評価した。
<Example 1>
A 12-week-old Brown Norwegian-Fischer hybrid first male rat was thoracotomized and laparotomized under anesthesia, and refluxed with phosphate buffered saline from the right atrium, followed by trachea / bronchi and both lungs Was carefully taken out so as not to be damaged. As the nanomaterial sample, crocidolite (Aoishi cotton), which is available from UICC (Unio Internationalis Contracanum) and has been confirmed to be carcinogenic for mesothelioma by intraperitoneal administration to rats, was used. After administration of 1 mg of crocidolite into the trachea of the removed rat lung, the trachea is immediately and airtightly attached to the tube in the lung container of the present invention using a sterilized blade ESLON suture (USP3-0, Akiyama Seisakusho). It was. About 110 ml (about half of the volume) of Hank's Balanced Salt Solution was placed in a lung placement container having a size of 7.5 (width) × 7.0 (depth) × 4.5 cm (height). Next, the plunger of the syringe of the negative pressure generator is moved at a rate of 15 times per minute with a stroke of about 12 ml, and accordingly the pressure in the lung placement container becomes a negative pressure of about atmospheric pressure to about 2 kPa at maximum, The movement of the lungs during breathing was artificially created and the operation was continued for 5 hours. In addition, the negative pressure of a present Example is about 3 times compared with the human physiological chest negative pressure. After 5 hours, the lungs and the like were carefully collected, fixed with 10% neutral formalin, embedded in paraffin, and pathological specimens were prepared by a conventional method. Hematoxylin and eosin staining and iron staining were performed, and it was evaluated by light microscopy which part of the tissue such as lung was observed with crocidolite. At the same time, the solution in the lung container was collected, centrifuged at 3,500 G for 10 minutes, and the sediment was observed with a microscope to evaluate whether crocidolite leaked out of the lungs.

図3(1)は、実施例1で作成した病理標本の低倍率の光学顕微鏡写真で、(1)の上方の矢印は気管支内のクロシドライトを示している。(2)は、(1)の□で囲った部分の拡大写真で、(2)の矢印は、肺胞領域深部及び肺の外側の膜である胸膜に到達したクロシドライトを示している。   FIG. 3 (1) is a low-magnification optical micrograph of the pathological specimen prepared in Example 1, and the arrow above (1) indicates the crocidolite in the bronchi. (2) is an enlarged photograph of the part surrounded by □ in (1), and the arrow in (2) indicates crocidolite that has reached the deep part of the alveolar region and the pleura, which is the outer membrane of the lung.

また、実施例1の肺設置容器内の溶液の沈渣を顕微鏡で観察したところ、クロシドライトが確認された。   Moreover, when the deposit of the solution in the lung installation container of Example 1 was observed with the microscope, crocidolite was confirmed.

<比較例1>
陰圧発生装置を作動させなかった以外は、実施例1と同様の手順で実験を行い、病理標本を作成した。
<Comparative Example 1>
Except that the negative pressure generator was not operated, an experiment was performed in the same procedure as in Example 1 to create a pathological specimen.

図4(1)は、比較例1で作成した病理標本の低倍率の光学顕微鏡写真で、(2)は(1)の下方の□で囲った部分の拡大写真で、矢印は気管支内のクロシドライトを示している。(3)は、(1)の上方の□で囲った部分の拡大写真で、写真から明らかなように、肺胞領域深部へのクロシドライトの到達は認められなかった。   FIG. 4 (1) is a low-magnification optical micrograph of the pathological specimen prepared in Comparative Example 1, (2) is an enlarged photograph of the part surrounded by □ below (1), and the arrow is crocidolite in the bronchi Is shown. (3) is an enlarged photograph of the part surrounded by □ above (1). As is clear from the photograph, the arrival of crocidolite in the deep part of the alveolar region was not observed.

また、比較例1の肺設置容器内の溶液の沈渣を顕微鏡で観察したところ、クロシドライトは確認されなかった。   Moreover, when the deposit of the solution in the lung installation container of the comparative example 1 was observed with the microscope, the crocidolite was not confirmed.

<実施例2>
ナノマテリアルサンプルとして、クロシドライトに代え、多層CNT(直径50nm、平均長約5μm、昭和電工社製VGCF−S)を使用した以外は、実施例1と同様の手順で実験をおこなった。
<Example 2>
An experiment was performed in the same procedure as in Example 1 except that multilayer CNT (diameter 50 nm, average length of about 5 μm, VGCF-S manufactured by Showa Denko KK) was used as the nanomaterial sample instead of crocidolite.

図5(1)は、実施例2で作成した病理標本の低倍率の光学顕微鏡写真で、矢印は気管支内の多層CNTを示している。(2)は(1)の上方の□で囲った部分の拡大写真、(3)は(1)の下方の□で囲った部分の拡大写真である。(2)及び(3)の矢印は、肺胞領域深部及び肺の外側の膜である胸膜に到達した多層CNTを示している。   FIG. 5A is a low-magnification optical micrograph of the pathological specimen prepared in Example 2, and the arrows indicate the multi-walled CNTs in the bronchi. (2) is an enlarged photograph of the part surrounded by □ above (1), and (3) is an enlarged photograph of the part enclosed by □ below (1). The arrows in (2) and (3) indicate multi-walled CNTs that have reached the deep part of the alveolar region and the pleura, which is a film outside the lungs.

また、実施例2の肺設置容器内の溶液の沈渣を顕微鏡で観察したところ、多層CNTが確認された。   Moreover, when the deposit of the solution in the lung installation container of Example 2 was observed with the microscope, multilayer CNT was confirmed.

<比較例2>
陰圧発生装置を作動させなかった以外は、実施例2と同様の手順で実験を行い、病理標本を作成した。
<Comparative example 2>
An experiment was performed in the same procedure as in Example 2 except that the negative pressure generator was not operated, and a pathological specimen was prepared.

図6(1)は、比較例2で作成した病理標本の低倍率の光学顕微鏡写真で、(2)は(1)の上方の□で囲った部分の拡大写真で、矢印は気管支内の多層CNTを示している。(3)は、(1)の下方の□で囲った部分の拡大写真で、写真から明らかなように、肺胞領域深部への多層CNTの到達は認められなかった。   FIG. 6 (1) is a low-magnification optical micrograph of the pathological specimen prepared in Comparative Example 2, (2) is an enlarged photograph of the part surrounded by □ above (1), and the arrow is a multilayer in the bronchus CNT is shown. (3) is an enlarged photograph of the part surrounded by □ below (1). As is clear from the photograph, the arrival of multi-walled CNTs in the deep part of the alveolar region was not observed.

また、比較例2の肺設置容器内の溶液の沈渣を顕微鏡で観察したところ、多層CNTは確認されなかった。   Moreover, when the deposit of the solution in the lung installation container of the comparative example 2 was observed with the microscope, multilayer CNT was not confirmed.

上記実施例1及び2、並びに比較例1及び2を以下のように総合評価した。
グレード0:サンプルは気管支内のみに存在する。
グレード1:サンプルは肺胞に到達するが胸膜までの近位1/2までに留まる。
グレード2:サンプルは肺胞の遠位1/2に到達するが胸膜には到達していない。
グレード3:サンプルは胸膜に到達しているが、肺外では検出されない。
グレード4:サンプルは胸膜を超えており、肺の外側の溶液内から検出される。
The above Examples 1 and 2 and Comparative Examples 1 and 2 were comprehensively evaluated as follows.
Grade 0: The sample is present only in the bronchi.
Grade 1: The sample reaches the alveoli but stays up to ½ proximal to the pleura.
Grade 2: The sample reaches the distal half of the alveoli but not the pleura.
Grade 3: The sample reaches the pleura but is not detected outside the lungs.
Grade 4: The sample crosses the pleura and is detected in solution outside the lungs.

実施例1(クロシドライト)及び実施例2(多層CNT)は、いずれもグレード4であったのに対し、比較例1及び2は、グレード0であった。この結果より、本発明の評価装置を用いることで、ナノマテリアルを吸引した場合、肺胞領域深部や胸膜並びに胸膜を超え肺の外側への拡散をex vivoで迅速且つ適切に評価することができる。   Both Example 1 (crocidolite) and Example 2 (multilayer CNT) were grade 4, whereas Comparative Examples 1 and 2 were grade 0. From this result, when the nanomaterial is aspirated by using the evaluation apparatus of the present invention, it is possible to quickly and appropriately evaluate the diffusion to the outside of the lung beyond the alveolar region deep part, the pleura, and the pleura. .

本発明の、ナノマテリアルの拡散評価装置を用いることで、ex vivoでありながら、ナノマテリアルが生体に吸引された場合に非常に近い環境で肺胞領域深部や胸膜への拡散を評価することができるので、ナノマテリアルの研究開発機関、ナノマテリアルを使用している製造メーカー、医療機関等において、ナノマテリアルの安全性を総合評価する際に、他の評価とは独立した新たな評価指標として有用である。   By using the nanomaterial diffusion evaluation apparatus of the present invention, it is possible to evaluate the diffusion to the deep part of the alveolar region and the pleura in an environment very close to the case where the nanomaterial is sucked into the living body while being ex vivo. Therefore, it is useful as a new evaluation index independent of other evaluations when comprehensively evaluating the safety of nanomaterials at research and development organizations of nanomaterials, manufacturers using nanomaterials, medical institutions, etc. It is.

Claims (9)

動物から取り出した気管・気管支から両肺を取り付けるための肺設置容器、該肺設置容器の内部を陰圧にするための陰圧発生装置を含むナノマテリアルの拡散評価装置。   An apparatus for evaluating diffusion of nanomaterials, comprising a lung placement container for attaching both lungs from the trachea and bronchi taken out of an animal, and a negative pressure generator for creating a negative pressure inside the lung placement container. 前記陰圧発生装置が、前記肺設置容器内を陰圧と大気圧に交互に繰り返すことができるものであることを特徴とする請求項1に記載の装置。   The device according to claim 1, wherein the negative pressure generating device is capable of alternately repeating negative pressure and atmospheric pressure in the lung-installed container. 前記陰圧と大気圧の交互の繰り返しが、0.1〜60回/分であること特徴とする請求項2に記載の装置。   The apparatus according to claim 2, wherein the alternating repetition of the negative pressure and the atmospheric pressure is 0.1 to 60 times / minute. 前記肺設置容器は気密的な容器であり、一端は大気に開放し他端には気管・気管支から両肺が取り付けられる管、並びに陰圧発生装置に接続する孔を含むことを特徴とする請求項1〜3の何れか一項に記載の装置。   The lung installation container is an airtight container, and one end is opened to the atmosphere, and the other end includes a tube to which both lungs are attached from the trachea and bronchus, and a hole connected to a negative pressure generator. Item 4. The apparatus according to any one of Items 1 to 3. 一端は大気に開放し他端は肺設置容器内に位置している管の他端に動物から取り出した気管・気管支から両肺を取り付け、前記肺設置容器内を陰圧と大気圧とに交互に繰り返すことで肺を人工的に呼吸させ、ナノマテリアルの気管・気管支から両肺への拡散状況を評価することを特徴とするナノマテリアルの拡散評価方法。   Attach both lungs from the trachea and bronchus removed from the animal to the other end of the tube located in the lung installation container at one end and open the atmosphere to the other, and negative pressure and atmospheric pressure in the lung installation container alternately A method for evaluating diffusion of nanomaterials, characterized in that the lungs are artificially breathed by repeating the above and the diffusion state of the nanomaterials from the trachea and bronchus to both lungs is evaluated. 前記陰圧と大気圧との繰り返しが、0.1〜60回/分であることを特徴とする請求項5に記載の方法。   The method according to claim 5, wherein the repetition of the negative pressure and the atmospheric pressure is 0.1 to 60 times / minute. 前記陰圧が、0.01〜3.0kPaであることを特徴とする請求項5又は6に記載の方法。   The method according to claim 5 or 6, wherein the negative pressure is 0.01 to 3.0 kPa. 気密容器内を陰圧と大気圧とに交互に繰り返すことができる陰圧発生装置。   A negative pressure generator capable of alternately repeating negative pressure and atmospheric pressure in an airtight container. 前記陰圧と大気圧との繰り返しが、0.1〜60回/分であることを特徴とする請求項8に記載の装置。

The apparatus according to claim 8, wherein the repetition of the negative pressure and the atmospheric pressure is 0.1 to 60 times / minute.

JP2012255095A 2012-11-21 2012-11-21 Nano material diffusion evaluation device, evaluation method, and negative pressure generator Pending JP2014102186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255095A JP2014102186A (en) 2012-11-21 2012-11-21 Nano material diffusion evaluation device, evaluation method, and negative pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255095A JP2014102186A (en) 2012-11-21 2012-11-21 Nano material diffusion evaluation device, evaluation method, and negative pressure generator

Publications (1)

Publication Number Publication Date
JP2014102186A true JP2014102186A (en) 2014-06-05

Family

ID=51024801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255095A Pending JP2014102186A (en) 2012-11-21 2012-11-21 Nano material diffusion evaluation device, evaluation method, and negative pressure generator

Country Status (1)

Country Link
JP (1) JP2014102186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003080A1 (en) * 2014-07-01 2016-01-07 한국화학연구원 Real-time inhalation toxicity testing device using lung model
WO2016003079A1 (en) * 2014-07-01 2016-01-07 한국화학연구원 Lung model device for inhalation toxicity testing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003080A1 (en) * 2014-07-01 2016-01-07 한국화학연구원 Real-time inhalation toxicity testing device using lung model
WO2016003079A1 (en) * 2014-07-01 2016-01-07 한국화학연구원 Lung model device for inhalation toxicity testing
US10338059B2 (en) 2014-07-01 2019-07-02 Korea Research Institute Of Chemical Technology Lung model device for inhalation toxicity testing

Similar Documents

Publication Publication Date Title
Zarei et al. Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications
Catania et al. A review on recent advancements of graphene and graphene-related materials in biological applications
Li et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model
Shvedova et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice
Wu et al. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents
Chng et al. Toxicity of graphene related materials and transition metal dichalcogenides
Muller et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects
Ebeling et al. Visualizing the subsurface of soft matter: simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy
Horvath et al. Evaluation of the toxicity of graphene derivatives on cells of the lung luminal surface
Kim et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes
Sato et al. Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue
Adamcakova-Dodd et al. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers
JP2014102186A (en) Nano material diffusion evaluation device, evaluation method, and negative pressure generator
Mogharabi et al. Safety concerns to application of graphene compounds in pharmacy and medicine
Mendes et al. Size and time dependent internalization of label-free nano-graphene oxide in human macrophages
Købler et al. FIB-SEM imaging of carbon nanotubes in mouse lung tissue
Gilvaei et al. In-situ study of the carbon nanotube yarn drawing process
Bernal-Martínez et al. Electrodes made of multi-wall carbon nanotubes on PVDF-filters have low electrical resistance and are able to record electrocardiograms in humans
Jin et al. Synthesis and anticoagulation activities of polymer/functional graphene oxide nanocomposites via reverse atom transfer radical polymerization (RATRP)
Solangi et al. Mechanism of polymer composite-based nanomaterial for biomedical applications
Vellayappan et al. Tangible nanocomposites with diverse properties for heart valve application
Tran et al. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)
CN107254158B (en) Conductive nano composite fiber membrane with gas-sensitive effect and preparation method thereof
Moghaddam et al. A new high‐performance gadonanotube‐polymer hybrid material for stem cell labeling and tracking by MRI
Le et al. Fe (NO3) 3.9 H2O and Fe3 (CO) 12 as catalyst precursors for the elaboration of VGCF: SEM and TEM study—improvement of the process