JP2014101274A - Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure - Google Patents

Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure Download PDF

Info

Publication number
JP2014101274A
JP2014101274A JP2011052114A JP2011052114A JP2014101274A JP 2014101274 A JP2014101274 A JP 2014101274A JP 2011052114 A JP2011052114 A JP 2011052114A JP 2011052114 A JP2011052114 A JP 2011052114A JP 2014101274 A JP2014101274 A JP 2014101274A
Authority
JP
Japan
Prior art keywords
mmol
compound
equiv
synthesis
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011052114A
Other languages
Japanese (ja)
Inventor
Yusuke Kawano
悠介 河野
Hideji Fujita
秀司 藤田
Mari Okumoto
真里 奥本
Takashi Nakae
崇 中江
Hideaki Suzuki
秀明 鈴木
Keiichi Otani
啓一 大谷
Kazuhiro Aoki
和広 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Medical and Dental University NUC
Jitsubo Co Ltd
Original Assignee
Tokyo Medical and Dental University NUC
Jitsubo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical and Dental University NUC, Jitsubo Co Ltd filed Critical Tokyo Medical and Dental University NUC
Priority to JP2011052114A priority Critical patent/JP2014101274A/en
Priority to PCT/JP2012/054899 priority patent/WO2012121058A1/en
Publication of JP2014101274A publication Critical patent/JP2014101274A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new mimic peptide of TNF receptor loop peptide (WP9QY peptide) having improved properties, more specifically to provide an osteoporosis therapeutic drug comprising a WP9QY peptide mimic having more desirable properties.SOLUTION: A mimic peptide of TNF receptor loop peptide having a new crosslinked structure with -NR- in a crosslinked structure has osteoclast-differentiation inhibitory activity. In addition, an osteoclast-proliferation inhibitor using the peptide and a pharmaceutical composition comprising the peptide are provided.

Description

本発明は、新規な架橋構造を含む、TNFレセプターのループペプチドの模倣ペプチドを用いた破骨細胞の増殖阻害剤に関する。本発明はまた、該ペプチドを用いた医薬組成物に関する。   The present invention relates to an osteoclast growth inhibitor using a mimetic peptide of a TNF receptor loop peptide containing a novel cross-linked structure. The present invention also relates to a pharmaceutical composition using the peptide.

ほとんどすべての生理学的プロセスは、ペプチドまたはタンパク質および他の生物学的活性成分などの分子的認識に基づいている。今までに、ホルモン、酵素、インヒビター、酵素基質、神経伝達物質、免疫調節物質などの重要な生物学的機能を有する多くのタンパク質が発見されてきた。しかし、タンパク質は分子量が大きいがゆえに、それを合成することが困難であるばかりでなく、医薬品としての利用が困難であった。そのため、分子レベルでのその機能を解明することがなされてきている。
生体内でのタンパク質の作用は、一般にはレセプターを介して作動される。レセプターもまたタンパク質であり、両者(リガンドおよびレセプター)の結合または接触が、生理作用に重要であると認識されている。そのため、リガンドとリセプターの結合にかかわる部位を特定し、その部分を模倣したペプチドを合成し、タンパク質の機能を分析するとともに、タンパク質に代わる作動物質あるいはタンパク質の作用を阻害する遮断物質としてのペプチドが注目されてきた。
Almost all physiological processes are based on molecular recognition such as peptides or proteins and other biologically active ingredients. To date, many proteins with important biological functions such as hormones, enzymes, inhibitors, enzyme substrates, neurotransmitters, immunomodulators have been discovered. However, since the protein has a large molecular weight, it is difficult not only to synthesize it but also to be used as a pharmaceutical product. Therefore, elucidation of its function at the molecular level has been made.
The action of a protein in a living body is generally activated via a receptor. Receptors are also proteins and the binding or contact of both (ligand and receptor) is recognized as important for physiological effects. Therefore, the site involved in the binding between the ligand and the receptor is identified, a peptide mimicking that part is synthesized, the function of the protein is analyzed, and the peptide as a blocking substance that inhibits the action of the protein or the protein Has attracted attention.

しかしながら、リガント/レセプター間の結合または接触に関与する部分は、生体内では立体配置をとり、結合または接触部分のコンホメーションが重要であることが知られている。そのため、結合または接触に関与する部分のペプチドを、コンホメーションをもった状態で作成することが試みられてきた。
ペプチドのコンホメーションにおける全体的な制御は、環化によりペプチド鎖の柔軟性を制限することにより可能である。生物活性ペプチドの環化は、その代謝安定性およびレセプターに対する選択性を改善するだけでなく、均質なコンホメーションとすることにより、ペプチドのコンホメーション分析を可能とする。環化の形態は、天然の環状ペプチドに見られるものと同じである。例えば、側鎖−側鎖の環化、または側鎖−末端基の環化をあげることができる。環化のために、リガンド/レセプター間の認識に関与しないアミノ酸の側鎖を、互いに結合させたり、またはペプチド主鎖に結合させたりできる。また別の態様としては、末端−末端の環化をあげることができ、かかる場合は、完全に環状のペプチドとなる。
However, it is known that the portion involved in the binding or contact between the ligand / receptor takes a configuration in vivo, and the conformation of the binding or contact portion is important. For this reason, it has been attempted to create a peptide having a conformation in a portion involved in binding or contact.
Overall control in peptide conformation is possible by limiting the flexibility of the peptide chain by cyclization. Cyclization of a biologically active peptide not only improves its metabolic stability and selectivity for the receptor, but also allows conformational analysis of the peptide by making it a homogeneous conformation. The form of cyclization is the same as found in natural cyclic peptides. For example, side chain-side chain cyclization or side chain-end group cyclization can be mentioned. For cyclization, amino acid side chains that are not involved in ligand / receptor recognition can be linked to each other or to the peptide backbone. In another embodiment, terminal-terminal cyclization can be mentioned. In such a case, a completely cyclic peptide is obtained.

これらの環化のためには、架橋技術が欠かせないものとなっている。代表的な環化の例としては、ジスルフィド結合(SS結合)、アミド結合、チオエーテル結合、およびオレフィン結合を介した架橋をあげることができる。より具体的な例としては、二つのペニシラミン残基をジスルフィド架橋で連結することにより環化するもの(Mosberg ら、P.N.A.S. US, 80:5871, 1983)、リジンとアスパラギン酸との間にアミド結合を形成することにより環化するもの(Flora ら、Bioorg. Med. Chem. Lett. 15 (2005) 1065-1068)、または予めチオエーテル結合を導入した架橋部位を含むアミノ酸誘導体をペプチド結合に導入し、最後の縮合反応で環化するもの(Melinら US6,143,722)、およびオレフィンメタセシス反応を用いて主鎖に導入した(S)−α−2'−ペンテニル)アラニン同士を架橋させて環化するもの(Schafmeisterら、J. Am. Chem. Soc., 122, 5891-5892, 2000)をあげることができる。また、コンホメーションを制御する為にペプチドの側鎖の修飾を必要としない方法としてペプチド主鎖骨格のアミドを構成する窒素を起点とした架橋構造も知られている。(GilonらBioplymers 31:745, 1991)。   Cross-linking techniques are indispensable for these cyclizations. Representative examples of cyclization include crosslinking via disulfide bonds (SS bonds), amide bonds, thioether bonds, and olefin bonds. A more specific example is the cyclization of two penicillamine residues linked by a disulfide bridge (Mosberg et al., PNAS US, 80: 5871, 1983), where an amide bond is formed between lysine and aspartic acid. A cyclization by formation (Flora et al., Bioorg. Med. Chem. Lett. 15 (2005) 1065-1068) or an amino acid derivative containing a cross-linked site previously introduced with a thioether bond is introduced into the peptide bond, Cyclized by the condensation reaction of (Melin et al. US 6,143,722) and (S) -α-2′-pentenyl) alanine introduced into the main chain using an olefin metathesis reaction to cyclize by crosslinking alanines ( Schafmeister et al., J. Am. Chem. Soc., 122, 5891-5892, 2000). In addition, as a method that does not require modification of the side chain of the peptide in order to control conformation, a crosslinked structure starting from nitrogen constituting the amide of the peptide main chain skeleton is also known. (Gilon et al. Bioplymers 31: 745, 1991).

コンホメーションが制御されたペプチドは、多くの薬理用途が期待できる。しかし、医薬品としてのペプチドの開発においては、以下のような問題がある。すなわち、a)生理学的条件下では、ペプチドの多くは、特異的および非特異的なペプチダーゼにより分解されるため、代謝安定性が低いこと、b)その分子量が比較的高いため、経口摂取後の吸収が悪いこと、c)肝臓および腎臓を通過する排出が速いこと、および、d)ペプチドは構造的に柔軟であり、またペプチドに対する受容体は生物体に広く分布しえるので、標的としない組織・器官において所望しない副作用が起こること、である。   Peptides with controlled conformation can be expected for many pharmacological uses. However, there are the following problems in the development of peptides as pharmaceuticals. That is, under physiological conditions, many of the peptides are degraded by specific and non-specific peptidases, resulting in poor metabolic stability, and b) because of their relatively high molecular weight, Poor absorption, c) fast excretion through the liver and kidney, and d) untargeted tissue because the peptide is structurally flexible and receptors for the peptide can be widely distributed in organisms -Undesirable side effects occur in the organ.

TNFレセプタースーパーファミリーに属する受容体Receptor Activator of NF−κB(RANK、TRANCERあるいはTNFRSF11A(tumor necrosis factor receptor superfamily member 11a)としても知られている)は、破骨細胞、樹状細胞、乳腺上皮細胞などで発現されている。RANKリガンド(RANKL、またはOPGL、ODF、TRANCEおよびTNFSF11(TNF ligand superfamily member 11)としても知られている)は、TNF様タンパク質であり、骨芽細胞、骨随間質細胞およびT細胞などで発現されている。RNAKおよびRANKLは、インビボおよびインビトロにおいて、破骨細胞の分化や樹状細胞の分化さらには乳腺の発達に必要であることも報告されている。TNFファミリーに属するTNFαは、直接骨髄細胞に働いて破骨細胞形成を促進させるだけでなく、骨芽細胞にも働きRANKLのレベルを亢進させて間接的に骨髄細胞の破骨細胞形成応答を増幅させ、卵巣切除や炎症によって誘導される骨損失に大きく寄与している。RANKLはまた、破骨細胞による骨吸収を増加させる。
WP9QYペプチドは、TNFレセプターおよびRANKの機能的部位の配列構造に似せた、5アミノ酸からなるペプチド配列をその環状内に有する架橋ペプチドであり、以下の構造を有する(特表2003−505503号公報、および特表2003−505514号公報)。
Receptor Activator of NF-κB (also known as RANK, TRANCER or TNFRSF11A (tumor necrosis factor receptor superfamily member 11a)) belonging to the TNF receptor superfamily includes osteoclasts, dendritic cells, mammary epithelial cells, etc. It is expressed in. RANK ligands (RANKL, or OPGL, ODF, TRANCE, and TNFSF11 (also known as TNF ligand superfamily member 11)) are TNF-like proteins and are expressed in osteoblasts, bone interstitial cells, and T cells. Has been. RNAK and RANKL have also been reported to be required for osteoclast differentiation, dendritic cell differentiation and mammary gland development in vivo and in vitro. TNFα, which belongs to the TNF family, not only works directly on bone marrow cells to promote osteoclast formation, but also works on osteoblasts to increase the level of RANKL and indirectly amplify the osteoclast-forming response of bone marrow cells. And greatly contribute to bone loss induced by ovariectomy and inflammation. RANKL also increases bone resorption by osteoclasts.
The WP9QY peptide is a cross-linked peptide having a peptide sequence consisting of 5 amino acids in its ring, which resembles the sequence structure of the functional sites of TNF receptor and RANK, and has the following structure (Japanese Patent Publication No. 2003-505503, And Special Table 2003-505514).

Figure 2014101274
WP9QYペプチドは、TNFαにより誘導される細胞毒性を阻害することが報告されている(高橋ら、Nat. Biotechnol. 1997, 15: 1266-1270)。WP9QYペプチドはまた、RANKLによって誘導されるシグナルをブロックし、骨吸収および骨損失を阻害することが報告されている(青木ら、J. Clin Invest. 2006; 116(6):1525-1534)。また、炎症性骨吸収を引き起こすリウマチ間接モデルにおいてWP9QYペプチドが同用量の抗TNF抗体投与と比べて骨吸収抑制効果が優れていることが報告されている(斉藤ら、Rheumatoid Arthritis, Vol.56, No.4, 1164-1174)。さらに、歯周病原因細菌による炎症性骨破壊をWP9QYペプチド投与により抑制することも報告されている(鈴木ら、J. Periodontal Res., 2006 Apr. 41(2):81-91)。
Figure 2014101274
WP9QY peptide has been reported to inhibit cytotoxicity induced by TNFα (Takahashi et al., Nat. Biotechnol. 1997, 15: 1266-1270). The WP9QY peptide has also been reported to block RANKL-induced signals and inhibit bone resorption and bone loss (Aoki et al., J. Clin Invest. 2006; 116 (6): 1525-1534). In addition, it has been reported that the WP9QY peptide is superior to the administration of the same dose of anti-TNF antibody in the rheumatoid indirect model causing inflammatory bone resorption (Saito et al., Rheumatoid Arthritis, Vol. 56, No. 4, 1164-1174). Furthermore, it has also been reported that inflammatory bone destruction caused by periodontal disease-causing bacteria is suppressed by administration of WP9QY peptide (Suzuki et al., J. Periodontal Res., 2006 Apr. 41 (2): 81-91).

本明細書で使用する「ペプチド模倣体」とは、レセプターのリガンドとして、ペプチドの生物学的効果をレセプターレベルで模倣(作動物質)または遮蔽(拮抗物質)することができる化合物である。最も可能性のある作動物質としてのペプチド模倣体を得るためには、a)代謝安定性、b)良好な生物学的利用能、c)高い受容体親和性および受容体選択性、ならびにd)最少の副作用、等の要因を考慮する必要がある。また、薬理および医学的観点から、しばしば、レセプターレベルでのペプチドの効果を模倣する(作動作用)だけでなく、必要であればレセプターを遮蔽する(拮抗作用)ことが望ましい。上記の作動物質としてのペプチド模倣体を設計するために考慮すべき薬理事項と同じことが、ペプチド拮抗物質の設計に対しても適用できる。   As used herein, a “peptidomimetic” is a compound that can, as a receptor ligand, mimic (agonist) or mask (antagonist) the biological effects of a peptide at the receptor level. To obtain a peptidomimetic as the most likely agonist, a) metabolic stability, b) good bioavailability, c) high receptor affinity and receptor selectivity, and d) Factors such as minimal side effects need to be considered. Also, from a pharmacological and medical point of view, it is often desirable not only to mimic the effects of peptides at the receptor level (acting action), but also to mask the receptor (antagonism) if necessary. The same pharmacological considerations that should be considered for designing a peptidomimetic as an agonist above can also be applied to the design of peptide antagonists.

特表2003−505503号公報Special table 2003-505503 gazette 特表2003−505514号公報Special table 2003-505514 gazette

Mosberg ら、P.N.A.S. US, 80:5871, 1983Mosberg et al., P.N.A.S.US, 80: 5871, 1983 Charpentier ら、J. Med. Chem. 32:1184, 1989Charpentier et al., J. Med. Chem. 32: 1184, 1989 Rodriguez ら、Int. J. Pept. Protein Res. 35:441, 1990Rodriguez et al., Int. J. Pept. Protein Res. 35: 441, 1990 Schafmeisterら、J. Am. Chem. Soc., 122, 5891-5892, 2000Schafmeister et al., J. Am. Chem. Soc., 122, 5891-5892, 2000 Goodmanら、J. Org. Chem. 2002, 67, 8820-8826Goodman et al., J. Org. Chem. 2002, 67, 8820-8826 高橋ら、 Nat. Biotechnol. 1997, 15: 1266-1270Takahashi et al., Nat. Biotechnol. 1997, 15: 1266-1270 青木ら、J. Clin Invest. 2006; 116(6):1525-1534Aoki et al., J. Clin Invest. 2006; 116 (6): 1525-1534 斉藤ら、Rheumatoid Arthritis, Vol.56, No.4, 1164-1174Saito et al., Rheumatoid Arthritis, Vol.56, No.4, 1164-1174 鈴木ら、J. Periodontal Res., 2006 Apr. 41(2):81-91Suzuki et al., J. Periodontal Res., 2006 Apr. 41 (2): 81-91


TNFαにより誘導される細胞毒性を阻害するとともに骨吸収を阻害するペプチド模倣体として、WP9QYペプチドが知られているが、ジスルフィド結合は一般に生体内に存在する還元酵素で切断されてしまうという問題があり、さらに改善された模倣ペプチドが望まれていた。また、他の環化形式も存在するが、架橋中にアミドが存在するものは、生体内に存在するアミド構造を切断する酵素によって切断されてしまうという問題がある。さらには、架橋の自由な設計や架橋への自由な変更が、ペプチドの生理活性を改善するためには望まれているが、従来の環化形式では難しいという問題があった。
本発明の目的は、より望ましい特性を有するWP9QYペプチド模倣体を含む骨粗鬆治療薬を提供することである。
.
WP9QY peptide is known as a peptidomimetic that inhibits cytotoxicity induced by TNFα and inhibits bone resorption, but there is a problem that disulfide bonds are generally cleaved by reductase present in the living body. Further improved mimetic peptides were desired. Although other cyclization forms exist, those having an amide in the cross-linking have a problem that they are cleaved by an enzyme that cleaves the amide structure existing in the living body. Furthermore, free design of the crosslink and free change to the crosslink are desired to improve the physiological activity of the peptide, but there is a problem that it is difficult in the conventional cyclization format.
An object of the present invention is to provide an osteoporosis therapeutic agent comprising a WP9QY peptidomimetic having more desirable properties.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、新規な架橋構造をその内部にもつWP9QYペプチド模倣体を合成し、それが破骨細胞の分化阻害活性を持つことを確認し、本発明を完成した。
すなわち本発明は、以下に記載する新規なWP9QYペプチド模倣体を用いた破骨細胞の増殖阻害剤および該ペプチドを含む医薬組成物を提供するものである。
1.下記の化学式で表されるペプチドからなる破骨細胞の増殖阻害剤
As a result of intensive studies to solve the above problems, the present inventors synthesized a WP9QY peptide mimic having a novel cross-linked structure therein, and that it has an osteoclast differentiation inhibitory activity. Confirmed and completed the present invention.
That is, the present invention provides an osteoclast growth inhibitor using the novel WP9QY peptide mimic described below and a pharmaceutical composition containing the peptide.
1. Osteoclast growth inhibitor comprising a peptide represented by the following chemical formula

Figure 2014101274

(ここで、Z1およびZ3は、それぞれ独立に、水素原子、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のアルキル基および−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれ、Z2はヒドロキシル基、アミノ基、無置換または置換された炭素数1〜8のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれる)
2.下記の化学式で表されるペプチドからなる群より選ばれる上記1に記載の破骨細胞の分化または増殖阻害剤、
Figure 2014101274

Wherein Z 1 and Z 3 are each independently a hydrogen atom, an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and —C (═O) —CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 is selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da and Z 2 is a hydroxyl group or an amino group , An unsubstituted or substituted monoalkylamino group having 1 to 8 carbon atoms, and a polyethylene having a molecular weight of 100 to 10,000 Da represented by —NH—CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 Selected from the group consisting of glycols)
2. The osteoclast differentiation or proliferation inhibitor according to the above 1, which is selected from the group consisting of peptides represented by the following chemical formula:

Figure 2014101274
Figure 2014101274

Figure 2014101274
Figure 2014101274

Figure 2014101274
Figure 2014101274

Figure 2014101274
Figure 2014101274

Figure 2014101274
Figure 2014101274

Figure 2014101274
および
Figure 2014101274
and

Figure 2014101274
(ここで、Acはアセチル基を表し、ポリエチレングリコールは、500〜2000Daの数平均分子量をもつポリエチレングリコールを表す)。
Figure 2014101274
(Here, Ac represents an acetyl group, and polyethylene glycol represents polyethylene glycol having a number average molecular weight of 500 to 2000 Da).

3.上記1または2に記載の化学式で表されるペプチドの少なくとも一つを有効成分として含有する医薬組成物。
4.骨粗鬆症、パジェット病、関節リウマチおよび他の形態の炎症性関節炎、変形性関節症、プロテーゼ破損、溶骨型腫瘍、骨髄腫並びに骨への腫瘍転移からなる群から選択される疾病の治療剤である、上記3に記載の医薬組成物。
5.骨粗鬆症、パジェット病、関節リウマチおよび他の形態の炎症性関節炎、変形性関節症、プロテーゼ破損、溶骨型腫瘍、骨髄腫並びに骨への腫瘍転移からなる群から選択される疾病の治療方法であって、このような治療が必要である哺乳類に、上記1または2に記載の化学式で表される少なくとも一種を治療上の有効量で投与することを含む、治療方法。
3. 3. A pharmaceutical composition comprising as an active ingredient at least one of the peptides represented by the chemical formula according to 1 or 2 above.
4). It is a therapeutic agent for diseases selected from the group consisting of osteoporosis, Paget's disease, rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthetic breakage, osteolytic tumors, myeloma and tumor metastasis to bone The pharmaceutical composition according to 3 above.
5. A method of treating a disease selected from the group consisting of osteoporosis, Paget's disease, rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthetic breakage, osteolytic tumors, myeloma and tumor metastasis to bone. A method of treatment comprising administering to a mammal in need of such treatment at least one of the chemical formulas described in 1 or 2 in a therapeutically effective amount.

本発明により、特性がより改善された、例えば、ペプチダーゼに対する耐性が向上した、または破骨細胞に対する阻害活性が向上したWP9QYペプチド模倣体を含む医薬組成物が提供される。   The present invention provides a pharmaceutical composition comprising a WP9QY peptidomimetic with improved properties, eg, increased resistance to peptidases or increased inhibitory activity against osteoclasts.

図1は、本発明のWP9QYペプチド模倣体の合成例を概略図で示している。FIG. 1 schematically shows an example of synthesis of a WP9QY peptide mimetic of the present invention. 図2は、本発明のWP9QYペプチド模倣体の合成例を概略図で示している。FIG. 2 shows schematically a synthesis example of the WP9QY peptidomimetic of the present invention. 図3は、参考例としての、チオエーテル架橋をもつWP9QYペプチド模倣体の合成例を示している。FIG. 3 shows a synthesis example of a WP9QY peptide mimetic having a thioether bridge as a reference example. 図4は、参考例としての、オレフィン架橋をもつWP9QYペプチド模倣体の合成例を示している。FIG. 4 shows a synthesis example of a WP9QY peptide mimetic having an olefinic bridge as a reference example. 図5は、本発明のWP9QYペプチド模倣体(Bdev-2、Bdev-5、Bdev-6、Bdev-8)の破骨細胞分化抑制活性を示している。FIG. 5 shows the osteoclast differentiation-inhibiting activity of the WP9QY peptide mimics (Bdev-2, Bdev-5, Bdev-6, Bdev-8) of the present invention. 図6は、本発明のWP9QYペプチド模倣体(Bdev-2、Bdev-3)の、破骨細胞分化抑制活性を示している。FIG. 6 shows the osteoclast differentiation inhibitory activity of the WP9QY peptide mimics (Bdev-2, Bdev-3) of the present invention.

本発明のWP9QYペプチド模倣体は、環状ペプチドであり、その環状内にWP9QYペプチドと同様のアミノ酸配列をもち、かつ架橋構造中に−NR−結合を有することを特徴とする。具体的には、本発明のWP9QYペプチド模倣体は、以下の構造を有するペプチドである。   The WP9QY peptidomimetic of the present invention is a cyclic peptide, and has the same amino acid sequence as that of the WP9QY peptide in the ring, and has a —NR— bond in the crosslinked structure. Specifically, the WP9QY peptidomimetic of the present invention is a peptide having the following structure.

Figure 2014101274
(ここで、Z1およびZ3は、それぞれ独立に、水素原子、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のアルキル基、および−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれ、Z2はヒドロキシル基、アミノ基、無置換または置換された炭素数1〜8のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれる)
Figure 2014101274
(Wherein Z 1 and Z 3 are each independently a hydrogen atom, an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and- C (═O) —CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 is selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da and Z 2 is a hydroxyl group, an amino group Group, an unsubstituted or substituted monoalkylamino group having 1 to 8 carbon atoms, a molecular weight of 100 to 10,000 Da represented by —NH—CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 (Selected from the group consisting of polyethylene glycol)

1およびZ3は、それぞれ独立に、水素原子、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のアルキル基および−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれるが、好ましくは、水素原子、置換または置換された炭素数1〜6のアシル基、無置換または置換された炭素数1〜6のアルキル基、または、−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量300〜5,000Daのポリエチレングリコールであり、さらに好ましくは水素原子、置換または置換された炭素数1〜4のアシル基、無置換または置換された炭素数1〜4のアルキル基、または、C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量500〜2,000Daのポリエチレングリコールである。
2は、ヒドロキシル基、アミノ基、無置換または置換された炭素数1〜8のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれるが、好ましくは、ヒドロキシル基、アミノ基、無置換または置換された炭素数1〜6のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量300〜5,000Daのポリエチレングリコールであり、さらに好ましくは、ヒドロキシル基、アミノ基、無置換または置換された炭素数1〜4のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量500〜2,000Daのポリエチレングリコールである。
また、Z1とZ3は、一方が、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のアルキル基および−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群から選ばれ、他方が、水素原子またはアセチル基から選ばれることが好ましい。
さらに、Z1が水素、無置換または置換された炭素数1〜8のアシル基、または無置換または置換された炭素数1〜8のアルキル基であり、かつZ2がヒドロキシル基、アミノ基、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のモノアルキルアミノ基である場合、Z3は−C(=O)−CH2CH2(OCH2CH2nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールであることが好ましい。
Z 1 and Z 3 are each independently a hydrogen atom, an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and —C (═O). It is selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da represented by —CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 , preferably a hydrogen atom, substituted or substituted An acyl group having 1 to 6 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, or —C (═O) —CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 Polyethylene glycol having a molecular weight of 300 to 5,000 Da, more preferably a hydrogen atom, a substituted or substituted acyl group having 1 to 4 carbon atoms, an unsubstituted or substituted carbon atom having 1 to 4 carbon atoms. Kill group, or is C (= O) polyethylene glycol having a molecular weight 500~2,000Da represented by -CH 2 CH 2 (OCH 2 CH 2) n OCH 2 CH 2 OCH 3.
Z 2 is represented by a hydroxyl group, an amino group, an unsubstituted or substituted monoalkylamino group having 1 to 8 carbon atoms, —NH—CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3. Selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da, preferably a hydroxyl group, an amino group, an unsubstituted or substituted monoalkylamino group having 1 to 6 carbon atoms, —NH—CH 2 CH 2 (OCH 2 CH 2 ) n Polyethylene glycol having a molecular weight of 300 to 5,000 Da represented by OCH 2 CH 2 OCH 3 , more preferably a hydroxyl group, an amino group, an unsubstituted or substituted carbon number of 1 to 4 monoalkylamino group, molecular weight 500~2,00 represented by -NH-CH 2 CH 2 (OCH 2 CH 2) n OCH 2 CH 2 OCH 3 Polyethylene glycol Da.
One of Z 1 and Z 3 is an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and —C (═O) —CH. It is preferably selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da represented by 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 OCH 3 , and the other is selected from a hydrogen atom or an acetyl group. .
Further, Z 1 is hydrogen, an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, or an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and Z 2 is a hydroxyl group, an amino group, In the case of an unsubstituted or substituted acyl group having 1 to 8 carbon atoms or an unsubstituted or substituted monoalkylamino group having 1 to 8 carbon atoms, Z 3 represents —C (═O) —CH 2 CH 2 ( OCH 2 CH 2) is preferably a polyethylene glycol having a molecular weight 100~10,000Da represented by n OCH 2 CH 2 OCH 3.

本明細書において、本発明のWP9QYペプチド模倣体の作用を表す際に用いる「破骨細胞の増殖阻害」とは、破骨細胞の生育または増殖を阻害する場合、未熟な破骨細胞が成熟細胞へと分化するのを阻害する場合のいずれも含む意味で用いる。
本発明のWP9QYペプチド模倣体は、TNFα/TNFレセプターが関与する疾患に有効であるとともに、RANK/RANKLが関与する疾患にも有用である。疾患としては、例えば、骨粗鬆症、パジェット病、関節リウマチおよび他の形態の炎症性関節炎、変形性関節症、プロテーゼ破損、溶骨型腫瘍、骨髄腫並びに骨への腫瘍転移をあげることができるが、これらに限定されず、TNFα/TNFレセプターおよび/またはRANK/RANKLが関与する疾患も含まれる。
In the present specification, “inhibition of osteoclast proliferation” used when expressing the action of the WP9QY peptidomimetic of the present invention refers to immature osteoclasts that are mature cells when the growth or proliferation of osteoclasts is inhibited. It is used to include any of the cases where it is inhibited from differentiating.
The WP9QY peptidomimetic of the present invention is effective for diseases involving TNFα / TNF receptors and also useful for diseases involving RANK / RANKL. Diseases can include, for example, osteoporosis, Paget's disease, rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthetic damage, osteolytic tumors, myeloma and tumor metastasis to bone, Without limitation, diseases involving TNFα / TNF receptor and / or RANK / RANKL are also included.

本発明のペプチドは、任意の既知の製薬上許容できるキャリアを含む医薬組成物としてもよい。
本発明のペプチドは、薬学的に許容される塩の形態にすることもできる。
本発明のペプチドは、経口的または非経口的に投与されうる。経口投与の場合、カプセル、錠剤、顆粒剤、液剤などの形態で投与されうる。非経口投与の場合、注射液、点滴製剤などの形態で投与される。
本発明のペプチドは、単独で用いる他、他の骨粗鬆治療・予防薬、例えば、有機ビスホスホネートと組み合わせてもちいることもできる。
The peptide of the present invention may be a pharmaceutical composition containing any known pharmaceutically acceptable carrier.
The peptide of the present invention may be in the form of a pharmaceutically acceptable salt.
The peptides of the present invention can be administered orally or parenterally. In the case of oral administration, it can be administered in the form of capsules, tablets, granules, liquids and the like. In the case of parenteral administration, it is administered in the form of injection solution, infusion preparation or the like.
The peptide of the present invention can be used alone or in combination with other osteoporosis therapeutic / prophylactic agents such as organic bisphosphonates.

本発明のペプチドは、例えば、ヒトまたはその他の温血動物(例えば、ラット、マウス、ウサギ、イヌ、サルなど)に対して投与することができる。本発明のペプチドの適切な投与量は、治療する疾患や障害、投与経路、治療をうける患者の年齢や体重などの要素によってさまざまである。経口投与の場合、一般的に通常ヒト成人においては、一日につき有効成分を約0.01mg〜1000mg、好ましくは約1.0〜200mgであり、非経口的に投与する場合は、一日につき有効成分を約0.01〜100mg程度、好ましくは約0.1〜10mg程度を静脈注射により投与する。
本発明の製剤は、好ましくは、非経口的に、例えば、筋肉内、腹腔内、静脈内、皮下、等により投与する。
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
The peptides of the present invention can be administered to, for example, humans or other warm-blooded animals (eg, rats, mice, rabbits, dogs, monkeys, etc.). Appropriate doses of the peptides of the present invention will vary depending on factors such as the disease or disorder being treated, the route of administration, the age and weight of the patient being treated. In the case of oral administration, the active ingredient is generally about 0.01 mg to 1000 mg, preferably about 1.0 to 200 mg per day, usually in human adults. About 0.01 to 100 mg, preferably about 0.1 to 10 mg of the active ingredient is administered by intravenous injection.
The preparation of the present invention is preferably administered parenterally, for example, intramuscularly, intraperitoneally, intravenously, subcutaneously, and the like.
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

以下の実施例においては、下記の略号を用いた。   The following abbreviations were used in the following examples.

Figure 2014101274
Figure 2014101274

WP9QYペプチド模倣体の合成
図1および図2の合成スキームに従って、架橋構造としてジスルフィド結合の代わりに、−(CH24−NH−(CH24−を持つ、WP9QYペプチド模倣体である架橋ペプチド(Bdev7)を合成した。
以下、それぞれの工程について詳細に説明する。
(実施例1)合成中間体(化合物14)の合成
1−1.原料である化合物13の合成
化合物1の合成
Synthesis of WP9QY Peptidomimetic A bridge that is a WP9QY peptidomimetic with — (CH 2 ) 4 —NH— (CH 2 ) 4 — as the bridging structure instead of a disulfide bond according to the synthetic schemes of FIGS. A peptide (Bdev7) was synthesized.
Hereinafter, each process will be described in detail.
Example 1 Synthesis of Synthetic Intermediate (Compound 14)
1-1. Synthesis of compound 13 as raw material Synthesis of compound 1

Figure 2014101274
2,4-ジドコシロキシベンジルアルコール(「KbOH」と表記する) (7.69 g, 10.1 mmol) をCH2Cl2 (200 mL) に溶解し、Fmoc-Gly-OH (4.52 g, 15.2 mmol, 1.5 equiv)、DIPCI (3147 μL, 20.2 mmol, 2.0 equiv)、およびDMAP (12.3 mg, 0.101 mmol, 0.01 equiv) を加えて室温で30分間攪拌した。沈殿物をろ過し、ろ液を減圧下留去した。残渣にMeOHを加えて析出した沈殿物をろ過し、MeOH懸洗を2回 、CH3CN懸洗を行い化合物1 (10.1 g, 96.7%) を得た。
化合物2の合成
Figure 2014101274
2,4-didocosyloxybenzyl alcohol (referred to as “KbOH”) (7.69 g, 10.1 mmol) was dissolved in CH 2 Cl 2 (200 mL) and Fmoc-Gly-OH (4.52 g, 15.2 mmol, 1.5 equiv), DIPCI (3147 μL, 20.2 mmol, 2.0 equiv), and DMAP (12.3 mg, 0.101 mmol, 0.01 equiv) were added and stirred at room temperature for 30 minutes. The precipitate was filtered and the filtrate was distilled off under reduced pressure. MeOH was added to the residue, the deposited precipitate was filtered, MeOH rinsing twice and CH 3 CN rinsing to obtain Compound 1 (10.1 g, 96.7%).
Synthesis of compound 2

Figure 2014101274
化合物1 (10.1 g, 9.74 mmol) をTHF (200 mL) に溶解し、piperidne (1863 μL, 17.5 mmol, 1.8 equiv) およびDBU (1863 μL, 17.5 mmol, 1.8 equiv) を加えて室温で5分間攪拌した。反応液のpHが6前後になるまで濃塩酸を加えて減圧下溶媒を留去した。残渣にCH3CNを加えて析出した沈殿物をろ過し、CH3CN懸洗を2回行い化合物2 (8.21 g, 98.7%) を得た。
化合物3の合成
Figure 2014101274
Compound 1 (10.1 g, 9.74 mmol) is dissolved in THF (200 mL), piperidne (1863 μL, 17.5 mmol, 1.8 equiv) and DBU (1863 μL, 17.5 mmol, 1.8 equiv) are added and stirred at room temperature for 5 minutes. did. Concentrated hydrochloric acid was added until the pH of the reaction solution reached around 6, and the solvent was distilled off under reduced pressure. CH 3 CN was added to the residue, the deposited precipitate was filtered, and CH 3 CN was washed twice to obtain Compound 2 (8.21 g, 98.7%).
Synthesis of compound 3

Figure 2014101274
化合物2 (7.60 g, 8.96 mmol) をCH2Cl2 (180 mL) に溶解し、DIPEA (3589 μL, 20.6 mmol, 2.3 equiv) およびNsCl (2.59 g, 11.7 mmol, 1.3 equiv) を加えて室温で攪拌した。1時間後DIPEA (359 μL, 2.06 mmol, 0.2 equiv) を追加し室温で19分間攪拌した。反応液にMeOH (30 mL) を加えた後、減圧下溶媒を留去した。残渣にCH3CNを加えて析出した沈殿物をろ過し、CH3CN懸洗を2回行い化合物3 (8.95 g, 99.9%) を得た。
化合物4の合成
Figure 2014101274
Compound 2 (7.60 g, 8.96 mmol) was dissolved in CH 2 Cl 2 (180 mL), and DIPEA (3589 μL, 20.6 mmol, 2.3 equiv) and NsCl (2.59 g, 11.7 mmol, 1.3 equiv) were added at room temperature. Stir. After 1 hour, DIPEA (359 μL, 2.06 mmol, 0.2 equiv) was added, and the mixture was stirred at room temperature for 19 minutes. After adding MeOH (30 mL) to the reaction solution, the solvent was distilled off under reduced pressure. CH 3 CN was added to the residue, and the deposited precipitate was filtered, and CH 3 CN was washed twice to obtain Compound 3 (8.95 g, 99.9%).
Synthesis of compound 4

Figure 2014101274

化合物3 (4.70 g, 4.71 mmol) および化合物A (3.11 g, 9.46 mmol, 2.0 equiv) をTHF (94 mL) に溶解し、PPh3 (2.49 g, 9.50 mmol, 2.0 equiv) およびDEAD (4272 μL, 9.42 mmol, 2.0 equiv) を加えて室温で3時間攪拌した。PPh3 (248 mg, 0.946 mmol, 0.2 equiv) およびDEAD (427 μL, 0.942 mmol, 0.2 equiv) を加えて1時間攪拌した。PPh3 (245 mg, 0.934 mmol, 0.2 equiv) およびDEAD (427 μL, 0.942 mmol, 0.2 equiv) を加えて1時間15分攪拌した後、減圧下溶媒を留去した。残渣にCH3CNを加えて析出した沈殿物をろ過し、CH3CN懸洗を2回行い化合物4 (6.12 g, 99.2%) を得た。
化合物5の合成
Figure 2014101274

Compound 3 (4.70 g, 4.71 mmol) and Compound A (3.11 g, 9.46 mmol, 2.0 equiv) were dissolved in THF (94 mL), and PPh 3 (2.49 g, 9.50 mmol, 2.0 equiv) and DEAD (4272 μL, 9.42 mmol, 2.0 equiv) was added and stirred at room temperature for 3 hours. PPh 3 (248 mg, 0.946 mmol, 0.2 equiv) and DEAD (427 μL, 0.942 mmol, 0.2 equiv) were added and stirred for 1 hour. PPh 3 (245 mg, 0.934 mmol, 0.2 equiv) and DEAD (427 μL, 0.942 mmol, 0.2 equiv) were added and stirred for 1 hour and 15 minutes, and then the solvent was distilled off under reduced pressure. CH 3 CN was added to the residue and the deposited precipitate was filtered, and CH 3 CN was washed twice to obtain Compound 4 (6.12 g, 99.2%).
Synthesis of compound 5

Figure 2014101274
化合物4 (5.65 g, 4.31 mmol) をTHF (40 mL) に溶解し、PhSH (1328 μL, 12.9 mmol, 3.0 equiv) およびDBU (1934 μL, 12.9 mmol, 3.0 equiv) を加え室温で1時間30分攪拌した。反応液にCH3CN (200 mL) を加えて析出した沈殿物をろ過し、CH3CN懸洗を2回行い化合物5 (4.77 g, 98.4%) を得た。
化合物6の合成
Figure 2014101274
Compound 4 (5.65 g, 4.31 mmol) was dissolved in THF (40 mL), and PhSH (1328 μL, 12.9 mmol, 3.0 equiv) and DBU (1934 μL, 12.9 mmol, 3.0 equiv) were added for 1 hour 30 minutes at room temperature. Stir. CH 3 CN (200 mL) was added to the reaction solution, and the deposited precipitate was filtered, and CH 3 CN was washed twice to obtain Compound 5 (4.77 g, 98.4%).
Synthesis of compound 6

Figure 2014101274
化合物5 (7.49 g, 6.65 mmol) をTHF (70 mL) に溶解し、Fmoc-Leu-OH (3.53 g, 9.98 mmol, 1.5 equiv)、HOAt (2.27 g, 16.7 mmol, 2.5 equiv)、HATU (6.32 g, 16.6 mmol, 2.5 equiv) およびDIPEA (5800 μL, 33.3 mmol, 5.0 equiv) を加えて室温で6分間攪拌した。DIPEA (580 μL, 3.33 mmol, 0.5 equiv) を加えて8分間攪拌した。さらに、DIPEA (580 μL, 3.33 mmol, 0.5 equiv) を加えて1時間攪拌した。沈殿物をろ過し、ろ液を減圧下留去した。化合物4の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (n-hexane/EtOAc = 100 : 0 - 85 : 15) に付し、化合物6 (9.10 g, 93.7%) を得た。
化合物7の合成
Figure 2014101274
Compound 5 (7.49 g, 6.65 mmol) was dissolved in THF (70 mL) and Fmoc-Leu-OH (3.53 g, 9.98 mmol, 1.5 equiv), HOAt (2.27 g, 16.7 mmol, 2.5 equiv), HATU (6.32 g, 16.6 mmol, 2.5 equiv) and DIPEA (5800 μL, 33.3 mmol, 5.0 equiv) were added, and the mixture was stirred at room temperature for 6 minutes. DIPEA (580 μL, 3.33 mmol, 0.5 equiv) was added and stirred for 8 minutes. Furthermore, DIPEA (580 μL, 3.33 mmol, 0.5 equiv) was added and stirred for 1 hour. The precipitate was filtered and the filtrate was distilled off under reduced pressure. The residue obtained by post-treatment equivalent to the synthesis of compound 4 was subjected to silica gel column chromatography (n-hexane / EtOAc = 100: 0-85: 15) to obtain compound 6 (9.10 g, 93.7%). .
Synthesis of compound 7

Figure 2014101274
化合物6 (1.05g, 0.721 mmol) をCH2Cl2 (36 mL) に溶解し、TFE (3.6 mL) およびTFA (360 μL) を加えて室温で40分間攪拌した。沈殿物をろ過し、ろ液を減圧下留去した。残渣にCH2Cl2を加えて水で3回洗浄し、有機層を飽和食塩水で洗浄、無水MgSO4で乾燥、ろ過し、ろ液を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー (CH2Cl2/MeOH, 100 : 0 - 90 :10) に付し、化合物7 (478 mg, 92.2%) を得た。
化合物8の合成
Figure 2014101274
Compound 6 (1.05 g, 0.721 mmol) was dissolved in CH 2 Cl 2 (36 mL), TFE (3.6 mL) and TFA (360 μL) were added, and the mixture was stirred at room temperature for 40 minutes. The precipitate was filtered and the filtrate was distilled off under reduced pressure. CH 2 Cl 2 was added to the residue and washed with water three times. The organic layer was washed with saturated brine, dried over anhydrous MgSO 4 and filtered, and the filtrate was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography (CH 2 Cl 2 / MeOH, 100: 0 to 90:10) to obtain Compound 7 (478 mg, 92.2%).
Synthesis of compound 8

Figure 2014101274
化合物7 (4.08 g, 5.66 mmol, 1.2 equiv) をTHF (70 mL) に溶解し、化合物29(合成方法は後で記載する) (5.52 g, 4.72 mmol)、DIPCI (1104 μL, 7.09 mmol, 1.5 equiv)、HOAt (963 mg, 7.08 mmol, 1.5 equiv)、およびDIPEA (4940 μL, 28.4 mmol, 6.0 equiv) を加えて室温で3時間攪拌した。HOAt (325 mg, 2.39 mmol, 0.5 equiv) およびDIPCI (368 μL, 2.36 mmol, 0.5 equiv) を加えて2時間攪拌した。溶媒を減圧下留去した後、化合物2の合成と同等の後処理を行い化合物8 (8.54 g, 98.5%) を得た。
化合物9の合成
Figure 2014101274
Compound 7 (4.08 g, 5.66 mmol, 1.2 equiv) was dissolved in THF (70 mL), and compound 29 (synthesis method will be described later) (5.52 g, 4.72 mmol), DIPCI (1104 μL, 7.09 mmol, 1.5 equiv), HOAt (963 mg, 7.08 mmol, 1.5 equiv), and DIPEA (4940 μL, 28.4 mmol, 6.0 equiv) were added and stirred at room temperature for 3 hours. HOAt (325 mg, 2.39 mmol, 0.5 equiv) and DIPCI (368 μL, 2.36 mmol, 0.5 equiv) were added and stirred for 2 hours. After the solvent was distilled off under reduced pressure, the post-treatment equivalent to the synthesis of Compound 2 was performed to obtain Compound 8 (8.54 g, 98.5%).
Synthesis of compound 9

Figure 2014101274
化合物8 (8.54 g, 4.65 mmol) をTHF (93 mL) に溶解し、piperdine (891 μL, 8.37 mmol, 1.8 equiv) およびDBU (904 μL, 6.04 mmol, 1.3 equiv) を加えて室温で5分間攪拌した。化合物2の合成と同等の後処理を行い脱Fmoc体 (8.31 g) を得た。
Figure 2014101274
Compound 8 (8.54 g, 4.65 mmol) is dissolved in THF (93 mL), piperdine (891 μL, 8.37 mmol, 1.8 equiv) and DBU (904 μL, 6.04 mmol, 1.3 equiv) are added and stirred at room temperature for 5 minutes. did. The post-process equivalent to the synthesis | combination of the compound 2 was performed, and the de-Fmoc body (8.31 g) was obtained.

Figure 2014101274
脱Fmoc体 (8.31 g) をTHF (93 mL) に溶解し、Fmoc-Tyr(tBu)-OH (3.21 g, 6.99 mmol, 1.5 equiv)、HOAt (1.59 g, 11.7 mmol, 2.5 equiv)、HATU (4.42 g, 11.6 mmol, 2.5 equiv)、およびDIPEA (4860 μL, 27.9 mmol, 6.0 equiv) を加えて室温で40分間攪拌した。化合物4の合成と同等の後処理を行い化合物9 (9.05 g, 94.7%) を得た。
化合物10の合成
Figure 2014101274
De-Fmoc form (8.31 g) was dissolved in THF (93 mL) and Fmoc-Tyr (tBu) -OH (3.21 g, 6.99 mmol, 1.5 equiv), HOAt (1.59 g, 11.7 mmol, 2.5 equiv), HATU ( 4.42 g, 11.6 mmol, 2.5 equiv) and DIPEA (4860 μL, 27.9 mmol, 6.0 equiv) were added, and the mixture was stirred at room temperature for 40 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 9 (9.05 g, 94.7%) was obtained.
Synthesis of compound 10

Figure 2014101274
化合物9 (4.17 g, 2.03 mmol) をTHF (41 mL) に溶解し、piperidine (389 μL, 3.65 mmol, 1.8 equiv) およびDBU (395 μL, 2.63 mmol, 1.3 equiv) 加えて室温で5分間攪拌した。化合物2の合成と同等の後処理を行い脱Fmoc体 (3.92 g) を得た。
Figure 2014101274
Compound 9 (4.17 g, 2.03 mmol) was dissolved in THF (41 mL), piperidine (389 μL, 3.65 mmol, 1.8 equiv) and DBU (395 μL, 2.63 mmol, 1.3 equiv) were added, and the mixture was stirred at room temperature for 5 minutes. . The post-process equivalent to the synthesis | combination of the compound 2 was performed, and the de-Fmoc body (3.92 g) was obtained.

Figure 2014101274
脱Fmoc体 (3.92 g) をTHF (41 mL) に溶解し、Fmoc-Gln(Trt)-OH (1.86 g, 3.04 mmol, 1.5 equiv)、HATU (1.93 g, 5.07 mmol, 2.5 equiv)、HOAt (691 mg, 5.07 mmol, 2.5 equiv)、およびDIPEA (2120 μL, 12.2 mmol, 6.0 equiv) を加えて室温で30分間攪拌した。化合物4の合成と同等の後処理を行い化合物10 (4.83 g, 98.0%) を得た。
化合物11の合成
Figure 2014101274
De-Fmoc form (3.92 g) was dissolved in THF (41 mL), and Fmoc-Gln (Trt) -OH (1.86 g, 3.04 mmol, 1.5 equiv), HATU (1.93 g, 5.07 mmol, 2.5 equiv), HOAt ( 691 mg, 5.07 mmol, 2.5 equiv) and DIPEA (2120 μL, 12.2 mmol, 6.0 equiv) were added and stirred at room temperature for 30 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 10 (4.83 g, 98.0%) was obtained.
Synthesis of compound 11

Figure 2014101274
化合物10 (4.83 g, 1.99 mmol) をTHF (40 mL) に溶解し、piperidine (382 μL, 3.59 mmol, 1.8 equiv) およびDBU (388 μL, 2.59 mmol, 1.3 equiv) 加えて室温で5分間攪拌した。化合物2の合成と同等の後処理を行い脱Fmoc体 (4.63 g) を得た。
Figure 2014101274
Compound 10 (4.83 g, 1.99 mmol) was dissolved in THF (40 mL), piperidine (382 μL, 3.59 mmol, 1.8 equiv) and DBU (388 μL, 2.59 mmol, 1.3 equiv) were added, and the mixture was stirred at room temperature for 5 minutes. . The post-process equivalent to the synthesis | combination of the compound 2 was performed, and the de-Fmoc body (4.63 g) was obtained.

Figure 2014101274
脱Fmoc体 (4.63 g) をTHF (40 mL) に溶解し、Fmoc-Ser(tBu)-OH (1.15 g, 2.99 mmol, 1.5 equiv)、HATU (1.89 g, 4.98 mmol, 2.5 equiv)、HOAt (676 mg, 4.98 mmol, 2.5 equiv)、およびDIPEA (2082 μL, 11.9 mmol, 6.0 equiv) を加えて室温で45分間攪拌した。化合物4の合成と同等の後処理を行い化合物11 (5.49 g) を得た。
化合物12の合成
Figure 2014101274
De-Fmoc form (4.63 g) was dissolved in THF (40 mL) and Fmoc-Ser (tBu) -OH (1.15 g, 2.99 mmol, 1.5 equiv), HATU (1.89 g, 4.98 mmol, 2.5 equiv), HOAt ( 676 mg, 4.98 mmol, 2.5 equiv) and DIPEA (2082 μL, 11.9 mmol, 6.0 equiv) were added and stirred at room temperature for 45 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 11 (5.49 g) was obtained.
Synthesis of Compound 12

Figure 2014101274
化合物11 (5.49 g) をTHF (40 mL) に溶解し、piperidine (382 μL, 3.59 mmol, 1.8 equiv) およびDBU (388 μL, 2.59 mmol, 1.3 equiv) 加えて室温で5分間攪拌した。化合物2の合成と同等の後処理を行い脱Fmoc体 (4.65 g, 98.0% from 10) を得た。
Figure 2014101274
Compound 11 (5.49 g) was dissolved in THF (40 mL), piperidine (382 μL, 3.59 mmol, 1.8 equiv) and DBU (388 μL, 2.59 mmol, 1.3 equiv) were added, and the mixture was stirred at room temperature for 5 minutes. The post-process equivalent to the synthesis | combination of the compound 2 was performed, and the de-Fmoc body (4.65 g, 98.0% from 10) was obtained.

Figure 2014101274
脱Fmoc体 (4.65 g, 1.95 mmol) をTHF (39 mL) に溶解し、Fmoc-Trp(Boc)-OH (1.54 g, 2.92 mmol, 1.5 equiv)、HOAt (398 mg, 2.92 mmol, 1.5 equiv)、HATU (1.11 g, 2.92 mmol, 1.5 equiv)、およびDIPEA (1698 μL, 9.75 mmol, 5.0 equiv) を加えて室温で70分間攪拌した。化合物4の合成と同等の後処理を行い化合物12 (5.32 g, 95.4%) を得た。
化合物13の合成
Figure 2014101274
De-Fmoc form (4.65 g, 1.95 mmol) is dissolved in THF (39 mL), Fmoc-Trp (Boc) -OH (1.54 g, 2.92 mmol, 1.5 equiv), HOAt (398 mg, 2.92 mmol, 1.5 equiv) , HATU (1.11 g, 2.92 mmol, 1.5 equiv) and DIPEA (1698 μL, 9.75 mmol, 5.0 equiv) were added and stirred at room temperature for 70 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 12 (5.32 g, 95.4%) was obtained.
Synthesis of compound 13

Figure 2014101274
化合物12 (5.32 g, 1.86 mmol) をTHF (37.2 mL) に溶解し、piperidine (372 μL, 3.50 mmol, 1.9 equiv) およびDBU (372 μL, 2.49 mmol, 1.3 equiv) 加えて室温で5分間攪拌した。化合物2の合成と同等の後処理を行い脱Fmoc体 (4.96 g) を得た。
Figure 2014101274
Compound 12 (5.32 g, 1.86 mmol) was dissolved in THF (37.2 mL), piperidine (372 μL, 3.50 mmol, 1.9 equiv) and DBU (372 μL, 2.49 mmol, 1.3 equiv) were added, and the mixture was stirred at room temperature for 5 minutes. . The post-process equivalent to the synthesis | combination of the compound 2 was performed, and the de-Fmoc body (4.96 g) was obtained.

Figure 2014101274
脱Fmoc体 (4.96 g) をTHF (12.6 mL) に溶解し、TBAF (1.0 M solution in THF, 6.0 mL, 6.00 mmol, 3.2 equiv) を加えて室温で19時間攪拌した。減圧下溶媒を留去した後、残渣にCH2Cl2を加えて1 N HCl、水、飽和食塩水で洗浄し、有機層を無水MgSO4で乾燥しろ過後、ろ液を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー (CH2Cl2/THF, 100 : 0 - 75 : 25) に付し、化合物13 (2.02 g, 45.3%) を得た。
化合物29の合成
Figure 2014101274
The de-Fmoc form (4.96 g) was dissolved in THF (12.6 mL), TBAF (1.0 M solution in THF, 6.0 mL, 6.00 mmol, 3.2 equiv) was added, and the mixture was stirred at room temperature for 19 hours. After evaporating the solvent under reduced pressure, CH 2 Cl 2 was added to the residue, and the residue was washed with 1 N HCl, water, and saturated brine. The organic layer was dried over anhydrous MgSO 4 and filtered, and the filtrate was evaporated under reduced pressure. . The residue was subjected to silica gel column chromatography (CH 2 Cl 2 / THF, 100: 0 to 75:25) to give compound 13 (2.02 g, 45.3%).
Synthesis of compound 29

Figure 2014101274
3,4,5-トリオクタデシルオキシベンジルアルコール (「KaOH」と表記する)(20.1 g, 22.0 mmol) をCH2Cl2 (220 mL) に溶解し、Fmoc-Tyr(tBu)-OH (15.2 g, 33.0 mmol, 1.5 equiv)、DIPCI (6856 μL, 44.0 mmol, 2.0 equiv)、およびDMAP (26.9 mg, 0.220 mmol, 0.01 equiv) を加えて室温で35分間攪拌した。化合物1の合成と同等の後処理を行い化合物28 (29.9 g, quant. y.) を得た。
Figure 2014101274
3,4,5-Trioctadecyloxybenzyl alcohol (referred to as “KaOH”) (20.1 g, 22.0 mmol) was dissolved in CH 2 Cl 2 (220 mL) and Fmoc-Tyr (tBu) -OH (15.2 g , 33.0 mmol, 1.5 equiv), DIPCI (6856 μL, 44.0 mmol, 2.0 equiv), and DMAP (26.9 mg, 0.220 mmol, 0.01 equiv) were added and stirred at room temperature for 35 minutes. The post-process equivalent to the synthesis | combination of the compound 1 was performed, and the compound 28 (29.9 g, quant. Y.) Was obtained.

Figure 2014101274
化合物28 (9.58 g, 7.07 mmol) をTHF (141 mL) に溶解し、piperidine (1260 μL, 12.7 mmol, 1.8 equiv) およびDBU (1374 μL, 9.19 mmol, 1.3 equiv) を加えて室温で5分間攪拌した。TLCにて原料消失を確認後、化合物2の合成と同等の後処理を行い化合物29 (8.28 g, quant. y.) を得た。
1−2.原料である化合物38の合成
化合物30の合成
Figure 2014101274
Compound 28 (9.58 g, 7.07 mmol) is dissolved in THF (141 mL), piperidine (1260 μL, 12.7 mmol, 1.8 equiv) and DBU (1374 μL, 9.19 mmol, 1.3 equiv) are added and stirred at room temperature for 5 minutes. did. After confirming disappearance of the raw materials by TLC, post-treatment equivalent to the synthesis of compound 2 was performed to obtain compound 29 (8.28 g, quant. Y.).
1-2. Synthesis of compound 38 as raw material Synthesis of compound 30

Figure 2014101274
3,4,5-トリオクタデシルオキシベンジルアルコール (3.00 g, 3.28 mmol) をCH2Cl2 (32.8 mL) に溶解し、Fmoc-Lys(Mtt)-OH (3.08 g, 4.93 mmol, 1.5 equiv)、DIPCI (1023 μL, 6.57 mmol, 2.0 equiv)、およびDMAP (4.0 mg, 0.0328 mmol, 0.01 equiv) を加えて室温で42分間攪拌した。化合物1の合成と同等の後処理を行い化合物30 (5.32 g) を得た。
化合物31の合成
Figure 2014101274
3,4,5-trioctadecyloxybenzyl alcohol (3.00 g, 3.28 mmol) was dissolved in CH 2 Cl 2 (32.8 mL) and Fmoc-Lys (Mtt) -OH (3.08 g, 4.93 mmol, 1.5 equiv), DIPCI (1023 μL, 6.57 mmol, 2.0 equiv) and DMAP (4.0 mg, 0.0328 mmol, 0.01 equiv) were added and stirred at room temperature for 42 minutes. The post-process equivalent to the synthesis | combination of the compound 1 was performed, and the compound 30 (5.32 g) was obtained.
Synthesis of compound 31

Figure 2014101274
化合物30 (5.32 g) をCH2Cl2 (32.8 mL) に溶解し、TIS (3284 μL) およびTFA (985.2 μL) を加えて室温で12分間攪拌した。TIS (3284 μL) を追加し更に53分間攪拌した。TFA (985.2 μL) を追加して更に16分間攪拌した。化合物4の合成と同等の後処理を行い化合物31 (4.48 g) を得た。
化合物32の合成
Figure 2014101274
Compound 30 (5.32 g) was dissolved in CH 2 Cl 2 (32.8 mL), TIS (3284 μL) and TFA (985.2 μL) were added, and the mixture was stirred at room temperature for 12 minutes. TIS (3284 μL) was added, and the mixture was further stirred for 53 minutes. TFA (985.2 μL) was added, and the mixture was further stirred for 16 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 31 (4.48 g) was obtained.
Synthesis of compound 32

Figure 2014101274
化合物31 (4.48 g) をCH2Cl2 (65.7 mL) に溶解し、DIPEA (1258 μL, 7.22 mmol, 2.2 equiv) およびNsCl (873 mg, 3.94 mmol, 1.2 equiv) を加えて室温で37分間攪拌した。化合物3の合成と同等の後処理を行い化合物32 (4.75 g, quant. y.) を得た。
化合物33の合成
Figure 2014101274
Compound 31 (4.48 g) was dissolved in CH 2 Cl 2 (65.7 mL), DIPEA (1258 μL, 7.22 mmol, 2.2 equiv) and NsCl (873 mg, 3.94 mmol, 1.2 equiv) were added and stirred at room temperature for 37 minutes. did. The post-process equivalent to the synthesis | combination of the compound 3 was performed, and the compound 32 (4.75 g, quant. Y.) Was obtained.
Synthesis of compound 33

Figure 2014101274
化合物32 (4.38 g, 3.02 mmol) をCH2Cl2 (27 mL) に溶解し、TIS (6.0 mL) およびTFA (27 mL) を加えて室温で 2時間攪拌した。減圧下溶媒を留去し、残渣にCH2Cl2加えて希釈し水で3回、飽和食塩水で洗浄し、有機層を無水MgSO4で乾燥、ろ過し、ろ液を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー (CH2Cl2/MeOH, 100 : 0 - 85 : 15) に付し、化合物33 (1.42 g, 84.8%) を得た。
化合物34の合成
Figure 2014101274
Compound 32 (4.38 g, 3.02 mmol) was dissolved in CH 2 Cl 2 (27 mL), TIS (6.0 mL) and TFA (27 mL) were added, and the mixture was stirred at room temperature for 2 hr. The solvent was distilled off under reduced pressure, CH 2 Cl 2 was added to the residue, diluted, washed three times with water and with saturated brine, the organic layer was dried over anhydrous MgSO 4 and filtered, and the filtrate was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography (CH 2 Cl 2 / MeOH, 100: 0 to 85:15) to obtain Compound 33 (1.42 g, 84.8%).
Synthesis of Compound 34

Figure 2014101274
2,4-ジドコソキシベンジルアルコール (2.09 g, 2.76 mmol) をCH2Cl2 (27.6 mL) に溶解し、化合物33 (2.29 g, 4.14 mmol, 1.5 equiv)、DIPCI (859 μL, 5.51 mmol, 2.0 equiv)、およびDMAP (3.4 mg, 0.0278 mmol, 0.01 equiv) を加えて室温で45分間攪拌した。化合物1と同等の後処理を行い化合物34 (4.13 g, quant. y.) を得た。
化合物35の合成
Figure 2014101274
2,4-Didocosoxybenzyl alcohol (2.09 g, 2.76 mmol) was dissolved in CH 2 Cl 2 (27.6 mL), compound 33 (2.29 g, 4.14 mmol, 1.5 equiv), DIPCI (859 μL, 5.51 mmol, 2.0 equiv) and DMAP (3.4 mg, 0.0278 mmol, 0.01 equiv) were added and stirred at room temperature for 45 minutes. The post-process equivalent to the compound 1 was performed, and the compound 34 (4.13 g, quant. Y.) Was obtained.
Synthesis of compound 35

Figure 2014101274
化合物34 (4.13) をTHF (55.1 mL) に溶解し、piperidine (491 μL) およびDBU (536 μL) を加えて室温で5分間攪拌した。TLCにて原料消失を確認後、化合物2の合成と同等の後処理を行い化合物35 (3.00 g, 98.2%) を得た。
化合物36の合成
Figure 2014101274
Compound 34 (4.13) was dissolved in THF (55.1 mL), piperidine (491 μL) and DBU (536 μL) were added, and the mixture was stirred at room temperature for 5 minutes. After confirming disappearance of the raw material by TLC, the post-treatment equivalent to the synthesis of Compound 2 was performed to obtain Compound 35 (3.00 g, 98.2%).
Synthesis of compound 36

Figure 2014101274
化合物35 (332 mg, 0.300 mmol) をTHF (6 mL) に溶解し、Fmoc-Tyr(tBu)-OH (207 mg, 0.450 mmol, 1.5 equiv)、HOAt (61.3 mg, 0.450 mmol, 1.5 equiv)、HATU (171 mg, 0.450 mmol, 1.5 equiv) およびDIPEA (261 μL, 1.50 mmol, 5.0 equiv) を加えて室温で53分間攪拌した。化合物4の合成と同等の後処理を行い化合物36 (441 mg, 97.3%) を得た。化合物37の合成
Figure 2014101274
Compound 35 (332 mg, 0.300 mmol) was dissolved in THF (6 mL), Fmoc-Tyr (tBu) -OH (207 mg, 0.450 mmol, 1.5 equiv), HOAt (61.3 mg, 0.450 mmol, 1.5 equiv), HATU (171 mg, 0.450 mmol, 1.5 equiv) and DIPEA (261 μL, 1.50 mmol, 5.0 equiv) were added and stirred at room temperature for 53 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 36 (441 mg, 97.3%) was obtained. Synthesis of compound 37

Figure 2014101274
化合物36 (2.73 g, 1.81 mmol) をTHF (36.1 mL) に溶解し、piperidine (322 μL) およびDBU (351 μL) を加えて室温で5分間攪拌した。TLCにて原料消失を確認後、化合物2の合成と同等の後処理を行い化合物37 (2.25 g, 94.1%) を得た。
化合物38の合成
Figure 2014101274
Compound 36 (2.73 g, 1.81 mmol) was dissolved in THF (36.1 mL), piperidine (322 μL) and DBU (351 μL) were added, and the mixture was stirred at room temperature for 5 minutes. After confirming disappearance of the raw material by TLC, the post-treatment equivalent to the synthesis of Compound 2 was performed to obtain Compound 37 (2.25 g, 94.1%).
Synthesis of compound 38

Figure 2014101274
化合物37 (266 mg, 0.201 mmol) をTHF (4 mL) に溶解し、ミリスチン酸 (68.9 mg, 0.302 mmol, 1.5 equiv)、HOAt (41.4 mg, 0.304 mmol, 1.5 equiv)、HATU (114 mg, 0.301 mmol, 1.5 equiv)、およびDIPEA (174 μL, 0.999 mmol, 5.0 equiv) を加えて室温で1時間50分間攪拌した。化合物4の合成と同等の後処理を行い化合物38 (289 mg, 95.5%) を得た。
1−3.中間体である化合物14の合成
Figure 2014101274
Compound 37 (266 mg, 0.201 mmol) was dissolved in THF (4 mL), myristic acid (68.9 mg, 0.302 mmol, 1.5 equiv), HOAt (41.4 mg, 0.304 mmol, 1.5 equiv), HATU (114 mg, 0.301 mmol, 1.5 equiv) and DIPEA (174 μL, 0.999 mmol, 5.0 equiv) were added, and the mixture was stirred at room temperature for 1 hour and 50 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 38 (289 mg, 95.5%) was obtained.
1-3. Synthesis of intermediate compound 14

Figure 2014101274
化合物13 (265 mg, 0.111 mmol)、化合物38 (289 mg, 0.192 mmol, 1.7 equiv)、およびPPh3 (118 mg, 0.450 mmol, 4.1 equiv) をTHF (11 mL) に溶解し、DEAD (201 μL, 0.443 mmol, 4.0 equiv) を加えて室温で61分間攪拌した。PPh3 (121 mg, 0.461 mmol, 4.2 equiv) およびDEAD (201 μL, 0.0.443 mmol, 4.0 equiv) を加えて59分間攪拌した。化合物3の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (CH2CH2/THF, 100 : 0 - 88 : 12) に付し、光延反応物 (132 mg, 30.6%) を得た。
Figure 2014101274
Compound 13 (265 mg, 0.111 mmol), Compound 38 (289 mg, 0.192 mmol, 1.7 equiv), and PPh 3 (118 mg, 0.450 mmol, 4.1 equiv) were dissolved in THF (11 mL) and DEAD (201 μL , 0.443 mmol, 4.0 equiv) was added and stirred at room temperature for 61 minutes. PPh 3 (121 mg, 0.461 mmol, 4.2 equiv) and DEAD (201 μL, 0.0.443 mmol, 4.0 equiv) were added and stirred for 59 minutes. The residue obtained by post-treatment equivalent to the synthesis of compound 3 was subjected to silica gel column chromatography (CH 2 CH 2 / THF, 100: 0-88: 12) to give Mitsunobu reaction product (132 mg, 30.6%). Obtained.

Figure 2014101274
光延反応物 (132 mg, 0.0340 mmol) をCH2Cl2 (3.4 mL) に溶解し、TFE (340 μL) およびTFA (34.0 μL) を加えて室温で70分間攪拌した。沈殿物をセライトろ過し、減圧下溶媒を留去した。化合物4の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (CHCl3/MeOH, 100 : 0 - 95 : 5) に付し、本発明の中間体である化合物14 (75.1 mg, 70.3%) を得た
(実施例2)WP9QYペプチド模倣体(Bdev-7)の合成
化合物15の合成
Figure 2014101274
Mitsunobu reaction product (132 mg, 0.0340 mmol) was dissolved in CH 2 Cl 2 (3.4 mL), TFE (340 μL) and TFA (34.0 μL) were added, and the mixture was stirred at room temperature for 70 minutes. The precipitate was filtered through celite, and the solvent was distilled off under reduced pressure. The residue obtained by post-treatment equivalent to the synthesis of Compound 4 was subjected to silica gel column chromatography (CHCl 3 / MeOH, 100: 0 to 95: 5) to give Compound 14 (75.1 mg, intermediate) of the present invention. Example 2) Synthesis of WP9QY Peptidomimetic (Bdev-7) Synthesis of Compound 15

Figure 2014101274
化合物14 (75.1 mg, 0.0239 mmol)、HOAt (4.2 mg, 0.0309 mmol, 1.3 equiv)、およびHATU (11.2 mg, 0.0295 mmol, 1.2 equiv) をTHF (4780 μL) に溶解し、DIPEA (20.8 μL, 0.119 mmol, 5.0 equiv) を加えて室温で17時間40分間攪拌した。化合物4の合成と同等の後処理を行い化合物15 (64.5 mg, 86.6%) を得た。
化合物16の合成
Figure 2014101274
Compound 14 (75.1 mg, 0.0239 mmol), HOAt (4.2 mg, 0.0309 mmol, 1.3 equiv), and HATU (11.2 mg, 0.0295 mmol, 1.2 equiv) were dissolved in THF (4780 μL) and DIPEA (20.8 μL, 0.119 mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 17 hours and 40 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 15 (64.5 mg, 86.6%) was obtained.
Synthesis of Compound 16

Figure 2014101274
化合物15 (64.5 mg, 0.0207 mmol) をTHF (414 μL) に溶解し、PhSH (6.38 μL, 0.0621 mmol, 3.0 equiv) およびDBU (9.29 μL, 0.0621 mmol, 3.0 equiv) を加えて室温で1時間38分間攪拌した。PhSH (6.38 μL, 0.0621 mmol, 3.0 equiv) およびDBU (9.29 μL, 0.0621 mmol, 3.0 equiv) を加えて室温で3時間29分間攪拌した。反応液に濃塩酸 (10 μL) を加えて減圧下溶媒を留去した。化合物4の合成と同等の後処理を行い化合物16 (55.6 mg, 91.3%) を得た。
Bdev-7の合成
Figure 2014101274
Compound 15 (64.5 mg, 0.0207 mmol) was dissolved in THF (414 μL), and PhSH (6.38 μL, 0.0621 mmol, 3.0 equiv) and DBU (9.29 μL, 0.0621 mmol, 3.0 equiv) were added for 1 hour at room temperature 38 Stir for minutes. PhSH (6.38 μL, 0.0621 mmol, 3.0 equiv) and DBU (9.29 μL, 0.0621 mmol, 3.0 equiv) were added, and the mixture was stirred at room temperature for 3 hours and 29 minutes. Concentrated hydrochloric acid (10 μL) was added to the reaction solution, and the solvent was distilled off under reduced pressure. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 16 (55.6 mg, 91.3%) was obtained.
Synthesis of Bdev-7

Figure 2014101274
化合物16 (21.8 mg, 0.0743 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (743 μL) を加えて室温で3時間攪拌した。沈殿物をろ過し、ろ液を減圧下留去した。残渣にIPEを加え沈殿物を析出させ、遠心分離後の残渣をHPLC精製し本発明の架橋ペプチドBdev-7 (2.8 mg, 2.6%) を得た。HRMS m/z [M + H]+: calcd for C78H111N12O16: 1471.8241, found 1472.1734。
下記のペプチド配列構造を有する他のWP9QYペプチド模倣体を合成した。
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (743 μL) was added to compound 16 (21.8 mg, 0.0743 mmol), and the mixture was stirred at room temperature for 3 hours. The precipitate was filtered and the filtrate was distilled off under reduced pressure. IPE was added to the residue to precipitate a precipitate, and the residue after centrifugation was purified by HPLC to obtain the cross-linked peptide Bdev-7 (2.8 mg, 2.6%) of the present invention. HRMS m / z [M + H] + : calcd for C 78 H 111 N 12 O 16 : 1471.8241, found 1472.1734.
Another WP9QY peptidomimetic having the following peptide sequence structure was synthesized.

Figure 2014101274
合成したそれぞれの化合物のZ1〜Z3は、以下の表2に記載の通りである。
Figure 2014101274
Z 1 to Z 3 of each synthesized compound are as shown in Table 2 below.

Figure 2014101274
Figure 2014101274

(実施例3)Bdev-3,-5,-6,-12および-13合成のための中間体(化合物19)の合成
Bdev-3,-5,-6,-12および-13合成のための中間体の合成の概略図を以下に示す。
Example 3 Synthesis of Intermediate (Compound 19) for Synthesis of Bdev-3, -5, -6, -12 and -13
A schematic diagram of the synthesis of intermediates for the synthesis of Bdev-3, -5, -6, -12 and -13 is shown below.

Figure 2014101274

それぞれの合成は、以下のようにして行った。
化合物39の合成
Figure 2014101274

Each synthesis was performed as follows.
Synthesis of compound 39

Figure 2014101274
化合物37 (746 mg, 0.562 mmol) をCH2Cl2 (11 mL) に溶解し、Et3N (160 μL, 1.14 mmol, 2.0 equiv) およびAc2O (100 μL, 1.06 mmol, 1.9 equiv) を加えて室温で52分間攪拌した。化合物3の合成と同等の後処理を行い化合物39 (698 mg, 0.524 mmol, 93.2%) を得た。
化合物40の合成
Figure 2014101274
Compound 37 (746 mg, 0.562 mmol) was dissolved in CH 2 Cl 2 (11 mL), and Et 3 N (160 μL, 1.14 mmol, 2.0 equiv) and Ac 2 O (100 μL, 1.06 mmol, 1.9 equiv) were dissolved. In addition, the mixture was stirred at room temperature for 52 minutes. The post-process equivalent to the synthesis | combination of the compound 3 was performed, and the compound 39 (698 mg, 0.524 mmol, 93.2%) was obtained.
Synthesis of compound 40

Figure 2014101274
化合物35 (775 mg, 0.700 mmol) をTHF (14 mL) に溶解し、Boc-Tyr(tBu)-OH (354 mg, 1.05 mmol, 1.5 equiv)、HOAt (143 mg, 1.05 mmol, 1.5 equiv)、HATU (399 mg, 1.05 mmol, 1.5 equiv) およびDIPEA (610 μL, 3.50 mmol, 5.0 equiv) を加えて室温で42分間攪拌した。化合物4の合成と同等の後処理を行い化合物40 (935 mg, 96.1%) を得た。
化合物17の合成
Figure 2014101274
Compound 35 (775 mg, 0.700 mmol) was dissolved in THF (14 mL), Boc-Tyr (tBu) -OH (354 mg, 1.05 mmol, 1.5 equiv), HOAt (143 mg, 1.05 mmol, 1.5 equiv), HATU (399 mg, 1.05 mmol, 1.5 equiv) and DIPEA (610 μL, 3.50 mmol, 5.0 equiv) were added and stirred at room temperature for 42 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 40 (935 mg, 96.1%) was obtained.
Synthesis of compound 17

Figure 2014101274
化合物13 (944 mg, 0.394 mmol)、化合物39 (635 mg, 0.477 mmol, 1.2 equiv)、およびPPh3 (211 mg, 0.804 mmol, 2.0 equiv) をTHF (40 mL) に溶解し、DEAD (357 μL, 0.787 mmol, 2.0 equiv) を加えて室温で3時間7分攪拌した。次に、PPh3 (208 mg, 0.793 mmol, 2.0 equiv) を加えて33分間攪拌した。さらに、DEAD (357 μL, 0.787 mmol, 2.0 equiv) を加えて1時間50分攪拌した。化合物4の合成と同等の後処理を行い得た残渣 (1.573 g) を次反応に用いた。
Figure 2014101274
Compound 13 (944 mg, 0.394 mmol), Compound 39 (635 mg, 0.477 mmol, 1.2 equiv), and PPh 3 (211 mg, 0.804 mmol, 2.0 equiv) were dissolved in THF (40 mL) and DEAD (357 μL , 0.787 mmol, 2.0 equiv) was added, and the mixture was stirred at room temperature for 3 hours and 7 minutes. Next, PPh 3 (208 mg, 0.793 mmol, 2.0 equiv) was added and stirred for 33 minutes. Furthermore, DEAD (357 μL, 0.787 mmol, 2.0 equiv) was added and stirred for 1 hour and 50 minutes. The residue (1.573 g) obtained by performing post-treatment equivalent to the synthesis of compound 4 was used in the next reaction.

Figure 2014101274
残渣 (1.573 g) をCH2Cl2 (47.7 mL) に溶解し、TFE (4770 μL) およびTFA (477 μL) を加えて室温で1時間攪拌した。沈殿物をセライトろ過し、ろ液にDIPEA (1050 μL) を加えた後、減圧下溶媒を留去した。化合物4の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (CHCl3/MeOH, 100 : 0 - 90 : 10 およびCHCl3/EtOH, 100 : 0 - 93 : 7) に付し、本発明の中間体である化合物17 (651 mg, 55.7%) を得た。
化合物18の合成
Figure 2014101274
The residue (1.573 g) was dissolved in CH 2 Cl 2 (47.7 mL), TFE (4770 μL) and TFA (477 μL) were added, and the mixture was stirred at room temperature for 1 hour. The precipitate was filtered through Celite, DIPEA (1050 μL) was added to the filtrate, and the solvent was evaporated under reduced pressure. The residue obtained by post-treatment equivalent to the synthesis of Compound 4 was subjected to silica gel column chromatography (CHCl 3 / MeOH, 100: 0-90:10 and CHCl 3 / EtOH, 100: 0-93: 7), Compound 17 (651 mg, 55.7%) which was an intermediate of the present invention was obtained.
Synthesis of compound 18

Figure 2014101274
化合物17 (485 mg, 0.163 mmol)、HOAt (26.8 mg, 0.197 mmol, 1.2 equiv)、およびHATU (74.8 mg, 0.197 mmol, 1.2 equiv) をTHF (32.6 mL) に溶解し、DIPEA (142 μL, 0.815 mmol, 5.0 equiv) を加えて室温で3時間30分間攪拌した。化合物4の合成と同等の後処理を行い化合物18 (462 mg, 96.3%) を得た。
化合物19の合成
Figure 2014101274
Compound 17 (485 mg, 0.163 mmol), HOAt (26.8 mg, 0.197 mmol, 1.2 equiv), and HATU (74.8 mg, 0.197 mmol, 1.2 equiv) were dissolved in THF (32.6 mL) and DIPEA (142 μL, 0.815 mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 3 hours and 30 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 18 (462 mg, 96.3%) was obtained.
Synthesis of compound 19

Figure 2014101274
化合物40 (462 mg, 0.157 mmol) をTHF (1560 μL) に溶解し、PhSH (16.0 μL, 0.156 mmol, 1.0 equiv) およびDBU (70.0 μL, 0.468 mmol, 3.0 equiv) を加えて室温で50分間攪拌した。PhSH (32.0 μL, 0.312 mmol, 2.0 equiv) を加えて1時間11分攪拌した。PhSH (48.0 μL, 0.467 mmol, 3.0 equiv) およびDBU (70.0 μL, 0.468 mmol, 3.0 equiv) を加えて室温で50分間攪拌した。反応液に濃塩酸 (78.0 μL) を加えて減圧下溶媒を留去した。化合物4の合成と同等の後処理を行い化合物19 (416 mg, 96.2%) を得た。
Figure 2014101274
Compound 40 (462 mg, 0.157 mmol) is dissolved in THF (1560 μL), PhSH (16.0 μL, 0.156 mmol, 1.0 equiv) and DBU (70.0 μL, 0.468 mmol, 3.0 equiv) are added and stirred at room temperature for 50 minutes. did. PhSH (32.0 μL, 0.312 mmol, 2.0 equiv) was added and stirred for 1 hour and 11 minutes. PhSH (48.0 μL, 0.467 mmol, 3.0 equiv) and DBU (70.0 μL, 0.468 mmol, 3.0 equiv) were added and stirred at room temperature for 50 minutes. Concentrated hydrochloric acid (78.0 μL) was added to the reaction solution, and the solvent was distilled off under reduced pressure. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 19 (416 mg, 96.2%) was obtained.

(実施例4)Bdev-3,-5,-6,-12および-13の合成
(1)Bdev-6の合成
Bdev-6は、以下の通りにして合成した。
(Example 4) Synthesis of Bdev-3, -5, -6, -12 and -13 (1) Synthesis of Bdev-6
Bdev-6 was synthesized as follows.

Figure 2014101274
化合物19 (48.2 mg, 0.0174 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (1740 μL) を加えて室温で3時間攪拌した。Bdev−7の合成と同等の後処理およびHPLC精製を行いBdev-6 (5.3 mg, 23.4%) を得た。HRMS m/z [M + H]+: calcd for C66H87N12O16: 1303.6363, found 1303.9331.
(2)Bdev-12の合成
Bdev-12は、以下の通りにして合成した。
化合物20の合成
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (1740 μL) was added to compound 19 (48.2 mg, 0.0174 mmol), and the mixture was stirred at room temperature for 3 hours. Post-treatment and HPLC purification equivalent to the synthesis of Bdev-7 were performed to obtain Bdev-6 (5.3 mg, 23.4%). HRMS m / z [M + H] + : calcd for C 66 H 87 N 12 O 16 : 1303.6363, found 1303.9331.
(2) Synthesis of Bdev-12
Bdev-12 was synthesized as follows.
Synthesis of compound 20

Figure 2014101274
化合物19 (149 mg, 0.0540 mmol)、ミリスチン酸 (18.7 mg, 0.0819 mmol, 1.5 equiv)、HOAt (11.1 mg, 0.0816 mmol, 1.5 equiv)、およびHATU (31.0 mg, 0.0815 mmol, 1.5 equiv) をTHF (1080 μL) に溶解し、DIPEA (47.0 μL, 0.270 mmol, 5.0 equiv) を加えて室温で3時間攪拌した。化合物4の合成と同等の後処理を行い化合物20 (147 mg, 91.5%) を得た。
Bdev-12の合成
Figure 2014101274
Compound 19 (149 mg, 0.0540 mmol), myristic acid (18.7 mg, 0.0819 mmol, 1.5 equiv), HOAt (11.1 mg, 0.0816 mmol, 1.5 equiv), and HATU (31.0 mg, 0.0815 mmol, 1.5 equiv) in THF ( (1080 μL), DIPEA (47.0 μL, 0.270 mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 3 hours. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 20 (147 mg, 91.5%) was obtained.
Synthesis of Bdev-12

Figure 2014101274
化合物20 (147 mg, 0.0494 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (5 mL) を加えて室温で3時間攪拌した。Bdev-7の合成と同等の後処理およびHPLC精製を行いBdev-12 (28.0 mg, 37.4%) を得た。HRMS m/z [M + H]+: calcd for C80H113N12O17: 1513.8347, found 1514.2531.
(3)Bdev-3の合成
Bdev-3は、以下の通りにして合成した。
化合物21の合成
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (5 mL) was added to compound 20 (147 mg, 0.0494 mmol), and the mixture was stirred at room temperature for 3 hours. Post-treatment and HPLC purification equivalent to the synthesis of Bdev-7 were performed to obtain Bdev-12 (28.0 mg, 37.4%). HRMS m / z [M + H] + : calcd for C 80 H 113 N 12 O 17 : 1513.8347, found 1514.2531.
(3) Synthesis of Bdev-3
Bdev-3 was synthesized as follows.
Synthesis of compound 21

Figure 2014101274
化合物19 (111 mg, 0.0400 mmol)、MeO-PEG-CO2H(MW:2,000Da、Iris Biotech社製) (121 mg, 0.0600 mmol, 1.5 equiv)、HOAt (6.5 mg, 0.0480 mmol, 1.2 equiv)、およびHATU (18.3 mg, 0.0480 mmol, 1.2 equiv) をTHF (2 mL) に溶解し、DIPEA (34.8 μL, 0.200 mmol, 5.0 equiv) を加えて室温で53分間攪拌した。DIPEA (34.8 μL, 0.200 mmol, 5.0 equiv) を加えて56分間攪拌した。MeO-PEG-CO2H (121 mg, 0.0600 mmol, 1.5 equiv)、HATU (22.8 mg, 0.0600 mmol, 1.5 equiv)、およびDIPEA (17.4 mL, 0.0999 mmol, 2.5 equiv) を加えて2時間9分攪拌した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (CH2Cl2/MeOH, 100 : 0 - 90 : 10) に付し、化合物21 (313 mg) を粗生成物として得た。
Figure 2014101274
Compound 19 (111 mg, 0.0400 mmol), MeO-PEG-CO 2 H (MW: 2,000 Da, manufactured by Iris Biotech) (121 mg, 0.0600 mmol, 1.5 equiv), HOAt (6.5 mg, 0.0480 mmol, 1.2 equiv ) And HATU (18.3 mg, 0.0480 mmol, 1.2 equiv) were dissolved in THF (2 mL), DIPEA (34.8 μL, 0.200 mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 53 minutes. DIPEA (34.8 μL, 0.200 mmol, 5.0 equiv) was added and stirred for 56 minutes. Add MeO-PEG-CO 2 H (121 mg, 0.0600 mmol, 1.5 equiv), HATU (22.8 mg, 0.0600 mmol, 1.5 equiv), and DIPEA (17.4 mL, 0.0999 mmol, 2.5 equiv) and stir for 2 hours and 9 minutes did. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography (CH 2 Cl 2 / MeOH, 100: 0 to 90:10) to obtain compound 21 (313 mg) as a crude product.

Bdev-3の合成 Bdev-3 synthesis

Figure 2014101274
化合物21 (147 mg, 0.0494 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (5 mL) を加えて室温で3時間攪拌した。Bdev-7の合成と同等の後処理およびHPLC精製を行いBdev-3 (28.0 mg, 37.4%) を得た。m/z 3140付近を中心に44マス間隔で1価イオン、1640付近を中心に22マス間隔で2価イオンを検出した。
(4)Bdev-5の合成
Bdev-5は、以下の通りにして合成した。
化合物22の合成
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (5 mL) was added to compound 21 (147 mg, 0.0494 mmol), and the mixture was stirred at room temperature for 3 hours. Post-treatment and HPLC purification equivalent to the synthesis of Bdev-7 were performed to obtain Bdev-3 (28.0 mg, 37.4%). Monovalent ions were detected at intervals of 44 masses around m / z 3140, and divalent ions were detected at intervals of 22 masses around 1640.
(4) Synthesis of Bdev-5
Bdev-5 was synthesized as follows.
Synthesis of compound 22

Figure 2014101274
化合物19 (161 mg, 0.0580 mmol) をCH2Cl2 (1160 μL) に溶解し、Et3N (15.8 μL, 0.112 mmol, 1.9 equiv) およびAc2O (11.0 μL, 0.116 mmol, 2.0 equiv) を加えて室温で40分間攪拌した。化合物4の合成と同等の後処理を行い化合物22 (143 mg, 87.6%) を得た。
Bdev-5の合成
Figure 2014101274
Compound 19 (161 mg, 0.0580 mmol) was dissolved in CH 2 Cl 2 (1160 μL), and Et 3 N (15.8 μL, 0.112 mmol, 1.9 equiv) and Ac 2 O (11.0 μL, 0.116 mmol, 2.0 equiv) were dissolved. In addition, the mixture was stirred at room temperature for 40 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 22 (143 mg, 87.6%) was obtained.
Synthesis of Bdev-5

Figure 2014101274
化合物22 (143 mg, 0.0508 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (5 mL) を加えて室温で3時間攪拌した。Bdev-7の合成と同等の後処理およびHPLC精製を行いBdev-5 (25.6 mg, 37.4%) を得た。HRMS m/z [M + H]+: calcd for C68H88N12O17: 1345.6499, found 1345.5516.
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (5 mL) was added to compound 22 (143 mg, 0.0508 mmol), and the mixture was stirred at room temperature for 3 hours. Post-treatment and HPLC purification equivalent to the synthesis of Bdev-7 were performed to obtain Bdev-5 (25.6 mg, 37.4%). HRMS m / z [M + H] + : calcd for C 68 H 88 N 12 O 17 : 1345.6499, found 1345.5516.

(5)Bdev-13の合成
Bdev-13は、以下の通りにして合成した。
(5) Synthesis of Bdev-13
Bdev-13 was synthesized as follows.

Figure 2014101274
Bdev-5 (10.1 mg, 0.00750 mmol, 1.5 equiv)、OMe−PEG−NH2 (MW:2,000Da、Iris Biotech社製)(10.4 mg, 0.00516 mmol)、およびDMT-MM (1.4 mg, 0.00506 mmol, 1.0 equiv) のTHF (1100 μL) およびMeOH (900 μL) 混合物を室温で7時間35分攪拌した。減圧下溶媒を留去した後、残渣にPEG-NH2 (10.4 mg, 0.00516 mmol) およびDMT-MM (5.7 mg, 0.0206 mmol)、およびDMF (1 mL) を加えて室温で4時間38分攪拌した。DMT-MM (14.2 mg, 0.0513 mmol) を加えて1時間20分攪拌した。HPLCにて精製を行いBdev-13 (3.6 mg, 14.5%) を得た。m/z 1700付近を中心に22マス間隔で2価イオン群、m/z 1150付近を中心に15マス間隔で3価イオン群、m/z 900付近を中心に11マス間隔で4価イオン群が検出した。
(実施例5)Bdev-2, -4, -8,および-10合成のための中間体(化合物25)の合成
Bdev-2,-4,-8,および-10合成の中間体の合成の概略図を以下に示す。
Figure 2014101274
Bdev-5 (10.1 mg, 0.00750 mmol, 1.5 equiv), OMe-PEG-NH 2 (MW: 2,000 Da, manufactured by Iris Biotech) (10.4 mg, 0.00516 mmol), and DMT-MM (1.4 mg, 0.00506 mmol) , 1.0 equiv) of THF (1100 μL) and MeOH (900 μL) were stirred at room temperature for 7 hours and 35 minutes. After evaporating the solvent under reduced pressure, PEG-NH 2 (10.4 mg, 0.00516 mmol), DMT-MM (5.7 mg, 0.0206 mmol), and DMF (1 mL) were added to the residue, and the mixture was stirred at room temperature for 4 hours and 38 minutes. did. DMT-MM (14.2 mg, 0.0513 mmol) was added and stirred for 1 hour and 20 minutes. Purification by HPLC gave Bdev-13 (3.6 mg, 14.5%). Divalent ion group at 22 mass intervals around m / z 1700, trivalent ion group at 15 mass intervals around m / z 1150, and tetravalent ion group at 11 mass intervals around m / z 900 Detected.
Example 5 Synthesis of Intermediate (Compound 25) for Synthesis of Bdev-2, -4, -8, and -10
A schematic diagram of the synthesis of intermediates for Bdev-2, -4, -8, and -10 synthesis is shown below.

Figure 2014101274
それぞれの合成は、以下のようにして行った。
化合物23の合成
Figure 2014101274
Each synthesis was performed as follows.
Synthesis of compound 23

Figure 2014101274

化合物13 (890 mg, 0.372 mmol)、化合物40 (776 mg, 0.559 mmol, 1.5 equiv)、およびPPh3 (147 mg, 0.559 mmol, 1.5 equiv) をTHF (8 mL) に溶解し、DEAD (253 μL, 0.558 mmol, 1.5 equiv.) を加えて室温で54分間攪拌した。次に、PPh3 (148 mg, 0.564 mmol, 1.5 equiv.) を加えて20分間攪拌した。次に、DEAD (84.4 μL, 0.186 mmol, 0.5 equiv.) を加えて2時間20分攪拌した。次に、PPh3 (147 mg, 0.560 mmol, 1.5 equiv) を加えて14分間攪拌した。さらに、DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) を加えて34分間攪拌した。次に、PPh3 (44.8 mg, 0.171 mmol, 0.5 equiv) を加えて2分間攪拌した。さらに、DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) を加えて3時間15分攪拌した。最後に、DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) を加えて21分間攪拌した。化合物4の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (CH2CH2/THF, 100 : 0 - 90 : 10) に付し、光延反応物 (1.05 g, 75.0%) を得た。
Figure 2014101274

Compound 13 (890 mg, 0.372 mmol), Compound 40 (776 mg, 0.559 mmol, 1.5 equiv), and PPh 3 (147 mg, 0.559 mmol, 1.5 equiv) were dissolved in THF (8 mL) and DEAD (253 μL , 0.558 mmol, 1.5 equiv.) Was added and stirred at room temperature for 54 minutes. Next, PPh 3 (148 mg, 0.564 mmol, 1.5 equiv.) Was added and stirred for 20 minutes. Next, DEAD (84.4 μL, 0.186 mmol, 0.5 equiv.) Was added and stirred for 2 hours and 20 minutes. Next, PPh 3 (147 mg, 0.560 mmol, 1.5 equiv) was added and stirred for 14 minutes. Furthermore, DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) was added and stirred for 34 minutes. Next, PPh 3 (44.8 mg, 0.171 mmol, 0.5 equiv) was added and stirred for 2 minutes. Furthermore, DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) was added and stirred for 3 hours and 15 minutes. Finally, DEAD (33.7 μL, 0.0743 mmol, 0.2 equiv) was added and stirred for 21 minutes. The residue obtained by post-treatment equivalent to the synthesis of compound 4 was subjected to silica gel column chromatography (CH 2 CH 2 / THF, 100: 0-90: 10), and Mitsunobu reaction product (1.05 g, 75.0%) was added. Obtained.

Figure 2014101274
光延反応物 (637 mg, 0.169 mmol) をCH2Cl2 (16.9 mL) に溶解し、TFE (1690 μL) およびTFA (169 μL) を加えて室温で40分間攪拌した。沈殿物をセライトろ過し、減圧下溶媒を留去した。化合物4の合成と同等の後処理を行い得た残渣をシリカゲルカラムクロマトグラフィー (CHCl3/EtOH, 100 : 0 - 95 : 5) に付し、化合物23 (294 mg, 58.1%) を得た。
化合物24の合成
Figure 2014101274
Mitsunobu reaction product (637 mg, 0.169 mmol) was dissolved in CH 2 Cl 2 (16.9 mL), TFE (1690 μL) and TFA (169 μL) were added, and the mixture was stirred at room temperature for 40 minutes. The precipitate was filtered through celite, and the solvent was distilled off under reduced pressure. The residue obtained by performing post-treatment equivalent to the synthesis of Compound 4 was subjected to silica gel column chromatography (CHCl 3 / EtOH, 100: 0 to 95: 5) to obtain Compound 23 (294 mg, 58.1%).
Synthesis of compound 24

Figure 2014101274
化合物23 (294 mg, 0.0970 mmol)、HOAt (15.8 mg, 0.116 mmol, 1.2 equiv)、およびHATU (44.7 mg, 0.118 mmol, 1.2 equiv) をTHF (19.4 mL) に溶解し、DIPEA (84.5 μL, 0.485 mmol, 5.0 equiv) を加えて室温で3時間10分間攪拌した。化合物4の合成と同等の後処理を行い化合物24 (284 mg, 97.2%) を得た。
Figure 2014101274
Compound 23 (294 mg, 0.0970 mmol), HOAt (15.8 mg, 0.116 mmol, 1.2 equiv), and HATU (44.7 mg, 0.118 mmol, 1.2 equiv) were dissolved in THF (19.4 mL) and DIPEA (84.5 μL, 0.485). mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 3 hours and 10 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 24 (284 mg, 97.2%) was obtained.

化合物25の合成 Synthesis of compound 25

Figure 2014101274
化合物24 (284 mg, 0.0943 mmol) をTHF (943 μL) に溶解し、PhSH (29.0 μL, 0.282 mmol, 3.0 equiv) およびDBU (42.3 μL, 0.283 mmol, 3.0 equiv) を加えて室温で2時間30分間攪拌した。化合物16の合成と同等の後処理を行い、Bdev-2,-4,-8,および-10合成の中間体である化合物25 (255 mg, 95.8%) を得た。
(実施例6)Bdev-2, -4, -8,および-10の合成
(1)Bdev-8の合成
Bdev-8の合成は、以下のようにして行った。
Figure 2014101274
Compound 24 (284 mg, 0.0943 mmol) was dissolved in THF (943 μL), and PhSH (29.0 μL, 0.282 mmol, 3.0 equiv) and DBU (42.3 μL, 0.283 mmol, 3.0 equiv) were added for 2 hours at room temperature 30 Stir for minutes. The post-process equivalent to the synthesis | combination of the compound 16 was performed, and the compound 25 (255 mg, 95.8%) which is an intermediate body of Bdev-2, -4, -8, and -10 synthesis | combination was obtained.
(Example 6) Synthesis of Bdev-2, -4, -8, and -10 (1) Synthesis of Bdev-8
Bdev-8 was synthesized as follows.

Figure 2014101274
化合物25 (55.1 mg, 0.0181 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (1810 μL) を加えて室温で3時間攪拌した。Bdev-7の合成と同等の後処理およびHPLC精製を行いBdev-8 (12.0 mg, 52.6%) を得た。HRMS m/z [M + H]+: calcd for C64H85N12O15: 1261.6257, found 1261.4668.
(2)Bdev-4の合成
化合物26の合成
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (1810 μL) was added to compound 25 (55.1 mg, 0.0181 mmol) and stirred at room temperature for 3 hours. Post-treatment and HPLC purification equivalent to the synthesis of Bdev-7 were performed to obtain Bdev-8 (12.0 mg, 52.6%). HRMS m / z [M + H] + : calcd for C 64 H 85 N 12 O 15 : 1261.6257, found 1261.4668.
(2) Synthesis of Bdev-4 synthesis compound 26

Figure 2014101274
化合物25 (62.6 mg, 0.0222 mmol)、ミリスチン酸 (7.7 mg, 0.0337 mmol, 1.5 equiv)、HOAt (4.5 mg, 0.0331 mmol, 1.5 equiv)、およびHATU (12.8 mg, 0.0337 mmol, 1.5 equiv) をTHF (444 μL) に溶解し、DIPEA (19.3 μL, 0.111 mmol, 5.0 equiv) を加えて室温で3時間攪拌した。化合物4の合成と同等の後処理を行い化合物26 (56.9 mg, 84.7%) を得た。
Bdev-4の合成
Figure 2014101274
Compound 25 (62.6 mg, 0.0222 mmol), myristic acid (7.7 mg, 0.0337 mmol, 1.5 equiv), HOAt (4.5 mg, 0.0331 mmol, 1.5 equiv), and HATU (12.8 mg, 0.0337 mmol, 1.5 equiv) in THF ( 444 μL), DIPEA (19.3 μL, 0.111 mmol, 5.0 equiv) was added, and the mixture was stirred at room temperature for 3 hours. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 26 (56.9 mg, 84.7%) was obtained.
Synthesis of Bdev-4

Figure 2014101274
化合物26 (56.9 mg, 0.0188 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (1514 μL) を加えて室温で5分間攪拌した。TIS (46.9 mL) を加えて3時間55分攪拌した。Bdev-7の合成と同等の後処理を行いBdev-4 (4.0 mg, 14.5%) を得た。HRMS m/z [M + H]+: calcd for C78H111N12O16: 1471.8241, found 1471.8190.
(3)Bdev-2の合成
化合物27の合成
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (1514 μL) was added to compound 26 (56.9 mg, 0.0188 mmol), and the mixture was stirred at room temperature for 5 minutes. TIS (46.9 mL) was added and stirred for 3 hours and 55 minutes. Bdev-4 (4.0 mg, 14.5%) was obtained by post-treatment equivalent to the synthesis of Bdev-7. HRMS m / z [M + H] + : calcd for C 78 H 111 N 12 O 16 : 1471.8241, found 1471.8190.
(3) Synthesis of Bdev-2 Synthesis Compound 27

Figure 2014101274
化合物24 (204 mg, 0.0724 mmol) をCH2Cl2 (1448 μL) に溶解し、Et3N (20.4 μL, 0.145 mmol, 2.0 equiv) およびAc2O (13.7 μL, 0.145 mmol, 2.0 equiv) を加えて室温で50分間攪拌した。化合物4の合成と同等の後処理を行い化合物27 (200 mg, 96.3%) を得た。
Figure 2014101274
Compound 24 (204 mg, 0.0724 mmol) was dissolved in CH 2 Cl 2 (1448 μL), and Et 3 N (20.4 μL, 0.145 mmol, 2.0 equiv) and Ac 2 O (13.7 μL, 0.145 mmol, 2.0 equiv) were dissolved. In addition, the mixture was stirred at room temperature for 50 minutes. The post-process equivalent to the synthesis | combination of the compound 4 was performed, and the compound 27 (200 mg, 96.3%) was obtained.

Bdev-2の合成

Figure 2014101274
化合物27 (200 mg, 0.0697 mmol) にTFA/TIS/H2O = 95 : 5 : 5 の溶液 (6970 μL) を加えて室温で3時間攪拌した。Bdev-7の合成と同等の後処理を行いBdev-2 (54.4 mg, 59.8%) を得た。HRMS m/z [M + H]+: calcd for C66H87N12O16: 1303.6363, found 1303.5524.であった。
(4)Bdev-10の合成 Bdev-2 synthesis
Figure 2014101274
A solution of TFA / TIS / H 2 O = 95: 5: 5 (6970 μL) was added to compound 27 (200 mg, 0.0697 mmol), and the mixture was stirred at room temperature for 3 hours. Bdev-2 (54.4 mg, 59.8%) was obtained by post-treatment equivalent to the synthesis of Bdev-7. HRMS m / z [M + H] + : calcd for C 66 H 87 N 12 O 16 : 1303.6363, found 1303.5524.
(4) Synthesis of Bdev-10

Figure 2014101274
Bdev-2 (13.1 mg, 0.0101 mmol) およびSUNBRIGHT ME-020AS(日油株式会社製) (40.4 mg, 0.0202 mmol, 2.0 equiv) のDMF (404 μL) にEt3N (2.84 μL, 0.0202 mmol, 2.0 equiv) を加えて室温で22時間40分攪拌した。HPLC精製しBdev-10 (16.8 mg, 48.9%) を得た。
m/z 1700付近を中心に22マス間隔で2価イオンが検出された。
Figure 2014101274
Et 3 N (2.84 μL, 0.0202 mmol, 2.0) in DMF (404 μL) of Bdev-2 (13.1 mg, 0.0101 mmol) and SUNBRIGHT ME-020AS (manufactured by NOF Corporation) (40.4 mg, 0.0202 mmol, 2.0 equiv) equiv) was added and the mixture was stirred at room temperature for 22 hours and 40 minutes. HPLC purification gave Bdev-10 (16.8 mg, 48.9%).
Divalent ions were detected at intervals of 22 squares around m / z 1700.

(比較例)比較例化合物の合成
比較例として、WP9QYペプチド(ジスルフィド架橋:ジスルフィド架橋:化合物番号:STD)を用いた。WP9QYペプチドは、2,4ドコシロキシベンジルアルコールにアミノ酸を逐次縮合し、直鎖配列を合成した後、ヨウ素酸化によってジスルフィド結合を形成しトリフルオロ酢酸により2,4ドコシロキシベンジルアルコールを切断する工程を経て調製した。
Comparative Example Synthesis of Comparative Example Compound As a comparative example, a WP9QY peptide (disulfide bridge: disulfide bridge: compound number: STD) was used. The WP9QY peptide is a process in which amino acids are sequentially condensed to 2,4 docosyloxybenzyl alcohol, a linear sequence is synthesized, a disulfide bond is formed by iodine oxidation, and 2,4 docosyloxybenzyl alcohol is cleaved with trifluoroacetic acid. It was prepared after.

(参考例)参考例の合成
参考例として架橋部分が、チオエーテル架橋(化合物番Comp.1)、またはオレフィン架橋(化合物番号Comp.3)に改変された改変体を用いた。チオエーテル架橋WP9QYペプチドは、図3に記載の合成スキームに従って合成した。オレフィン架橋WP9QYペプチドは、図4に記載の合成スキームに従って合成した。
(Reference Example) As a synthesis reference example of a reference example, a modified product in which the cross-linked moiety was modified to a thioether bridge (Compound No. Comp. 1) or an olefin bridge (Compound No. Comp. 3) was used. The thioether bridged WP9QY peptide was synthesized according to the synthetic scheme described in FIG. The olefin bridged WP9QY peptide was synthesized according to the synthesis scheme described in FIG.

(実施例7)ペプチダーゼに対する抵抗性
カルボキシペプチダーゼおよびキモトリプシンを用いて、本発明のペプチドのペプチダーゼに対する抵抗性を検討した。ペプチダーゼに対する抵抗性は以下の通りにして測定した。
(カルボキシペプチダーゼによる分解)
SIGMA社より購入したカルボキシペプチダーゼを、PBSにて1U/mlになるように酵素液を調製し、ウォーターバスにて37℃で保温した。次いで、DMSO:純水=1:1混合溶媒にて5mg/mlに調製したペプチド容積をPBS(-)にて1mg/mlに調製し、酵素液とペプチド溶液を4:1で混合し、ペプチドの終濃度が0.2mg/mlとなるようにした。その後速やかに37℃にして反応を行った。経時的に0.1mlずつサンプリングし、反応停止液(25%TFA in アセトニトリル 20μL)を加えて反応を停止した。各試料をHPLCにて測定し、ペプチダーゼによるペプチドの分解を測定した。サンプリングのタイミングは0分、0.5分、1分、2分にて行い、2分においても50%以上の分解が得られない場合は、さらに0.5時間後、1時間後、3時間後、加えて場合により6時間後に行い、長時間安定なペプチドに関しては、さらに24時間後から168時間後までの範囲で必要に応じてサンプリングを行った。添加したペプチドの半分が分解される時間を測定した。結果を表3に示す。
Example 7 Resistance to Peptidase Carboxypeptidase and chymotrypsin were used to examine the resistance of the peptide of the present invention to peptidase. Resistance to peptidase was measured as follows.
(Decomposition by carboxypeptidase)
An enzyme solution of carboxypeptidase purchased from SIGMA was prepared at 1 U / ml in PBS and incubated at 37 ° C. in a water bath. Next, the peptide volume adjusted to 5 mg / ml with DMSO: pure water = 1: 1 mixed solvent is adjusted to 1 mg / ml with PBS (-), the enzyme solution and the peptide solution are mixed at 4: 1, and the peptide is mixed. The final concentration of was 0.2 mg / ml. Thereafter, the reaction was carried out immediately at 37 ° C. 0.1 ml was sampled over time, and the reaction was stopped by adding a reaction stop solution (25% TFA in acetonitrile 20 μL). Each sample was measured by HPLC, and peptide degradation by peptidase was measured. Sampling timing is 0 min, 0.5 min, 1 min, 2 min. If degradation of 50% or more is not obtained even in 2 min, 0.5 hr later, 1 hr later, 3 hr Thereafter, in addition, it was carried out after 6 hours in some cases, and for a peptide that was stable for a long time, sampling was performed as necessary in the range from 24 hours to 168 hours later. The time for half of the added peptide to degrade was measured. The results are shown in Table 3.

(キモトリプシンによる分解)
SIGMA社より購入したキモトリプシンを、0.1M Tris-HCl(pH8.0)にて4U/mlになるように酵素液を調製し、ウォーターバスにて37℃で保温した。次いで、DMSO:純水=1:1にて5mg/mlに調製したペプチド溶液を0.1M Tris-HCl(pH8.0)にて1mg/mlに調製し、酵素液とペプチド溶液を4:1で混合しペプチド終濃度0.2mg/mlとなるようにした。その後、速やかに37℃にてして反応を行った。経時的に0.1mlずつサンプリングし、反応停止液(25%TFA in アセトニトリル 20μL)を加えて反応を停止した。各試料をHPLCにて測定し、キモトリプシンによるペプチドの分解を測定した。サンプリングのタイミングは0分、0.5分、1分、2分にて行い、2分において50%以上の分解が得られない場合は、さらに0.5時間後、1時間後、3時間後に行い、添加したペプチドの半分が分解される時間を測定した。結果を表3に示す。
(Degradation by chymotrypsin)
An enzyme solution of chymotrypsin purchased from SIGMA was adjusted to 4 U / ml with 0.1 M Tris-HCl (pH 8.0), and kept at 37 ° C. in a water bath. Next, a peptide solution prepared at 5 mg / ml in DMSO: pure water = 1: 1 was prepared at 1 mg / ml in 0.1 M Tris-HCl (pH 8.0), and the enzyme solution and the peptide solution were mixed at 4: 1. The mixture was mixed so that the final peptide concentration was 0.2 mg / ml. Thereafter, the reaction was carried out immediately at 37 ° C. 0.1 ml was sampled over time, and the reaction was stopped by adding a reaction stop solution (25% TFA in acetonitrile 20 μL). Each sample was measured by HPLC, and peptide degradation by chymotrypsin was measured. Sampling timing is 0 min, 0.5 min, 1 min, 2 min. If degradation of 50% or more cannot be obtained in 2 min, further 0.5 hr, 1 hr, 3 hr later The time taken for half of the added peptide to degrade was measured. The results are shown in Table 3.

Figure 2014101274
Figure 2014101274

上記の結果より、本発明の架橋化方法従って作成された本発明のWP9QYペプチド模倣体が、ジスルフィド架橋またはチオエーテル架橋のWP9QYペプチドペプチドに比べて、ペプチダーゼに対する分解耐性が改善していることが示された。   The above results indicate that the WP9QY peptidomimetic of the present invention prepared according to the crosslinking method of the present invention has improved degradation resistance to peptidase compared to the WP9QY peptide peptide of disulfide bridge or thioether bridge. It was.

(実施例8:破骨細胞分化抑制試験)
本発明のWP9QYペプチド模倣体の破骨細胞分化抑制活性を、培養破骨細胞を用いて、以下のようにして検討した。
自家繁殖させたC57BL/6jjc1マウス(体重18-20g)から骨髄細胞を採取し、RANKL(50ng/ml、組換えヒトRANKLを和光純薬工業から購入)およびM−CSF(25ng/ml、組換えヒトM−CSFを、R&D Systemから購入)を含有する培地(α−MEM、10%FBS(SIGMA)、penicillin 100U、streptomycin 100μg/ml、含有)にて、各WP9QY架橋ペプチド模倣体の存在下で、4日間培養した。
(Example 8: Osteoclast differentiation inhibition test)
The osteoclast differentiation inhibitory activity of the WP9QY peptide mimetic of the present invention was examined using cultured osteoclasts as follows.
Bone marrow cells were collected from self-bred C57BL / 6jjc1 mice (weight 18-20 g), and RANKL (50 ng / ml, recombinant human RANKL purchased from Wako Pure Chemical Industries) and M-CSF (25 ng / ml, recombinant) In the presence of each WP9QY cross-linked peptidomimetic in medium containing α-MEM, 10% FBS (SIGMA), penicillin 100U, streptomycin 100 μg / ml, containing human M-CSF purchased from R & D System Cultured for 4 days.

各ペプチドは、DMSO:MQ=1:1にて5mg/ml に調製(下記図5に示す実験に使用)もしくはDMSO:MQ=1:9にて4mM に調製(下記図6に示す実験に使用)した溶液を培養培地にて希釈し、フィルター(0.22μm)にて濾過滅菌し、ペプチド調製液とした。各ペプチド調製液を、目的の終濃度となるようにして加え、骨随細胞を上記条件で培養した。
培養3日目に新しい培地に交換し、4日目に3.6%ホルマリン(36%ホルマリンをPBS(-)にて希釈)にて10分間固定した後、アセトン:エタノール=1:1にて30秒間透過処理し20分間乾燥させてTRAP(酒石酸抵抗性酸性ポスファターゼ)染色を行い、成熟破骨細胞を確認した。ペプチド濃度は、培地中の最終濃度が、0.3、1、3、10μMになるようにして培養した。コントロールとして、ペプチド無添加およびWP9QYペプチド(ジスルフィド結合)添加を用いた。結果を、図5よび図6に示す。Bdev-2およびBdev-3が、低濃度において、WP9QYペプチド(ジスルフィド結合)より強い破骨細胞分化抑制作用を持つことが示された。
Each peptide was prepared at 5 mg / ml in DMSO: MQ = 1: 1 (used in the experiment shown in FIG. 5 below) or 4 mM in DMSO: MQ = 1: 9 (used in the experiment shown in FIG. 6 below). The solution was diluted with a culture medium and sterilized by filtration with a filter (0.22 μm) to obtain a peptide preparation. Each peptide preparation solution was added so that it might become the target final concentration, and the bone peritoneal cell was cultured on the said conditions.
The culture medium was replaced with a new medium on the third day of culture, and fixed with 3.6% formalin (36% formalin diluted with PBS (-)) on the fourth day, and then acetone: ethanol = 1: 1. Permeabilized for 30 seconds, dried for 20 minutes, and stained with TRAP (tartrate-resistant acid phosphatase) to confirm mature osteoclasts. The peptide concentration was cultured such that the final concentration in the medium was 0.3, 1, 3, 10 μM. As controls, no peptide addition and WP9QY peptide (disulfide bond) addition were used. The results are shown in FIG. 5 and FIG. It was shown that Bdev-2 and Bdev-3 have a stronger osteoclast differentiation inhibitory effect than WP9QY peptide (disulfide bond) at low concentrations.

Claims (5)

下記の化学式で表されるペプチドからなる破骨細胞破骨細胞の増殖阻害剤、
Figure 2014101274
(ここで、Z1およびZ3は、それぞれ独立に、水素原子、無置換または置換された炭素数1〜8のアシル基、無置換または置換された炭素数1〜8のアルキル基および−C(=O)−CH2CH2(OCH2CH2)nOCH2CH2OCH3(nは整数である)で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれ、Z2はヒドロキシル基、アミノ基、無置換または置換された炭素数1〜8のモノアルキルアミノ基、−NH−CH2CH2(OCH2CH2)nOCH2CH2OCH3で表される分子量100〜10,000Daのポリエチレングリコールからなる群より選ばれる)
An osteoclast osteoclast growth inhibitor comprising a peptide represented by the following chemical formula:
Figure 2014101274
Wherein Z 1 and Z 3 are each independently a hydrogen atom, an unsubstituted or substituted acyl group having 1 to 8 carbon atoms, an unsubstituted or substituted alkyl group having 1 to 8 carbon atoms, and —C Selected from the group consisting of polyethylene glycol having a molecular weight of 100 to 10,000 Da represented by (═O) —CH 2 CH 2 (OCH 2 CH 2 ) nOCH 2 CH 2 OCH 3 (n is an integer), Z 2 hydroxyl group, an amino group, an unsubstituted or substituted mono-alkylamino group having 1 to 8 carbon atoms, molecular weight 100, represented by -NH-CH 2 CH 2 (OCH 2 CH 2) nOCH 2 CH 2 OCH 3 (Selected from the group consisting of 10,000 Da polyethylene glycol)
下記の化学式で表されるペプチドからなる群より選ばれる請求項1に記載の阻害剤、
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
、および
Figure 2014101274
(ここで、Acはアセチル基を表し、ポリエチレングリコールは、500〜2000Daの数平均分子量をもつポリエチレングリコールを表す)。
The inhibitor according to claim 1, selected from the group consisting of peptides represented by the following chemical formulas:
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
Figure 2014101274
,and
Figure 2014101274
(Here, Ac represents an acetyl group, and polyethylene glycol represents polyethylene glycol having a number average molecular weight of 500 to 2000 Da).
請求項1または2記載の阻害剤を有効成分として含有する医薬組成物。   A pharmaceutical composition comprising the inhibitor according to claim 1 or 2 as an active ingredient. 骨粗鬆症、パジェット病、関節リウマチ及び他の形態の炎症性関節炎、変形性関節症、プロテーゼ破損、溶骨型腫瘍、骨髄腫並びに骨への腫瘍転移からなる群から選択される疾病の治療剤である、請求項3に記載の医薬組成物。   It is a therapeutic agent for diseases selected from the group consisting of osteoporosis, Paget's disease, rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthetic breakage, osteolytic tumors, myeloma and tumor metastasis to bone The pharmaceutical composition according to claim 3. 骨粗鬆症、パジェット病、関節リウマチ及び他の形態の炎症性関節炎、変形性関節症、プロテーゼ破損、溶骨型腫瘍、骨髄腫並びに骨への腫瘍転移からなる群から選択される疾病の治療方法であって、このような治療が必要である哺乳類に、請求項1または2記載のペプチドの少なくとも一種を治療上の有効量で投与することを含む、治療方法。   A method of treating a disease selected from the group consisting of osteoporosis, Paget's disease, rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthetic breakage, osteolytic tumors, myeloma and tumor metastasis to bone. A method of treatment comprising administering to a mammal in need of such treatment at least one of the peptides of claim 1 or 2 in a therapeutically effective amount.
JP2011052114A 2011-03-09 2011-03-09 Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure Withdrawn JP2014101274A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011052114A JP2014101274A (en) 2011-03-09 2011-03-09 Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure
PCT/JP2012/054899 WO2012121058A1 (en) 2011-03-09 2012-02-28 Pharmaceutical composition that uses novel peptide that mimics tnf receptor loop peptide containing cross-linked structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052114A JP2014101274A (en) 2011-03-09 2011-03-09 Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure

Publications (1)

Publication Number Publication Date
JP2014101274A true JP2014101274A (en) 2014-06-05

Family

ID=46798026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052114A Withdrawn JP2014101274A (en) 2011-03-09 2011-03-09 Pharmaceutical composition using mimic peptide of tnf receptor loop peptide comprising new crosslinked structure

Country Status (2)

Country Link
JP (1) JP2014101274A (en)
WO (1) WO2012121058A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012121057A1 (en) * 2011-03-09 2014-07-17 Jitsubo株式会社 Cross-linked peptide containing a novel non-peptidic cross-linked structure, method for synthesizing the cross-linked peptide, and novel organic compound used in the method
JP2018531284A (en) * 2015-09-25 2018-10-25 ニューロナックス Cyclic polypeptides, methods for obtaining them, and therapeutic uses thereof
JP2019504004A (en) * 2015-12-16 2019-02-14 ルプレヒト−カールス−ウニヴェルジテート ハイデルベルクRuprecht−Karls−Universitaet Heidelberg Cyclic NTCP targeting peptides and their use as entry inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365615B2 (en) * 2013-09-09 2016-06-14 Jitsubo Co., Ltd. Cross-linked peptides containing non-peptide cross-linked structure, method for synthesizing cross-linked peptides, and novel organic compound used in method
US10125092B2 (en) 2014-09-05 2018-11-13 Novartis Ag Lipids and lipid compositions for the delivery of active agents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU777634B2 (en) * 1999-07-28 2004-10-28 Kazuhiro Aoki Methods of inhibiting osteoclastogenesis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012121057A1 (en) * 2011-03-09 2014-07-17 Jitsubo株式会社 Cross-linked peptide containing a novel non-peptidic cross-linked structure, method for synthesizing the cross-linked peptide, and novel organic compound used in the method
JP2018531284A (en) * 2015-09-25 2018-10-25 ニューロナックス Cyclic polypeptides, methods for obtaining them, and therapeutic uses thereof
JP6998878B2 (en) 2015-09-25 2022-01-18 アクソルティス・ファーマ Cyclic polypeptides, how to obtain them, and their therapeutic use
JP2019504004A (en) * 2015-12-16 2019-02-14 ルプレヒト−カールス−ウニヴェルジテート ハイデルベルクRuprecht−Karls−Universitaet Heidelberg Cyclic NTCP targeting peptides and their use as entry inhibitors
JP2022022455A (en) * 2015-12-16 2022-02-03 ルプレヒト-カールス-ウニヴェルジテート ハイデルベルク Cyclic ntcp-targeting peptides and use thereof as entry inhibitor
US11401304B2 (en) 2015-12-16 2022-08-02 Ruprecht-Karls-Universität Heidelberg Cyclic NTCP-targeting peptides and their uses as entry inhibitors
JP7362142B2 (en) 2015-12-16 2023-10-17 ルプレヒト-カールス-ウニヴェルジテート ハイデルベルク Cyclic NTCP targeting peptides and their use as entry inhibitors

Also Published As

Publication number Publication date
WO2012121058A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
US11845808B2 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
US12018057B2 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
KR102482790B1 (en) Oral peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory bowel diseases
JP2023014346A (en) Peptide inhibitors of interleukin-23 receptor and use thereof for treating inflammatory diseases
WO2021007433A1 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
US11041000B2 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
EA020018B1 (en) Truncated analogues of glucose-dependent insulinotropic polypeptide
DK2496596T3 (en) THERAPEUTIC PEPTIDES
EA020019B1 (en) Analogues of glucose-dependent insulinotropic polypeptide
JP2021530477A (en) Peptide inhibitors of the interleukin-23 receptor and its use for the treatment of inflammatory diseases
WO2021146458A1 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
EA020005B1 (en) Glucose-dependent insulinotropic polypeptide analogues
IL223678A (en) Immunosuppression modulating compounds
EA020091B1 (en) Analogues of glucose-dependent insulinotropic polypeptide (gip) modified at n-terminal
KR20100014596A (en) Template-fixed peptidomimetics
PT2049562E (en) Peptides having pharmacological activity for treating disorders associated with altered cell migration, such as cancer
WO2012121058A1 (en) Pharmaceutical composition that uses novel peptide that mimics tnf receptor loop peptide containing cross-linked structure
JP2020503313A (en) Novel staple peptides and uses thereof
CN104822702A (en) Alpha- and gamma-msh analogues
EA009294B1 (en) Antagonists of the bradykinin b1 receptor (variants), pharmaceutical composition, medical preparation, method for the treatment of diseases (variants)
JP2011523634A (en) Peptides, peptidomimetics and their derivatives, their production and their use for preparing pharmaceutical compositions with therapeutic and / or prophylactic activity
JP2012509312A (en) Tumor necrosis factor alpha inhibitory peptide and method of use thereof
AU2022243260A1 (en) C-met protein-binding peptide complex
JPH08176191A (en) Synthetic peptide derivative or its salt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603