JP2014100879A - Hot warpage analysis method for a liquid crystal polymer injection-molded article - Google Patents

Hot warpage analysis method for a liquid crystal polymer injection-molded article Download PDF

Info

Publication number
JP2014100879A
JP2014100879A JP2012255648A JP2012255648A JP2014100879A JP 2014100879 A JP2014100879 A JP 2014100879A JP 2012255648 A JP2012255648 A JP 2012255648A JP 2012255648 A JP2012255648 A JP 2012255648A JP 2014100879 A JP2014100879 A JP 2014100879A
Authority
JP
Japan
Prior art keywords
data
filler
injection
molded product
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255648A
Other languages
Japanese (ja)
Inventor
Toshio Sugita
寿夫 杉田
Masahiro Seto
雅宏 瀬戸
Akira Yamabe
昌 山部
Toru Suzuki
亨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012255648A priority Critical patent/JP2014100879A/en
Publication of JP2014100879A publication Critical patent/JP2014100879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To predict, in a hot warpage analysis method for a liquid crystal polymer injection-molded article, a warpage deformation arising on an injection-molded article having a three-dimensional orientation distribution in a favorable precision so as to enable the inhibition of the warpage deformation thereof.SOLUTION: The hot warpage of an injection-molded article is calculated through steps of: acquiring, from three-dimensional images provided by X-ray computed tomography (CT), data, within an injection-molded article including a filler, on the three-dimensional orientation of the filler (first step); acquiring mutually associated data on the integrated shear stress value, molecular orientation state (orientation, degree of orientation), and linear expansion coefficient of a filler-free reference sample (second step); acquiring data on the integrated shear stress value and molecular orientation state of the injection-molded article (third step); determining, based on the respective data, data on the linear expansion coefficient of the injection-molded article (fourth step); calculating, by using a homogenizing method based on the respective data on the determined linear expansion coefficient and three-dimensional orientation of the filler, a linear expansion coefficient taking the filler into account (fifth step); and performing structural analyses by using the calculated coefficient (sixth and seventh steps).

Description

本発明は、液晶ポリマー射出成形品の熱間反り解析方法に関する。   The present invention relates to a method for analyzing a hot warp of a liquid crystal polymer injection molded product.

従来から、液晶ポリマーは高流動性、高弾性、低線膨張係数、高耐熱性といった優れた特性から小型で薄肉微細形状の射出成形品として広く用いられ、例えば、小型化の進む電子機器用の電子部品に用いられている。また、超耐熱性のI型と呼ばれる液晶ポリマーの射出成形品は、200℃以上の高温にさらされる用途にも用いられる。液晶ポリマーの射出成形品は、通常、液晶ポリマー分子の配向方向によって熱的・機械的特性が異なり、また、多層構造を有する場合がある。このような液晶ポリマーの射出成形品は、熱負荷によって反り変形(熱間反り変形)が発生するので、寸法精度を確保するために、反り変形が発生しにくい態様で成形すること、および、成形後の反り変形を制御することが重要である。   Conventionally, liquid crystal polymers have been widely used as small, thin, fine-shaped injection molded products because of their excellent properties such as high fluidity, high elasticity, low linear expansion coefficient, and high heat resistance. Used in electronic parts. In addition, an injection-molded product of liquid crystal polymer called super heat resistant type I is also used for applications exposed to a high temperature of 200 ° C. or higher. Liquid crystal polymer injection molded articles usually have different thermal and mechanical properties depending on the orientation direction of the liquid crystal polymer molecules, and may have a multilayer structure. Such liquid crystal polymer injection-molded products undergo warpage deformation (hot warpage deformation) due to thermal load. Therefore, in order to ensure dimensional accuracy, molding is performed in a manner in which warpage deformation is less likely to occur, and molding. It is important to control the later warping deformation.

成形品の反り変形は、成形品の形状、成形時の液晶ポリマー流動の態様、成形品への熱履歴の分布、成形品における線膨張係数やヤング率などの熱的・機械的特性の分布、および成形品への熱負荷などの要因が複合して発生する。熱負荷等に対する成形品の応答として発生する反り変形は、成形品の熱的特性の分布および機械的特性の分布に依存する。このような液晶ポリマーの射出成形品に関し、成形後の加熱によって生じる成形品の反り変形を予測し、反り変形を抑制するための熱間反り変形予測方法が知られている(例えば、特許文献1参照)。   The warpage deformation of the molded product is the shape of the molded product, the mode of liquid crystal polymer flow during molding, the distribution of thermal history to the molded product, the distribution of thermal and mechanical properties such as linear expansion coefficient and Young's modulus in the molded product, In addition, factors such as heat load on the molded product occur in combination. The warp deformation that occurs as a response of the molded product to a thermal load or the like depends on the distribution of thermal properties and mechanical properties of the molded product. Regarding such an injection molded product of liquid crystal polymer, there is known a hot warpage deformation prediction method for predicting warpage deformation of a molded product caused by heating after molding and suppressing warpage deformation (for example, Patent Document 1). reference).

特開2012−96488号公報JP 2012-96488 A

しかしながら、上述した特許文献1に示されるような反り変形予測方法は、液晶ポリマーに繊維状フィラーを含ませた複合材料による射出成形品に対応するものではない。近年の電子部品の小型精密化と薄肉化に伴い、射出成形品の剛性を向上させる必要性から、射出成形品は、液晶ポリマーにガラス繊維等の繊維状フィラーを混入させた複合材料によって成形される。繊維状フィラーを含む複合材料による射出成形品の場合、成形品における線膨張係数やヤング率などの熱的・機械的特性の分布は、成形品内の各点における繊維状フィラーの量の分布と繊維状フィラーの長手方向の向きの分布(配向分布)に依存する。従って、成形品中の繊維状フィラーの分布と配向分布とを考慮して熱間反り解析を行う必要がある。また、熱間反り解析には、解析対象の射出成形品の各点における異方性分布に対応した線膨張係数の異方性のデータが必要であるが、小型化の進む実際の射出成形品の各点における線膨張係数の異方性のデータの取得は、小寸法の故に困難な状況にある。これは、線膨張係数のデータの測定には、線膨張係数を測定する装置からくる制約条件によって、測定用試験片にある程度以上の寸法が要求されることによる。   However, the warpage deformation prediction method as shown in Patent Document 1 described above does not correspond to an injection molded product using a composite material in which a fibrous filler is included in a liquid crystal polymer. Due to the need to improve the rigidity of injection molded products with the recent miniaturization and thinning of electronic components, injection molded products are molded from composite materials in which fibrous fillers such as glass fibers are mixed into liquid crystal polymers. The In the case of injection-molded products made of composite materials containing fibrous fillers, the distribution of thermal and mechanical properties such as linear expansion coefficient and Young's modulus in the molded product is the distribution of the amount of fibrous filler at each point in the molded product. It depends on the distribution (orientation distribution) in the longitudinal direction of the fibrous filler. Therefore, it is necessary to perform a hot warp analysis in consideration of the distribution and orientation distribution of the fibrous filler in the molded product. In addition, hot warp analysis requires anisotropy data of the linear expansion coefficient corresponding to the anisotropy distribution at each point of the injection molded product to be analyzed. It is difficult to obtain data on the anisotropy of the linear expansion coefficient at each point because of the small size. This is because measurement of the data of the coefficient of linear expansion requires that the measurement test piece has a certain size or more due to the constraints imposed by the apparatus for measuring the coefficient of linear expansion.

本発明は、上記課題を解消するものであって、3次元配向分布を有するフィラーを含む射出成形品に生じる反り変形の予測精度を向上して、反り変形抑制を改善できる液晶ポリマー射出成形品の熱間反り解析方法を提供することを目的とする。   The present invention solves the above-described problems, and improves the prediction accuracy of warpage deformation occurring in an injection molded product containing a filler having a three-dimensional orientation distribution, and can improve the suppression of warpage deformation. An object is to provide a hot warpage analysis method.

上記課題を達成するために、本発明は、液晶ポリマー射出成形品の熱間反り解析方法において、フィラーを含む射出成形品内のフィラーの3次元配向のデータを取得する第1工程と、フィラーを含まない液晶ポリマーによって射出成形された参照試料について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、分子配向状態のデータ、およびこれらのデータに関連づけられた線膨張係数のデータを取得する第2工程と、射出成形品について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、および分子配向状態のデータを取得する第3工程と、第2工程および第3工程によって取得したデータに基づいて、射出成形品についての線膨張係数のデータを決定する第4工程と、第1工程によって取得したフィラーの3次元配向のデータおよび第4工程によって決定した線膨張係数のデータに基づいて、均質化法を用いてフィラーを考慮した線膨張係数を求める第5工程と、第5工程によって求めた線膨張係数のデータを、射出成形品の構造解析用の有限要素モデルの各要素にマッピングする第6工程と、第6工程によって線膨張係数のデータがマッピングされた有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に各要素に生じる膨張収縮を計算して当該射出成形品の熱間反りを解析する第7工程と、を備えることを特徴とする。   In order to achieve the above object, the present invention provides a first step of acquiring data of three-dimensional orientation of a filler in an injection-molded product including a filler in a method for analyzing hot warpage of a liquid crystal polymer injection-molded product, and a filler. For reference samples injection-molded with liquid crystal polymer not included, data on integral values of shear stress due to flow and solidification during molding, data on molecular orientation, and data on linear expansion coefficient related to these data The second step of acquiring the data of the integral value of the shear stress resulting from the flow and solidification during the molding and the data of the molecular orientation state, the second step and the second step Based on the data acquired in the three steps, the fourth step for determining the data of the linear expansion coefficient for the injection molded product, and the filler acquired in the first step Based on the three-dimensional orientation data and the linear expansion coefficient data determined in the fourth step, the fifth step for obtaining the linear expansion coefficient in consideration of the filler using the homogenization method and the linear expansion obtained in the fifth step The sixth step of mapping coefficient data to each element of the finite element model for structural analysis of injection molded products, and the structural analysis using the finite element method model in which the linear expansion coefficient data is mapped by the sixth step And a seventh step of calculating the expansion and contraction generated in each element when the temperature of the injection-molded product is changed and analyzing the hot warpage of the injection-molded product.

この熱間反り解析方法において、第1工程は、X線CTを用いて取得した射出成形品内のフィラーの3次元画像からフィラーの3次元配向のデータを取得してもよい。   In this hot warpage analysis method, in the first step, data of the three-dimensional orientation of the filler may be acquired from the three-dimensional image of the filler in the injection molded product acquired using X-ray CT.

この熱間反り解析方法において、3次元画像中の個々のフィラーの形状と配置を、フィラーを表すモデルの形状と配置をランダムに変化させて確定するモンテカルロ法を用いた画像処理によって取得して、フィラーの3次元配向のデータを取得してもよい。   In this hot warpage analysis method, the shape and arrangement of individual fillers in a three-dimensional image are acquired by image processing using a Monte Carlo method that is determined by randomly changing the shape and arrangement of a model representing the filler, You may acquire the data of the three-dimensional orientation of a filler.

本発明の液晶ポリマー射出成形品の熱間反り解析方法によれば、均質化法を用いてフィラーを考慮した線膨張係数を求め、その線膨張係数を用いて構造解析を行うので、フィラーを含む射出成形品に生じる反り変形の予測精度を向上できる。また、局所的に測定可能なせん断応力の積分値と分子配向状態のデータに基づいて、射出成形品についての線膨張係数の異方性のデータを決定するので、小寸法の射出成形品であっても必要データを入手でき、熱間反り解析を行うことができる。   According to the hot warpage analysis method of the liquid crystal polymer injection molded article of the present invention, the linear expansion coefficient considering the filler is obtained using a homogenization method, and the structural analysis is performed using the linear expansion coefficient. It is possible to improve the prediction accuracy of warpage deformation occurring in an injection molded product. Also, since the linear expansion coefficient anisotropy data for the injection-molded product is determined based on the locally measurable integral value of the shear stress and the molecular orientation state data, the injection-molded product has a small size. However, necessary data can be obtained and hot warpage analysis can be performed.

本発明の一実施形態に係る液晶ポリマー射出成形品の熱間反り解析方法についてのフローチャート。The flowchart about the hot warp analysis method of the liquid crystal polymer injection-molded article which concerns on one Embodiment of this invention. 同解析方法を説明する図。The figure explaining the same analysis method. (a)は同解析方法において用いられる線膨張係数の、射出成形品内の分子配向度依存性を、分子配向の配向方向と配向直交方向とについて定性的に示す図、(b)は同解析方法において用いられる線膨張係数の、射出成形品についてのせん断応力積分値依存性を、分子配向の配向方向と配向直交方向とについて定性的に示す図。(A) is a diagram qualitatively showing the dependency of the linear expansion coefficient used in the analysis method on the degree of molecular orientation in the injection-molded product with respect to the orientation direction of the molecular orientation and the direction orthogonal to the orientation, and (b) is the same analysis. The figure which shows the shear stress integral value dependence about the injection-molded product of the linear expansion coefficient used in a method qualitatively about the orientation direction of a molecular orientation, and an orientation orthogonal direction. (a)は熱間反り解析対象の射出成形品における配向測定位置を模式的に示す平面図、(b)は(a)の配向測定位置における配向と配向度を矢印の傾きと長さで示す平面図。(A) is a top view which shows typically the orientation measurement position in the injection molded product of hot warp analysis object, (b) shows the orientation and orientation degree in the orientation measurement position of (a) by the inclination and length of the arrow. Plan view. 同熱間反り解析対象の射出成形品における線膨張係数の異方性分布を模式的に示す平面図。The top view which shows typically the anisotropic distribution of the linear expansion coefficient in the injection molded product of the same hot warpage analysis object. 線膨張係数を有限要素モデルの要素にマッピングして線膨張係数の異方性分布を模式的に示す斜視図。The perspective view which shows a linear expansion coefficient anisotropic distribution typically by mapping a linear expansion coefficient to the element of a finite element model. (a)は同解析方法の実施例の対象となる射出成形品の平面図、(b)は同射出成形品の側面図、(c)は(a)のA−A断面図、(d)は同射出成形品に設定した試験片を示す斜視図。(A) is a plan view of an injection molded product that is an object of the embodiment of the analysis method, (b) is a side view of the injection molded product, (c) is a cross-sectional view taken along line AA in (a), and (d). FIG. 3 is a perspective view showing a test piece set in the injection molded product. (a)は図7(d)に示した試験片全体のX線CTによる3次元画像を示す図、(b)は同画像に同画像から抽出したフィラーのモデルを重ねて表示した3次元画像を示す図。(A) is a diagram showing a three-dimensional image by X-ray CT of the entire test piece shown in FIG. 7 (d), (b) is a three-dimensional image in which a filler model extracted from the image is superimposed on the image and displayed. FIG. 同試験片の各々から抽出されたフィラーについてのフィラー長の積算度数のグラフ。The graph of the integration frequency of the filler length about the filler extracted from each of the same test piece. 同試験片の各々から抽出されたフィラーについての配向分布を積算度数で示すグラフ。The graph which shows the orientation distribution about the filler extracted from each of the same test piece with an integrated frequency. 射出成形品の熱間反り変化量の測定値と計算値を、同解析方法と比較例とについて示す散布図。The scatter diagram which shows the measured value and calculated value of the amount of hot warpage change of an injection molded product about the same analysis method and a comparative example.

以下、本発明の一実施形態に係る液晶ポリマー射出成形品の熱間反り解析方法について、図面を参照して説明する。図1乃至図5は、フィラーを含む液晶ポリマー射出成形品の熱間反り解析方法(以下、解析方法という)を示す。本解析方法は、図1、図2に示すように、フィラーの3次元配向のデータを取得する第1工程(S1)から有限要素法モデルを用いる構造解析によって射出成形品の熱間反りを解析する第7工程(S7)までの、7段階の工程(S1乃至S7)を備えている。これらの7段階の各工程の実行順番は、図1に示す順番に限定されるものではなく、図2に示すように、各々実行できるデータが揃えば実行できる構成となっており、従って、各工程の互いの実行順番は適宜変更することができる。以下、各工程を順に説明する。   Hereinafter, a hot warp analysis method for a liquid crystal polymer injection-molded product according to an embodiment of the present invention will be described with reference to the drawings. 1 to 5 show a hot warpage analysis method (hereinafter referred to as an analysis method) of a liquid crystal polymer injection-molded product containing a filler. In this analysis method, as shown in FIGS. 1 and 2, the hot warpage of the injection-molded product is analyzed by the structural analysis using the finite element method model from the first step (S1) for acquiring the three-dimensional orientation data of the filler. 7 steps (S1 to S7) up to the seventh step (S7). The execution order of each of these seven steps is not limited to the order shown in FIG. 1, and as shown in FIG. The mutual execution order of the steps can be appropriately changed. Hereinafter, each process is demonstrated in order.

第1工程(S1)は、射出成形品内のフィラーの3次元配向のデータを取得する工程であり、そのデータは、例えば、X線CTを用いて取得した射出成形品内のフィラーの3次元画像から取得することができる。この場合、データの取得は、3次元画像中の個々のフィラーの形状と配置を、フィラーを表すモデルの形状と配置をランダムに変化させて確定するモンテカルロ法を用いた画像処理によって行うことができる。   The first step (S1) is a step of acquiring three-dimensional orientation data of the filler in the injection-molded product, and the data is, for example, the three-dimensional filler of the injection-molded product acquired using X-ray CT. It can be acquired from the image. In this case, data acquisition can be performed by image processing using a Monte Carlo method in which the shape and arrangement of individual fillers in a three-dimensional image are determined by randomly changing the shape and arrangement of a model representing the filler. .

第2工程(S2)は、図3(a)(b)に示すデータを取得する工程である。すなわち、この第2工程(S2)では、フィラーを含めずに液晶ポリマーによって射出成形された参照試料について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、分子配向状態のデータ、および線膨張係数のデータが、互いに関連づけられて取得される。ここで、分子配向状態は、液晶ポリマー分子の配向度と配向とを合わせて表現する用語であり、配向度は、ある領域内の多数の分子の長手方向の向き(角度)の揃い具合を表す指標であり、配向は、それらの分子の向きが一番揃った方向を表す。   The second step (S2) is a step of acquiring data shown in FIGS. 3 (a) and 3 (b). That is, in this second step (S2), with respect to a reference sample injection-molded with a liquid crystal polymer without including a filler, data on the integral value of shear stress resulting from flow and solidification during molding, and data on the molecular orientation state , And linear expansion coefficient data are obtained in association with each other. Here, the molecular orientation state is a term that expresses the degree of orientation and orientation of the liquid crystal polymer molecules together, and the degree of orientation represents the degree of alignment of the longitudinal direction (angle) of a number of molecules in a certain region. It is an index, and the orientation represents the direction in which the directions of those molecules are aligned most.

図3(a)に示す線膨張係数のデータは、射出成形品内の液晶ポリマー分子の分子配向状態のデータに関連づけられている。本解析方法の場合、液晶ポリマー射出成形品において、液晶ポリマー分子の配向に対応した線膨張係数の異方性が発生する。図3(a)に示すように、線膨張係数は、分子の配向方向MDにおいて、分子配向度が強まるにつれて減少し、分子の配向方向MDに直交する方向である配向直交方向TDにおいて、分子配向度が強まるにつれて増加する、という傾向を示す。また、配向直交方向TDの線膨張係数の方が、配向方向MDの線膨張係数よりも大きな値を示す。   The data of the linear expansion coefficient shown in FIG. 3A is related to the data of the molecular orientation state of the liquid crystal polymer molecules in the injection molded product. In the case of this analysis method, anisotropy of the linear expansion coefficient corresponding to the orientation of the liquid crystal polymer molecules occurs in the liquid crystal polymer injection molded product. As shown in FIG. 3A, the linear expansion coefficient decreases in the molecular orientation direction MD as the degree of molecular orientation increases, and in the orientation orthogonal direction TD, which is a direction orthogonal to the molecular orientation direction MD, It shows a tendency to increase as the degree increases. In addition, the linear expansion coefficient in the alignment orthogonal direction TD shows a larger value than the linear expansion coefficient in the alignment direction MD.

また、線膨張係数のデータは、例えば、図3(b)に示すように、液晶ポリマーの射出成形の際に発生するせん断応力の時間的積分値であるせん断応力積分値のデータに関連づけられる。せん断応力積分値の大小に対する配向方向MDと配向直交方向TDにおける各線膨張係数の増減は、上述の分子配向度の強弱に対する配向方向MDと配向直交方向TDにおける各線膨張係数の増減と同様の傾向を示す。これは、つまり、射出成形品内の液晶ポリマー分子の分子配向度と、射出成形の際のせん断応力積分値と、が互いに密接に関連していることによる。例えば、これはまた、分子配向状態が、液晶ポリマーの金型内への射出による成形時の流動と固化の間に液晶ポリマー内に発生するせん断応力によって発現することに起因する。従って、第2工程(S2)のデータの取得は、射出成形品内の液晶ポリマー分子の分子配向度のデータと、射出成形時のせん断応力積分値のデータとが、互いに他方のデータによって代替できる場合には、それらの何れか一方のデータのみの取得とすることができる。   Further, for example, as shown in FIG. 3B, the data of the linear expansion coefficient is associated with data of an integral value of shear stress, which is a temporal integral value of shear stress generated during the injection molding of the liquid crystal polymer. The increase and decrease of each linear expansion coefficient in the orientation direction MD and the orientation orthogonal direction TD with respect to the magnitude of the shear stress integral value has the same tendency as the increase and decrease of each linear expansion coefficient in the orientation direction MD and the orientation orthogonal direction TD with respect to the strength of the molecular orientation described above. Show. This is because the degree of molecular orientation of the liquid crystal polymer molecules in the injection-molded product and the integral value of shear stress during injection molding are closely related to each other. For example, this is also due to the fact that the molecular orientation state is manifested by shear stress generated in the liquid crystal polymer during flow and solidification during molding by injection of the liquid crystal polymer into the mold. Accordingly, in the acquisition of the data in the second step (S2), the data on the molecular orientation of the liquid crystal polymer molecules in the injection molded product and the data on the integrated value of the shear stress at the time of injection molding can be replaced by the other data. In some cases, only one of these data can be acquired.

データ取得を具体的に説明する。第2工程(S2)では、フィラーを含有しない液晶ポリマーによる射出成形品を用いて形成される材料特性取得用に準備された参照試料について、せん断応力の積分値や分子配向状態のデータに関連づけられるデータとして、線膨張係数のデータが測定される。線膨張係数のデータを測定する参照試料は、せん断応力の積分値のデータや、分子配向状態のデータが既知または既知となる試料であり、反り解析対象の射出成形品の形状に関わりなく、準備することができる。線膨張係数のデータは、例えば、熱機械分析装置(TMA)を用いて、参照試料における分子配向方向と分子配向直交方向のそれぞれについて測定される。その参照試料は、線膨張係数の測定が行われる範囲内で、分子配向状態が一様に分布しているものが望ましく、そのような参照試料は比較的容易に準備することができる。   Data acquisition will be specifically described. In the second step (S2), the reference sample prepared for obtaining the material properties formed by using the injection-molded product made of the liquid crystal polymer containing no filler is associated with the integral value of the shear stress and the molecular orientation state data. As the data, linear expansion coefficient data is measured. The reference sample for measuring the linear expansion coefficient data is a sample whose shear stress integral value data or molecular orientation state data is known or known, and is prepared regardless of the shape of the injection molded product subject to warpage analysis. can do. The data of the linear expansion coefficient is measured for each of the molecular orientation direction and the molecular orientation orthogonal direction in the reference sample, for example, using a thermomechanical analyzer (TMA). The reference sample is desirably one in which the molecular orientation state is uniformly distributed within a range where the measurement of the linear expansion coefficient is performed, and such a reference sample can be prepared relatively easily.

分子配向状態(配向、配向度)のデータの取得は、参照試料について、例えば、マイクロ波式分子配向計、透過式広角X線による測定方法、透過光の偏光強度に基づく測定方法、その他の任意の測定方法を用いる測定によって行うことができる。また、せん断応力の積分値のデータは、計算機支援工学(CAE)に基づく3次元樹脂流動解析ソフトを用いる計算によって取得される。射出成形時の液晶ポリマーのせん断応力は、金型内で液晶ポリマーが流動しつつ固化する間に、時々刻々、金型内の各空間において変化する。液晶ポリマーの各分子は、せん断による力を受け、その力を受けた時間に応じて、最終停止位置における配向状態が決定される。従って、せん断応力を時間積分して得られるせん断応力積分値のデータは、分子配向状態を表すデータとなる。   Acquisition of molecular orientation state (orientation, degree of orientation) data for reference samples, for example, a microwave molecular orientation meter, a measurement method using a transmission wide-angle X-ray, a measurement method based on the polarization intensity of transmitted light, or any other arbitrary It can be performed by measurement using the measurement method. Further, the data of the integrated value of the shear stress is acquired by calculation using a three-dimensional resin flow analysis software based on computer aided engineering (CAE). The shear stress of the liquid crystal polymer at the time of injection molding changes in each space in the mold every moment while the liquid crystal polymer solidifies while flowing in the mold. Each molecule of the liquid crystal polymer receives a shearing force, and the alignment state at the final stop position is determined according to the time when the force is received. Therefore, the data of the shear stress integral value obtained by integrating the shear stress over time is data representing the molecular orientation state.

第3工程(S3)は、反り変形を解析するフィラーを含む液晶ポリマーの実際の射出成形品について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、および分子配向状態のデータを、局所の異方性を反映できる程度に密に取得する工程である。この工程のデータ取得は、実際の射出成形品に代えて、その射出成形品に同等の解析用の射出成形品を用いて、局所の異方性を再現できるように、データを取得してもよい。同等の解析用の射出成形品とは、この解析用の射出成形品によって実際の射出成形品における場合と同等の熱間反りの発生が見こまれる、そのような射出成形品、ということである。   In the third step (S3), for an actual injection-molded product of a liquid crystal polymer containing a filler for analyzing warp deformation, data on the integrated value of shear stress resulting from flow and solidification during molding, and data on the molecular orientation state Is acquired as closely as possible to reflect local anisotropy. Data acquisition of this process is possible even if the data is acquired so that local anisotropy can be reproduced by using an injection molding product for analysis equivalent to the injection molding product instead of the actual injection molding product. Good. The equivalent injection-molded product for analysis is such an injection-molded product in which occurrence of hot warpage equivalent to that in the actual injection-molded product can be found by this analytical injection-molded product. .

分子配向状態のデータは測定によって取得される。その測定は、例えば、図4(a)に示すように、射出成形品から切り出した試験片TPを用いて行うことができ、また、射出成形品をそのまま用いて行うこともできる。局所の分子配向状態のデータ取得のために、例えば、測定径300μmの透過式広角X線回折による測定方法が用いられる。分子配向度は、透過式広角X線回折によって得られたデバイ環に現れる配向性ピークの半値幅から算出される。このようなX線回折による測定によって、その測定径程度の分解能で分子配向状態(配向、配向度)の分布のデータを得ることができる。射出成形品から多層に切り出した多数の試験片TPにおける多数の局所測定点における測定データによって、射出成形品の各内部点について分子配向状態の3次元データを取得することができる。分子配向状態のデータは、例えば、図4(b)に示すように、各測定点において取得される。この図において、配向がベクトルの方向で示され、配向度がベクトルの長さで示されている。なお、図4(b)には、分子配向状態のデータが2次元的に平面内で表示されているが、実際の分子配向のデータを表すベクトルは3次元空間におけるベクトルであり、分子配向のデータも、そのような3次元空間のデータとして取得される。   The molecular orientation state data is obtained by measurement. The measurement can be performed using, for example, a test piece TP cut out from an injection molded product as shown in FIG. 4A, or can be performed using the injection molded product as it is. In order to acquire local molecular orientation state data, for example, a measurement method using transmission wide-angle X-ray diffraction with a measurement diameter of 300 μm is used. The degree of molecular orientation is calculated from the half width of the orientation peak appearing in the Debye ring obtained by transmission wide-angle X-ray diffraction. By measurement by such X-ray diffraction, it is possible to obtain molecular orientation state (orientation, degree of orientation) distribution data with a resolution about the measurement diameter. From the measurement data at a large number of local measurement points in a large number of test pieces TP cut out in multiple layers from the injection molded product, three-dimensional data of the molecular orientation state can be acquired for each internal point of the injection molded product. For example, as shown in FIG. 4B, the molecular orientation state data is acquired at each measurement point. In this figure, the orientation is indicated by the direction of the vector, and the degree of orientation is indicated by the length of the vector. In FIG. 4B, the molecular orientation state data is displayed two-dimensionally in a plane, but the vector representing the actual molecular orientation data is a vector in a three-dimensional space. Data is also acquired as data in such a three-dimensional space.

せん断応力の積分値のデータは、実際の射出成形品、または設計段階の射出成形品について、上述の第2工程(S2)における場合と同様に、計算機支援工学(CAE)に基づく3次元樹脂流動解析ソフトを用いる計算によって取得される。せん断応力の積分値のデータは、例えば、樹脂の流動方向に基づく配向方向MDをベクトルの方向とし、せん断応力の積分値をそのベクトルの大きさとする3次元空間ベクトルによって表現することができる。なお、この3次元空間ベクトルの方向は、樹脂の流動方向を種々の条件に基づいて修正した方向とすることができる。   As with the case of the above-described second step (S2), three-dimensional resin flow based on computer aided engineering (CAE) is used for the integral value of the shear stress for the actual injection molded product or the injection molded product at the design stage. Obtained by calculation using analysis software. The data of the integrated value of the shear stress can be expressed by, for example, a three-dimensional space vector in which the orientation direction MD based on the flow direction of the resin is a vector direction and the integrated value of the shear stress is the magnitude of the vector. The direction of the three-dimensional space vector can be a direction in which the flow direction of the resin is corrected based on various conditions.

第4工程(S4)は、第2工程(S2)と第3工程(S3)とによって取得したデータに基づいて、射出成形品についての線膨張係数のデータを決定する工程である。例えば、異方性を表す特性として分子配向度を用いる場合、射出成形品のある点における配向方向MDと配向直交方向TDの各方向における線膨張係数は、その点の配向度の値を用いて、上述の図3(a)のグラフから各々読み取って決定することができる。また、せん断応力の積分値のデータを用いる場合、同様に、上述の図3(b)のグラフから、配向方向MDと配向直交方向TDの各方向における線膨張係数を読み取って決定することができる。このようにして、図5に示すように、実際の射出成形品における各点の線膨張係数が決定される。   The fourth step (S4) is a step of determining linear expansion coefficient data for the injection-molded product based on the data acquired in the second step (S2) and the third step (S3). For example, when the degree of molecular orientation is used as a characteristic representing anisotropy, the linear expansion coefficient in each direction of the orientation direction MD and the orientation orthogonal direction TD at a certain point of the injection molded product is obtained by using the value of the degree of orientation at that point. These can be determined by reading from the graph of FIG. Further, when using the data of the integral value of the shear stress, it can be similarly determined by reading the linear expansion coefficient in each of the orientation direction MD and the orientation orthogonal direction TD from the graph of FIG. . Thus, as shown in FIG. 5, the linear expansion coefficient of each point in an actual injection molded product is determined.

第5工程(S5)は、第1工程(S1)によって取得したフィラーの3次元配向のデータと第4工程(S4)によって決定した線膨張係数のデータとに基づいて、均質化法を用いて、フィラーを考慮した線膨張係数を求める工程である。この均質化法の計算は、一般的な、商用の計算サービスを利用したり、市販のソフトを用いたり、またはプログラムを組んで、計算することができる。均質化法の原理として、例えば、森・田中理論を用いることができる。   The fifth step (S5) uses a homogenization method based on the three-dimensional orientation data of the filler obtained in the first step (S1) and the linear expansion coefficient data determined in the fourth step (S4). This is a step of obtaining a linear expansion coefficient in consideration of the filler. The calculation of the homogenization method can be performed by using a general commercial calculation service, using commercially available software, or configuring a program. As the principle of the homogenization method, for example, the Mori-Tanaka theory can be used.

第6工程(S6)は、図6に示すように、第5工程(S5)によって求めた線膨張係数のデータを、射出成形品の構造解析用の有限要素モデルの各要素にマッピングする工程である。これは、既存の種々の構造解析用のソフトやツールを用いて、一般に行われているデータマッピングの方法により、行うことができる。   As shown in FIG. 6, the sixth step (S6) is a step of mapping the linear expansion coefficient data obtained in the fifth step (S5) to each element of the finite element model for structural analysis of the injection molded product. is there. This can be performed by a general data mapping method using various existing structural analysis software and tools.

第7工程(S7)は、第6工程(S6)によって線膨張係数のデータがマッピングされた有限要素法モデルを用いて構造解析を行う工程である。この工程では、射出成形品の温度を変化させた際に各要素に生じる膨張収縮を計算して射出成形品の熱間反りが求められる。   The seventh step (S7) is a step of performing structural analysis using the finite element method model in which the linear expansion coefficient data is mapped in the sixth step (S6). In this step, the hot warpage of the injection molded product is obtained by calculating the expansion and contraction that occurs in each element when the temperature of the injection molded product is changed.

本解析方法によれば、均質化法を用いてフィラーを考慮した線膨張係数を求め、その線膨張係数を用いて構造解析を行うので、フィラーを含む射出成形品に生じる反り変形の予測精度を向上できる。また、局所的に測定可能なせん断応力の積分値と分子配向状態のデータに基づいて、射出成形品についての線膨張係数の異方性のデータを決定するので、小寸法の射出成形品であっても必要データを入手でき、熱間反り解析を行うことができる。   According to this analysis method, the linear expansion coefficient considering the filler is obtained using the homogenization method, and the structural analysis is performed using the linear expansion coefficient. Therefore, the prediction accuracy of the warp deformation occurring in the injection-molded product containing the filler is improved. It can be improved. Also, since the linear expansion coefficient anisotropy data for the injection-molded product is determined based on the locally measurable integral value of the shear stress and the molecular orientation state data, the injection-molded product has a small size. However, necessary data can be obtained and hot warpage analysis can be performed.

(実施例)
図7乃至図11は、実施例を示す。図7(a)(b)に示すように、反り解析の対象とした射出成形品1は、長さ17.8×幅1.83×高さ0.4mmの長尺箱形状の成形品であり、そのA−A断面における底面厚さは0.12mm、側面厚さは0.163mmである。射出成形品1は、フィラーとして平均繊維長88μmのガラス繊維を添加したI型の液晶ポリマーを成形樹脂として、最大型締力196kNのプリプラ式射出成形機を用いて射出成形して得た。成形品の長手方向端部に矢印でピンゲートと示す位置から成形樹脂が注入されている。液晶ポリマーの分子配向、およびフィラー(ガラス繊維)の配向は、大域的には、樹脂の大略流れ方向である成形品の長手方向に沿っているが、局所的には金型の側壁位置、キャビティの広がり具合、隅部の位置、温度分布などに依存して種々の配向分布となる。
(Example)
7 to 11 show an embodiment. As shown in FIGS. 7 (a) and 7 (b), the injection molded product 1 subjected to warp analysis is a long box-shaped molded product having a length of 17.8 × width 1.83 × height 0.4 mm. In the AA cross section, the bottom surface thickness is 0.12 mm, and the side surface thickness is 0.163 mm. The injection-molded product 1 was obtained by injection molding using a pre-plastic injection molding machine with a maximum clamping force of 196 kN using, as a molding resin, an I-type liquid crystal polymer added with glass fibers having an average fiber length of 88 μm as a filler. Molding resin is injected into the longitudinal direction end of the molded product from a position indicated by a pin gate with an arrow. The molecular orientation of the liquid crystal polymer and the orientation of the filler (glass fiber) are globally along the longitudinal direction of the molded product, which is almost the flow direction of the resin. Depending on the degree of spread, the position of the corners, the temperature distribution, etc., various orientation distributions are obtained.

図7(c)(d)に示す試験片TP1〜TP4は、フィラーの3次元配向のデータを取得する例を説明するための試験片を示す。すなわち、本実施例では、マイクロフォーカスX線CTを用いて取得した射出成形品1内のフィラーの3次元画像からフィラーの3次元配向のデータ(位置、繊維長、配向)を取得した。図8(a)は、試験片TP1〜TP4の部分のX線CTによる3次元画像を示す。フィラーの配向は、3次元画像から閾値処理によってフィラー候補部分を切り出し、そのフィラー候補部分に含まれる多数のフィラーの各々に対し、長さと直径をパラメータとする仮想円柱(フィラーのモデル)をフィッティングさせることにより確定して取得した。フィラー候補部分に対する仮想円柱のフィッティングは、パラメータをランダムに変化させるモンテカルロ法とを用いて行った。図8(b)は、フィッティングされたフィラーの位置に仮想円柱を重ねて表示している。   Test pieces TP1 to TP4 shown in FIGS. 7C and 7D are test pieces for explaining an example of acquiring three-dimensional orientation data of the filler. In other words, in this example, the three-dimensional orientation data (position, fiber length, orientation) of the filler was obtained from the three-dimensional image of the filler in the injection molded product 1 obtained using microfocus X-ray CT. Fig.8 (a) shows the three-dimensional image by X-ray CT of the part of test piece TP1-TP4. For filler orientation, a filler candidate portion is cut out from a three-dimensional image by threshold processing, and a virtual cylinder (filler model) having parameters of length and diameter is fitted to each of a large number of fillers included in the filler candidate portion. It was confirmed and acquired. The fitting of the virtual cylinder to the filler candidate portion was performed using the Monte Carlo method in which the parameters are changed randomly. FIG. 8B shows a virtual cylinder superimposed on the position of the fitted filler.

図9は、各試験片TP1〜TP4の各々から抽出されたフィラーについてのフィラー長の積算度数を示す。側面部の試験片TP1,TP2では、比較的長いフィラーが含まれているが、底面部の試験片TP3,TP4では、200μm以上のフィラーが殆ど含まれていない。原因としてキャビティ形状に起因する干渉やフィラーの折れが考えられる。液晶ポリマーの異方性には、通常、フィラー充填量の影響があるので、このような底面部の薄肉部におけるフィラーの流入阻害現象は反り解析精度に影響すると考えられる。   FIG. 9 shows the cumulative frequency of the filler length for the filler extracted from each of the test pieces TP1 to TP4. The test pieces TP1 and TP2 on the side surface portion contain relatively long fillers, but the test pieces TP3 and TP4 on the bottom surface portion contain almost no filler of 200 μm or more. Possible causes include interference due to the cavity shape and filler breakage. Since the anisotropy of the liquid crystal polymer is usually influenced by the filler filling amount, it is considered that such a filler inflow inhibition phenomenon in the thin portion of the bottom portion affects the warp analysis accuracy.

図10は、各試験片TP1〜TP4の各々から抽出されたフィラーに関する配向分布を積算度数で示す。フィラーは各試験片TP1〜TP4の範囲において抽出されたフィラーの配向を球座標のθ軸およびφ軸についてそれぞれ0.1π[rad]ずつに分割し、10×10=100領域に分類して、3次元空間における配向として求めた。図10は、3次元空間の配向を、各試験片TP1〜TP4における広い面の2次元平面で見た場合の配向角分布を示している。図中に矢印で示すように、成形樹脂の大域的な流動方向は0.5π[rad]の方向であり、フィラーの配向主軸は大きくずれていない。各試験片TP1〜TP4における配向度(配向の揃い具合)は、射出成形品1における各試験片TP1〜TP4の位置に応じて、相互に異なっていることが分かる。   FIG. 10 shows the orientation distribution regarding the filler extracted from each of the test pieces TP1 to TP4 in terms of cumulative frequency. The filler is divided into 0.1 × [rad] by dividing the orientation of the filler extracted in the range of each test piece TP1 to TP4 by 0.1π [rad] for each of the θ axis and φ axis of the spherical coordinates, The orientation was determined in a three-dimensional space. FIG. 10 shows an orientation angle distribution when the orientation in the three-dimensional space is viewed on a wide two-dimensional plane in each of the test pieces TP1 to TP4. As indicated by the arrows in the figure, the global flow direction of the molding resin is 0.5π [rad], and the orientation main axis of the filler is not greatly deviated. It can be seen that the degree of orientation (the degree of alignment) in each of the test pieces TP1 to TP4 is different from each other depending on the position of each of the test pieces TP1 to TP4 in the injection molded product 1.

図11は、射出成形品1について、本解析方法によって求めた熱間反り変化量の計算値(□)、および比較例の計算方法により求めた熱間反り変化量の計算値(▲)を、横軸を測定値とし、縦軸を計算値とする散布図に、それぞれ2試料数について示す。比較例の計算値(▲)は、均質化法を用いるものではなく、また、フィラーの配向分布を考慮しない計算方法による計算結果である。本解析方法の計算値(□)は、3次元のフィラー配置情報(位置、繊維長、配向)に基づいて、射出成形品1内の各位置の線膨張係数の異方性を、均質化法により求め、得られた線膨張係数の異方性を用いて、構造解析により熱間反り変化量を求めた結果である。なお、本実施例では、フィラーの配向は3次元で定量的に評価しているが、液晶ポリマーの分子配向状態はX線回折の透過方向の2次元でしか評価していない。均質化法による計算は、商用の非線形マルチスケール材料モデリングソフトウェア((e−Xstreamengineering社製Digimat)、および、Mori−Tanakaモデルを用いて行った。熱間反り変化量は、熱間反りを測定した熱負荷(25℃から275℃に昇温)に対する変形状態を計算して求めた。図11に示すように、本解析方法によれば、フィラーの配向を定量的に考慮した均質化法により求めた線膨張係数の異方性を考慮することにより、線膨張係数の異方性を考慮していない比較例に比べて、絶対値の精度が改善していることが分かる。   FIG. 11 shows the calculated value (□) of the hot warpage change amount obtained by the present analysis method and the calculated value (▲) of the hot warp change amount obtained by the calculation method of the comparative example for the injection molded product 1. The scatter plot with the horizontal axis as the measured value and the vertical axis as the calculated value is shown for two samples. The calculated value (▲) of the comparative example is a calculation result by a calculation method that does not use the homogenization method and does not consider the orientation distribution of the filler. The calculated value (□) of this analysis method is a homogenization method based on the three-dimensional filler arrangement information (position, fiber length, orientation) and the anisotropy of the linear expansion coefficient at each position in the injection molded product 1. This is the result of obtaining the amount of change in hot warp by structural analysis using the anisotropy of the obtained linear expansion coefficient. In this embodiment, the filler orientation is quantitatively evaluated in three dimensions, but the molecular orientation state of the liquid crystal polymer is evaluated only in the two-dimensional transmission direction of X-ray diffraction. The calculation by the homogenization method was performed using commercial non-linear multi-scale material modeling software ((e-Xstreamengeneering Digimat)) and the Mori-Tanaka model. The deformation state was calculated and calculated with respect to the heat load (temperature raised from 25 ° C. to 275 ° C.) As shown in FIG. 11, according to this analysis method, the deformation was obtained by a homogenization method that quantitatively considered the filler orientation. It can be seen that by considering the anisotropy of the linear expansion coefficient, the accuracy of the absolute value is improved as compared with the comparative example not considering the anisotropy of the linear expansion coefficient.

なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、フィラーの3次元配向のデータは、X線CTによる3次元画像のデータから取得することに限らず、例えば、MRI画像データ、光学的CT画像データ、その他の画像データから取得することができる。また、画像データによらずに、フィラーの3次元配向のデータを取得するようにしてもよい。   The present invention is not limited to the above-described configuration, and various modifications can be made. For example, the three-dimensional orientation data of the filler is not limited to being acquired from three-dimensional image data obtained by X-ray CT, and can be acquired from, for example, MRI image data, optical CT image data, and other image data. . Moreover, you may make it acquire the data of the three-dimensional orientation of a filler not based on image data.

1 射出成形品
G0 X線CT画像(3次元画像)
MD 配向方向
TD 配向直交方向
1 Injection molded product G0 X-ray CT image (3D image)
MD orientation direction TD orientation orthogonal direction

Claims (3)

液晶ポリマー射出成形品の熱間反り解析方法において、
フィラーを含む射出成形品内のフィラーの3次元配向のデータを取得する第1工程と、
フィラーを含まない液晶ポリマーによって射出成形された参照試料について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、分子配向状態のデータ、およびこれらのデータに関連づけられた線膨張係数のデータを取得する第2工程と、
射出成形品について、その成形時の流動と固化に起因するせん断応力の積分値のデータ、および分子配向状態のデータを取得する第3工程と、
前記第2工程および第3工程によって取得したデータに基づいて、射出成形品についての線膨張係数のデータを決定する第4工程と、
前記第1工程によって取得したフィラーの3次元配向のデータおよび前記第4工程によって決定した線膨張係数のデータに基づいて、均質化法を用いてフィラーを考慮した線膨張係数を求める第5工程と、
前記第5工程によって求めた線膨張係数のデータを、射出成形品の構造解析用の有限要素モデルの各要素にマッピングする第6工程と、
前記第6工程によって線膨張係数のデータがマッピングされた前記有限要素法モデルを用いて構造解析を行うことにより、射出成形品の温度を変化させた際に前記各要素に生じる膨張収縮を計算して当該射出成形品の熱間反りを解析する第7工程と、を備えることを特徴とする液晶ポリマー射出成形品の熱間反り解析方法。
In the hot warp analysis method for liquid crystal polymer injection molded products,
A first step of acquiring three-dimensional orientation data of the filler in the injection-molded product including the filler;
For reference samples injection molded with liquid crystal polymer without filler, data on integral values of shear stress due to flow and solidification during molding, data on molecular orientation, and linear expansion coefficient associated with these data A second step of acquiring the data of
For the injection molded product, a third step of acquiring data on the integrated value of shear stress resulting from flow and solidification at the time of molding, and data on the molecular orientation state;
A fourth step of determining data of a linear expansion coefficient for the injection molded product based on the data acquired in the second step and the third step;
A fifth step of obtaining a linear expansion coefficient in consideration of the filler using a homogenization method based on the three-dimensional orientation data of the filler obtained in the first step and the linear expansion coefficient data determined in the fourth step; ,
A sixth step of mapping linear expansion coefficient data obtained in the fifth step to each element of a finite element model for structural analysis of an injection molded product;
By performing structural analysis using the finite element method model in which linear expansion coefficient data is mapped in the sixth step, the expansion and contraction that occurs in each element when the temperature of the injection molded product is changed is calculated. And a seventh step of analyzing the hot warpage of the injection-molded product. A method of analyzing a hot warp of a liquid crystal polymer injection-molded product, comprising:
前記第1工程は、X線CTを用いて取得した射出成形品内のフィラーの3次元画像からフィラーの3次元配向のデータを取得することを特徴とする請求項1に記載の液晶ポリマー射出成形品の熱間反り解析方法。   2. The liquid crystal polymer injection molding according to claim 1, wherein the first step acquires data of a three-dimensional orientation of the filler from a three-dimensional image of the filler in the injection molded product acquired using X-ray CT. Analysis method for hot warpage of products. 前記3次元画像中の個々のフィラーの形状と配置を、フィラーを表すモデルの形状と配置をランダムに変化させて確定するモンテカルロ法を用いた画像処理によって取得することにより、フィラーの3次元配向のデータを取得することを特徴とする請求項2に記載の液晶ポリマー射出成形品の熱間反り解析方法。   By acquiring the shape and arrangement of the individual fillers in the three-dimensional image by image processing using a Monte Carlo method in which the shape and arrangement of the model representing the filler are determined at random, thereby determining the three-dimensional orientation of the filler. The method for analyzing a hot warp of a liquid crystal polymer injection-molded product according to claim 2, wherein data is acquired.
JP2012255648A 2012-11-21 2012-11-21 Hot warpage analysis method for a liquid crystal polymer injection-molded article Pending JP2014100879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255648A JP2014100879A (en) 2012-11-21 2012-11-21 Hot warpage analysis method for a liquid crystal polymer injection-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255648A JP2014100879A (en) 2012-11-21 2012-11-21 Hot warpage analysis method for a liquid crystal polymer injection-molded article

Publications (1)

Publication Number Publication Date
JP2014100879A true JP2014100879A (en) 2014-06-05

Family

ID=51023855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255648A Pending JP2014100879A (en) 2012-11-21 2012-11-21 Hot warpage analysis method for a liquid crystal polymer injection-molded article

Country Status (1)

Country Link
JP (1) JP2014100879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221513A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Hot warpage analysis method for liquid crystal polymer injection-molded article
CN118163317A (en) * 2024-05-14 2024-06-11 南通德亿新材料有限公司 TPU thermoplastic particle injection molding raw material hot melting control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000758A (en) * 2009-06-17 2011-01-06 Polyplastics Co Method for predicting orientation state and method for analyzing deformation behavior
JP2012096488A (en) * 2010-11-04 2012-05-24 Panasonic Corp Method of forecasting hot warpage deformation of liquid crystal polymer injection molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000758A (en) * 2009-06-17 2011-01-06 Polyplastics Co Method for predicting orientation state and method for analyzing deformation behavior
JP2012096488A (en) * 2010-11-04 2012-05-24 Panasonic Corp Method of forecasting hot warpage deformation of liquid crystal polymer injection molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221513A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Hot warpage analysis method for liquid crystal polymer injection-molded article
CN118163317A (en) * 2024-05-14 2024-06-11 南通德亿新材料有限公司 TPU thermoplastic particle injection molding raw material hot melting control system

Similar Documents

Publication Publication Date Title
Thi et al. Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography
Somireddy et al. Analysis of the material behavior of 3D printed laminates via FFF
Romeo Two-dimensional digital image correlation for asphalt mixture characterisation: interest and limitations
Masato et al. Analysis of the shrinkage of injection-molded fiber-reinforced thin-wall parts
Vélez-García et al. Unambiguous orientation in short fiber composites over small sampling area in a center-gated disk
Kusić et al. The impact of process parameters on test specimen deviations and their correlation with AE signals captured during the injection moulding cycle
Garesci et al. Young’s modulus prediction of long fiber reinforced thermoplastics
Bernasconi et al. Combined effect of notches and fibre orientation on fatigue behaviour of short fibre reinforced polyamide
Pallicity et al. Birefringence measurement for validation of simulation of precision glass molding process
Buck et al. Two-scale structural mechanical modeling of long fiber reinforced thermoplastics
Adamczak et al. Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing
Li et al. Enabling rapid fatigue life prediction of short carbon fiber reinforced polyether-ether-ketone using a novel energy dissipation–based model
Baradi et al. Frontal weld lines in injection‐molded short fiber‐reinforced PBT: extensive microstructure characterization for mechanical performance evaluation
Heinle et al. Temperature‐dependent coefficient of thermal expansion (CTE) of injection molded, short‐glass‐fiber‐reinforced polymers
Holmes et al. Surface topography evolution of woven thermoplastic composites under deformation
JP2014100879A (en) Hot warpage analysis method for a liquid crystal polymer injection-molded article
Divekar et al. Improvement of warpage prediction through integrative simulation approach for thermoplastic material
Ayadi et al. Large‐scale X‐ray microtomography analysis of fiber orientation in weld line of short glass fiber reinforced thermoplastic and related elasticity behavior
Tseng et al. Numerical predictions of fiber orientation and mechanical properties for injection‐molded long‐carbon‐fiber thermoplastic composites
Barbosa et al. Thermomechanical environment characterisation in injection moulding and its relation to the mechanical properties of talc-filled polypropylene
JP2014193596A (en) Coefficient of thermal conductivity prediction method of reinforcement resin, and apparatus of the same
JP6061982B2 (en) Method for structural analysis of anisotropic resin molding
Rathore et al. Investigation on tomographic-based nondestructive characterization of short glass fiber-reinforced composites as obtained from micro injection molding
Divekar et al. Advancement in warpage prediction of thermoplastic glass filled material through integrative simulation approach
JP6283550B2 (en) Analysis method of fluidization and solidification behavior of resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122