JP2014100700A - Method for decontaminating contaminated soil - Google Patents

Method for decontaminating contaminated soil Download PDF

Info

Publication number
JP2014100700A
JP2014100700A JP2013219075A JP2013219075A JP2014100700A JP 2014100700 A JP2014100700 A JP 2014100700A JP 2013219075 A JP2013219075 A JP 2013219075A JP 2013219075 A JP2013219075 A JP 2013219075A JP 2014100700 A JP2014100700 A JP 2014100700A
Authority
JP
Japan
Prior art keywords
aqueous solution
sulfuric acid
contaminated soil
soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013219075A
Other languages
Japanese (ja)
Other versions
JP6212353B2 (en
Inventor
Yoshiro Tanaka
好郎 田中
Mitsuharu Mashino
光晴 間篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUTO KK
Original Assignee
OKUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUTO KK filed Critical OKUTO KK
Priority to JP2013219075A priority Critical patent/JP6212353B2/en
Publication of JP2014100700A publication Critical patent/JP2014100700A/en
Application granted granted Critical
Publication of JP6212353B2 publication Critical patent/JP6212353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decontaminating contaminated soil capable of abating, simply and inexpensively without being encumbered with land limitations, harmful substance contents at least within a contaminated soil surface layer portion.SOLUTION: The provided method includes an aqueous solution spraying step S1 of spraying an aqueous deuterated sulfuric acid solution onto a contaminated soil wherein at least the surface layer portion thereof is contaminated with harmful substances, a water spraying step S2 of spraying water onto the surface layer portion sprayed with the aqueous deuterated sulfuric acid solution, and a drying step S3 of drying the surface layer portion sprayed with the water. Harmful substances are precipitated from surface layer to deep layer portions of the contaminated soil by repeatedly executing the water spray step S2 and drying step S3.

Description

本発明は、汚染土壌の除染方法に関する。   The present invention relates to a decontamination method for contaminated soil.

放射性物質、特に放射性セシウムの農地土壌における除染技術として、非特許文献1に記載の如きものが知られている。例えば、表土の剥ぎ取りや、水による土壌撹拌・除去などの技術が挙げられている。しかし、これらの方法は、土壌を除去することが困難な山林等の土地には適用し難く、また、除去作業に重機等の大型機械器具が必要となりコスト高となっていた。さらに、除去した汚染土壌の処理の問題も生じる。   As a decontamination technique for radioactive substances, particularly radioactive cesium in farmland soil, the one described in Non-Patent Document 1 is known. For example, techniques such as stripping topsoil and stirring and removing soil with water are listed. However, these methods are difficult to apply to land such as forests where it is difficult to remove the soil, and large machinery such as heavy machinery is required for the removal work, resulting in high costs. Furthermore, the problem of processing the removed contaminated soil also arises.

農林水産省 平成23年9月14日 「農地土壌の放射性物質除去技術(除染技術)について」 http://www.s.affrc.go.jp/docs/press/110914Ministry of Agriculture, Forestry and Fisheries, September 14, 2011 “About radioactive material removal technology (decontamination technology) of farmland soil” http: // www. s. affrc. go. jp / docs / press / 110914

かかる従来の実情に鑑みて、本発明は、土地の制限を受けることなく簡単且つ安価に少なくとも汚染土壌表層部の有害物質量を低減させる汚染土壌の除染方法を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a decontamination method for contaminated soil that reduces the amount of harmful substances in the surface layer of the contaminated soil easily and inexpensively without being restricted by land.

上記目的を達成するため、本発明に係る汚染土壌の除染方法の特徴は、少なくとも表層部が有害物質で汚染された汚染土壌に重水素硫酸水溶液を散布する水溶液散布工程、前記重水素硫酸水溶液を散布した表層部に水を散布する散水工程、前記水を散布した表層部を乾燥させる乾燥工程を有し、前記散水工程及び前記乾燥工程を繰り返し行うことで、前記有害物質を前記汚染土壌の表層部から深層部に沈降させることにある。   In order to achieve the above object, the decontamination method for contaminated soil according to the present invention is characterized by an aqueous solution spraying step in which a deuterated sulfuric acid aqueous solution is sprayed on contaminated soil having at least a surface layer contaminated with harmful substances, the deuterated sulfuric acid aqueous solution Spraying water on the surface layer portion sprayed, and drying step for drying the surface layer portion sprayed with water, and repeatedly performing the water spraying step and the drying step to remove the harmful substances from the contaminated soil. The purpose is to settle from the surface layer portion to the deep layer portion.

上記構成によれば、まず、汚染土壌表層部に重水素硫酸水溶液を散布し、次に、重水素硫酸水溶液を散布した表層部に水を散布する。ここで、重水素硫酸水溶液の凝集効果により土壌の単粒が団粒化し、水散布後の乾燥工程により水が気化して土壌中には隙間が生じる。尚、水は気化(蒸発)するが、重水素硫酸(D2SO4)は気化せず、上述の凝集効果に寄与しなかった重水素硫酸は、表層部に残存している。そこで、再度水を散布すると、残存する重水素硫酸は有害物質と共に先の工程により生じた隙間を介してより下層へ移動し、下層でも同様に単粒の団粒化を生じさせる。そして、乾燥させることで、水が気化し下層においても隙間が生じる。従って、散水工程と乾燥工程を繰り返し行うことで、残存する重水素硫酸(D2SO4)を有害物質と共に除々に下層へ移動させると共に土壌の団粒化を促進させ、有害物質の通り道となる隙間を深層部まで延長させることができる。このように、水溶液散布工程の後に、散水工程及び乾燥工程を繰り返し行うだけでよいので、除染作業は土地の制限を受けることなく簡単に行うことができ、土壌を除去することなく、表層部の有害物質量を減少させることができる。 According to the above configuration, the deuterated sulfuric acid aqueous solution is first sprayed on the contaminated soil surface layer, and then water is sprayed on the surface layer portion on which the deuterated sulfuric acid aqueous solution is sprayed. Here, a single grain of the soil aggregates due to the aggregation effect of the deuterated sulfuric acid aqueous solution, and water is vaporized by a drying process after water spraying, resulting in a gap in the soil. Although water vaporizes (evaporates), deuterium sulfuric acid (D 2 SO 4 ) does not vaporize, and deuterated sulfuric acid that has not contributed to the agglomeration effect remains in the surface layer portion. Therefore, when water is sprayed again, the remaining deuterated sulfuric acid moves to the lower layer through the gap generated by the previous step together with the harmful substances, and the lower layer similarly causes single-grain agglomeration. And by making it dry, water evaporates and a clearance gap arises also in a lower layer. Therefore, by repeating the watering process and the drying process, the remaining deuterated sulfuric acid (D 2 SO 4 ) is gradually moved to the lower layer together with the harmful substances and promotes the agglomeration of the soil. The gap can be extended to the deep layer. Thus, since it is only necessary to repeat the watering step and the drying step after the aqueous solution spraying step, the decontamination work can be easily performed without being restricted by the land, and the surface layer portion can be removed without removing the soil. The amount of harmful substances can be reduced.

ここで、前記水溶液散布工程において、重水素硫酸が前記汚染土壌1m3に対して0.0003体積%以上0.002体積%以下となるように前記重水素硫酸を散布することが望ましい。重水素硫酸が土壌に対して0.0003体積%未満の場合、上述の凝集効果による土壌の団粒化が十分に促進されない。他方、重水素硫酸が土壌に対して0.002体積%を超えても、上記凝集効果はあまり向上せず、コスト高となってしまう。 Here, in the aqueous solution spraying step, it is desirable to spray the deuterated sulfuric acid so that the deuterated sulfuric acid is 0.0003 volume% or more and 0.002 volume% or less with respect to 1 m 3 of the contaminated soil. When the deuterated sulfuric acid is less than 0.0003% by volume with respect to the soil, the agglomeration of the soil due to the above-described aggregation effect is not sufficiently promoted. On the other hand, even if deuterated sulfuric acid exceeds 0.002% by volume with respect to the soil, the agglomeration effect is not improved so much and the cost becomes high.

前記水溶液散布工程において、前記重水素硫酸水溶液を加温した状態で散布するとよい。発明者らに実験によれば、重水素硫酸水溶液を加温した状態で散布した場合、常温に比べ、より多くの有害物質が汚染土壌から移動(流出)することが判明した。これは、上記重水素硫酸水溶液の凝集効果が常温に比べ促進されているものと考えられる。従って、上記構成によれば、残存する重水素硫酸によってより多くの有害物質を下層へ移動させることが可能となる。   In the aqueous solution spraying step, the deuterated sulfuric acid aqueous solution may be sprayed in a heated state. According to experiments by the inventors, it has been found that when the deuterated sulfuric acid aqueous solution is sprayed in a heated state, more harmful substances move (outflow) from the contaminated soil than at room temperature. This is considered that the coagulation effect of the deuterated sulfuric acid aqueous solution is promoted as compared to room temperature. Therefore, according to the said structure, it becomes possible to move more harmful substances to a lower layer with the residual deuterium sulfuric acid.

さらに、前記散水工程において、前記水は熱湯であることが望ましい。発明者らの実験によれば、重水素硫酸水溶液を散布した土壌を加温した状態にすることで、汚染土壌からさらに多くの有害物質が汚染土壌から移動(流出)することが判明した。従って、上記構成によれば、重水素硫酸水溶液を散布した後に熱湯を散布することで、残存する重水素硫酸によってさらに多くの有害物質を下層へ移動させることができる。   Furthermore, in the watering step, the water is preferably hot water. According to the experiments by the inventors, it has been found that, by heating the soil sprayed with the deuterated sulfuric acid aqueous solution, more harmful substances move (run out) from the contaminated soil. Therefore, according to the above configuration, by spraying hot water after spraying the deuterated sulfuric acid aqueous solution, more harmful substances can be moved to the lower layer by the remaining deuterated sulfuric acid.

また、前記乾燥工程の後に、乾燥させた表層部に前記重水素硫酸水溶液を再度散布する水溶液再散布工程をさらに有するようにするとよい。上述のように、凝集効果に寄与しなかった重水素硫酸は気化せず表層部に残存するが、その残存量は次第に減少する。そのため、乾燥工程の後に重水素硫酸水溶液を再度散布することで、重水素硫酸を補充し、さらに深層部での土壌の団粒化を促進させて、より深く有害物質を沈降させることができる。   Moreover, after the said drying process, it is good to have further the aqueous solution re-spreading process of spraying the said deuterated sulfuric acid aqueous solution again on the dried surface layer part. As described above, deuterated sulfuric acid that has not contributed to the aggregation effect does not vaporize and remains in the surface layer portion, but the residual amount gradually decreases. Therefore, by spraying the deuterated sulfuric acid aqueous solution again after the drying step, the deuterated sulfuric acid is replenished, and further, soil aggregation in the deep layer portion is promoted, and harmful substances can be settled deeper.

前記水溶液散布工程を降雪前に行い、この水溶液散布工程直後の散水工程を前記表層部に積雪した雪の雪解け水により行うようにしても構わない。この場合、重水素硫酸水溶液を散布した後に人為的に散水する必要がないばかりか、数回にわたって散水したのと同様に除々に土壌の凝集効果が働いて浸透性が向上する。   The aqueous solution spraying step may be performed before snowfall, and the water spraying step immediately after the aqueous solution spraying step may be performed by snow melting of snow accumulated on the surface layer portion. In this case, it is not necessary to artificially sprinkle water after spraying the deuterated sulfuric acid aqueous solution, and the soil agglomeration effect works gradually as in the case of watering several times, so that the permeability is improved.

また、前記散水工程を前記表層部に降雨した雨水により行うようにしてもよい。人為的に散水する必要がなく、作業負担が軽減でき、より簡単に除染作業を行うことができる。しかも、乾燥工程を自然乾燥とすれば、さらに作業が簡便となる。   Moreover, you may make it perform the said watering process with the rain water which rained on the said surface layer part. There is no need for artificial watering, the work load can be reduced, and decontamination can be performed more easily. Moreover, if the drying process is natural drying, the operation is further simplified.

前記有害物質は、例えば放射性セシウムである。上述の重水の凝集効果により、表層部の放射性セシウムを水と共に深層部へ沈降させることができるので、土壌を除去することなく、空間線量を簡単に低下させることができる。   The harmful substance is, for example, radioactive cesium. Because of the above-mentioned heavy water aggregation effect, the radioactive cesium in the surface layer can be settled into the deep layer together with water, so that the air dose can be easily reduced without removing the soil.

上記目的を達成するため、本発明に係る汚染土壌の除染方法の他の特徴は、有害物質で汚染された汚染土壌と重水素硫酸水溶液とを混合する混合工程と、この混合物を所定時間経過後に脱水する脱水工程とを有し、前記脱水工程により前記汚染土壌から前記重水素硫酸水溶液へ抽出された前記有害物質を前記混合物から分離することにある。   In order to achieve the above object, another feature of the decontamination method for contaminated soil according to the present invention includes a mixing step of mixing contaminated soil contaminated with a hazardous substance and a deuterated sulfuric acid aqueous solution, and passing this mixture for a predetermined time. A dehydration step of dehydrating afterwards, and separating the harmful substances extracted from the contaminated soil into the deuterated sulfuric acid aqueous solution from the mixture by the dehydration step.

発明者らの実験によれば、汚染土壌と重水素硫酸水溶液とを混合した混合物では、所定時間経過後、有害物質の多くが汚染土壌から重水素硫酸水溶液へ移動(流出)することが判明した。これは、汚染土壌と重水素硫酸水溶液の混合により土壌に隙間が生じ、その隙間を介して有害物質が水溶液中へ流出していることと考えられる。従って、上記構成によれば、汚染土壌から有害物質を重水素硫酸水溶液を介して分離回収でき、汚染土壌を効率よく洗浄することができる。   According to the inventors' experiments, it was found that in a mixture in which contaminated soil and deuterated sulfuric acid aqueous solution are mixed, most of the harmful substances move (outflow) from the contaminated soil to the deuterated sulfuric acid aqueous solution after a predetermined time. . This is considered that a gap is generated in the soil by mixing the contaminated soil and the deuterated sulfuric acid aqueous solution, and harmful substances are flowing into the aqueous solution through the gap. Therefore, according to the said structure, a hazardous | toxic substance can be isolate | separated and collect | recovered from a contaminated soil via deuterated sulfuric acid aqueous solution, and a contaminated soil can be wash | cleaned efficiently.

係る場合、前記混合工程の後に、前記混合物を前記所定時間加熱する加熱工程をさらに有することが望ましい。発明者らの実験によれば、常温に比べ、高温時の方がより多くの有害物質が移動(流出)していることが判明した。従って、上記構成によれば、さらに多くの有害物質を分離でき、洗浄効率(除染効率)が向上する。   In this case, it is desirable to further include a heating step of heating the mixture for the predetermined time after the mixing step. According to the inventors' experiments, it has been found that more harmful substances move (outflow) at higher temperatures than at normal temperatures. Therefore, according to the above configuration, more harmful substances can be separated, and the cleaning efficiency (decontamination efficiency) is improved.

上記本発明に係る汚染土壌の除染方法の特徴によれば、土地の制限を受けることなく簡単且つ安価に少なくとも汚染土壌表層部の有害物質量を低減させることが可能となった。   According to the feature of the decontamination method for contaminated soil according to the present invention, it is possible to reduce the amount of harmful substances at least on the surface layer of the contaminated soil easily and inexpensively without being restricted by land.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る汚染土壌の除染方法の工程を示すフロー図である。It is a flowchart which shows the process of the decontamination method of the contaminated soil which concerns on this invention. 各工程における土壌の状態を説明する図であり、(a)は溶液散布工程、(b)は散水工程、(c)は乾燥工程、(d)は(c)の後に再度散水工程を行った状態、(e)は(d)の後に乾燥工程を行った状態を示す。It is a figure explaining the state of the soil in each process, (a) is a solution spraying process, (b) is a watering process, (c) is a drying process, (d) is a watering process again after (c). The state, (e), shows the state after the drying step after (d). 水分子酸素原子間最近接距離(3.2A)における重水濃度と強度との関係を示すグラフである。It is a graph which shows the relationship between the heavy water density | concentration in the closest distance (3.2A) between water molecule oxygen atoms, and intensity | strength. 重水素硫酸溶液による土壌中における凝集効果を説明する図であり、(a)は重水素硫酸溶液の散布前、(b)は重水素硫酸溶液の散布後の状態を示す。It is a figure explaining the aggregation effect in the soil by a deuterated sulfuric acid solution, (a) shows before spraying of a deuterated sulfuric acid solution, (b) shows the state after spraying of a deuterated sulfuric acid solution. 粒度試験の結果を示すグラフである。It is a graph which shows the result of a particle size test. 本発明に係る重水素硫酸水溶液を加えた常温の試験土壌と加温した状態の試験土壌における放射線量を相対比較した結果を示すグラフであり、(a)は土壌の比較結果、(b)は液体成分の比較結果を示す。It is a graph which shows the result of having compared the radiation dose in the test soil of the normal temperature which added the deuterated sulfuric acid aqueous solution which concerns on this invention, and the heated test soil, (a) is a comparison result of soil, (b) is The comparison result of a liquid component is shown. 重水素硫酸水溶液を加え加温した状態の試験土壌から抽出した液体成分の放射線量の時間変化を示すグラフであり、(a)はセシウム134、(b)はセシウム137を示す。It is a graph which shows the time change of the radiation dose of the liquid component extracted from the test soil of the state heated by adding deuterated sulfuric acid aqueous solution, (a) shows cesium 134, (b) shows cesium 137. 水を加え加温した試験土壌と重水素硫酸水溶液を加え加温した試験土壌から抽出した液体成分の放射線量の測定結果を示すグラフであり、(a)は土壌1gあたりのセシウム134、(b)は土壌1gあたりのセシウム137、(c)は液体成分1mlあたりのセシウム134、(d)は液体成分1mlあたりのセシウム137を示す。It is a graph which shows the measurement result of the radiation dose of the liquid component extracted from the test soil heated by adding water and the deuterated sulfuric acid aqueous solution, and (a) is cesium 134 per 1 g of soil, (b ) Shows cesium 137 per gram of soil, (c) shows cesium 134 per ml of liquid component, and (d) shows cesium 137 per ml of liquid component. 水を加え加温した試験土壌と重水素硫酸水溶液を加え加温した試験土壌から抽出した液体成分の放射線量を相対比較した結果を示すグラフであり、(a)はセシウム134、(b)はセシウム137の結果を示す。It is a graph which shows the result which carried out the relative comparison of the radiation dose of the liquid component extracted from the test soil which added water and heated, and the test soil which added deuterated sulfuric acid aqueous solution, and (a) is cesium 134, (b) is The result of cesium 137 is shown. 水を加えた常温の試験土壌と重水素硫酸水溶液を加えた常温の試験土壌における放射線量を相対比較した結果を示すグラフであり、(a)は土壌の比較結果、(b)は液体成分の比較結果を示す。It is a graph which shows the result of having compared the radiation dose in the normal temperature test soil which added water, and the normal temperature test soil which added the deuterated sulfuric acid aqueous solution, (a) is a comparison result of soil, (b) is a liquid component. A comparison result is shown. 希硫酸を加え加温した試験土壌と重水素硫酸水溶液を加え加温した試験土壌における放射線量を相対比較した結果を示すグラフであり、(a)は土壌の比較結果、(b)は液体成分の比較結果を示す。It is a graph which shows the result which carried out the relative comparison of the radiation dose in the test soil heated by adding dilute sulfuric acid and the deuterated sulfuric acid aqueous solution, (a) is a comparison result of soil, (b) is a liquid component. The comparison result of is shown.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
[汚染土壌の概要]
本発明に係る汚染土壌の除染方法は、例えば、図2(a)に示すように、土壌1の表層部2上(地表GL)に分布した有害物質としての放射性セシウムCsを、表層部2の土壌を除去することなく、水Wを介して土壌1の表層部2から深層部3まで沈降させる。なお、深層部3とは、例えば、作物・植栽深さより深い部分を指す。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
[Outline of contaminated soil]
In the decontamination method for contaminated soil according to the present invention, for example, as shown in FIG. 2 (a), radioactive cesium Cs as a harmful substance distributed on the surface layer 2 (surface GL) of the soil 1 is converted into the surface layer 2. Without removing the soil, the water 1 is allowed to settle from the surface layer portion 2 to the deep layer portion 3 through the water W. In addition, the deep layer part 3 points out the part deeper than crop and planting depth, for example.

[除染工程の概要]
この除染方法は、図1,2に示すように、表層部2が放射性セシウムCsで汚染された土壌1の表層部2に重水素硫酸水溶液ALを散布する水溶液散布工程S1と、重水素硫酸水溶液ALを散布した表層部2に水Wを散布する散水工程S2と、水Wを散布した表層部2を乾燥させる乾燥工程S3とからなる。散水工程S2は、例えば、人為的に適宜期間をおいて行われる。また、乾燥工程S3は、自然乾燥により行う。
[Outline of decontamination process]
As shown in FIGS. 1 and 2, the decontamination method includes an aqueous solution spraying step S1 in which the surface layer 2 is sprayed with the deuterated sulfuric acid aqueous solution AL on the surface layer 2 of the soil 1 contaminated with radioactive cesium Cs, and the deuterated sulfuric acid. It consists of a water spraying step S2 for spraying water W onto the surface layer portion 2 sprayed with the aqueous solution AL, and a drying step S3 for drying the surface layer portion 2 sprayed with water W. The watering step S2 is performed, for example, artificially with an appropriate period. Moreover, drying process S3 is performed by natural drying.

[重水素硫酸水溶液の製法]
本実施形態において、上述の重水素硫酸水溶液ALは、例えば、重水素硫酸:水を体積比で1:9で混合して作製される。また、この重水素硫酸水溶液のpHは1.0〜2.5の範囲内で調整される。散水工程後の土壌において、土壌1m3あたりの重水素濃度を0.0003体積%〜0.002体積%とすることができる。なお、後述する土壌に対する含有率となるように、例えば水で30倍以上100倍以下に希釈してもよい。
[Production method of deuterated sulfuric acid aqueous solution]
In the present embodiment, the above-described deuterated sulfuric acid aqueous solution AL is prepared, for example, by mixing deuterated sulfuric acid: water at a volume ratio of 1: 9. Moreover, the pH of this deuterated sulfuric acid aqueous solution is adjusted within the range of 1.0-2.5. In the soil after the sprinkling step, the deuterium concentration per 1 m 3 of soil can be 0.0003 vol% to 0.002 vol%. In addition, you may dilute to 30 times or more and 100 times or less with water so that it may become the content rate with respect to the soil mentioned later, for example.

[重水素硫酸水溶液の効果]
ここで、図3に、水分子酸素原子間最近接距離(3.2A)における重水濃度と強度との関係を対数にて示す。同図に示すように、土壌1m3に対する重水濃度0.0003体積%以上0.002体積%以下の範囲内では、最も酸素原子間の距離が接近し、水分子間の相互作用(分子間力)が強いと考えられる。0.0003体積%未満では、相互作用が低下し後述する凝集効果が発現しにくい。他方、0.002体積%を超えても、相互作用に変化が大差はなく凝集効果に大差がない。なお、図3は、重水(D2O)濃度に関するグラフであるが、重水素硫酸(D2SO4)においても同様であると推測される。
[Effect of deuterated sulfuric acid aqueous solution]
Here, FIG. 3 shows the logarithm of the relationship between the concentration of heavy water and the strength at the closest distance (3.2 A) between water molecules and oxygen atoms. As shown in the figure, within the range of 0.002% by volume of heavy water concentration 0.0003% by volume or more with respect to the soil 1 m 3, whose distance between oxygen atoms close interaction between water molecules (intermolecular force ) Is considered strong. If the amount is less than 0.0003% by volume, the interaction is lowered, and the aggregation effect described later is hardly exhibited. On the other hand, even if it exceeds 0.002% by volume, there is no significant difference in the interaction and there is no significant difference in the aggregation effect. FIG. 3 is a graph relating to the concentration of heavy water (D 2 O), but it is estimated that the same applies to deuterated sulfuric acid (D 2 SO 4 ).

[凝集効果]
ところで、土壌1には、図4(a)に示す如く、単粒1aと団粒1bとが存在する。また、団粒1bは単粒1aが固まったものである。土壌は、経年経過等によって単粒1aが集積、密集して、隙間が少なく透水性、通気性が低下する(単粒構造)。この状態では、雨水等が土壌1の深層部3へ浸透せず、放射性セシウムCsも表層部2に分布した状態が続く。
[Aggregating effect]
By the way, in the soil 1, as shown to Fig.4 (a), the single grain 1a and the aggregate 1b exist. In addition, the aggregate 1b is obtained by solidifying the single grain 1a. In the soil, the single grains 1a accumulate and concentrate over time, etc., and there are few gaps and the water permeability and air permeability are reduced (single grain structure). In this state, rainwater or the like does not penetrate into the deep layer portion 3 of the soil 1, and the state where the radioactive cesium Cs is distributed in the surface layer portion 2 continues.

このような土壌に重水素硫酸水溶液ALを表層部2に散布すると、図4(b)に示すように、上述の水分子間の相互作用によって、単粒1aが互いに引き付けられて凝集して団粒1bが形成される。この団粒化により、同図の如く、団粒1b間に隙間4が生成され、透水性、通気性が向上する(団粒構造)。その結果、放射性セシウムCsは表層部2から深層部3へ沈降(移動)することとなる。よって、土壌1の表層部2の放射性セシウムCsが減少し、地表近傍の空間線量(放射線量)を低減させることができる。   When the deuterated sulfuric acid aqueous solution AL is sprayed on the surface layer 2 in such soil, as shown in FIG. 4 (b), the single particles 1a are attracted to each other and aggregate due to the interaction between the water molecules described above. Grains 1b are formed. By this agglomeration, as shown in the figure, gaps 4 are generated between the agglomerates 1b to improve water permeability and air permeability (aggregate structure). As a result, radioactive cesium Cs settles (moves) from the surface layer portion 2 to the deep layer portion 3. Therefore, the radioactive cesium Cs of the surface layer part 2 of the soil 1 decreases, and the air dose (radiation dose) in the vicinity of the ground surface can be reduced.

[検証実験]
発明者は、上記効果を検証するために各種実験を行った。
1)透水性試験
試験土壌に対し、重水素硫酸の原液を水で30倍に希釈した水溶液を0.5l/m2上散布した部分を散布部分と、同土壌に同量の水を散布した部分と無散布部分とし、一定期間、PH及び透水性(mm/h)を測定した。
[Verification experiment]
The inventor conducted various experiments in order to verify the above effects.
1) Water permeability test The test soil was sprayed with 0.5 l / m 2 of an aqueous solution of deuterated sulfuric acid diluted 30-fold with water, and the same amount of water was sprayed onto the soil. PH and water permeability (mm / h) were measured for a certain period of time with a portion and a non-sprayed portion.

Figure 2014100700
Figure 2014100700

表1に示すように、散布から1月経過後にいずれにも散水した状態では、散布部分及び無散布部分のいずれでも透水性は向上したが、散布部分の方がより透水性が高い。これは、上述の重水素硫酸による凝集効果により土壌の団粒化が生じ隙間が多く形成しているためと考えられる。   As shown in Table 1, in the state where water was sprayed after one month from spraying, the water permeability improved in both the sprayed part and the non-sprayed part, but the sprayed part has higher water permeability. This is presumably because soil aggregates due to the agglomeration effect of deuterated sulfuric acid described above and many gaps are formed.

また、散布から2月経過後にいずれも散水せず乾燥した状態では、1月経過後に比べ、散布部分及び無散布部分のいずれでも透水性は大幅に向上したが、散布部分の方がより透水性が高い。これは、乾燥状態はもともと含水量が少ないため透水性が高くなり、且つ、散布部分はさらに重水素硫酸による凝集効果により土壌の団粒化が生じ隙間が多く形成しているため、さらに透水性が高くなると考えられる。   In addition, in the dry state without watering after 2 months from spraying, the water permeability was significantly improved in both the sprayed part and the non-sprayed part compared to after January, but the sprayed part was more water-permeable. Is expensive. This is because water content is high because the moisture content is originally low in the dry state, and the sprayed part is further aggregated due to the agglomeration effect of deuterated sulfuric acid and there are many gaps, so that water permeability is further increased. Will be higher.

2)粒度試験(土質調査)
土壌に対し重水素硫酸水溶液を散布していない処理前の土壌試料と、容積(水+土壌試料)1000ccに対し希釈倍率50倍及び100倍の重水素硫酸水溶液を散布した散布後の土壌試料1,2について、それぞれ粒度試験を実施した。なお、粒度試験(沈降分析)は、沈降理論(Stokes)に基づいて行われている方法であり、試料と水とを分散させた後に時間〜沈降量を測定するものである。縦軸に透過質量百分率(%)、横軸に粒径(mm)を示す。
2) Grain size test (soil investigation)
A soil sample before treatment in which a deuterated sulfuric acid aqueous solution is not sprayed on the soil, and a soil sample 1 after sprayed in which a deuterium sulfate aqueous solution having a dilution ratio of 50 times and 100 times is sprayed on a volume (water + soil sample) 1000 cc , 2 were each subjected to a particle size test. The particle size test (precipitation analysis) is a method performed based on the sedimentation theory (Stokes), and measures the amount of sedimentation from time to time after dispersing the sample and water. The vertical axis represents the transmission mass percentage (%), and the horizontal axis represents the particle size (mm).

図5に示すように、処理前の土壌試料では、粒径が0.008mm以下の土壌粒子が約40%存在し、粒径0.005mm未満の粘土分が多く存在していた。他方、重水素硫酸水溶液を散布した土壌試料では、いずれも粒径が0.008mm以下の土壌粒子が約5%程度に大幅に減少し、粒径0.005mm未満の粘土分は3〜4%程度となった。そして、粒径が0.008mm〜0.1mmの範囲内の土壌粒子が大幅に増加した。このことから、重水素硫酸水溶液を散布することで、重水素硫酸水溶液の凝集効果により粒径の小さいものが凝集されて粒径のより大きい粒子となり、粒子間に隙間が生成されると考えられる。なお、試験結果から希釈倍率による大きな差はなく、希釈倍率の高い重水素硫酸水溶液を用いる方がより経済的である。   As shown in FIG. 5, in the soil sample before the treatment, about 40% of soil particles having a particle size of 0.008 mm or less were present, and a large amount of clay having a particle size of less than 0.005 mm was present. On the other hand, in the soil samples sprayed with the deuterated sulfuric acid aqueous solution, the soil particles having a particle size of 0.008 mm or less are greatly reduced to about 5%, and the clay content having a particle size of less than 0.005 mm is 3 to 4%. It became about. And the soil particle in the range whose particle size is 0.008 mm-0.1 mm increased significantly. From this, it is considered that by spraying the deuterated sulfuric acid aqueous solution, the particles having a smaller particle size are aggregated by the aggregation effect of the deuterated sulfuric acid aqueous solution to become particles having a larger particle size, and a gap is generated between the particles. . In addition, there is no big difference by a dilution rate from a test result, and it is more economical to use the deuterated sulfuric acid aqueous solution with a high dilution rate.

[除染工程の詳細説明]
次に、除染方法の各工程について、図2を参照しながら詳しく説明する。
まず、図2(a)に示すように、例えば、重水素硫酸水溶液を土壌1m3当たり50cc散布し、表層部2の上層部2aに重水素硫酸DSを分布させる(水溶液散布工程S1)。次に、同図(b)に示すように、表層部2に水Wを散布する(散水工程S2)。散水量は、表層部2の水分の飽和状態(含水100%)となる量とする。これにより、土壌1m3あたりの重水素濃度を0.0003体積%〜0.002体積%とし、上述の重水素硫酸の凝集効果によって、表層部2の上層部2aで図4(b)に示す如き団粒化が生じる。
[Detailed description of decontamination process]
Next, each step of the decontamination method will be described in detail with reference to FIG.
First, as shown in FIG. 2A, for example, 50 cc of deuterated sulfuric acid aqueous solution is sprayed per 1 m 3 of soil, and deuterated sulfuric acid DS is distributed in the upper layer portion 2a of the surface layer portion 2 (aqueous solution spraying step S1). Next, as shown in FIG. 5B, water W is sprayed on the surface layer portion 2 (watering step S2). Let the watering amount be the amount which becomes the saturated state of water of the surface layer part 2 (water content 100%). Thereby, the deuterium concentration per 1 m 3 of soil is set to 0.0003 vol% to 0.002 vol%, and the upper layer portion 2a of the surface layer portion 2 is shown in FIG. Such agglomeration occurs.

次に、図2(c)に示すように、表層部2を自然乾燥させる(乾燥工程(S3))。これにより、水Wが気化して上層部2a中に隙間が生じる。一方、凝集効果に寄与しなかった重水素硫酸DSは気化することなく上層部2aに残存する。そして、同図(d)の如く、再度散水して表層部2の水分を飽和状態(含水100%)とする。これにより、残存した重水素硫酸DSは下層部2bへ浸透すると共に先の散水工程と同じく土壌の団粒化を促進させる。また、放射性セシウムCsは、水Wにより先の散水工程S2及び乾燥工程S3により生成された隙間をつたって、図(e)の如く下層部2bへ沈降する。その後、再度乾燥させることで、下層部2bにも重水素硫酸DSの凝集効果により隙間が生成される。このように、散水工程及び乾燥工程を繰り返し行うことで、重水素硫酸DSが徐々に深層部3に向かって浸透すると共に隙間を生成する。そして、放射性セシウムCsは順次形成される隙間をつたって表層部2から深層部3へ沈降する。   Next, as shown in FIG.2 (c), the surface layer part 2 is naturally dried (drying process (S3)). Thereby, the water W is vaporized and a gap is generated in the upper layer portion 2a. On the other hand, the deuterated sulfuric acid DS that did not contribute to the aggregation effect remains in the upper layer portion 2a without being vaporized. Then, as shown in FIG. 4D, water is sprayed again to bring the moisture in the surface layer portion 2 into a saturated state (water content 100%). As a result, the remaining deuterated sulfuric acid DS penetrates into the lower layer 2b and promotes soil agglomeration as in the previous watering step. Moreover, radioactive cesium Cs settles in the lower layer part 2b like the figure (e) through the clearance gap | interval produced | generated by the water sprinkling process S2 and the drying process S3 with the water W. FIG. Thereafter, by drying again, a gap is also generated in the lower layer portion 2b due to the aggregation effect of the deuterated sulfuric acid DS. In this way, by repeating the watering step and the drying step, the deuterated sulfuric acid DS gradually permeates toward the deep layer portion 3 and creates a gap. And radioactive cesium Cs settles from the surface layer part 2 to the deep layer part 3 through the clearance gap formed sequentially.

次に、本発明に係る第二実施形態について説明する。なお、以下の実施形態において、同様の部材には同一の符号を付してある。
上記第一実施形態では、水溶液散布工程に常温の重水素硫酸水溶液を用い、散水工程に常温の水を用いた。しかし、第二実施形態においては、水溶液散布工程において加温した重水素硫酸水溶液を用い、散水工程に熱湯を用いる。これにより、より効率よく有害物質を土壌下層へ移動させることができる。
Next, a second embodiment according to the present invention will be described. In the following embodiments, similar members are denoted by the same reference numerals.
In said 1st embodiment, normal temperature deuterated sulfuric acid aqueous solution was used for the aqueous solution spraying process, and normal temperature water was used for the watering process. However, in the second embodiment, the deuterated sulfuric acid aqueous solution heated in the aqueous solution spraying process is used, and hot water is used in the sprinkling process. Thereby, a hazardous | toxic substance can be moved to a soil lower layer more efficiently.

ここで、発明者は、本願発明の有用性を確認すべく以下の試験を行った。
[試験1]
試験土壌に本願の重水素硫酸水溶液を加えて、120分常温(実施例B)及び約90℃で加温(実施例A)し、その後に土壌と液体成分とを分離し、それぞれ放射線量を測定した。放射線量の測定(分析方法)は、文部科学省放射能測定法シリーズ7のゲルマニウム半導体検出器によるガンマ線スペクトロメトリー法を用いた。図6に、測定値の大きいものを基準にそれぞれ相対比較した結果を示す。同図に示すように、常温時に比べ加温した状態の方が、土壌中の放射線量が低くく、液体成分の放射線量が高い。この結果、加温した状態の方がより凝集効果による団粒化が促進され、より多くの有害物質が下層へ移動可能と推測できる。
Here, the inventor conducted the following tests to confirm the usefulness of the present invention.
[Test 1]
Add the deuterated sulfuric acid aqueous solution of the present application to the test soil, warm it at room temperature (Example B) and about 90 ° C. (Example A) for 120 minutes, and then separate the soil and liquid components, It was measured. For the measurement (analysis method) of radiation dose, gamma-ray spectrometry using a germanium semiconductor detector of the Ministry of Education, Culture, Sports, Science and Technology Radioactivity Measurement Method Series 7 was used. FIG. 6 shows the results of relative comparisons based on the large measured values. As shown in the figure, the radiation amount in the soil is lower and the radiation amount of the liquid component is higher in the heated state than at normal temperature. As a result, it can be presumed that in the heated state, aggregation due to the aggregation effect is promoted, and more harmful substances can move to the lower layer.

[試験2]
試験土壌に本願の重水素硫酸水溶液を加えて、60分、120分間約90℃で加温し、その後に土壌と液体成分とを分離し、上記と同様に放射線量を測定した。図7に、液体1mlあたりのセシウム134及び137の放射線量の測定結果を示す。同図に示す値は、試験土壌の放射線量を基準にした相対値を示す。この値は、液体成分の放射線量相対値を示すことから、汚染土壌の除染率と捉えることができる。なお、参考までに常温10分の結果を併記する。同図に示すように、時間の経過に従い相対値が増加している。よって、加温した状態の重水素硫酸水溶液を散布した後に熱水を散水することで、加温状態を継続することができ、より土壌の団粒化が促進されることで、より多くの有害物質が下層へ移動可能となると推測できる。
[Test 2]
The deuterated sulfuric acid aqueous solution of the present application was added to the test soil and heated at about 90 ° C. for 60 minutes and 120 minutes, after which the soil and liquid components were separated, and the radiation dose was measured in the same manner as described above. FIG. 7 shows the measurement results of radiation doses of cesium 134 and 137 per 1 ml of liquid. The values shown in the figure show relative values based on the radiation dose of the test soil. Since this value indicates the relative value of the radiation dose of the liquid component, it can be regarded as the decontamination rate of the contaminated soil. For reference, the results at room temperature for 10 minutes are also shown. As shown in the figure, the relative value increases with time. Therefore, by spraying the hot water after spraying the heated deuterated sulfuric acid aqueous solution, the warmed state can be continued, and the soil agglomeration is further promoted, thereby making it more harmful. It can be assumed that the substance can move to the lower layer.

[試験3]
試験土壌にそれぞれ本願の重水素硫酸水溶液と水を加えたものを、120分約90℃で加温し、その後に土壌と液体成分に分離し、上記と同様に放射線量を測定した。その測定結果を図8に示す。同図に示すように、水のみの場合に比べ、加温した重水素硫酸水溶液の方が土壌からの放射線量が低く液体からの放射線量が高い。また、図9に、120分経過後の液体1mlあたりのセシウム134及び137の放射線量の水との比較結果を示す。同図に示す値は、試験土壌の放射線量を基準にした相対値を示す。同図に示すように、水に比べ重水素硫酸水溶液の放射線量が高い。この結果からも、重水素硫酸水溶液を散布することで、より多くのセシウム(有害物質)を下層へ移動可能となることが裏付けられた。
[Test 3]
What added each deuterated sulfuric acid aqueous solution and water of this application to test soil was heated at about 90 degreeC for 120 minutes, after that, it isolate | separated into soil and a liquid component, and measured the radiation dose similarly to the above. The measurement results are shown in FIG. As shown in the figure, the heated deuterated sulfuric acid aqueous solution has a lower radiation dose from the soil and a higher radiation dose from the liquid than water alone. Moreover, the comparison result with the water of the radiation dose of cesium 134 and 137 per 1 ml of liquid after progress for 120 minutes is shown in FIG. The values shown in the figure show relative values based on the radiation dose of the test soil. As shown in the figure, the radiation dose of the deuterated sulfuric acid aqueous solution is higher than that of water. From these results, it was confirmed that more cesium (hazardous substance) can be moved to the lower layer by spraying the deuterated sulfuric acid aqueous solution.

[試験4]
上記試験3(図9)は加温した状態における本願重水素硫酸水溶液と水との比較であったが、常温においても同様の試験を行った。その結果を図10に示す。同図に示す値は、測定値の大きいものを基準とした相対値である。同図に示すように、常温においても、水のみの場合に比べ、重水素硫酸水溶液の方が土壌からの放射線量が低く液体からの放射線量が高い。すわなち、常温においても水よりも重水素硫酸水溶液の方が、より多くの有害物質を土壌下層へ移動させることが可能である
[Test 4]
The test 3 (FIG. 9) was a comparison between the deuterated sulfuric acid aqueous solution and water in a heated state, but the same test was performed at room temperature. The result is shown in FIG. The value shown in the figure is a relative value based on a large measured value. As shown in the figure, even at room temperature, the deuterated sulfuric acid aqueous solution has a lower radiation dose from the soil and a higher radiation dose from the liquid than water alone. In other words, even at room temperature, deuterated sulfuric acid aqueous solution can move more harmful substances to the lower soil layer than water.

[試験5]
上記試験2〜4は水との比較であったが、本願重水素硫酸水溶液と同等のpH(約4.3)希硫酸との比較を行った。この試験では、120分約95℃で加温した。その結果を図11に示す。この図においても、図10と同様の相対値を用いている。同図に示すように、希硫酸よりも重水素硫酸水溶液の方が土壌からの放射線量が低く、液体からの放射線量が高い。すなわち、希硫酸よりも重水素硫酸水溶液の方が、より効率よく汚染物質を土壌下層へ移動させることが可能であることが伺える。
[Test 5]
Although the above tests 2 to 4 were a comparison with water, a comparison was made with dilute sulfuric acid having a pH equivalent to that of the deuterated sulfuric acid aqueous solution of the present application (about 4.3). In this test, heating was performed at about 95 ° C. for 120 minutes. The result is shown in FIG. In this figure, the same relative values as in FIG. 10 are used. As shown in the figure, the amount of radiation from the soil and the amount of radiation from the liquid are higher in the deuterated sulfuric acid aqueous solution than in the dilute sulfuric acid. That is, it can be seen that the deuterated sulfuric acid aqueous solution can move pollutants to the lower soil layer more efficiently than dilute sulfuric acid.

ところで、上記第一、第二実施形態では、自然の状態の土壌に重水素硫酸水溶液を散布し散水する例について、説明した。しかし、この場合に限られず、除染作業によって汚染土壌の表層部を除去し隔離した汚染土壌においても、上記実施形態と同様に、重水素硫酸水溶液を散布し散水することで、有害物質を汚染土壌から分離することができる。係る場合、隔離された汚染土壌であるので、例えば、散布する重水素硫酸水溶液及び散水する水を加熱せずに汚染土壌を加熱することも可能である。この場合であっても、第二実施形態と同様に常温時よりも効率よく有害物質を除去することができる。   By the way, in said 1st and 2nd embodiment, the example which spreads deuterated sulfuric acid aqueous solution and sprinkles water on the soil of a natural state was demonstrated. However, the present invention is not limited to this, and even in contaminated soil from which the surface layer portion of the contaminated soil has been removed and isolated by decontamination work, in the same manner as in the above embodiment, the deuterated sulfuric acid aqueous solution is sprayed and sprinkled to contaminate harmful substances. It can be separated from the soil. In such a case, since the contaminated soil is isolated, for example, the contaminated soil can be heated without heating the deuterated sulfuric acid aqueous solution to be sprayed and the water to be sprinkled. Even in this case, similarly to the second embodiment, harmful substances can be removed more efficiently than at normal temperature.

但し、上記第一、第二実施形態では、汚染土壌全体に重水素硫酸を行きわたらせる(浸透させる)ために、時間を要する。そこで、第三実施形態においては、汚染土壌と重水素硫酸水溶液とを混合し、その混合物を所定時間経過後脱水する。土壌と重水素硫酸水溶液とを混合(攪拌)するので、重水素硫酸水溶液を土壌に散布する上記各実施形態に比べ、短時間で重水素硫酸を土壌全体に行きわたらせることができる。よって、上記各試験結果に示すように、短時間で汚染土壌から有害物質を抽出することができ、大量の汚染土壌を処理できることができる。第三実施形態における重水素硫酸水溶液のpHは、1.0以上5.0以下であるとよい。この数値範囲内であれば、上記各実施形態と同様の効果を短時間に得ることができる。より好ましくは、重水素硫酸水溶液のpHは、1.0以上3.0以下である。   However, in the first and second embodiments, it takes time to spread (permeate) deuterated sulfuric acid throughout the contaminated soil. Therefore, in the third embodiment, the contaminated soil and the deuterated sulfuric acid aqueous solution are mixed, and the mixture is dehydrated after a predetermined time. Since the soil and the deuterated sulfuric acid aqueous solution are mixed (stirred), the deuterated sulfuric acid can be spread over the entire soil in a shorter time than in the above embodiments in which the deuterated sulfuric acid aqueous solution is sprayed on the soil. Therefore, as shown in each test result, harmful substances can be extracted from the contaminated soil in a short time, and a large amount of contaminated soil can be treated. The pH of the deuterated sulfuric acid aqueous solution in the third embodiment is preferably 1.0 or more and 5.0 or less. If it is in this numerical range, the effect similar to said each embodiment can be acquired in a short time. More preferably, the pH of the deuterated sulfuric acid aqueous solution is 1.0 or more and 3.0 or less.

第三実施形態として、例えば、タンク等の容器に上記各実施形態の重水素硫酸水溶液(例えば、pH=1.0〜3.0の範囲内)と汚染土壌とを投入し、所定時間攪拌及び加熱する。その後、その混合物を加圧、脱水し、土壌と液体成分を分離する。上記試験1〜4に示すように、汚染物質(セシウム)は汚染土壌から液体成分へ移動するので、脱水工程により汚染土壌から有害物質が除去(分離)される。このように、汚染土壌と重水素硫酸水溶液とを混合して処理することで、散水や乾燥を繰り返し行う必要がなく、短時間で大量の汚染土壌の除染が可能となる。なお、混合物を加熱せず常温で処理することも可能であるが、上記試験1に示すように、加熱(高温)することで有害物質の抽出効率は向上する。   As a third embodiment, for example, a deuterated sulfuric acid aqueous solution (for example, in the range of pH = 1.0 to 3.0) and contaminated soil of each of the above embodiments and a contaminated soil are put into a container such as a tank, Heat. Thereafter, the mixture is pressurized and dehydrated to separate the soil and liquid components. As shown in the above tests 1 to 4, since the pollutant (cesium) moves from the contaminated soil to the liquid component, harmful substances are removed (separated) from the contaminated soil by the dehydration process. In this way, by mixing and treating the contaminated soil and the deuterated sulfuric acid aqueous solution, it is not necessary to repeat watering and drying, and a large amount of contaminated soil can be decontaminated in a short time. In addition, although it is possible to process a mixture at normal temperature without heating, as shown in the said test 1, the extraction efficiency of a harmful substance improves by heating (high temperature).

最後に、本発明のさらに他の実施形態の可能性について説明する。
上記第一、第二実施形態において、図1に示す如く、水溶液散布工程S1の後に、散水工程S2及び乾燥工程S3を繰り返し行った。しかし、同図の一点鎖線で示す如く、乾燥工程S3の後に、水溶液再散布工程S4を設けても構わない。水溶液再散布工程S4を設けることで、散水工程S2及び乾燥工程S3を繰り返し行うことで減少する表層部2中の重水素硫酸を補充することができ、さらに深層部での土壌の団粒化を促進させることができる。なお、水溶液再散布工程S4は、土壌の状態等を観察し、適宜行えばよい。
Finally, the possibilities of yet another embodiment of the present invention will be described.
In the first and second embodiments, as shown in FIG. 1, after the aqueous solution spraying step S1, the watering step S2 and the drying step S3 were repeated. However, as shown by the alternate long and short dash line in the figure, an aqueous solution respraying step S4 may be provided after the drying step S3. By providing the aqueous solution respreading step S4, deuterated sulfuric acid in the surface layer portion 2 that is decreased by repeatedly performing the watering step S2 and the drying step S3 can be supplemented, and further the soil agglomeration in the deep layer portion Can be promoted. In addition, what is necessary is just to perform aqueous solution re-spreading process S4, observing the state of soil etc. suitably.

上記第一実施形態において、散水工程S2を人為的な散水により行った。しかし、人為的な散水に限らず、降雨を利用しても構わない。また、水溶液散布工程を降雪前に行い、この水溶液散布工程S1直後の散水工程S2を雪の雪解け水により行うようにしてもよい。これらにより、作業負担が軽減される。さらに、雪解け水を用いる場合、雪解けは日によって又は時間帯によって発生の有無が異なるので、数回にわたって散水したのと同様に除々に土壌の凝集効果が働いて浸透性が向上する。   In said 1st embodiment, watering process S2 was performed by artificial watering. However, it is not limited to artificial watering, and rain may be used. Further, the aqueous solution spraying step may be performed before snowfall, and the water spraying step S2 immediately after the aqueous solution spraying step S1 may be performed by snow melting. As a result, the work load is reduced. Furthermore, when snowmelt is used, the occurrence of snowmelt differs depending on the day or time, so that the soil cohesion effect works gradually and the permeability is improved in the same manner as when water is sprayed several times.

また、上記第一、第二実施形態において、乾燥工程S3を自然乾燥により行ったが人為的に行うことも可能である。但し、作業負担が増大する点で上記実施形態が優れている。   Moreover, in said 1st, 2nd embodiment, although drying process S3 was performed by natural drying, it can also be performed artificially. However, the above embodiment is excellent in that the work load increases.

上記各実施形態において、有害物質として放射性セシウムを例に説明したが、これに限られるものではなく、他の放射性物質でも適用可能である。また、放射性物質に限らず、カドミウム、クロム、鉛等の重金属等の物質でも適用可能である。   In each of the above embodiments, radioactive cesium has been described as an example of a harmful substance. However, the present invention is not limited to this, and other radioactive substances can also be applied. Further, not only radioactive substances but also substances such as heavy metals such as cadmium, chromium and lead are applicable.

上記第一、第二実施形態において、重水素硫酸水溶液を、重水素硫酸:水を体積比で1:9で混合して作製した。しかし、重水素硫酸水溶液は、この混合率に限られるものではなく、重水素硫酸が汚染土壌に対して0.0003体積%以上0.002体積%以下となるように調整すればよい。また、同様に、希釈倍率や散布量も上記数値範囲となるように適宜設定すればよい。   In the first and second embodiments, the deuterated sulfuric acid aqueous solution was prepared by mixing deuterated sulfuric acid: water at a volume ratio of 1: 9. However, the deuterated sulfuric acid aqueous solution is not limited to this mixing ratio, and may be adjusted so that the deuterated sulfuric acid is 0.0003 vol% or more and 0.002 vol% or less with respect to the contaminated soil. Similarly, the dilution factor and the application amount may be appropriately set so as to be in the above numerical range.

本発明は、農地、公園、山林等、土地の用途、種別に制限されることなく、放射性セシウム等の有害物質による汚染土壌の除染方法として利用することができる。また、上述の各土地から除去した汚染土壌に対しても利用することができる。   The present invention can be used as a decontamination method for soil contaminated with harmful substances such as radioactive cesium, without being limited to the use and type of land such as farmland, parks, and forests. Moreover, it can utilize also with respect to the contaminated soil removed from each above-mentioned land.

1:土壌、1a:単粒、1b:団粒、2:表層部、3:深層部、4:隙間、AL:重水素硫酸水溶液、DS:重水素硫酸、Cs:放射性セシウム(有害物質)、GL:地表、W:水 1: soil, 1a: single grain, 1b: aggregate, 2: surface layer part, 3: deep layer part, 4: gap, AL: deuterated sulfuric acid aqueous solution, DS: deuterated sulfuric acid, Cs: radioactive cesium (toxic substance), GL: ground surface, W: water

Claims (10)

少なくとも表層部が有害物質で汚染された汚染土壌に重水素硫酸水溶液を散布する水溶液散布工程、
前記重水素硫酸水溶液を散布した表層部に水を散布する散水工程、
前記水を散布した表層部を乾燥させる乾燥工程を有し、
前記散水工程及び前記乾燥工程を繰り返し行うことで、前記有害物質を前記汚染土壌の表層部から深層部に沈降させる汚染土壌の除染方法。
An aqueous solution spraying process in which a deuterated sulfuric acid aqueous solution is sprayed on contaminated soil with at least the surface layer contaminated with harmful substances,
A watering step of spraying water on a surface layer portion sprayed with the deuterated sulfuric acid aqueous solution;
Having a drying step of drying the surface layer portion to which the water has been dispersed;
A decontamination method for contaminated soil in which the harmful substances are settled from a surface layer portion to a deep layer portion of the contaminated soil by repeatedly performing the watering step and the drying step.
重水素硫酸が前記汚染土壌1m3に対して0.0003体積%以上0.002体積%以下となるように前記重水素硫酸水溶液を散布する請求項1記載の汚染土壌の除染方法。 Decontamination method of contaminated soil according to claim 1, wherein the deuterium sulfate to spray the deuterium aqueous sulfuric acid solution so that the contaminated soil 1 m 3 0.0003 vol% 0.002% by volume or less with respect. 前記水溶液散布工程において、前記重水素硫酸水溶液を加温した状態で散布する請求項1又は2記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to claim 1 or 2, wherein in the aqueous solution spraying step, the deuterated sulfuric acid aqueous solution is sprayed in a heated state. 前記散水工程において、前記水は熱湯である請求項3記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to claim 3, wherein in the watering step, the water is hot water. 前記乾燥工程の後に、乾燥させた表層部に前記重水素硫酸水溶液を再度散布する水溶液再散布工程をさらに有する請求項1〜4のいずれかに記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to any one of claims 1 to 4, further comprising an aqueous solution respraying step of spraying the deuterated sulfuric acid aqueous solution again on the dried surface layer portion after the drying step. 前記水溶液散布工程を降雪前に行い、この水溶液散布工程直後の散水工程を前記表層部に積雪した雪の雪解け水により行う請求項1,2,5のいずれかに記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to any one of claims 1, 2, and 5, wherein the aqueous solution spraying step is performed before snowfall, and the water spraying step immediately after the aqueous solution spraying step is performed by thawing the snow accumulated on the surface layer portion. . 前記散水工程を前記表層部に降雨した雨水により行う請求項1,2,5のいずれかに記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to any one of claims 1, 2, and 5, wherein the watering step is performed using rainwater that has fallen on the surface layer. 前記有害物質は、放射性セシウムである請求項1〜7のいずれかに記載の汚染土壌の除染方法。 The method for decontamination of contaminated soil according to any one of claims 1 to 7, wherein the harmful substance is radioactive cesium. 有害物質で汚染された汚染土壌と重水素硫酸水溶液とを混合する混合工程と、
この混合物を所定時間経過後に脱水する脱水工程を有し、
前記脱水工程により前記汚染土壌から前記重水素硫酸水溶液へ流出した有害物質を前記混合物から分離する汚染土壌の除染方法。
A mixing step of mixing contaminated soil contaminated with harmful substances and deuterated sulfuric acid aqueous solution;
Having a dehydration step of dehydrating the mixture after a predetermined time;
A decontamination method for contaminated soil, wherein a harmful substance flowing out from the contaminated soil into the deuterated sulfuric acid aqueous solution by the dehydration step is separated from the mixture.
前記混合工程の後に、前記混合物を前記所定時間加熱する加熱工程をさらに有する請求項9記載の汚染土壌の除染方法。 The decontamination method for contaminated soil according to claim 9, further comprising a heating step of heating the mixture for the predetermined time after the mixing step.
JP2013219075A 2012-10-23 2013-10-22 Decontamination method for contaminated soil Active JP6212353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219075A JP6212353B2 (en) 2012-10-23 2013-10-22 Decontamination method for contaminated soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012233922 2012-10-23
JP2012233922 2012-10-23
JP2013219075A JP6212353B2 (en) 2012-10-23 2013-10-22 Decontamination method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2014100700A true JP2014100700A (en) 2014-06-05
JP6212353B2 JP6212353B2 (en) 2017-10-11

Family

ID=51023732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219075A Active JP6212353B2 (en) 2012-10-23 2013-10-22 Decontamination method for contaminated soil

Country Status (1)

Country Link
JP (1) JP6212353B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544677B1 (en) * 2014-07-29 2015-08-18 성균관대학교산학협력단 Soil conditioning system comprising an inorganic minerals removal device for improvement of soil and method using the same
WO2023228443A1 (en) * 2022-05-24 2023-11-30 株式会社オクト Solution for destroying biofilm and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302700A (en) * 1989-05-01 1990-12-14 Westinghouse Electric Corp <We> Treatment of waste polluted by meltable harmful or radioactive nuclide
JP2012242254A (en) * 2011-05-20 2012-12-10 Taiheiyo Cement Corp Original position purification method of contaminated soil
JP2013050313A (en) * 2011-08-30 2013-03-14 National Institute Of Advanced Industrial & Technology Method of desorbing cesium from soil
JP2013096982A (en) * 2011-10-31 2013-05-20 Daiichi Kasei Co Ltd Method of purifying radiation contaminated soil
JP2014074608A (en) * 2012-10-03 2014-04-24 Akira Haneda Detoxification treatment water of radioactive substance and detoxification treatment method of contaminated ground

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302700A (en) * 1989-05-01 1990-12-14 Westinghouse Electric Corp <We> Treatment of waste polluted by meltable harmful or radioactive nuclide
US5045240A (en) * 1989-05-01 1991-09-03 Westinghouse Electric Corp. Contaminated soil restoration method
JP2012242254A (en) * 2011-05-20 2012-12-10 Taiheiyo Cement Corp Original position purification method of contaminated soil
JP2013050313A (en) * 2011-08-30 2013-03-14 National Institute Of Advanced Industrial & Technology Method of desorbing cesium from soil
JP2013096982A (en) * 2011-10-31 2013-05-20 Daiichi Kasei Co Ltd Method of purifying radiation contaminated soil
JP2014074608A (en) * 2012-10-03 2014-04-24 Akira Haneda Detoxification treatment water of radioactive substance and detoxification treatment method of contaminated ground

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544677B1 (en) * 2014-07-29 2015-08-18 성균관대학교산학협력단 Soil conditioning system comprising an inorganic minerals removal device for improvement of soil and method using the same
WO2023228443A1 (en) * 2022-05-24 2023-11-30 株式会社オクト Solution for destroying biofilm and method for producing same
JP7423026B1 (en) 2022-05-24 2024-01-29 株式会社オクト Solution for destroying biofilm and method for producing the same

Also Published As

Publication number Publication date
JP6212353B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
Dupas et al. Groundwater control of biogeochemical processes causing phosphorus release from riparian wetlands
Inbar et al. Using polyacrylamide to mitigate post-fire soil erosion
JP6441341B2 (en) Colloidal agent for aquifer purification
Abudaia et al. Adsorption of Pb (II) and Cu (II) from aqueous solution onto activated carbon prepared from dates stones
Makselon et al. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil
Khamparia et al. Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal
Liao et al. Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China
JP6212353B2 (en) Decontamination method for contaminated soil
Tran et al. Copper encapsulated in grass-derived phytoliths: Characterization, dissolution properties and the relation of content to soil properties
Morshedizad et al. Leaching of phosphorus and cadmium in soils amended with different bone chars
Ermolin et al. Study of the mobility of cerium oxide nanoparticles in soil using dynamic extraction in a microcolumn and a rotating coiled column
Lodygin Sorption of Cu 2+ and Zn 2+ ions by humic acids of tundra peat gley soils (histic reductaquic cryosols)
TWI583431B (en) Treatment method of dioxin-containing soils
JP2013122010A (en) Treating agent for countermeasure of contaminated soil, and treatment method
Zang et al. Effect of water-dispersible colloids in manure on the transport of dissolved and colloidal phosphorus through soil column
Pham et al. Evaluation of chemical modified sugarcane bagasse for cadmium removal in aqueous environment
KAUR Kinetic and Isotherm studies of Congo red adsorption from aqueous solution by biowaste material
Hoque et al. Seasonal effects on heavy metal concentration in decomposed solid waste of DNCC and DSCC landfill sites
Souza et al. Competitive sorption and desorption of phosphate and citrate in clayey and sandy loam soils
JP2013185941A (en) Method for decontaminating soil contaminated with radioactive cesium
JP2012237658A (en) Method for purifying contaminated soil
Israila et al. The effect of application of EDTA on the phytoextraction of heavy metals by Vetivera zizanioides, Cymbopogon citrates and Helianthus annus
JP6567288B2 (en) Recycling method of selected soil extracted from earth and sand mixed waste
Zhang et al. Factors affecting the levels of Pb and Cd Heavy metals in contaminated farmland soils
JP6137887B2 (en) Method for decontamination of soil containing radioactive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6212353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250