JP2014100655A - Sulfur compound adsorbing and removing filter - Google Patents

Sulfur compound adsorbing and removing filter Download PDF

Info

Publication number
JP2014100655A
JP2014100655A JP2012254182A JP2012254182A JP2014100655A JP 2014100655 A JP2014100655 A JP 2014100655A JP 2012254182 A JP2012254182 A JP 2012254182A JP 2012254182 A JP2012254182 A JP 2012254182A JP 2014100655 A JP2014100655 A JP 2014100655A
Authority
JP
Japan
Prior art keywords
porous
sulfur compound
silver
composite material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254182A
Other languages
Japanese (ja)
Other versions
JP6089618B2 (en
Inventor
Yusuke Nishitani
祐介 西谷
Yasuko Nishiguchi
靖子 西口
Tadao Masumori
忠雄 増森
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012254182A priority Critical patent/JP6089618B2/en
Publication of JP2014100655A publication Critical patent/JP2014100655A/en
Application granted granted Critical
Publication of JP6089618B2 publication Critical patent/JP6089618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sulfur compound adsorbing and removing filter which contains a porous material and a porous composite material superior in sulfur compound removal performance in a vapor phase.SOLUTION: The sulfur compound adsorbing and removing filter includes a porous composite material in which a part or all of a metal in a porous material is in a coordinative unsaturation state, in the porous composite material in which the porous material carries a silver catalyst.

Description

本発明は、バイオガスや天然ガス、気体燃料に含まれる硫黄化合物を効率的に吸着・除去する多孔性材料に銀系触媒が担持された多孔性複合材料を含有する硫黄化合物吸着・除去フィルタに関するものである。   The present invention relates to a sulfur compound adsorption / removal filter containing a porous composite material in which a silver-based catalyst is supported on a porous material that efficiently adsorbs / removes sulfur compounds contained in biogas, natural gas, and gaseous fuel. Is.

バイオガスや天然ガス(例えば、メタン、エタン等)等の気体燃料は、石油代替エネルギーとして近年広く利用されている。しかし、これらのガスには微量の不純物が含まれており、この不純物が様々な不具合を引き起こすことから問題となっている。不純物には、例えば硫黄化合物がある。硫黄化合物は、発電機等の利用機器の腐食の原因や、触媒の劣化原因となるため、硫黄化合物を選択的に、かつ効率良く分離除去できる技術の確立が望まれている。   Gaseous fuels such as biogas and natural gas (for example, methane, ethane, etc.) have been widely used in recent years as petroleum alternative energy. However, these gases contain a trace amount of impurities, and this impurity causes various problems. Impurities include, for example, sulfur compounds. Since sulfur compounds cause corrosion of utilization equipment such as generators and cause deterioration of catalysts, establishment of a technique capable of selectively and efficiently removing and removing sulfur compounds is desired.

硫黄化合物の除去には、多くの硫黄化合物を吸着できるよう、表面積の大きな多孔性材料からなる脱硫剤が使用される。多孔性材料には、ゼオライト等の金属酸化物や、近年注目される金属イオンと有機配位子から形成される多孔性金属錯体(Porous Coordination Polymers、或いは、Metal Organic Frameworksとも称される)等がある。   In order to remove sulfur compounds, a desulfurization agent made of a porous material having a large surface area is used so that a large amount of sulfur compounds can be adsorbed. Examples of porous materials include metal oxides such as zeolite, porous metal complexes formed from metal ions and organic ligands that have recently been attracting attention (also referred to as Porous Coordination Polymers or Metal Organic Frameworks), and the like. is there.

多孔性材料に金属酸化物を用いた例として、例えば、Ag、Cu、Co、Ni及びZn等の金属をゼオライトに担持させた硫黄化合物除去用吸着剤(例えば、特許文献1)やNa−Y型ゼオライトに銀を担持させた脱硫剤(例えば、特許文献2)、ゼオライト及び活性炭以外の担体材料と銀含有活性組成物とから構成される細孔構造を有する脱硫触媒等(例えば、特許文献3)が開示されている。   As an example of using a metal oxide as a porous material, for example, an adsorbent for removing a sulfur compound in which a metal such as Ag, Cu, Co, Ni and Zn is supported on zeolite (for example, Patent Document 1) or Na-Y Desulfurization agent having silver supported on type zeolite (for example, Patent Document 2), desulfurization catalyst having a pore structure composed of a carrier material other than zeolite and activated carbon and a silver-containing active composition, etc. (for example, Patent Document 3) ) Is disclosed.

しかしながら、特許文献1、2に記載される吸着剤、脱硫剤は多孔性材料として、ゼオライトを使用しており、ゼオライトの比表面積を向上させることには限界があるため、硫黄化合物の吸着容量を増量させることは困難であるという問題がある。また、特許文献3に記載される脱硫触媒については、硫黄含有化合物として、テトラヒドロチオフェン(THT)の吸着能しか検討されておらず、他の硫黄化合物の吸着性能については不明である。   However, since the adsorbents and desulfurization agents described in Patent Documents 1 and 2 use zeolite as a porous material, and there is a limit to improving the specific surface area of zeolite, the adsorption capacity of sulfur compounds is limited. There is a problem that it is difficult to increase the amount. Moreover, about the desulfurization catalyst described in patent document 3, only the adsorption capacity of tetrahydrothiophene (THT) is examined as a sulfur containing compound, and the adsorption | suction performance of other sulfur compounds is unknown.

また、多孔性金属錯体(PCP)を硫黄化合物吸着剤の多孔性材料に使用する例として、例えば、MIL−47(V)、MIL−53(Al、Cr、Fe)、MIL−100(Cr)、MIL−101(Cr)等の多孔性金属錯体から構成される脱硫剤(例えば、非特許文献1)やMOF−199(HKUST−1)の細孔にケギン型のポリ酸を導入して得られる脱硫剤が挙げられる(例えば、非特許文献2)。多孔性金属錯体(PCP)は、比表面積が広いため、硫黄化合物等の不純物吸着除去に好適である。   Examples of using a porous metal complex (PCP) as a porous material for a sulfur compound adsorbent include MIL-47 (V), MIL-53 (Al, Cr, Fe), and MIL-100 (Cr). Obtained by introducing a Keggin-type polyacid into the pores of a desulfurization agent (for example, Non-Patent Document 1) or MOF-199 (HKUST-1) composed of a porous metal complex such as MIL-101 (Cr) (For example, Non-Patent Document 2). The porous metal complex (PCP) has a wide specific surface area and is suitable for removing impurities such as sulfur compounds.

しかしながら、非特許文献1に開示される脱硫剤は単に多孔性金属錯体(PCP)を硫化水素吸着材として使用するに過ぎず、常圧下での硫化水素の除去率は満足のいくものではない。また、非特許文献1の多孔性金属錯体のうち、MIL−47(V)、MIL−53(Al、Cr、Fe)は、構成金属に水分子が配位しないため、真空加熱処理を行っても、構成金属が配位不飽和状態にならない。また、MIL−100(Cr)、MIL−101(Cr)は細孔径が29〜34Å程度と大きく、小分子の硫化水素の吸着性能が劣る。さらに、MIL−100(Cr)、MIL−101(Cr)は、三核金属クラスターをベースとする多孔性金属錯体であるため、真空加熱を行ったとしても、配位不飽和金属を形成し難く、硫化水素を充分に除去することが難しい。加えて、非特許文献2に開示される脱硫剤は液相中における硫化水素除去性能は検討されているものの、気相中での除去性能が検討されていないため、気相中での硫化水素除去性能は明らかではない。   However, the desulfurization agent disclosed in Non-Patent Document 1 merely uses a porous metal complex (PCP) as a hydrogen sulfide adsorbent, and the removal rate of hydrogen sulfide under normal pressure is not satisfactory. Among the porous metal complexes of Non-Patent Document 1, MIL-47 (V) and MIL-53 (Al, Cr, Fe) are subjected to vacuum heat treatment because water molecules do not coordinate with the constituent metals. However, the constituent metal does not become a coordination unsaturated state. Moreover, MIL-100 (Cr) and MIL-101 (Cr) have a large pore diameter of about 29 to 34 mm, and are inferior in the adsorption performance of small molecule hydrogen sulfide. Furthermore, since MIL-100 (Cr) and MIL-101 (Cr) are porous metal complexes based on trinuclear metal clusters, it is difficult to form a coordination unsaturated metal even when vacuum heating is performed. It is difficult to sufficiently remove hydrogen sulfide. In addition, although the desulfurization agent disclosed in Non-Patent Document 2 has been studied for hydrogen sulfide removal performance in the liquid phase, it has not been studied for removal performance in the gas phase. Removal performance is not clear.

上述のとおり、長期間にわたって吸着・除去性能を維持できる硫黄化合物吸着・除去フィルタは見当たらないのが現状である。   As described above, there is no sulfur compound adsorption / removal filter that can maintain the adsorption / removal performance over a long period of time.

特開2004−168648号公報JP 2004-168648 A 特開2004−228016号公報JP 2004-228016 A 特表2010−535613号公報Special table 2010-535613 gazette

L.Hamonら(他6名)、JACS,2009,131,p8775−8777L. Hamon et al. (6 others), JACS, 2009, 131, p8775-8777. J.Songら(他6名)、JACS,2011,133,p16839−16846J. et al. Song et al. (6 others), JACS, 2011, 133, p16839-16846

本発明は上記従来技術の課題を背景になされたものであり、気相中での硫黄化合物除去性能を長期間にわたって維持できる硫黄化合物吸着・除去フィルタを提供することを目的とする。   The present invention has been made against the background of the above-described prior art, and an object thereof is to provide a sulfur compound adsorption / removal filter capable of maintaining the sulfur compound removal performance in the gas phase over a long period of time.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、遂に本発明を完成するに到った。すなわち本発明は、以下の通りである。
(1)多孔性材料に銀系触媒が担持された多孔性複合材料において、前記多孔性材料の一部または全部の金属が配位不飽和状態である多孔性複合材料を含有する硫黄化合物吸着・除去フィルタ。
(2)多孔性材料が金属及び有機配位子から構成される多孔性金属錯体を含む(1)に記載の硫黄化合物吸着・除去フィルタ。
(3)有機配位子が1,3,5−ベンゼントリカルボン酸及びその誘導体である(2)に記載の硫黄化合物吸着・除去フィルタ。
(4)金属が銅である(1)〜(3)のいずれかに記載の硫黄化合物吸着・除去フィルタ。
(5)銀系触媒の平均粒子径が10nm以下である(1)〜(4)のいずれかに記載の硫黄化合物吸着・除去フィルタ。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
(1) Adsorbing a sulfur compound containing a porous composite material in which a part or all of the metal of the porous material is in a coordinated unsaturated state in a porous composite material in which a silver-based catalyst is supported on the porous material. Removal filter.
(2) The sulfur compound adsorption / removal filter according to (1), wherein the porous material includes a porous metal complex composed of a metal and an organic ligand.
(3) The sulfur compound adsorption / removal filter according to (2), wherein the organic ligand is 1,3,5-benzenetricarboxylic acid or a derivative thereof.
(4) The sulfur compound adsorption / removal filter according to any one of (1) to (3), wherein the metal is copper.
(5) The sulfur compound adsorption / removal filter according to any one of (1) to (4), wherein the average particle diameter of the silver-based catalyst is 10 nm or less.

本発明の硫黄化合物吸着・除去フィルタは、含有している多孔性複合材料が、配位不飽和状態の金属が存在する多孔性材料に、銀系触媒が担持されているため、極めて優れた硫黄化合物除去能を有し、かつ長時間使用した場合であっても、この優れた硫黄化合物除去能が維持される。また銀が担持されない多孔性材料であっても、配位不飽和状態の金属が存在するものは、優れた硫黄化合物除去能を有した硫黄化合物吸着・除去フィルタが得られる。   The sulfur compound adsorption / removal filter of the present invention has an extremely excellent sulfur because the contained porous composite material has a silver-based catalyst supported on a porous material in which a coordination unsaturated metal exists. Even if it has a compound removing ability and is used for a long time, this excellent sulfur compound removing ability is maintained. Moreover, even if the porous material does not carry silver, a sulfur compound adsorption / removal filter having excellent sulfur compound removal ability can be obtained if a metal in a coordinated unsaturated state is present.

以下、本発明を詳細に説明する。
本発明における硫黄化合物吸着・除去フィルタは配位不飽和状態の金属が存在する多孔性材料に銀系触媒が担持された多孔性複合材料を含有する。不飽和状態の金属が存在する多孔性材料に銀系触媒が担持された多孔性複合材料を除くその他の成分については特に限定しない。その他の成分としては、活性炭等の一般的な吸着剤、触媒等の他に、不織布、織布、ペーパー等といったフィルタ基材、及びそれらをつなぎ合わせるバインダー、結合剤が含まれる。
Hereinafter, the present invention will be described in detail.
The sulfur compound adsorption / removal filter in the present invention contains a porous composite material in which a silver-based catalyst is supported on a porous material in which a coordination unsaturated metal exists. There are no particular limitations on the other components except the porous composite material in which a silver-based catalyst is supported on a porous material in which an unsaturated metal is present. As other components, in addition to a general adsorbent such as activated carbon, a catalyst, and the like, filter base materials such as a nonwoven fabric, a woven fabric, and a paper, and a binder and a binder for connecting them are included.

本発明における硫黄化合物とは、種々なものがあるが、その代表的なものとして、硫化水素、硫化メチル、二硫化メチル、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、ノルマルブチルメルカプタン、ターシャリーブチルメルカプタン等のアルキルメルカプタンやその他メルカプタン類、二硫化炭素、チオフェン、スルフィド、その他芳香族含有硫黄化合物などが挙げられる。これらの硫黄化合物はバイオガスや天然ガス、気体燃料の原料由来のものと、取扱い時の安全性を考慮して添加される付臭剤が含まれる。   There are various kinds of sulfur compounds in the present invention, and representative examples thereof include hydrogen sulfide, methyl sulfide, methyl disulfide, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, normal butyl mercaptan, and tertiary. Examples thereof include alkyl mercaptans such as butyl mercaptan and other mercaptans, carbon disulfide, thiophene, sulfide, and other aromatic-containing sulfur compounds. These sulfur compounds include those derived from biogas, natural gas, and gaseous fuel raw materials, and odorants added in consideration of safety during handling.

<多孔性複合材料>
本発明の多孔性複合材料は、配位不飽和状態の金属が存在する多孔性材料に、銀系触媒(銀や銀化合物)が担持されている。ガス中の硫黄化合物は銀系触媒と反応することにより、多孔性材料に吸着されやすい化合物(例えば、硫黄や二酸化硫黄等)に変換される。さらに、この反応で生成される化合物は、多孔性材料の細孔内部に捕捉されるため、ガス中の硫黄化合物濃度を低く抑えることができる。
<Porous composite material>
In the porous composite material of the present invention, a silver-based catalyst (silver or silver compound) is supported on a porous material in which a metal in a coordinated unsaturated state exists. The sulfur compound in the gas is converted into a compound (for example, sulfur or sulfur dioxide) that is easily adsorbed by the porous material by reacting with the silver-based catalyst. Furthermore, since the compound produced | generated by this reaction is capture | acquired inside the pore of a porous material, the sulfur compound density | concentration in gas can be restrained low.

<多孔性材料>
本発明では、銀系触媒を担持させる基材として、配位不飽和状態の金属が存在する多孔性材料を使用する。配位不飽和状態の金属が存在する多孔性材料は、硫黄化合物の吸着性能に優れることが本発明者らの研究により明らかとなった。また、多孔性材料中に配位不飽和状態の金属が存在すると、金属原子の空の軌道を利用して、銀系触媒が配位結合するため、銀系触媒を多孔性材料に容易に担持させることもできる。加えて、多孔性材料は比表面積が広いため、硫黄化合物の分解反応により生じる硫黄化合物を多量に吸着できる。
<Porous material>
In the present invention, a porous material in which a metal in a coordinated unsaturated state is present is used as a substrate for supporting a silver-based catalyst. The present inventors have clarified that a porous material containing a metal in a coordinated unsaturated state is excellent in sulfur compound adsorption performance. In addition, when a metal in a coordinated unsaturated state is present in the porous material, the silver-based catalyst is coordinated using the empty orbit of the metal atom, so the silver-based catalyst is easily supported on the porous material. It can also be made. In addition, since the porous material has a wide specific surface area, it can adsorb a large amount of the sulfur compound produced by the decomposition reaction of the sulfur compound.

多孔性材料としては、多孔性金属錯体を使用することが好ましく、この多孔性金属錯体は、金属及び有機配位子から構成されることが好ましい。多孔性金属錯体としては、Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成されるHKUST−1(MOF−199)、Niと2,5−ジヒドロキシテレフタル酸から形成されるNi−MOF−74の使用が好ましく、中でも硫黄化合物除去性能が高いことから、HKUST−1を使用することがより好ましい。   As the porous material, a porous metal complex is preferably used, and the porous metal complex is preferably composed of a metal and an organic ligand. Examples of porous metal complexes include HKUST-1 (MOF-199) formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC), and Ni-MOF formed from Ni and 2,5-dihydroxyterephthalic acid. Use of -74 is preferable, and among them, it is more preferable to use HKUST-1 because of its high sulfur compound removal performance.

また、多孔性金属錯体としては、前述したNi−MOF−74等の単核金属クラスターの多孔性金属錯体、または、HKUST−1(MOF−199)等の二核金属クラスターの多孔性金属錯体の使用が好適である。このように、単核または二核金属クラスターの多孔性金属錯体の使用が、本発明に好適である理由は定かではないものの、理由の一つとして、三核、または、それ以上の多核金属クラスターから構成される多孔性金属錯体は、真空加熱を行っても構成金属を配位不飽和状態することが困難であることが挙げられる。   In addition, as the porous metal complex, the porous metal complex of the mononuclear metal cluster such as Ni-MOF-74 described above or the porous metal complex of the binuclear metal cluster such as HKUST-1 (MOF-199) is used. Use is preferred. Thus, although the reason why the use of a monometallic or binuclear metal cluster porous metal complex is suitable for the present invention is not clear, one reason is that it is a trinuclear or higher polynuclear metal cluster. In the porous metal complex composed of the above, it is difficult to make the constituent metal coordinatively unsaturated even when vacuum heating is performed.

多孔性金属錯体の金属としては、周期表第2族〜第15族に分類される金属の使用が好ましい。中でも、Mg、Ca、Sr、Baの第2族元素;Sc、Yの第3族元素;Ti、Zr、Hfの第4族元素;V、Nb、Taの第5族元素;Cr、Mo、Wの第6族元素;Mn、Reの第7族元素;Fe、Ru、Osの第8族元素;Co、Rh、Irの第9族元素;Ni、Pd、Ptの第10族元素;Cu、Ag、Auの第11族元素;Zn、Cd、Hgの第12族元素;Al、Ga、In、Tlの第13族元素;Si、Ge、Sn、Pbの第14族元素;As、Sb、Biの第15族元素が好ましく、さらに好ましくは第10族〜第12族の元素であり、中でもNi、Cuの使用が望ましく、本発明にはCuが最適である。これらの元素の金属はイオンの状態で用いることも可能であり、金属イオンの好適な例として、Ni2+、Ni、Cu2+、Cuが挙げられる。 As the metal of the porous metal complex, it is preferable to use a metal classified into Group 2 to Group 15 of the periodic table. Among them, Group 2 elements of Mg, Ca, Sr, Ba; Group 3 elements of Sc, Y; Group 4 elements of Ti, Zr, Hf; Group 5 elements of V, Nb, Ta; Cr, Mo, Group 6 element of W; Group 7 element of Mn, Re; Group 8 element of Fe, Ru, Os; Group 9 element of Co, Rh, Ir; Group 10 element of Ni, Pd, Pt; Cu , Ag, Au, Group 11 elements; Zn, Cd, Hg, Group 12 elements; Al, Ga, In, Tl, Group 13 elements; Si, Ge, Sn, Pb, Group 14 elements; As, Sb , Bi is preferably a Group 15 element, more preferably a Group 10 to Group 12 element, of which Ni or Cu is desirable, and Cu is the most suitable for the present invention. The metal of these elements can also be used in an ionic state, and Ni 2+ , Ni + , Cu 2+ , and Cu + are preferable examples of the metal ion.

また有機配位子としては、カルボン酸及びその誘導体、二座以上で配位可能なアミン系化合物及びその誘導体の使用が好ましい。カルボン酸及びその誘導体としては、例えば、p−テルフェニル−3,3’,5,5’−テトラカルボン酸〔別名称:5,5’−(1,4−フェニレン)ビスイソフタル酸〕、1,2,4,5−テトラキス(4−カルボキシフェニル)ベンゼン等のテトラカルボン酸及びその誘導体;ビフェニル−3,4’,5−トリカルボン酸、1,3,5−トリス(4’−カルボキシ[1,1’−ビフェニル]−4−
イル)ベンゼン、1,3,5−トリス(4−カルボキシフェニル)ベンゼン、1,3,5−ベンゼントリカルボン酸等のトリカルボン酸及びその誘導体;2,5−ジアミノテレフタル酸、2,5−ジヒドロキシテレフタル酸、2,6−ナフタレンジカルボン酸、イソフタル酸、テレフタル酸、フマル酸、マロン酸、アジピン酸等のジカルボン酸及びその誘導体が挙げられる。また二座以上で配位可能なアミン系化合物及びその誘導体としては、イミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類及びその誘導体;4,4’−ビピリジン、1,4−ビス(4−ピリジル)ベンゼン、2,2’−ジメチル−4,4'−ビピリジン、1,4−ビス(4−ピリジル)ブタジイン、1,2−ビス(4−ピリジル)エタン、3,6−ジ(4−ピリジル)−1,2,4,5−テトラジン等のピリジン環を有する化合物及びその誘導体;ピラジン、2,5−ジメチルピラジン等のピラジン環を有する化合物及びその誘導体;その他上記以外の1,4−ジアザビシクロ[2.2.2]オクタン等の環状アミン類及びその誘導体等が好ましく使用できる。有機配位子としては、中でもトリカルボン酸及びその誘導体の使用が好ましく、特に1,3,5−ベンゼントリカルボン酸及びその誘導体が好ましい。
As the organic ligand, use of a carboxylic acid and a derivative thereof, an amine compound capable of coordinating at a bidentate or higher, and a derivative thereof is preferable. Examples of the carboxylic acid and derivatives thereof include p-terphenyl-3,3 ′, 5,5′-tetracarboxylic acid [another name: 5,5 ′-(1,4-phenylene) bisisophthalic acid], 1 , 2,4,5-tetrakis (4-carboxyphenyl) benzene and the like; and biphenyl-3,4 ', 5-tricarboxylic acid, 1,3,5-tris (4'-carboxy [1 , 1′-biphenyl] -4-
Yl) tricarboxylic acids such as benzene, 1,3,5-tris (4-carboxyphenyl) benzene, 1,3,5-benzenetricarboxylic acid and derivatives thereof; 2,5-diaminoterephthalic acid, 2,5-dihydroxyterephthalate Examples thereof include dicarboxylic acids such as acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, terephthalic acid, fumaric acid, malonic acid, and adipic acid, and derivatives thereof. Further, amine compounds capable of coordinating at the bidentate or higher and derivatives thereof include imidazoles such as imidazole, 2-methylimidazole and 2-phenylimidazole and derivatives thereof; 4,4′-bipyridine, 1,4-bis ( 4-pyridyl) benzene, 2,2′-dimethyl-4,4′-bipyridine, 1,4-bis (4-pyridyl) butadiyne, 1,2-bis (4-pyridyl) ethane, 3,6-di ( Compounds having a pyridine ring such as 4-pyridyl) -1,2,4,5-tetrazine and derivatives thereof; compounds having a pyrazine ring such as pyrazine and 2,5-dimethylpyrazine and derivatives thereof; Cyclic amines such as 4-diazabicyclo [2.2.2] octane and derivatives thereof can be preferably used. As the organic ligand, tricarboxylic acid and derivatives thereof are preferably used, and 1,3,5-benzenetricarboxylic acid and derivatives thereof are particularly preferable.

多孔性材料に存在する細孔径は、例えば、1〜25Åであることが好ましく、3〜20Åであることがより好ましく、5〜15Åであることがさらに好ましい。細孔径が小さいほど、小分子である硫黄化合物を捕捉できるため好ましい。また、多孔性金属錯体は通常、細孔表面径が狭く、細孔内部径が広いというボトルネック構造を有する。そのため、多孔性材料として多孔性金属錯体を使用する場合は、多孔性金属錯体の細孔表面径、及び細孔内部径が、共に前記範囲内に包含されることが好ましい。   The pore diameter present in the porous material is, for example, preferably 1 to 25 mm, more preferably 3 to 20 mm, and even more preferably 5 to 15 mm. Smaller pore diameters are preferable because sulfur compounds that are small molecules can be captured. Further, the porous metal complex usually has a bottleneck structure in which the pore surface diameter is narrow and the pore internal diameter is wide. Therefore, when a porous metal complex is used as the porous material, it is preferable that both the pore surface diameter and the pore internal diameter of the porous metal complex are included in the above range.

<触媒>
配位不飽和状態の金属が存在する多孔性材料であっても、従来に比べ、優れた硫黄化合物除去能は発揮される。しかし、燃料ガス中の硫化水素ガスを酸化し、無害化する目的で、前記多孔性材料に、酸化触媒として銀系触媒を担持させると、硫化水素ガスの除去効率が飛躍的に向上することが分かった。そのため、本発明の多孔性複合材料は、多孔性材料に銀系触媒が担持されている点に特徴を有する。銀系触媒としては、銀または銀化合物が好適に用いられ、前記銀化合物としては、例えば酸化銀、及び硫化銀が挙げられる。
<Catalyst>
Even in the case of a porous material in which a metal in a coordinated unsaturated state is present, an excellent ability to remove a sulfur compound is exhibited as compared with the conventional material. However, for the purpose of oxidizing and detoxifying the hydrogen sulfide gas in the fuel gas, the removal efficiency of the hydrogen sulfide gas can be drastically improved if the porous material carries a silver-based catalyst as an oxidation catalyst. I understood. Therefore, the porous composite material of the present invention is characterized in that a silver-based catalyst is supported on the porous material. As the silver-based catalyst, silver or a silver compound is preferably used. Examples of the silver compound include silver oxide and silver sulfide.

前記銀系触媒の多孔性材料に対する担持量は、多孔性複合材料100質量%中、0.01〜20質量%であることが好ましく、0.05〜15質量%がより好ましく、0.07〜8質量%がさらに好ましい。銀系触媒の担持量が前記範囲内であれば、触媒と硫黄化合物の反応率を向上させることができる。   The supported amount of the silver-based catalyst with respect to the porous material is preferably 0.01 to 20% by mass, more preferably 0.05 to 15% by mass in 100% by mass of the porous composite material, and 0.07 to 8 mass% is more preferable. When the supported amount of the silver-based catalyst is within the above range, the reaction rate between the catalyst and the sulfur compound can be improved.

<構成金属の配位不飽和化>
多孔性材料は銀系触媒担持工程前に、真空加熱されることが好ましい。多孔性材料が多孔性金属錯体である場合、金属は、有機配位子のみならず、通常水分子とも配位結合している。ところがこの加熱により、金属と水分子との配位結合は切断され、一部または全部の金属が配位不飽和状態になる。多孔性材料を構成する金属の一部または全部を配位不飽和状態にすることにより、多孔性材料の硫黄化合物吸着能を向上させることができる。さらに本発明では、この配位不飽和状態の結合を利用して酸化触媒(銀系触媒)を担持させることにより、硫黄化合物除去能を飛躍的に向上できる。
<Coordination desaturation of constituent metals>
The porous material is preferably heated in a vacuum before the silver-based catalyst supporting step. When the porous material is a porous metal complex, the metal is usually coordinated not only with the organic ligand but also with water molecules. However, by this heating, the coordinate bond between the metal and the water molecule is broken, and a part or all of the metal is in a coordinated unsaturated state. By making a part or all of the metal constituting the porous material into a coordinated unsaturated state, the sulfur compound adsorption ability of the porous material can be improved. Furthermore, in the present invention, the ability to remove sulfur compounds can be drastically improved by supporting the oxidation catalyst (silver-based catalyst) by utilizing the bond in the coordination unsaturated state.

真空加熱処理に関し、加熱温度は60〜180℃が好ましく、80〜160℃がより好ましく、100〜140℃がさらに好ましい。また加熱時間は、10〜24時間が好ましく、12〜18時間がより好ましい。真空加熱処理後、多孔性材料は室温まで放冷されることが好ましい。   Regarding the vacuum heat treatment, the heating temperature is preferably 60 to 180 ° C, more preferably 80 to 160 ° C, and further preferably 100 to 140 ° C. The heating time is preferably 10 to 24 hours, and more preferably 12 to 18 hours. After the vacuum heat treatment, the porous material is preferably allowed to cool to room temperature.

<多孔性複合材料の製造方法>
本発明の多孔性複合材料は、配位不飽和状態の金属が存在する多孔性材料に銀系触媒を担持させることにより製造される。銀系触媒の担持方法としては、(1)銀系触媒を含む溶液に多孔性材料を含浸させる溶液含浸法、(2)高剪断力下で多孔性材料と銀系触媒を混合するメカノケミカル法、あるいは、(3)化学蒸着法等が適宜用いられる。中でも、多孔性複合材料の製造が容易であることから、本発明では(1)溶液含浸法を採用することが好ましい。
<Method for producing porous composite material>
The porous composite material of the present invention is produced by supporting a silver-based catalyst on a porous material containing a metal in a coordinated unsaturated state. As a method for supporting a silver catalyst, (1) a solution impregnation method in which a solution containing a silver catalyst is impregnated with a porous material, and (2) a mechanochemical method in which the porous material and the silver catalyst are mixed under high shear force. Alternatively, (3) a chemical vapor deposition method or the like is appropriately used. Especially, since manufacture of a porous composite material is easy, in this invention, it is preferable to employ | adopt (1) solution impregnation method.

溶液含浸法により多孔性複合材料を製造する場合、銀系触媒を含む溶液の調製方法としては、溶媒に銀系触媒を溶解させて銀イオンを生成させる方法や、溶媒に銀系触媒を分散させる方法等が適宜使用される。溶媒としては、水やメタノール、エタノール等のアルコール系溶媒の使用が望ましい。また、これらの溶媒は単独で用いても、混合して用いてもよい。銀イオンを含むイオン溶液は前記溶媒に硝酸銀、ハロゲン化銀等の塩を混合することにより、適宜調製される。   When producing a porous composite material by a solution impregnation method, a method for preparing a solution containing a silver-based catalyst includes a method in which a silver-based catalyst is dissolved in a solvent to produce silver ions, or a silver-based catalyst is dispersed in a solvent. A method etc. are used suitably. As the solvent, it is desirable to use an alcohol solvent such as water, methanol or ethanol. These solvents may be used alone or in combination. The ion solution containing silver ions is appropriately prepared by mixing a salt such as silver nitrate or silver halide with the solvent.

溶液含浸法の場合、多孔性複合材料は、真空加熱処理後の多孔性材料を、銀系触媒含有溶液に加え、多孔性材料に銀系触媒を含む溶液を充分に含浸させた後、固液分離した後、固体を乾燥させて製造される。銀系触媒含有溶液への含浸時間は、1〜48時間が好ましく、3〜24時間がより好ましく、10〜20時間がさらに好ましい。含浸時には、溶液を攪拌することも可能である。また含浸後の固液分離操作としては、濾過、遠心分離、沈殿、溶媒留去等の公知の手段を適宜採用するとよい。   In the case of the solution impregnation method, the porous composite material is obtained by adding the porous material after the vacuum heat treatment to the silver catalyst-containing solution, sufficiently impregnating the porous material with the solution containing the silver catalyst, After separation, the solid is produced by drying. The impregnation time into the silver-based catalyst-containing solution is preferably 1 to 48 hours, more preferably 3 to 24 hours, and even more preferably 10 to 20 hours. It is also possible to stir the solution during impregnation. In addition, as the solid-liquid separation operation after impregnation, known means such as filtration, centrifugation, precipitation, and solvent distillation may be appropriately employed.

<銀系触媒のナノ化>
多孔性材料に銀系触媒含有溶液を含浸させた後、次いで還元剤を含む溶液と多孔性複合材料を混合することにより、銀系触媒を微粒子化することができる。本発明者らは、銀系触媒を微粒子化すると、得られた多孔性複合材料が、硫化水素除去材として長時間(例えば、10時間程度)連続的に使用された後であっても、硫化水素除去率100%という驚異的な硫化水素除去性能を発揮するという知見を得た。そのため本発明においては、銀系触媒の平均粒子径は10nm以下であることが好ましく、8nm以下がより好ましく、6nm以下がさらに好ましい。なお、平均粒子径の測定方法については、実施例の欄に詳述する。
<Nano-based silver catalyst>
After impregnating the porous material with the silver-based catalyst-containing solution, the silver-based catalyst can be made into fine particles by mixing the solution containing the reducing agent and the porous composite material. When the inventors of the present invention have made the silver-based catalyst fine particles, the resulting porous composite material is sulfided even after being used continuously for a long time (for example, about 10 hours) as a hydrogen sulfide removing material. The inventor has obtained the knowledge that the hydrogen-removing rate is 100% and exhibits an amazing hydrogen sulfide removing performance. Therefore, in this invention, it is preferable that the average particle diameter of a silver-type catalyst is 10 nm or less, 8 nm or less is more preferable, and 6 nm or less is further more preferable. In addition, the measuring method of an average particle diameter is explained in full detail in the Example column.

銀系触媒を微粒子化する方法としては、例えば溶液含浸法で多孔性複合材料を製造する場合、多孔性材料に銀系触媒含有溶液を含浸させた後、一旦溶媒を留去し、そこへ還元剤と溶媒の混合溶液を添加し、一定時間多孔性複合材料を含浸させて還元処理を行うとよい。その後、固液分離操作を行い、得られる多孔性複合材料を加熱乾燥することが好ましい。還元剤含有溶液に多孔性複合材料を含浸させる時間は、5〜240分が好ましく、10〜120分がより好ましく、15〜60分がさらに好ましい。   For example, when producing a porous composite material by a solution impregnation method, a silver catalyst is impregnated with a solution containing a silver catalyst, and then the solvent is once distilled off and reduced there. A reduction treatment may be performed by adding a mixed solution of an agent and a solvent and impregnating the porous composite material for a certain period of time. Then, it is preferable to perform solid-liquid separation operation and to heat-dry the porous composite material obtained. The time for impregnating the porous composite material into the reducing agent-containing solution is preferably 5 to 240 minutes, more preferably 10 to 120 minutes, and further preferably 15 to 60 minutes.

還元剤としては、従来公知の還元剤を適宜使用することができ、例えば、水素化ホウ素ナトリウム(NaBH)、水素化トリエチルホウ素リチウム([LiBH(C])等の水素化ホウ素化合物;水素化アルミニウムリチウム(LiAlH)、水素化ジイソブチルアルミニウム(DIBAH)等の水素化アルミニウム化合物が好適に使用される。 As the reducing agent, a conventionally known reducing agent can be appropriately used. For example, hydrogenation of sodium borohydride (NaBH 4 ), lithium triethylborohydride ([LiBH (C 2 H 5 ) 3 ]), etc. Boron compounds: Aluminum hydride compounds such as lithium aluminum hydride (LiAlH 4 ) and diisobutylaluminum hydride (DIBAH) are preferably used.

還元剤の添加量は、銀イオン1molに対し、5〜15molであることが好ましく、6〜12molがより好ましく、6.5〜10molがさらに好ましい。還元剤の添加量が銀イオン1molに対し、5mol未満では、銀系触媒を微粒子化することが困難な場合がある。   It is preferable that the addition amount of a reducing agent is 5-15 mol with respect to 1 mol of silver ions, 6-12 mol is more preferable, and 6.5-10 mol is further more preferable. If the addition amount of the reducing agent is less than 5 mol with respect to 1 mol of silver ions, it may be difficult to make the silver catalyst fine.

<硫黄化合物除去材>
本発明により得られる多孔性材料・多孔性複合材料は、硫黄化合物除去能に優れるため、本発明の多孔性材料・多孔性複合材料を燃料ガスの精製装置等に硫黄化合物除去材として充填することにより、燃料ガス中の硫黄化合物量を簡便に低減することができる。硫黄化合物含量の少ない精製ガスは、発電機等の利用機器に損傷を与えることがなく、加えて、下流工程での触媒劣化を防止することができる。すなわち本発明の多孔性材料・多孔性複合材料によれば、発電機等のメンテナンスコストを大幅に削減することができるため、バイオガスや天然ガス等の石油代替エネルギーの利用拡大が期待される。また、本発明の多孔性材料・多孔性複合材料をフィルタに担持させた製品は、天然ガス精製等に用いられる硫黄化合物除去フィルタとしても使用可能である。
<Sulfur compound removal material>
Since the porous material / porous composite material obtained by the present invention is excellent in sulfur compound removal ability, the porous material / porous composite material of the present invention is filled in a fuel gas purifier or the like as a sulfur compound removing material. Thus, the amount of sulfur compound in the fuel gas can be reduced easily. The purified gas having a low sulfur compound content does not damage the utilization equipment such as a generator, and can prevent catalyst deterioration in the downstream process. That is, according to the porous material / porous composite material of the present invention, the maintenance cost of the generator and the like can be greatly reduced, so that the use of alternative energy for petroleum such as biogas and natural gas is expected to be expanded. The product in which the porous material / porous composite material of the present invention is supported on a filter can also be used as a sulfur compound removal filter used for natural gas purification or the like.

本発明における硫黄化合物吸着・除去フィルタの形状については特に限定しない。例えば、平面状、プリーツ状、ハニカム状に加工するという製造方法が好ましい。プリーツ状は直行流型フィルタとしての使用において、また、ハニカム状は平行流型フィルタとしての使用において、処理する気体との接触面積を大きくして除去効率を向上させるとともに、脱臭フィルタの低圧損化を同時に図ることができる。   The shape of the sulfur compound adsorption / removal filter in the present invention is not particularly limited. For example, a production method of processing into a planar shape, a pleated shape, or a honeycomb shape is preferable. When using a pleated shape as a direct flow filter, or when using a honeycomb shape as a parallel flow filter, the contact area with the gas to be treated is increased to improve removal efficiency, and the deodorizing filter has a low pressure loss. Can be achieved simultaneously.

本発明における硫黄化合物吸着・除去フィルタを作製する方法としては特に制限されず、従来公知の加工方法を用いることができる。例えば、(1)シート構成繊維と共に硫黄化合物吸着・除去剤粒子を水中に分散させ脱水することにより得られる湿式シート化法、(2)シート構成繊維と共に硫黄化合物吸着・除去剤粒子を気中分散させることにより得られるエアレイド法、(3)二層以上の不織布もしくは織布、ネット状物、フィルム、膜の層間に、熱接着により硫黄化合物吸着・除去剤を充填する方法、(4)エマルジョン接着剤、溶剤系接着剤を利用して不織布、織布、発泡ウレタンなどの通気性材料に硫黄化合物吸着・除去剤を結合担持させる方法、(5)基材、ホットメルト接着剤の熱可塑性等を利用して不織布、織布、発泡ウレタンなどの通気性材料に硫黄化合物吸着・除去剤を結合担持させる方法、(6)硫黄化合物吸着・除去剤を繊維もしくは樹脂に練りこむことにより混合一体化する方法等、用途に応じて適当な方法を用いることができる。また、前記(1)〜(6)の方法において、界面活性剤、水溶性高分子等を用いる必要がなく、硫黄化合物吸着・除去剤自身の細孔閉塞を防止することができるため、前記加工方法(2)、(3)、(5)を用いることが好ましい。   The method for producing the sulfur compound adsorption / removal filter in the present invention is not particularly limited, and a conventionally known processing method can be used. For example, (1) a wet sheeting method obtained by dispersing sulfur compound adsorbing / removing agent particles in water together with sheet constituent fibers and dehydrating, (2) dispersing sulfur compound adsorbing / removing agent particles in the air together with sheet constituent fibers (3) A method of filling a sulfur compound adsorbing / removing agent between two or more layers of non-woven fabric or woven fabric, net-like material, film, or membrane by thermal bonding, (4) Emulsion bonding A method of bonding and supporting a sulfur compound adsorbing / removing agent on a breathable material such as non-woven fabric, woven fabric, foamed urethane, etc., using an adhesive, solvent-based adhesive, (5) thermoplasticity of the base material, hot melt adhesive, etc. A method of bonding and supporting a sulfur compound adsorbing / removing agent on breathable materials such as non-woven fabric, woven fabric, and urethane foam, and (6) kneading the sulfur compound adsorbing / removing agent on fibers or resins. A method in which mixing integrated by Mukoto can be used an appropriate method depending on the application. Further, in the above methods (1) to (6), it is not necessary to use a surfactant, a water-soluble polymer, etc., and the pore blocking of the sulfur compound adsorption / removal agent itself can be prevented. It is preferable to use the methods (2), (3) and (5).

本発明における硫黄化合物吸着・除去フィルタは、バイオガスや天然ガス、気体燃料中に含まれる硫黄化合物除去に限定されず、脱臭フィルタとして、屋内、乗り物内、壁紙、家具、内装材、樹脂成形体、電気機器等で、硫黄化合物を低減する目的で広く用いることができる。特に空気中に含有される硫黄化合物の除去目的で用いることが好ましく、例えば、粒状物を通気性の箱、袋、網等の容器に充填し、静置もしくは通気させて用いることが好ましい。また、除去速度が速く、一旦除去した硫黄化合物が脱離する問題が少ないため、通風状態で用いることがより好ましく、自動車や鉄道車両等の車室内の空気を清浄化するためのエアフィルタ、健康住宅、ペット対応マンション、高齢者入所施設、病院、オフィス等で使用される空気清浄機用フィルタ、エアコン用フィルタ、OA機器の吸気・排気フィルタ、ビル空調用フィルタ、産業用クリーンルーム用フィルタに用いられることがより好ましい。   The sulfur compound adsorption / removal filter in the present invention is not limited to the removal of sulfur compounds contained in biogas, natural gas, and gaseous fuel, but can be used as a deodorizing filter indoors, in vehicles, wallpaper, furniture, interior materials, resin moldings. It can be widely used for the purpose of reducing sulfur compounds in electrical equipment and the like. In particular, it is preferably used for the purpose of removing sulfur compounds contained in the air. For example, it is preferable to fill a granular material in a container such as an air-permeable box, bag, or net, and leave or aeration. Also, since the removal rate is fast and there is little problem of desorption of the sulfur compound once removed, it is more preferable to use in a ventilated state, an air filter for purifying the air in the interior of a vehicle such as an automobile or a railway vehicle, health Used for air purifier filters, air conditioner filters, OA equipment intake / exhaust filters, building air condition filters, industrial clean room filters used in houses, pet-friendly condominiums, elderly entrance facilities, hospitals, offices, etc. It is more preferable.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例及び比較例中における分析または評価は、以下のようにして行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range. In addition, the analysis or evaluation in an Example and a comparative example was performed as follows.

<粉末X線回折測定>
得られた複合材料について、粉末X線回折装置(ブルカー・エイエックスエス社製「NEW D8 ADVANCE」)を用いて、対称反射法で測定した。測定条件を以下に示す。
1)X線源:CuKα(λ=1.5418Å)40kV 200mA
2)ゴニオメーター:縦型ゴニオメーター
3)検出器:シンチレーションカウンター
4)回折角(2θ)範囲:3〜90°
5)スキャンステップ:0.05°
6)積算時間:0.5秒/ステップ
7)スリット:発散スリット=0.5°、受光スリット=0.15mm、散乱スリット=0.5°
<Powder X-ray diffraction measurement>
The obtained composite material was measured by a symmetrical reflection method using a powder X-ray diffractometer (“NEW D8 ADVANCE” manufactured by Bruker AXS). The measurement conditions are shown below.
1) X-ray source: CuKα (λ = 1.5418Å) 40 kV 200 mA
2) Goniometer: Vertical goniometer 3) Detector: Scintillation counter 4) Diffraction angle (2θ) Range: 3-90 °
5) Scan step: 0.05 °
6) Integration time: 0.5 seconds / step 7) Slit: Diverging slit = 0.5 °, Receiving slit = 0.15 mm, Scattering slit = 0.5 °

<透過型電子顕微鏡(TEM)観察>
透過型電子顕微鏡(日立製作所製「HT7700」、または日本電子社製「JEM−2200FS」)を用いて、得られた多孔性材料、及び多孔性複合材料を観察した。
<Transmission electron microscope (TEM) observation>
The obtained porous material and porous composite material were observed using a transmission electron microscope (“HT7700” manufactured by Hitachi, Ltd. or “JEM-2200FS” manufactured by JEOL Ltd.).

<硫化水素ガス吸着試験>
5Lのテドラーバック中に硫化水素ガス10ppmを含む温度25℃、相対湿度0%の窒素、及び1ccの大きさのフィルタサンプルを封入した。次に、中に入っているフィルタサンプルと硫化水素ガスが十分に接触、反応するようにテドラーバックを適宜振った。なお、テドラーバック周囲の雰囲気温度は25℃に設定した。3時間後のテドラーバック内の硫化水素ガス濃度を硫化水素ガス用検知管を用いて測定し、反応前後の硫化水素ガスの濃度変化から硫化水素ガス除去量[mg]を求め、この硫化水素ガス除去量値をフィルタサンプルの体積で割ることにより、硫化水素ガス除去容量[mg/cc]を算出した。なお、測定フィルタサンプルは測定前に120℃で24時間真空乾燥処理し、吸着物質を予め除去したものを使用した。
<Hydrogen sulfide gas adsorption test>
A filter sample having a temperature of 25 ° C. containing 10 ppm of hydrogen sulfide gas, nitrogen having a relative humidity of 0%, and a size of 1 cc was enclosed in a 5 L Tedlar bag. Next, the Tedlar bag was shaken as appropriate so that the filter sample contained therein and the hydrogen sulfide gas sufficiently contacted and reacted. The ambient temperature around the Tedlar bag was set to 25 ° C. The hydrogen sulfide gas concentration in the Tedlar bag after 3 hours was measured using a hydrogen sulfide gas detector tube, and the hydrogen sulfide gas removal amount [mg] was determined from the change in hydrogen sulfide gas concentration before and after the reaction. The hydrogen sulfide gas removal capacity [mg / cc] was calculated by dividing the quantity value by the volume of the filter sample. In addition, the measurement filter sample used the thing which vacuum-dried at 120 degreeC for 24 hours before the measurement, and removed the adsorbed substance beforehand.

<銀系触媒の平均粒子径の測定方法>
銀系触媒の粒子径は、透過型電子顕微鏡(日立製作所製「HT7700」、または日本電子社製「JEM−2200FS」)を用い、任意の200個の銀系触媒について、倍率10万倍で観察することにより測定した。そして、これらの平均値を、銀系触媒の平均粒子径とした。
<Measuring method of average particle diameter of silver-based catalyst>
The particle diameter of the silver-based catalyst was observed at a magnification of 100,000 times for any 200 silver-based catalysts using a transmission electron microscope (“HT7700” manufactured by Hitachi, Ltd. or “JEM-2200FS” manufactured by JEOL Ltd.). Was measured. And these average values were made into the average particle diameter of a silver-type catalyst.

(実施例1)
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu(BTC)(HO))を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体300mgを、メタノール4.8mlに分散させ、ここへAgNOを9.4mg(0.05mmol)含むメタノール溶液1.3mlを加え、室温で1.5時間攪拌を行った。次いで、溶媒を留去し、メタノール3.0mlを加えた。その後、NaBHを15.9mg(0.42mmol)含むメタノール溶液2.1mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された多孔性複合材料を得た(256mg、収率84%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agのパターンが観測されなかったが、TEM観察により、2〜5nmのAg粒子が高分散状態で担持されている様子が観察された。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
Example 1
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 300 mg of this porous metal complex was dispersed in 4.8 ml of methanol, and 1.3 ml of a methanol solution containing 9.4 mg (0.05 mmol) of AgNO 3 was added thereto, followed by stirring at room temperature for 1.5 hours. Then the solvent was distilled off and 3.0 ml of methanol was added. Thereafter, 2.1 ml of a methanol solution containing 15.9 mg (0.42 mmol) of NaBH 4 was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 2% by mass of Ag (256 mg, 84% yield). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, an Ag pattern was not observed, but it was observed by TEM observation that 2-5 nm Ag particles were supported in a highly dispersed state.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(実施例2)
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、Cu(BTC)(HO))を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNOを23.6mg(0.14mmol)含むメタノール溶液6.4mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、NaBHを39.8mg(1.05mmol)含むメタノール溶液5.2mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが1質量%担持された多孔性複合材料を得た(1.51g、収率100%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
(Example 2)
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, Cu 3 (BTC) 2 (H 2 O) 3 ] n ) was vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 6.4 ml of a methanol solution containing 23.6 mg (0.14 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, 5.2 ml of a methanol solution containing 39.8 mg (1.05 mmol) of NaBH 4 was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 1% by mass of Ag (1.51 g, yield 100%). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(実施例3)
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu(BTC)(HO))を120℃で15時間真空乾燥させて不飽和配位金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNOを11.7mg(0.07mmol)含むメタノール溶液3.2mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、NaBHを19.9mg(0.53mmol)含むメタノール溶液2.6mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが0.5質量%担持された多孔性複合材料を得た(1.48g、収率98%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
(Example 3)
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum-dried at 120 ° C. for 15 hours to produce an unsaturated coordination metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 3.2 ml of a methanol solution containing 11.7 mg (0.07 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, 2.6 ml of a methanol solution containing 19.9 mg (0.53 mmol) of NaBH 4 was dropped and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 0.5% by mass of Ag (1.48 g, yield 98%). ). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(実施例4)
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、Cu(BTC)(HO))を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNOを2.4mg(0.01mmol)含むメタノール溶液0.6mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、NaBHを4.0mg(0.11mmol)含むメタノール溶液0.52mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが0.1質量%担持された多孔性複合材料を得た(1.50g、収率100%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
Example 4
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, Cu 3 (BTC) 2 (H 2 O) 3 ] n ) was vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 0.6 ml of a methanol solution containing 2.4 mg (0.01 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, 0.52 ml of a methanol solution containing 4.0 mg (0.11 mmol) of NaBH 4 was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 0.1% by mass of Ag (1.50 g, yield 100%). ). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, since the Ag pattern was hardly observed, it can be said that the Ag particles are finely divided.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(参考例1)
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu(BTC)(HO))80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
(Reference Example 1)
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ", [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) 80 mg, colloidal silica; 67 mg of Snowtex 30 (Nissan Chemical Industry Co., Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well. To obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(比較例1)
本比較例においては、真空加熱処理を行っても、構成金属が配位不飽和状態にならない多孔性材料として、Znと2−メチルイミダゾール(MeIm)から形成される多孔性金属錯体(細孔径;細孔表面径3.4Å、細孔内部径11.6Å;BASF社製「Basolite(登録商標) Z1200」、[Zn(MeIm))を試料に用いた。この多孔性金属錯体を構成する金属には、水分子が配位していない。そのため、錯体を真空条件下で加熱しても、配位不飽和状態の金属は形成されない。この多孔性金属錯体を120℃で15時間真空乾燥させ、その後、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、ここへAgNOを47.3mg(0.28mmol)含むメタノール溶液12.8mlを加え、室温で24時間攪拌を行った。その後、溶媒を留去し、メタノール10mlを加えた。その後、NaBHを80.0mg(2.11mmol)含むメタノール溶液10.5mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された多孔性複合材料を得た(1.48g、収率96%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
(Comparative Example 1)
In this comparative example, a porous metal complex (pore diameter; formed from Zn and 2-methylimidazole (MeIm) is used as a porous material in which the constituent metal does not become a coordination unsaturated state even when vacuum heat treatment is performed. A sample having a pore surface diameter of 3.4 mm and a pore internal diameter of 11.6 mm; “Basolite (registered trademark) Z1200” manufactured by BASF, [Zn (MeIm) 2 ] n ) was used as a sample. Water molecules are not coordinated to the metal constituting the porous metal complex. Therefore, even when the complex is heated under vacuum conditions, a metal in a coordinated unsaturated state is not formed. This porous metal complex was vacuum-dried at 120 ° C. for 15 hours, and then allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, and 12.8 ml of a methanol solution containing 47.3 mg (0.28 mmol) of AgNO 3 was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, the solvent was distilled off, and 10 ml of methanol was added. Thereafter, 10.5 ml of a methanol solution containing 80.0 mg (2.11 mmol) of NaBH 4 was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 2% by mass of Ag (1.48 g, yield 96%). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

(比較例2)
NaY型ゼオライト(平均細孔径;7.4Å)を予め120℃で15時間真空乾燥させた後、室温まで放冷した。このゼオライト300mgを、メタノール4.8mlに分散させ、ここへAgNOを9.4mg(0.05mmol)含むメタノール溶液を1.3ml加え、室温で22時間攪拌を行った。次いで、溶媒を留去し、メタノール3.0mlを加えた。その後、NaBHを16.0mg(0.42mmol)含むメタノール溶液2.1mlを滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された複合材料を得た(206mg、収率67%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agパターンがわずかに観測され、Agの生成が確認できた。またTEM観察により、12〜24nmのAg粒子が担持されている様子が観察された。
さらに、得られた複合材料80mg、コロイダルシリカ;スノーテックス30(日産化学工業社製)67mgをイオン交換水0.95mlに投入し、よく撹拌して、ペーストを得た。前記ペースト中に430セル/inchのセル数を有するアルミ製ハニカム2ccを投入し、ペースト全量をハニカム上に添着した。さらに120℃条件で乾燥し、フィルタサンプルを得た。得られたフィルタサンプルを使用し、硫化水素ガス吸着試験を行った。
(Comparative Example 2)
NaY-type zeolite (average pore size; 7.4 mm) was vacuum dried at 120 ° C. for 15 hours in advance, and then allowed to cool to room temperature. 300 mg of this zeolite was dispersed in 4.8 ml of methanol, 1.3 ml of a methanol solution containing 9.4 mg (0.05 mmol) of AgNO 3 was added thereto, and the mixture was stirred at room temperature for 22 hours. Then the solvent was distilled off and 3.0 ml of methanol was added. Thereafter, 2.1 ml of a methanol solution containing 16.0 mg (0.42 mmol) of NaBH 4 was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a composite material carrying 2 mass% of Ag (206 mg, 67% yield). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, a slight Ag pattern was observed, confirming the formation of Ag. Further, it was observed by TEM observation that Ag particles of 12 to 24 nm were carried.
Furthermore, 80 mg of the obtained composite material, colloidal silica; 67 mg of Snowtex 30 (manufactured by Nissan Chemical Industries, Ltd.) was added to 0.95 ml of ion-exchanged water and stirred well to obtain a paste. 2 cc of an aluminum honeycomb having a cell number of 430 cells / inch 2 was put into the paste, and the whole paste was adhered onto the honeycomb. Furthermore, it dried on 120 degreeC conditions, and obtained the filter sample. Using the obtained filter sample, a hydrogen sulfide gas adsorption test was conducted.

以下、表1により本発明の効果を説明する。本発明である配位不飽和状態の金属が存在する多孔性材料に銀系触媒が担持された多孔性複合材料(実施例1〜4)は配位不飽和部位を有しない多孔性金属錯体を銀系触媒の担持体とした場合(比較例1)、NaY型ゼオライトを銀系触媒の担持体とした場合(比較例2)と比較して、硫化水素ガス除去量が高いことがわかる。   The effects of the present invention will be described below with reference to Table 1. A porous composite material (Examples 1 to 4) in which a silver-based catalyst is supported on a porous material in which a metal in a coordinated unsaturated state is present is a porous metal complex having no coordinated unsaturated site. It can be seen that the amount of hydrogen sulfide gas removed is higher when the silver catalyst support is used (Comparative Example 1) than when the NaY zeolite is used as the silver catalyst support (Comparative Example 2).

本発明の硫黄化合物吸着・除去フィルタは、長期にわたって硫黄化合物除去性能を維持することができるため、広い分野で用いることができ、産業界に寄与すること大である。   Since the sulfur compound adsorption / removal filter of the present invention can maintain the sulfur compound removal performance over a long period of time, it can be used in a wide range of fields and contributes to the industry.

Claims (5)

多孔性材料に銀系触媒が担持された多孔性複合材料において、前記多孔性材料の一部または全部の金属が配位不飽和状態である多孔性複合材料を含有する硫黄化合物吸着・除去フィルタ。   A sulfur compound adsorption / removal filter comprising a porous composite material in which a silver-based catalyst is supported on a porous material, and the porous composite material in which a part or all of the metal of the porous material is in a coordinated unsaturated state. 多孔性材料が金属及び有機配位子から構成される多孔性金属錯体を含む請求項1に記載の硫黄化合物吸着・除去フィルタ。   The sulfur compound adsorption / removal filter according to claim 1, wherein the porous material contains a porous metal complex composed of a metal and an organic ligand. 有機配位子が1,3,5−ベンゼントリカルボン酸及びその誘導体である請求項2に記載の硫黄化合物吸着・除去フィルタ。   The sulfur compound adsorption / removal filter according to claim 2, wherein the organic ligand is 1,3,5-benzenetricarboxylic acid or a derivative thereof. 金属が銅である請求項1〜3のいずれかに記載の硫黄化合物吸着・除去フィルタ。   The sulfur compound adsorption / removal filter according to claim 1, wherein the metal is copper. 銀系触媒の平均粒子径が10nm以下である請求項1〜4のいずれかに記載の硫黄化合物吸着・除去フィルタ。   The sulfur compound adsorption / removal filter according to claim 1, wherein the silver catalyst has an average particle diameter of 10 nm or less.
JP2012254182A 2012-11-20 2012-11-20 Sulfur compound adsorption / removal filter Active JP6089618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254182A JP6089618B2 (en) 2012-11-20 2012-11-20 Sulfur compound adsorption / removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254182A JP6089618B2 (en) 2012-11-20 2012-11-20 Sulfur compound adsorption / removal filter

Publications (2)

Publication Number Publication Date
JP2014100655A true JP2014100655A (en) 2014-06-05
JP6089618B2 JP6089618B2 (en) 2017-03-08

Family

ID=51023694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254182A Active JP6089618B2 (en) 2012-11-20 2012-11-20 Sulfur compound adsorption / removal filter

Country Status (1)

Country Link
JP (1) JP6089618B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150019A1 (en) * 2016-03-01 2017-09-08 パナソニック株式会社 Removal of sulfur compound from fluid
WO2018139108A1 (en) * 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
JP2018525453A (en) * 2015-06-01 2018-09-06 カルゴン カーボン コーポレーション Method for inactivating activated carbon in a biogas refiner
JP2019181452A (en) * 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 Desulfurizer, hydrogen generation device and fuel cell system
US10457895B2 (en) 2015-06-26 2019-10-29 Henkel Ag & Co. Kgaa Washing or cleaning agent for reducing malodors
JP2020081968A (en) * 2018-11-26 2020-06-04 日立化成株式会社 Gas-capturing material and vacuum heat insulator
CN112844318A (en) * 2020-12-24 2021-05-28 南京工业大学 Cuprous-modified titanium-based porous adsorbent and preparation method and application thereof
WO2023153070A1 (en) * 2022-02-08 2023-08-17 パナソニックIpマネジメント株式会社 Desulfurizing agent
WO2024038835A1 (en) * 2022-08-16 2024-02-22 パナソニックIpマネジメント株式会社 Desulfurizing agent
WO2024053339A1 (en) * 2022-09-09 2024-03-14 パナソニックIpマネジメント株式会社 Adsorbent and method for using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091709A (en) * 2005-08-30 2007-04-12 Matsushita Electric Ind Co Ltd Adsorptive integrated metal complex and adsorptive metal complex
WO2012131483A1 (en) * 2011-03-31 2012-10-04 Council Of Scientific & Industrial Research Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof
JP2013144284A (en) * 2012-01-16 2013-07-25 Toyobo Co Ltd Porous composite material and production method thereof, and hydrogen sulfide removing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091709A (en) * 2005-08-30 2007-04-12 Matsushita Electric Ind Co Ltd Adsorptive integrated metal complex and adsorptive metal complex
WO2012131483A1 (en) * 2011-03-31 2012-10-04 Council Of Scientific & Industrial Research Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof
JP2013144284A (en) * 2012-01-16 2013-07-25 Toyobo Co Ltd Porous composite material and production method thereof, and hydrogen sulfide removing material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016050761; J.AM.CHEM.SOC. Vol.132,No.20, 2010, p.7202-7209 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106275B2 (en) 2015-06-01 2022-07-26 カルゴン カーボン コーポレーション Method and system for purifying crude biogas
US10633307B2 (en) 2015-06-01 2020-04-28 Calgon Carbon Corporation Method for inerting activated carbon in biogas purification equipment
JP2021073333A (en) * 2015-06-01 2021-05-13 カルゴン カーボン コーポレーション Method for inerting activated carbon in biogas purification machine
US11958803B2 (en) 2015-06-01 2024-04-16 Calgon Carbon Corporation Method for inerting activated carbon in biogas purification equipment
JP2018525453A (en) * 2015-06-01 2018-09-06 カルゴン カーボン コーポレーション Method for inactivating activated carbon in a biogas refiner
US10457895B2 (en) 2015-06-26 2019-10-29 Henkel Ag & Co. Kgaa Washing or cleaning agent for reducing malodors
WO2017150019A1 (en) * 2016-03-01 2017-09-08 パナソニック株式会社 Removal of sulfur compound from fluid
JP6238150B1 (en) * 2016-03-01 2017-11-29 パナソニック株式会社 Removal of sulfur compounds from fluids
JP6406745B1 (en) * 2017-01-26 2018-10-17 パナソニック株式会社 Desulfurization apparatus and desulfurization method
US10625198B2 (en) 2017-01-26 2020-04-21 Panasonic Corporation Desulfurization apparatus and desulfurization method
WO2018139108A1 (en) * 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
JP2019181452A (en) * 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 Desulfurizer, hydrogen generation device and fuel cell system
US11643867B2 (en) 2018-11-26 2023-05-09 Panasonic Holdings Corporation Gas trapping member and vacuum heat insulation equipment
JP2020081968A (en) * 2018-11-26 2020-06-04 日立化成株式会社 Gas-capturing material and vacuum heat insulator
CN112844318A (en) * 2020-12-24 2021-05-28 南京工业大学 Cuprous-modified titanium-based porous adsorbent and preparation method and application thereof
WO2023153070A1 (en) * 2022-02-08 2023-08-17 パナソニックIpマネジメント株式会社 Desulfurizing agent
WO2024038835A1 (en) * 2022-08-16 2024-02-22 パナソニックIpマネジメント株式会社 Desulfurizing agent
WO2024053339A1 (en) * 2022-09-09 2024-03-14 パナソニックIpマネジメント株式会社 Adsorbent and method for using same

Also Published As

Publication number Publication date
JP6089618B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6089618B2 (en) Sulfur compound adsorption / removal filter
Liu et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection
Shang et al. Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture
Wang et al. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal
Liu et al. Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications
Aslam et al. Dispersion of nickel nanoparticles in the cages of metal-organic framework: an efficient sorbent for adsorptive removal of thiophene
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
Kobayashi et al. Metal nanoparticles covered with a metal–organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions
Wang et al. Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks
US9566575B2 (en) Activated carbon with a special finishing, production and use thereof
Petit et al. Reactive adsorption of acidic gases on MOF/graphite oxide composites
JP5813946B2 (en) Hybrid porous material and method for producing the same
Montazerolghaem et al. A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO 2 adsorption properties
KR101273877B1 (en) Composites comprising crystallne porous hybrid powders and a method for preparing thereof
JP2005525218A (en) Method for taking up, storing or releasing gas with a new skeletal material
JP5829924B2 (en) Porous composite material, method for producing the same, and hydrogen sulfide gas removing material
Chen et al. CO2 adsorption over metal-organic frameworks: A mini review
Li et al. Calcium-based metal–organic framework for simultaneous capture of trace propyne and propadiene from propylene
Tran et al. Esoteric CO adsorption by CuCl-NiCl2 embedded microporous MIL-101 (Cr)
Mounfield III et al. Synergistic effect of mixed oxide on the adsorption of ammonia with metal–organic frameworks
Gong et al. A lanthanum carboxylate framework with exceptional stability and highly selective adsorption of gas and liquid
Ky et al. Mg2+ embedded MIL‐101 (Cr)‐NH2 framework for improved CO2 adsorption and CO2/N2 selectivity
CN115803919A (en) Method for purifying hydrogen for use in a fuel cell
Wang et al. Synergistic effect of bimetal in isoreticular Zn–Cu–1, 3, 5-benzenetricarboxylate on room temperature gaseous sulfides removal
KR102186025B1 (en) A adsorbent with olefins sorption selectivity, manufacturing method of the same and method of selectively adsorbing olefin using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6089618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350