JP2014100389A - Method of measuring immediate continuous pressure of fluid inside elastic tube and compliance of elastic tube and measuring device used in the same - Google Patents

Method of measuring immediate continuous pressure of fluid inside elastic tube and compliance of elastic tube and measuring device used in the same Download PDF

Info

Publication number
JP2014100389A
JP2014100389A JP2012255340A JP2012255340A JP2014100389A JP 2014100389 A JP2014100389 A JP 2014100389A JP 2012255340 A JP2012255340 A JP 2012255340A JP 2012255340 A JP2012255340 A JP 2012255340A JP 2014100389 A JP2014100389 A JP 2014100389A
Authority
JP
Japan
Prior art keywords
pressure
elastic tube
impedance
measuring
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012255340A
Other languages
Japanese (ja)
Other versions
JP6009914B2 (en
Inventor
Chin-Yuh Lin
欽裕 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GONGBU SHE JI CO Ltd
Original Assignee
GONGBU SHE JI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GONGBU SHE JI CO Ltd filed Critical GONGBU SHE JI CO Ltd
Priority to JP2012255340A priority Critical patent/JP6009914B2/en
Publication of JP2014100389A publication Critical patent/JP2014100389A/en
Application granted granted Critical
Publication of JP6009914B2 publication Critical patent/JP6009914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of accurately measuring an immediate continuous pressure of fluid inside an elastic tube and compliance of the elastic tube, and a measuring device used in the method.SOLUTION: A detection unit 1 includes a DC operation device 10, an AC operation device 11, a DC shift sensor 12, an AC shift sensor 13, and a pressure sensor 14. After a critical depth of the elastic tube is detected, both partial pressures of DC and AC that are required are separated by separation control, characteristics of the elastic tube and peripheral tissue are separated by the shift of the DC operation device and the AC operation device, and by an actual shift change amount in an AC pressure of the fluid in the elastic tube and the dynamic impedance thereof, a so-called immediate continuous pressure and dynamic compliance are calculated.

Description

本発明は、弾性管内の流体の即時性連続圧力および弾性管のコンプライアンスを測定する方法ならびに当該方法に用いられる測定装置に関する。   The present invention relates to a method for measuring an immediate continuous pressure of fluid in an elastic tube and compliance of the elastic tube, and a measuring device used in the method.

現在、心血管疾患(CVD,Cardiovascular disease)は主要な死亡要因の1つとなり、心血管疾患を予防することが注目されている。心血管疾患の主要な病因は動脈硬化である。現在の非侵襲的(Noninvasive)動脈パラメーター検査技術では、主に「動脈圧(Arterial Blood Pressure)」、「足関節上腕血圧比(ABI,Ankle Branch Index)」、「脈波伝播速度(PWV,Pulse Wave Velocity)」と「動脈コンプライアンス(Arterial Comliance)」を測定する。   At present, cardiovascular disease (CVD, Cardiovascular disease) is one of the major causes of death, and attention is focused on preventing cardiovascular disease. The major etiology of cardiovascular disease is arteriosclerosis. The current non-invasive arterial parameter examination techniques mainly include “Arterial Pressure”, “Ankle Brachial Blood Pressure Ratio (ABI)”, “Pulse Wave Velocity (PWV, Pulse). “Wave Velocity” and “Arterial Compliance” are measured.

動脈圧は、血管壁内の血液の圧力である。現行の測定技術は「暫定血圧測定」技術と「連続血圧測定」技術に分けられる。暫定血圧測定技術は最も広く使用されている心血管パラメーター測定技術である。例えば、コロトコフ(Korotkoff)が1905年に提示したコロトコフ音(Korotkoff sounds)及びその派生であるオシロメトリック法(Oscillometric Method)に基づき、動脈血管の収縮期血圧(SBP)、拡張期血圧(DBP)及び平均血圧(MBP)を測定することができ、これにより血圧の高低を測定することができる。   Arterial pressure is the pressure of blood in the vessel wall. Current measurement technology can be divided into “provisional blood pressure measurement” technology and “continuous blood pressure measurement” technology. Interim blood pressure measurement technology is the most widely used cardiovascular parameter measurement technology. For example, based on Korotkoff sounds presented by Korotkoff in 1905 and its oscillometric method (Oscillometric Method), arterial vascular systolic blood pressure (SBP), diastolic blood pressure (DBP) and The mean blood pressure (MBP) can be measured, and thereby the blood pressure level can be measured.

Figure 2014100389
Figure 2014100389

「トノメトリック法(Tonometric Method)は、トノメトリック測定器(Tonometer)を血管上方の皮膚に直接押し当てることにより、血管の連続血圧を測定する方法である。この方法を使用する場合、下に押す深度が不明確であるため、実際の脈圧(Pulse Pressure)の大きさを測定することができない。よって、別の上腕に対して従来の巻き付け型血圧計を利用して、動脈の収縮期血圧、拡張期血圧、平均血圧を測定し、トノメトリック測定器による脈波信号の正確な位置及び振幅を調整する必要がある。
“The tonometric method is a method for measuring the continuous blood pressure of a blood vessel by pressing the tonometer directly on the skin above the blood vessel. When using this method, push down. Since the depth is not clear, the actual pulse pressure cannot be measured, so the conventional systolic sphygmomanometer is used for another upper arm, and the systolic blood pressure of the artery It is necessary to measure the diastolic blood pressure and the average blood pressure and adjust the exact position and amplitude of the pulse wave signal by the tonometer.

「血圧バンド連続血圧測定法」は、ペナスが1973年に提示した血管無負荷(Vascular Unloading)という概念に基づいた方法である。血圧計のバンド内の圧力が血管内の血圧と等しい時、血管は無負荷の状態となり、血管壁圧はゼロとなる。この時、作用力は反作用力と等しくなるという原理に基づけば、制御圧力袋内の圧力は脈拍によって形成される体積の変化によってゼロに補正され、血管内体積を変えないように維持する。よって、血圧計のバンド内の圧力変化によって血管の連続血圧が測定される。K.H.Wesselingはペナス法に基づき、Finapres指脈圧器を研究開発した。この指脈圧器は、指血圧計のバンド(Finger Cuff)を利用して指脈圧を測定する。平均血圧は、生理的影響を受けて変化するため、K.H.Wesselingは血圧計のバンドの圧力の補正方法を発現した。この補正方法は、生理検定(Physicocal;Physiologic Calibration)と呼ばれ、10個の脈波を記録した後、血圧計のバンド内の平均圧力を調整し、血管体積が無荷重の状態になるよう維持する方法である。さらに、血圧の変化を長時間監視するために、Finapresは30分ごとに異なる指に変えて測定を行い、圧力を長期間加えることにより、血液循環不良が引き起こされることを防ぐ。   The “blood pressure band continuous blood pressure measurement method” is a method based on the concept of vascular unloading presented by Penas in 1973. When the pressure in the sphygmomanometer band is equal to the blood pressure in the blood vessel, the blood vessel is unloaded and the blood vessel wall pressure is zero. At this time, based on the principle that the acting force becomes equal to the reaction force, the pressure in the control pressure bag is corrected to zero by the change in the volume formed by the pulse, and is maintained without changing the intravascular volume. Therefore, the continuous blood pressure of the blood vessel is measured by the pressure change in the band of the blood pressure monitor. K. H. Wesseling researched and developed the Finapres finger pressure device based on the Penas method. This finger pressure device measures the finger pressure using a finger sphygmomanometer band (Finger Cuff). Since the average blood pressure changes under physiological influence, H. Wesseling developed a method for correcting pressure in the sphygmomanometer band. This correction method is called Physiological Calibration (Physical Calibration), and after recording 10 pulse waves, the average pressure in the band of the sphygmomanometer is adjusted to maintain the blood vessel volume in an unloaded state. It is a method to do. Furthermore, in order to monitor changes in blood pressure for a long time, Finapres performs measurement by changing to a different finger every 30 minutes, and prevents a blood circulation failure from being caused by applying pressure for a long time.

1980年に日本のK.YAMAKOSHI教授は、K.H.Wesseling方法における、血圧計のバンドの平均圧力を調整することができないという欠点に対して改良を行い、体積補正法(Volume Compensation Method)を提示した。体積補正法は、毎回の心拍後(Beat to Beat補正方式)、脈波振幅とバンドの平均圧力との関係に基づき、サーボシステムを制御し、バンド内の平均圧力を調整することで、血管体積が変わらないよう維持可能である。また、K.YAMAKOSHIは、血圧計のバンドのガス嚢を縮小させ、局部に圧力を加える方式により、Finapres血圧計のバンドが環状に圧力を加えることにより指の血液循環不良という問題を改善した。しかし、その後の研究によって、指によって測定される血圧は5〜10mmHgより小さくなることがわかり、同様な技術によって手首の橈骨動脈の血圧を測定することにした。   In 1980, K. Professor YAMAKOSHI H. In the Wesseling method, an improvement was made to the disadvantage that the average pressure of the sphygmomanometer band could not be adjusted, and a volume compensation method was presented. In the volume correction method, after each heartbeat (Beat to Beat correction method), the servo system is controlled based on the relationship between the pulse wave amplitude and the band average pressure, and the blood pressure is adjusted by adjusting the average pressure in the band. Can be maintained so as not to change. K.K. YAMAKOSHI has improved the problem of poor blood circulation of the finger by reducing the gas sac of the band of the sphygmomanometer and applying pressure to the local area in a manner that the band of the Finapres sphygmomanometer applies pressure cyclically. However, subsequent studies showed that the blood pressure measured by the finger was less than 5-10 mmHg, and we decided to measure the blood pressure in the radial artery of the wrist with a similar technique.

日本特開2009―66384号明細書Japanese Unexamined Patent Publication No. 2009-66384

しかしながら、前述した従来の技術では、たとえ血圧計測定法かペナス法のどちらであったとしても、血液の流れ方向と直交する方向の圧力である交流血圧の下では、血管の無荷重状態を維持することができず、血管内の実際の血圧を測定することができなかった。特許文献1には組織制御法(Tissue Control Method,TCM)が開示している。組織制御法により、臨界位置を維持し、血管の血液の流れ方向と直交する方向の圧力である交流脈圧を追跡し、血管の負荷が分離する状態となり、血管が無負荷である状態を維持し、血管の管径変化が得られるが、同時に測定点の交流圧力信号を失う(制御装置の参考圧力を失う)。血管のインピーダンスを推測するため、自動調整制御方法により、1つ前の脈波のピーク脈圧に対するピークを参考圧力とし、これによりBeat−basedの血管内連続血圧が得られるが、明らかに不精確である(図11参照)。また、得られる血管動脈インピーダンスも脈圧周期の平均値に近い値である(図12参照)。言い換えると、組織制御法(TCM)は、血管の負荷を無くすが、参考圧力が失われるため、即時性の血管の連続血圧及び動的コンプライアンスを測定することができない。
However, in the above-described conventional technique, even if the blood pressure measurement method or the Penas method is used, the unloaded state of the blood vessel is maintained under the AC blood pressure that is the pressure in the direction orthogonal to the blood flow direction. The actual blood pressure in the blood vessel could not be measured. Patent Document 1 discloses a tissue control method (TCM). The tissue control method maintains the critical position and tracks the AC pulse pressure, which is the pressure in the direction perpendicular to the blood flow direction of the blood vessel, so that the load on the blood vessel is separated and the state where the blood vessel is unloaded is maintained. However, the blood vessel diameter change can be obtained, but at the same time, the AC pressure signal at the measurement point is lost (the reference pressure of the control device is lost). In order to estimate the impedance of the blood vessel, the peak of the previous pulse wave with respect to the peak pulse pressure is used as a reference pressure by the automatic adjustment control method, thereby obtaining a beat-based intravascular continuous blood pressure. (See FIG. 11). Further, the obtained vascular artery impedance is also a value close to the average value of the pulse pressure period (see FIG. 12). In other words, tissue control (TCM) eliminates vascular load, but loses the reference pressure and thus cannot measure immediate blood vessel continuous blood pressure and dynamic compliance.

本発明は、上述の問題に鑑みてなされたものであり、その目的は、弾性管及びその他周囲組織の特性を分離させ、正確に弾性管内の流体の即時性連続圧力および弾性管のコンプライアンスを測定する方法ならびに当該方法に用いられる測定装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to separate the characteristics of the elastic tube and other surrounding tissues and accurately measure the instantaneous continuous pressure of the fluid in the elastic tube and the compliance of the elastic tube. And a measuring apparatus used in the method.

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

測定過程で、弾性管と周囲組織の特性を分離(Decoupled)する技術によって、周囲組織と弾性管の特性を分離させ、弾性管内の流体の即時圧力および連続圧力の変化ならびに弾性管の動的インピーダンスが得られる。また、一部の弾性管と周囲組織は結合され、一部の弾性管は周囲組織の一部として見られ、再度分離(Decoupled)する技術によってこの結合された周囲組織と別の一部の弾性管の特性が分離され、弾性管内の流体の即時圧力および連続圧力の変化ならびに一部弾性管の動的インピーダンスが得られる。   In the measurement process, the characteristics of the elastic tube and the surrounding tissue are separated, and the characteristics of the surrounding tissue and the elastic tube are separated to change the immediate pressure and the continuous pressure of the fluid in the elastic tube and the dynamic impedance of the elastic tube. Is obtained. Also, some elastic tubes and surrounding tissue are combined, some elastic tubes are seen as part of the surrounding tissue, and this combined surrounding tissue and another part of elasticity are separated by a technique of being decoupled. The properties of the tube are separated, resulting in the immediate and continuous pressure changes of the fluid in the elastic tube and the dynamic impedance of some elastic tubes.

また、弾性管の動的インピーダンスによって、弾性管の動的等価質量、減衰特性、剛性などの力学特性を識別することができる。ここでは、剛性の逆数を弾性管の動的コンプライアンスとする。   In addition, the dynamic characteristics of the elastic tube such as dynamic equivalent mass, damping characteristics, and rigidity can be identified by the dynamic impedance of the elastic tube. Here, the reciprocal of the rigidity is the dynamic compliance of the elastic tube.

本発明の一実施形態による弾性管内の流体の即時性連続圧力を測定する測定装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus which measures the immediate continuous pressure of the fluid in the elastic tube by one Embodiment of this invention. 従来の測定方法中の上下筋肉組織、皮膚、血管及び橈骨動脈などを示す模式図である。It is a schematic diagram which shows an up-and-down muscular tissue, skin, a blood vessel, a radial artery, etc. in the conventional measuring method. 図2aのインピーダンスを示す特性図である。It is a characteristic view which shows the impedance of FIG. 2a. 図2bの力学回路を示す特性図である。FIG. 3 is a characteristic diagram illustrating the dynamic circuit of FIG. 図2cを簡素化した力学回路を示す特性図である。It is a characteristic view which shows the dynamic circuit which simplified FIG. 2c. 本発明の一実施形態による測定方法中の上下筋肉組織、皮膚、血管及び橈骨動脈などを示す模式である。It is a model which shows the upper and lower muscular tissue, skin, blood vessel, radial artery, etc. in the measuring method by one Embodiment of this invention. 図3aのインピーダンスを示す特性図である。It is a characteristic view which shows the impedance of FIG. 3a. 図3bの力学回路を示す特性図である。FIG. 3b is a characteristic diagram illustrating the dynamic circuit of FIG. 3b. 図3cを簡素化した力学回路を示す特性図である。FIG. 3C is a characteristic diagram showing a dynamic circuit obtained by simplifying FIG. 3C. 血管の負荷を分離する制御の中の力学回路を示す特性図である。It is a characteristic view which shows the dynamic circuit in control which isolate | separates the load of the blood vessel. 本発明の血管負荷を分離する技術を示す模式図である。It is a schematic diagram which shows the technique which isolate | separates the vascular load of this invention. 本発明の一実施形態による第1実施例の弾性管内の流体の即時性連続圧力を測定する方法を示す模式図である。It is a schematic diagram which shows the method to measure the immediate continuous pressure of the fluid in the elastic pipe | tube of the 1st Example by one Embodiment of this invention. 本発明の一実施形態による第2実施例の弾性管内の流体の即時性連続圧力を測定する方法を示す図である。It is a figure which shows the method to measure the instantaneous continuous pressure of the fluid in the elastic pipe | tube of the 2nd Example by one Embodiment of this invention. 本発明の一実施形態による第1実施例の弾性管内の流体の即時性連続圧力を測定する方法を示すフローチャートである。4 is a flowchart illustrating a method for measuring an instantaneous continuous pressure of a fluid in an elastic tube of a first example according to an embodiment of the present invention. 本発明の一実施形態による第2実施例の弾性管内の流体の即時性連続圧力を測定する方法を示すフローチャートである。6 is a flowchart illustrating a method for measuring an instantaneous continuous pressure of a fluid in an elastic tube of a second example according to an embodiment of the present invention. 本発明の一実施形態による特性図である。It is a characteristic view by one Embodiment of this invention. 本発明の一実施形態による特性図である。It is a characteristic view by one Embodiment of this invention. 本発明の一実施形態による特性図である。It is a characteristic view by one Embodiment of this invention. 本発明の一実施形態による特性図である。It is a characteristic view by one Embodiment of this invention.

(一実施形態)
以下、図面を参照して、本発明の一実施形態について、詳細に説明する。なお、本発明は、以下の一実施形態に限定されるものではない。
(One embodiment)
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the following embodiment.

Figure 2014100389
Figure 2014100389

弾性管は、弾性を有する管体であり、内部に流体が流動することができればよい。本実施形態では、動脈の即時性連続圧力の測定に適用下ものであり、動脈血管の回路は密閉システムに相当し、橈骨動脈は弾性管に相当する。また、血液は弾性管の中で流動する流体に騒動する。橈骨動脈血管周囲の筋肉組織は、周囲組織に相当する。   The elastic tube is a tube having elasticity, and it is sufficient that the fluid can flow inside. In the present embodiment, the present invention is applied to the measurement of the immediate continuous pressure of the artery, and the arterial blood vessel circuit corresponds to a sealing system, and the radial artery corresponds to an elastic tube. In addition, blood is disturbed by the fluid flowing in the elastic tube. The muscle tissue around the radial artery blood vessels corresponds to the surrounding tissue.

まず、本発明の主な技術特徴について説明する。
1、本発明の主な技術特徴は、直流作動装置と交流作動装置を含む2セットの作動装置を利用することである。2つの作動装置の検知ヘッドは、臨界深度(或いは、仮想臨界深度)を維持し、この時、弾性管を除いた周囲組織のインピーダンスが得られる。また、交流制御装置が交流圧力を追跡する方法により、弾性管が交流圧力に伴い単独で脈動するようにし、弾性管を除いた周囲組織が変わらないようにし、剛体運動のように、臨界深度(或いは、仮想臨界深度)を境界として両者が分離(Decoupled)して運動する状態となる。これにより測定弾性管の実際の圧力、管の管径シフト量及びそのインピーダンスを検討することが可能となる。
2、しかしながら、制御の観点から、交流圧力を追跡する時、弾性管の交流圧力も失ってしまう。このため、自動適応方法、追跡−停止(Step−Hold)制御によって測定される弾性管の参考圧力の推測、そのインピーダンスの識別、制御装置ゲインの計算、弾性管の交流圧力の追跡、および弾性管のシフト量の測定などのステップが行われ、さらに弾性管内流体の即時性動的圧力が算出される。
3、交流圧力を追跡することで得られる弾性管の動的インピーダンスは、動的等価質量、減衰特性、及び、剛性に分離される。ここでは、剛性の逆数を弾性管の動的コンプライアンスとする。
First, main technical features of the present invention will be described.
1. The main technical feature of the present invention is to use two sets of actuators including a DC actuator and an AC actuator. The sensing heads of the two actuators maintain a critical depth (or virtual critical depth), at which time the impedance of the surrounding tissue excluding the elastic tube is obtained. In addition, by the method in which the AC controller tracks the AC pressure, the elastic tube pulsates independently with the AC pressure, the surrounding tissue excluding the elastic tube is not changed, and the critical depth ( Alternatively, the two are separated (decoupled) and move with a virtual critical depth) as a boundary. This makes it possible to study the actual pressure of the measuring elastic tube, the tube diameter shift amount of the tube, and its impedance.
2. However, from the viewpoint of control, when the AC pressure is tracked, the AC pressure of the elastic tube is also lost. For this purpose, an automatic adaptation method, estimation of the reference pressure of the elastic tube measured by tracking-stop control, identification of its impedance, calculation of the controller gain, tracking of the alternating pressure of the elastic tube, and elastic tube Steps such as measuring the shift amount are performed, and an immediate dynamic pressure of the fluid in the elastic tube is calculated.
3. The dynamic impedance of the elastic tube obtained by tracking the alternating pressure is separated into dynamic equivalent mass, damping characteristic, and rigidity. Here, the reciprocal of the rigidity is the dynamic compliance of the elastic tube.

次は、本実施形態による測定装置について説明する。
本実施形態で応用される測定装置は、図1、3aに示す検知ユニット1、及び、制御ユニット(図示せず)を含む。検知ユニット1は、筋肉組織表面(つまり、皮膚表面)に設けられ、直流作動装置10、交流作動装置11、直流シフト感知装置12、交流シフト感知装置13及び圧力感知装置14によって構成される。交流作動装置11は、直流作動装置14中に位置し、直流作動装置10に対応して独立して上下にシフトする。圧力感知装置14は、交流作動装置11と周囲組織表面とが接触する端面に設けられる。制御ユニットは、信号分析処理のために用いられ、直流作動装置10、交流作動装置11、直流シフト感知装置12、交流シフト感知装置13、及び圧力感知装置14と電気的に接続されている。
Next, the measuring apparatus according to the present embodiment will be described.
The measuring apparatus applied in the present embodiment includes a detection unit 1 shown in FIGS. 1 and 3a and a control unit (not shown). The detection unit 1 is provided on the muscular tissue surface (that is, the skin surface), and includes a DC actuator 10, an AC actuator 11, a DC shift sensor 12, an AC shift sensor 13, and a pressure sensor 14. The AC actuator 11 is located in the DC actuator 14 and shifts up and down independently corresponding to the DC actuator 10. The pressure sensing device 14 is provided on an end surface where the AC actuator 11 and the surrounding tissue surface come into contact with each other. The control unit is used for signal analysis processing and is electrically connected to the DC actuator 10, the AC actuator 11, the DC shift sensor 12, the AC shift sensor 13, and the pressure sensor 14.

(従来の測定方法に基づいた物理モデル)
図2aは、従来の測定方法を示し、動脈血管と筋肉組織などの構造を示す模式図である。図2aの左半分は、上から下まで、それぞれ皮膚、上筋肉組織、動脈血管、下筋肉組織、および橈骨である。皮膚は点aと表示され、動脈血管の上下位置はそれぞれ点bと点cと表示され、橈骨は点dと表示されている。図2aの右半分は、上筋肉組織(upper tissue)、動脈血管(arterial blood vessel)、および下筋肉組織(lower tissue)の各部分の質量(mass)、減衰特性(damping)、および剛性(stiffness)を模擬した物理モデルを示す模式図である。
(Physical model based on conventional measurement methods)
FIG. 2a is a schematic diagram showing a conventional measurement method and showing structures such as arterial blood vessels and muscle tissue. The left half of FIG. 2a is, from top to bottom, skin, upper muscle tissue, arterial blood vessels, lower muscle tissue, and ribs, respectively. The skin is displayed as point a, the upper and lower positions of the arterial blood vessels are displayed as points b and c, respectively, and the ribs are displayed as point d. The right half of FIG. 2a shows the mass, damping characteristics, and stiffness of each part of upper tissue, arterial blood vessel, and lower muscle tissue. It is a schematic diagram which shows the physical model which simulated).

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

上述の検知ユニットは、空気サーボ制御装置(pneumatic servo)のバンド(cuff)か圧電作動装置(piezo−actuator)を有する動脈血圧計(artery tonometry)である。もし、検知ユニットとして、圧電作動装置を有する動脈血圧計を用いる場合、筋肉組織との比較により、検知ユニットのインピーダンスを無視することができないが、空気サーボ制御装置のバンドを用いる場合、検知ユニットのインピーダンスを無視しても良い。また、筋肉組織と血管のインピーダンスは、常数ではなく、下方向に押す深度に伴い変化する。   The detection unit described above is an arterial sphygmomanometer with a pneumatic servo control cuff or a piezo-actuator. If an arterial sphygmomanometer with a piezoelectric actuator is used as the detection unit, the impedance of the detection unit cannot be ignored by comparison with muscle tissue, but if the band of the air servo controller is used, the impedance of the detection unit Can be ignored. In addition, the impedance of muscle tissue and blood vessels is not a constant, but changes with the depth of pressing downward.

Figure 2014100389
Figure 2014100389

(本実施形態の測定方法による物理モデル)
図3aは、本実施形態の橈骨動脈および筋肉組織などの構造の物理モデルを示す模式図である。図3aの左半分は、上から下まで、それぞれ皮膚(skin)、上筋肉組織(upper tissue)、橈骨動脈(arterial blood vessel)、下筋肉組織(lower tissue)、および橈骨(radius)である。筋肉組織表面(つまり、皮膚表面)は点aと表示され、橈骨動脈の上下位置はそれぞれ点b、点eと表示され、橈骨は点fと表示されている。橈骨動脈領域は、内橈骨動脈(つまり、圧縮されていない部分の橈骨動脈)及び外橈骨動脈(つまり、圧縮されている部分の橈骨動脈)の2つの部分に分けられ、上下の境界位置はそれぞれ点cおよび点dと表示されている。図3aの右半分は、上筋肉組織、橈骨動脈および下筋肉組織の各部分の質量(mass)、減衰特性(damping)、剛性(stiffness)を模擬した物理モデルを示すである。
(Physical model by measurement method of this embodiment)
FIG. 3 a is a schematic diagram showing a physical model of a structure such as the radial artery and muscle tissue of the present embodiment. The left half of FIG. 3a is, from top to bottom, skin, upper tissue, arterial blood vessel, lower tissue, and radius, respectively. The surface of the muscle tissue (that is, the skin surface) is displayed as point a, the vertical position of the radial artery is displayed as point b and point e, and the rib is displayed as point f. The radial artery region is divided into two parts: the internal radial artery (ie, the uncompressed radial artery) and the external radial artery (ie, the compressed radial artery). Point c and point d are displayed. The right half of FIG. 3a shows a physical model that simulates the mass, damping characteristics, and stiffness of each part of the upper muscle tissue, radial artery, and lower muscle tissue.

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

上述の検知ユニット1は、空気サーボ制御装置(pneumatic servo)のバンド(cuff)か圧電作動装置(piezo−actuator)を有する動脈血圧計(artery tonometry)である。もし、検知ユニットとして、圧電作動装置を有する動脈血圧計を用いる場合、筋肉組織との比較下により、検知ユニット1のインピーダンスを無視することができないが、空気サーボ制御装置のバンドを用いる場合、検知ユニットのインピーダンスを無視しても良い。また、筋肉組織と橈骨動脈のインピーダンスは、常数ではなく、下方向に押す深度に伴い変化する。   The above-described detection unit 1 is an arterial blood pressure meter having an air servo controller (pneumatic servo) band or a piezoelectric actuator (piezo-actuator). If an arterial sphygmomanometer having a piezoelectric actuator is used as the detection unit, the impedance of the detection unit 1 cannot be ignored due to a comparison with muscle tissue, but if a band of an air servo control device is used, the detection unit You may ignore the impedance. In addition, the impedance between the muscular tissue and the radial artery is not a constant and changes with the depth of pressing downward.

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

Figure 2014100389
Figure 2014100389

本発明の技術特徴を以下の通りまとめる。
1、直流作動装置によって直流圧力を保持する制御技術:
直流圧力を保持する目的は、直流作動装置が周囲組織の表面から弾性管に下方向に押し、管外の押し力と管内流体の直流圧力が等しくなるようにするためである。この時の深度を前述の臨界深度または仮想臨界深度とし、周囲組織の表面が臨界深度または仮想臨界深度まで押されたとき、検出される直流圧力及び深度により検出されるインピーダンスを弾性管を除いた周辺組織のインピーダンスとし、弾性管のインピーダンスを含まない。言い換えると、臨界深度または仮想臨界深度の位置において、弾性管を除いた周囲組織のインピーダンスと弾性管のインピーダンスを分離する。
The technical features of the present invention are summarized as follows.
1. Control technology to maintain DC pressure by DC actuator:
The purpose of maintaining the DC pressure is for the DC actuator to push downward from the surface of the surrounding tissue to the elastic tube so that the pushing force outside the tube is equal to the DC pressure of the fluid in the tube. The depth at this time is the above-mentioned critical depth or virtual critical depth, and when the surface of the surrounding tissue is pushed to the critical depth or virtual critical depth, the impedance detected by the detected DC pressure and depth is excluded from the elastic tube The impedance of the surrounding tissue, not including the impedance of the elastic tube. In other words, the impedance of the surrounding tissue excluding the elastic tube and the impedance of the elastic tube are separated at the critical depth or the virtual critical depth.

2、交流圧力を追跡する技術:
臨界深度または仮想臨界深度の位置において、交流作動装置のシフトを制御することによって弾性管の交流圧力を追跡し、弾性管が単独の交流圧力に伴って脈動し、弾性管以外の周囲組織が剛体運動することによって、両者が分離波動する現象を形成する。
制御の観点からみると、交流圧力が完全に追跡されると、同時に交流圧力の感知が失うため、許容される誤差が必要である。また、弾性管のインピーダンスは脈動の状態に伴い異なるため、一定比率の交流圧力維持するために許容される誤差が必要である。交流制御装置は自動適応方法を使用し、可変的な制御ゲインによって、交流制御システムオープンループゲインを定値とする設定を保持する。
これにもかかわらず、交流制御システムが必要とする参考圧力は不明確である。ここで、追跡‐停止(Step−Hold)の制御方法が提示される。まず交流作動装置を停止(Hold)させることで参考圧力を測定し、さらに推測の技術で次の点の参考圧力が推測し、弾性管のインピーダンスの算出を行い、可変的な制御ゲインを算出し、交流作動装置は次の点で交流圧力を追跡し、弾性管のシフト信号を取得する。停止−追跡−停止−追跡の循環モードに戻る。このように、弾性管のシフト量の測定、交流圧力の追跡、参考圧力の推測、弾性管のインピーダンスの算出、及び制御ゲインの算出などの技術により、弾性管内の実際の即時連続圧力及び動的インピーダンスが算出される。
2. Technology to track AC pressure:
At the critical depth or virtual critical depth position, the AC pressure of the elastic tube is tracked by controlling the shift of the AC actuator, the elastic tube pulsates with a single AC pressure, and the surrounding tissue other than the elastic tube is a rigid body By moving, a phenomenon occurs in which both waves separate.
From a control point of view, if the AC pressure is completely tracked, the AC pressure is lost at the same time, so an acceptable error is required. In addition, since the impedance of the elastic tube varies depending on the pulsation state, an allowable error is required to maintain a constant ratio of AC pressure. The AC control device uses an automatic adaptation method, and retains the setting that sets the AC control system open loop gain as a constant value by a variable control gain.
Despite this, the reference pressure required by the AC control system is unclear. Here, a tracking-stop control method is presented. First, the reference pressure is measured by stopping the AC actuator, and the next reference pressure is estimated by the estimation technique, the impedance of the elastic tube is calculated, and the variable control gain is calculated. The AC actuator tracks the AC pressure at the following points and obtains the shift signal of the elastic tube. Return to stop-track-stop-track circular mode. In this way, the actual instantaneous continuous pressure and dynamic in the elastic tube are measured by techniques such as measuring the shift amount of the elastic tube, tracking the AC pressure, estimating the reference pressure, calculating the impedance of the elastic tube, and calculating the control gain. Impedance is calculated.

Figure 2014100389
Figure 2014100389

図9は弾性管の“実際の弾性管のインピーダンス値”と“弾性インピーダンス値”の比較図である。図9に示すように、“弾性管のインピーダンス”は、同一脈圧周期内で時間に伴い絶え間なく変化し、“実際の弾性管のインピーダンス値”によって構成される曲線と相対的に一致する。よって、本実施形態の測定方法によって弾性管の実際の弾性管のインピーダンスが推測される。図10は、弾性管の“実際の管内圧力値”と“推測される管内圧力値”の比較図である。本実施形態の測定方法は弾性管の実際の弾性管のインピーダンスを推測することができる。したがって、弾性管のインピーダンスによってさらに推測される管内圧力値は安定した誤差範囲内に維持される。図10に示すように、“推測される管内圧力値”および“実際の管内圧力値”が構成する曲線は相対的に一致する。
FIG. 9 is a comparison diagram of “actual impedance value of an elastic tube” and “elastic impedance value” of an elastic tube. As shown in FIG. 9, the “impedance of the elastic tube” constantly changes with time within the same pulse pressure period, and relatively matches the curve constituted by the “impedance value of the actual elastic tube”. Therefore, the impedance of the actual elastic tube of the elastic tube is estimated by the measurement method of the present embodiment. FIG. 10 is a comparison diagram of “actual pipe pressure value” and “estimated pipe pressure value” of an elastic pipe. The measurement method of this embodiment can estimate the impedance of the actual elastic tube of the elastic tube. Therefore, the pressure value in the pipe further estimated by the impedance of the elastic pipe is maintained within a stable error range. As shown in FIG. 10, the curves formed by the “estimated in-pipe pressure value” and the “actual in-pipe pressure value” are relatively coincident.

上述の通り、本発明が提示する測定方法と測定装置は、非侵襲的な方法で皮膚表面にて弾性管圧力、シフト量、及びインピーダンスなどのデータの測定と制御を行い、正確に測定される弾性管の関連特性、例えば弾性管のインピーダンス、即時性連続圧力、直流圧力、及び弾性管の動的コンプライアンスなどの特性を計算し推測する。   As described above, the measurement method and the measurement apparatus presented by the present invention measure and control data such as elastic tube pressure, shift amount, and impedance on the skin surface in a non-invasive manner and are accurately measured. Calculate and infer the relevant properties of the elastic tube, such as the impedance of the elastic tube, the instantaneous continuous pressure, the direct current pressure, and the dynamic compliance of the elastic tube.

上述の実施形態は本発明の技術思想及び特徴を説明するためのものにすぎず、当該技術分野を熟知する者に本発明の内容を理解させると共にこれをもって実施させることを目的とし、本発明の特許請求の範囲を限定するものではない。従って、本発明の精神を逸脱せずに行う各種の同様の効果をもつ改良又は変更は、本発明の特許請求の範囲に含まれるものとする。   The above-described embodiments are merely for explaining the technical idea and features of the present invention, and are intended to allow those skilled in the art to understand the contents of the present invention and to carry out the same with the present invention. It is not intended to limit the scope of the claims. Accordingly, improvements or modifications having various similar effects made without departing from the spirit of the present invention shall be included in the claims of the present invention.

1・・・検知ユニット、
10・・・直流作動装置、
11・・・交流作動装置、
12・・・直流シフト感知装置、
13・・・交流シフト感知装置、
14・・・圧力感知装置。
1 ... detection unit,
10: DC actuator,
11 ... AC actuator,
12 ... DC shift sensing device,
13 ... AC shift sensing device,
14: Pressure sensing device.

Claims (6)

Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
Figure 2014100389
JP2012255340A 2012-11-21 2012-11-21 Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method Active JP6009914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255340A JP6009914B2 (en) 2012-11-21 2012-11-21 Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255340A JP6009914B2 (en) 2012-11-21 2012-11-21 Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method

Publications (2)

Publication Number Publication Date
JP2014100389A true JP2014100389A (en) 2014-06-05
JP6009914B2 JP6009914B2 (en) 2016-10-19

Family

ID=51023506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255340A Active JP6009914B2 (en) 2012-11-21 2012-11-21 Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method

Country Status (1)

Country Link
JP (1) JP6009914B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193644A (en) * 1985-02-21 1986-08-28 コーリン電子株式会社 Blood pressure monitor method and apparatus
JPH0131370B2 (en) * 1983-02-25 1989-06-26 Ueda Electronic Works
US5027641A (en) * 1989-02-23 1991-07-02 Costello Jr Leo F Oscillometric non-invasive blood pressure simulator
JP2009066384A (en) * 2007-09-12 2009-04-02 E-Med Biotech Inc Method of measuring instantaneous arterial blood pressure and compliance and device thereof
JP2009125531A (en) * 2007-11-28 2009-06-11 Nippon Koden Corp Blood pressure measuring apparatus
JP2009285028A (en) * 2008-05-28 2009-12-10 Omron Healthcare Co Ltd Electronic sphygmomanometer
JP2009285029A (en) * 2008-05-28 2009-12-10 Omron Healthcare Co Ltd Electronic sphygmomanometer
JP2012130362A (en) * 2010-12-17 2012-07-12 A & D Co Ltd Arterial vessel examination apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0131370B2 (en) * 1983-02-25 1989-06-26 Ueda Electronic Works
JPS61193644A (en) * 1985-02-21 1986-08-28 コーリン電子株式会社 Blood pressure monitor method and apparatus
US5027641A (en) * 1989-02-23 1991-07-02 Costello Jr Leo F Oscillometric non-invasive blood pressure simulator
JP2009066384A (en) * 2007-09-12 2009-04-02 E-Med Biotech Inc Method of measuring instantaneous arterial blood pressure and compliance and device thereof
JP2009125531A (en) * 2007-11-28 2009-06-11 Nippon Koden Corp Blood pressure measuring apparatus
JP2009285028A (en) * 2008-05-28 2009-12-10 Omron Healthcare Co Ltd Electronic sphygmomanometer
JP2009285029A (en) * 2008-05-28 2009-12-10 Omron Healthcare Co Ltd Electronic sphygmomanometer
JP2012130362A (en) * 2010-12-17 2012-07-12 A & D Co Ltd Arterial vessel examination apparatus

Also Published As

Publication number Publication date
JP6009914B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US6517493B2 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus and inferior-limb blood-pressure measuring apparatus
US8047998B2 (en) Non-invasive blood pressure determination method
JP5644325B2 (en) Blood pressure information measuring device and method for calculating an index of arteriosclerosis in the device
US9414755B2 (en) Method for estimating a central pressure waveform obtained with a blood pressure cuff
JP6219378B2 (en) Method and apparatus for continuous noninvasive measurement of blood pressure
US20070106163A1 (en) Non-invasive blood pressure monitor with improved performance
KR100804454B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
US20140135634A1 (en) Noninvasive method and apparatus to measure central blood pressure using extrinsic perturbation
US20170251927A1 (en) Blood pressure determination device, blood pressure determination method, recording medium for recording blood pressure determination program, and blood pressure measurement device
US20110319771A1 (en) Vital luminal part evaluating apparatus
CN113226161B (en) Control unit for deriving a measure of arterial compliance
EP3457929A1 (en) Non-invasive system and method for measuring blood pressure variability
US7662102B2 (en) Method of measuring instantaneous arterial blood pressure and compliance and device thereof
US8690786B2 (en) System and method for a non-invasive blood pressure monitor
JP6009914B2 (en) Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method
JP2008272387A (en) Instrument and method for measuring blood vessel viscoelasticity, program, computer readable recording medium, large-scale integrated circuit, and fpga
EP1057450A2 (en) Apparatus for evaluating cardiac function of living subject
JP6854804B2 (en) Improved blood pressure measurement system
RU2327414C1 (en) Method of blood pressure measurement based on three-dimensional compression oscillogram
RU2694737C1 (en) Apparatus for determining arterial pressure in the shoulder on each heart beat
RU2698447C1 (en) Method for determining arterial pressure in the shoulder on each cardiac contraction
Foran et al. Compression of the brachial artery in vivo
Gupta Blood Pressure Monitoring
TW202202088A (en) Method and device for continuous blood pressure measurement
Oh et al. The modified step-wise deflation method in blood pressure measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160915

R150 Certificate of patent or registration of utility model

Ref document number: 6009914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250